WorldWideScience

Sample records for high frequency antenna

  1. Multifunctional Magnetodielectric Composites for Antenna and High Frequency Applications

    National Research Council Canada - National Science Library

    Zhang, Xiaokai; Golt, Michael C; Ekiert, Jr., Thomas F; Yarlagadda, Shridhar; Unruh, Karl M; Xaio, John Q

    2006-01-01

    Miniaturization of high frequency antennas while maintaining desirable bandwidth, impedance, and loss characteristics has recently attracted great attention in part due to the development of metamaterials...

  2. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  3. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  4. Highly Compact Composite Antenna

    OpenAIRE

    Pigeon, Mélusine; Morlaas-Courties, Christophe; Aubert, Hervé; Souny, Bernard

    2009-01-01

    International audience; The highly compact antenna proposed in this communication consists of a judicious association of equivalent magnetic current source with equivalent electric current source. This composite antenna presents a directivity radiation pattern analogous to one of the microstrip ceramic antennas but can be used at low frequencies. The antenna measurements confirm the promising performances obtained from electromagnetic simulations.

  5. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  6. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna.

    Science.gov (United States)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-09

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors' knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna's matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  7. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    Science.gov (United States)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%–91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  8. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling...

  9. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  10. Printed silver nanowire antennas with low signal loss at high-frequency radio.

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-21

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.

  11. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  12. On the Conductive Loss of High-Q Frequency Reconfigurable Antennas for LTE Frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del

    2018-01-01

    , the soldering tin and the conductivity of the antenna material. It shows that conductive loss from the non-perfect electric conductor becomes the main source of loss for certain Q values. This loss is intrinsic to the antenna manufacturing and cannot be mitigated even with the best conductor, i.e. silver...

  13. Performance analysis of high frequency single-site-location antenna arrays using numerical electromagnetic modeling

    Science.gov (United States)

    Schiantarelli, Harry T.

    1990-09-01

    Electronic support measures (ESM) systems play an increasingly important role in modern warfare and can influence the outcome of a military engagement. The application of ESM can be extended to anti-guerrilla and anti-drug operations where law enforcement agencies can exploit the fact that their presence is inducing the outlaw to depend more on radio communications to coordinate their activities. When a propagation path of no more than one reflection at the ionosphere (1-hop) can be assumed, position of an HF emitter can be determined by a single observing site using vertical triangulation, provided that the height of the ionosphere at the point where the radio wave is reflected, can be determined. This technique is known as high frequency direction finding single-site-location (HFDF SSL). This thesis analyzes the HFDF SSL error in measuring the direction of arrival of the signal, how this error is generated by the antenna array and its effect on emitter location. The characteristics of the two antenna arrays used by a specific HFDF SSL system that implements the phase-interferometer techniques were studied using electromagnetic modeling.

  14. Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate

    Science.gov (United States)

    Chen, Yihong; Lu, Xuejun

    2010-01-01

    To address the issues of flexible electronics needed for surface-to-surface, surface-to-orbit, and back-to-Earth communications necessary for manned exploration of the Moon, Mars, and beyond, a room-temperature printing process has been developed to create active, phased-array antennas (PAAs) on a flexible Kapton substrate. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proven feasible for phased-array antenna systems. The carrier mobility of an individual CNT is estimated to be at least 100,000 sq cm/V(dot)s. The CNT network in solution has carrier mobility as high as 46,770 sq cm/V(dot)s, and has a large current-density carrying capacity of approx. 1,000 mA/sq cm , which corresponds to a high carrying power of over 2,000 mW/ sq cm. Such high carrier mobility, and large current carrying capacity, allows the achievement of high-speed (>100 GHz), high-power, flexible electronic circuits that can be monolithically integrated on NASA s active phasedarray antennas for various applications, such as pressurized rovers, pressurized habitats, and spacesuits, as well as for locating beacon towers for lunar surface navigation, which will likely be performed at S-band and attached to a mobile astronaut. A fully printed 2-bit 2-element phasedarray antenna (PAA) working at 5.6 GHz, incorporating the CNT FETs as phase shifters, is demonstrated. The PAA is printed out at room temperature on 100-mm thick Kapton substrate. Four CNT FETs are printed together with microstrip time delay lines to function as a 2-bit phase shifter. The FET switch exhibits a switching speed of 0.2 ns, and works well for a 5.6-GHz RF signal. The operating frequency is measured to be 5.6 GHz, versus the state-of-the-art flexible FET operating frequency of 52 MHz. The source-drain current density is measured to be over 1,000 mA/sq cm, while the conventional organic FETs, and single carbon nanotube-based FETs, are typically in the m

  15. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  16. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2016-07-01

    Full Text Available In this study a new built-in ultrahigh frequency (UHF antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  17. Bistatic High Frequency Radar Ocean Surface Cross Section for an FMCW Source with an Antenna on a Floating Platform

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2016-01-01

    Full Text Available The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform are derived for a frequency-modulated continuous wave (FMCW source. Based on previous work, the derivation begins with the general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived. The new first- and second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for the FMCW waveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCW waveform reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is found to be similar to that for a pulsed waveform.

  18. The effect of the user's body on high-Q and low-Q planar inverted F antennas for LTE frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2012-01-01

    The influence of the user's body degrades small antenna performances. This paper investigates the detuning and the losses on high-Q planar antennas for small devices due to user proximity. The results at low frequencies for the Long Term Evolution (LTE) standard are compared to the results...

  19. Highly decoupled cosited antennas

    Science.gov (United States)

    Campbell, Donn V.; Dubowicz, Palemon W.; Hoverter, Robert T.

    1986-08-01

    Two cosited omnidirectional biconical antennas are respectively tilted plus and minus 45 degrees (+ or - 45 deg.) with respect to the vertical and, therefore, are perpendicular (90 deg.) with respect to each other to effect polarization mismatch and near field decoupling. In combination with the described antennae orientation, high impedance cable chokes are added in series with the coaxial cable antennae feed lines to suppress induced parasitic RF currents.

  20. Novel Deployable High Frequency Antennas Using Composite Electro-Textiles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase I program will address NASA's need for large diameter high radio frequency (Ka band 27- 40 GHz) apertures that provide greater gain and...

  1. A High Cross-Pol Isolation Multi-Frequency Antenna for Cloud and Precipitation Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase II SBIR would realize a prototype of an offset Gregorian antenna design that will be delivered to NASA for integration in the D3R GPM ground...

  2. A High Cross-Pol Isolation Multi-Frequency Antenna for Cloud and Precipitation Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote Sensing Solutions will evaluate the critical parameters and generate a design approach for a portable, all-weather multi-wavelength antenna system suitable...

  3. GMI High Frequency Antenna Pattern Correction Update Based on GPM Inertial Hold and Comparison with ATMS

    Science.gov (United States)

    Draper, David W.

    2015-01-01

    In an inertial hold, the spacecraft does not attempt to maintain geodetic pointing, but rather maintains the same inertial position throughout the orbit. The result is that the spacecraft appears to pitch from 0 to 360 degrees around the orbit. Two inertial holds were performed with the GPM spacecraft: 1) May 20, 2014 16:48:31 UTC-18:21:04 UTC, spacecraft flying forward +X (0yaw), pitch from 55 degrees (FCS) to 415 degrees (FCS) over the orbit2) Dec 9, 2014 01:30:00 UTC-03:02:32 UTC, spacecraft flying backward X (180yaw), pitch from 0 degrees (FCS) to 360 degrees (FCS) over the orbitThe inertial hold affords a view of the earth through the antenna backlobe. The antenna spillover correction may be evaluated based on the inertial hold data.The current antenna pattern correction does not correct for spillover in the 166 and 183 GHz channels. The two inertial holds both demonstrate that there is significant spillover from the 166 and 183 GHz channels. By not correcting the spillover, the 166 and 183 GHz channels are biased low by about 1.8 to 3K. We propose to update the GMI calibration algorithm with the spill-over correction presented in this document for 166 GHz and 183 GHz.

  4. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  5. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  6. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    2013-12-01

    Full Text Available The ultra-high-frequency (UHF method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM waves excited by partial discharge (PD. As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.

  7. High Frequency Antennas for Wireless Transmissions of Audio and Video Signals Using Threads Spun From Long Multi-Wall Carbon Nanotubes.

    Science.gov (United States)

    Mast, David; Jayasinghe, Chaminda; Schulz, Mark; Shanov, Vesselin

    2009-03-01

    We have used threads spun from long multiwall carbon nanotubes (MWCNT) to make antennas for audio and video broadcasts (transmission and reception) at GHz frequencies. The MWCNT used to make the threads have outer diameters from about 6 nm to 30 nm. These MWCNT's have been grown in lengths up to 18 mm. The diameter of the CNT threads used to fabricate the high frequency antennas was 25 microns. Initial measurements consist of 1) transmission and reception of a CW signals at f= 694 MHz and 1388MHz , 2) the transmission and detection of a CW signal plus sidebands at ± 100kHz, 3) the broadcast and reception of an AM modulated audio signal, 4) the broadcast and reception of composite video images, 5) the simultaneous broadcast and reception of audio signals from a single CNT antenna, and 6) the simultaneous transmission and/or reception at multiple frequencies from a single CNT thread antenna. The results of using the CNT thread antenna for these transmissions will be discussed.

  8. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  9. High-Q Antennas with built-in coils

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert Frølund

    2014-01-01

    Efficiency and isolation, at low frequencies (700 MHz), are two of the most important metrics for successful multicommunication implementation. This paper presents an antenna concept, that exhibits a very high isolation between high-Q Tx and Rx antennas at 700 MHz. Furthermore, it is shown how...... coils can be integrating into the antenna structure for obtaining better efficiency. It is shown that by integrated coils into the antenna structure, the efficiency can be improved by 2dB for each antenna....

  10. Novel Deployable High Frequency Antennas Using Composite Electro-Textiles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I program, the Infoscitex (IST) team focused primarily on the design and fabrication of a prototype high accuracy electro-textile mesh leading to a...

  11. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  12. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...

  13. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    OpenAIRE

    Ho, Kevin Ming-Jiang

    2014-01-01

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka- band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and prod...

  14. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lechen, E-mail: yanglechen@163.com [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China); Shi, Xueshun [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Science and Technology on Electronic Test and Measurement Laboratory, Qingdao 266555, Shandong Province (China); Chen, Kunfeng [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Fu, Kai; Zhang, Baoshun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China)

    2013-12-15

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ∼96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna.

  15. Dimensioning of the cooling system of the capacitors operating in a high frequency antenna, through a finite element method; Dimensionnement du systeme de refroidissement des condensateurs d'une antenne a haute frequence, par la methode des elements finis

    Energy Technology Data Exchange (ETDEWEB)

    Tenza, A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Ecole Superieure d' Ingenieurs de Marseille (ESIM), 13 - Marseille (France)

    2003-07-01

    The aim of this work is the study of the heat transfer and of thermal behaviour of the HF (high frequency) components (in fact capacitors) of the ITER-proto-2005-FCI antenna. Preliminary results carried out with the Castem software show that it is possible to cool the hottest part of the antenna efficiently. A water flow (1 bar, 25 Celsius degrees) or an helium flow (10 bars, 50 Celsius degrees) permit to limit the maximal value of the temperature to 270 Celsius degrees. A second software Ansys has allowed the author to simulate capacitors with more complicated shapes. (A.C.)

  16. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    Science.gov (United States)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  17. A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications

    Science.gov (United States)

    Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.

    2017-10-01

    In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.

  18. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...

  19. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019 Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be...

  20. 47 CFR 80.927 - Antenna radio frequency indicator.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927 Section 80.927 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which...

  1. Receiving antenna array element with extended bandwidth toward low frequencies

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Koshelev, V. I.; Nekrasov, E. S.

    2017-08-01

    An ultrawideband antenna based on a short dielectric dipole has been developed to sound dielectric layered media and to search objects including those hidden behind a dielectric barrier. In contrast to the previously presented antennas, the new one has an unbalanced output and contains a built-in balanced-to-unbalanced unit. As a result of optimization of the antenna geometry and topology of active elements, the lower frequency boundary was shifted toward low frequencies. The antenna records short nanosecond pulses with the spectrum ranging from 150 MHz to 2 GHz with small waveform distortions.

  2. Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device

    Science.gov (United States)

    Hayata, Hiroki; Okamoto, Marin; Takeoka, Shinji; Iwase, Eiji; Fujie, Toshinori; Iwata, Hiroyasu

    2017-05-01

    In this paper, we present a simple method for manufacturing electronic devices using ultrathin polymer films, and develop a high-frequency RF identification. To expand the market for flexible devices, it is important to enhance their adhesiveness and conformability to surfaces, to simplify their fabrication, and to reduce their cost. We developed a method to design an antenna for use on an operable RF identification whose wiring was subjected to commercially available inkjet or simple screen printing, and successfully fabricated the RF identification. By using ultrathin films made of polystyrene-block-polybutadiene-block-polystyrene (SBS) as substrates — less than 750 nm — the films could be attached to various surfaces, including soft surfaces, by van der Waals force and without using glue. We succeeded in the simple fabrication of an ultrathin RF identification including a commercial or simple printing process.

  3. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    Science.gov (United States)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  4. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.

    Science.gov (United States)

    Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong

    2014-03-26

    We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.

  5. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  6. Frequency scanning antenna arrays with pentagonal dipoles of different impedances

    Directory of Open Access Journals (Sweden)

    Bošković Nikola

    2015-01-01

    Full Text Available In this work we present the benefits of using pentagonal dipoles as radiating elements instead of classical printed dipoles in the design of frequency scanning antenna arrays. We investigate how impedance of pentagonal dipoles, which can be changed in a wide range, influences the overall characteristics of the uniform antenna array. Some very important antenna characteristics such as side lobe level, gain and scanning angle are compared for three different antenna arrays consisting of identical pentagonal dipoles with impedances of 500 Ω, 1000 Ω and 1500 Ω. [Projekat Ministarstva nauke Republike Srbije, br. TR-32024 i br. III-45016

  7. Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System

    Directory of Open Access Journals (Sweden)

    Sri Maldia Hari Asti

    2012-01-01

    Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.

  8. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.

  9. Low profile frequency agile MIMO slot antenna with TCM characterization

    KAUST Repository

    Ghalib, Asim

    2017-06-07

    In this paper, a frequency reconfigurable multiple-input-multiple-output (MIMO) slot antenna is presented. The proposed design is low profile and compact with wide tunability range, covering several well-known frequency bands from 1800 MHz to 2450 MHz. The frequency reconfigurability is achieved by loading the annular slot with varactor diodes. The antenna system is also analyzed for MIMO performance metrics. Moreover, the effect of circular slot antenna on the chassis modes is also investigated using the theory of characteristic modes (TCM). The physical principle behind frequency reconfigurability is also investigated using TCM analysis. An interesting finding is observed using varactor diodes for frequency reconfigurability, that is the reactive impedance loading does not alter the modal significance (MS) plots but only aid in the input impedance matching at different frequency bands.

  10. A bounds on the resonant frequency of rectangular microstrip antennas

    Science.gov (United States)

    Bailey, M. C.

    1980-01-01

    The calculation of currents induced by a transverse electric plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer a lower bound on the resonant frequency (or resonant-E-plane dimension) for rectangular microstrip antennas. An upper bound is provided by the frequency for which the E-plane dimension is a half-wavelength.

  11. A very low noise preamplifier for extremely low frequency magnetic antenna

    Science.gov (United States)

    Shimin, Feng; Suihua, Zhou; Zhiyi, Chen

    2013-07-01

    Besides the electrode-pair antenna, the magnetic antenna is also used for the extremely low frequency (ELF) submarine communication. To receive the weak ELF signals, the structure of a small sized magnetic antenna determines its specific electrical characteristics. The ELF magnetic antenna shows high internal resistance, alternating-current impedance, and a resonance frequency near the operating bandwidth. In accordance with the electrical characteristics of ELF magnetic antenna, a low noise preamplifier and frequency compensation circuit were designed and realized. The preamplifier is a three-stage negative feedback circuit, which is composed of parallel JFET, common-emitter amplifier with a Darlington structure and a common-collector amplifier in push-pull connection. And a frequency compensation circuit is cascaded to compensate the characteristic in low frequency range. In the operating bandwidth f = 30-200 Hz, the circuit has a gain of 39.4 dB. The equivalent input noise is 1.97 nV/√Hz and the frequency response keeps flat in operating bandwidth. The proposed preamplifier of the ELF magnetic antenna performs well in receiving ELF signals.

  12. Reduced-volume antennas with integrated high-impedance electromagnetic surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Michael A.

    2006-11-01

    Several antennas with integrated high-impedance surfaces are presented. The high-impedance surface is implemented as a composite right/left-handed (CRLH) metamaterial fabricated from a periodic structure characterized by a substrate, filled with an array of vertical vias and capped by capacitive patches. Omnidirectional antennas placed in close proximity to the high-impedance surface radiate hemispherically with an increase in boresight far-field pattern gain of up to 10 dB and a front-to-back ratio as high as 13 dB at 2.45 GHz. Several TEM rectangular horn antennas are realized by replacing conductor walls with high-impedance surfaces. The TEM horn antennas are capable of operating below the TE{sub 1,0} cutoff frequency of a standard all-metal horn antenna, enabling a reduction in antenna volume. Above the cutoff frequency the TEM horn antennas function similarly to standard rectangular horn antennas.

  13. Tunable antenna radome based on graphene frequency selective surface

    Directory of Open Access Journals (Sweden)

    Meijun Qu

    2017-09-01

    Full Text Available In this paper, a graphene-based frequency selective surface (FSS is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.

  14. Tunable antenna radome based on graphene frequency selective surface

    Science.gov (United States)

    Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li

    2017-09-01

    In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.

  15. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  16. Challenges for Frequency-Reconfigurable Antennas in Small Terminals

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Pedersen, Gert Frølund

    2012-01-01

    This paper gives an overview of the techniques published over the past years to address continuous frequency tuning. It presents the challenges that have been encountered and relates to each other the parameters that influence the losses of the resulting antenna structure. A mock-up is made...

  17. Surface plasma source with saddle antenna radio frequency plasma generatora)

    Science.gov (United States)

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-01

    A prototype RF H- surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H- beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  18. Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency

    Science.gov (United States)

    Hussain, Niamat; Park, Ikmo

    2017-05-01

    This paper presents the design of a planar low-profile, wide-gain-bandwidth metasurface antenna at terahertz frequency. The proposed antenna consists of a metasurface and a planar feeding structure, both of which are patterned on an electrically thin, high-permittivity GaAs substrate. The metasurface, which is printed on the top of the substrate, consists of a periodic array of 5×5 square patches, while the planar feeding structure, which is printed on the bottom of the substrate, is a wideband, leaky-wave, open-ended slotline, which is fed at the center. The antenna with a single feeding structure showed a maximum broadside gain of 9.8 dBi, a radiation efficiency of 69%, and a 3-dB gain bandwidth of 16% (0.34-0.4 THz). The antenna gain performance was significantly improved by exciting the antenna with an array of slit feeding and without changing the antenna size. The antenna with a multiple (five) feeding structure showed a gain of 15.5 dBi, a 3-dB gain bandwidth of 17.3%, and a radiation efficiency of 73%. This antenna achieved a size reduction of 31 times in terms of device thickness in comparison with the design of the lens coupled antenna while achieving a comparable gain. In addition to its high gain and wide-gain-bandwidth characteristics, the proposed antenna design exhibits a low-profile mechanical robustness, easy integration into circuit boards, and excellent low-cost mass production suitability.

  19. New USS Microstrip Antenna Proposal Based Both On Ku And Ka Frequency New USSMA Ku Ka Band

    Directory of Open Access Journals (Sweden)

    Chafaa Hamrouni

    2017-09-01

    Full Text Available In this article we propose a Microstrip Antenna for Ultra Small Satellite USS telecommunication subsystem application in UWB Ku frequency band and Ka band. The designed MA is based on circular patch antenna. We process by minimizing and adjusting the MA dimension to lift the latch of bandwidth while maintaining quality performance of other properties. We have developed a studied geometric shape and used tricks to design them. Obtained antenna feds by microstrip line and the ground plane. Antenna feed elements are placed on the same plate to reduce the spatial dimension. Successful results are presented to validate function of proposed design and its precision operating at high frequencies.

  20. Development of a four-frequency selective surface prototype spacecraft antenna

    Science.gov (United States)

    Hickey, Gregory S.; Wu, Te-Kao

    1992-01-01

    NASA-JPL's four-frequency telecommunication system design entails the creation and integration of a frequency-selective surface (FSS) subreflector into the high-gain antenna subsystem. The FSS design, which incorporates a periodic array of conducting elements on a kevlar/polymer composite structure, will be able to multiplex S, X, Ku, and Ka frequency-band wavelengths. Accounts are presented of the FSS's development, mechanical testing, and electrical testing.

  1. Low-frequency computational electromagnetics for antenna analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K. (Los Alamos National Lab., NM (USA)); Burke, G.J. (Lawrence Livermore National Lab., CA (USA))

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  2. A Printable Silicon Nano-Field Effect Transistor with High Operating Frequency for Large-Area Deployable Active Phased-Array Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible electronic circuits can be easily integrated with large area (>10m aperture), inflatable antennas to provide distributed control and processing...

  3. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  4. [Microstrip antenna design and system research of radio frequency identification temperature sensor].

    Science.gov (United States)

    Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min

    2008-12-01

    Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.

  5. Mantle cloaking for co-site radio-frequency antennas

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Alessio, E-mail: alessio.monti@uniroma3.it; Barbuto, Mirko [“Niccolò Cusano” University, Via Don Carlo Gnocchi 3, Rome 00166 (Italy); Soric, Jason; Alù, Andrea [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto [Department of Engineering, “Roma Tre” University, Via Vito Volterra 62, Rome 00146 (Italy); Trotta, Fabrizio [Antenna Department, ELETTRONICA S.p.A., Via Tiburtina Valeria Km 13700, Rome 00131 (Italy)

    2016-03-14

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  6. A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; van Hulst, N.F.

    2007-01-01

    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed

  7. Wideband Monopole Fractal Heptagonal Antenna Implementation in X-Band Frequency Range

    Science.gov (United States)

    Iqbal, Muhammad Naeem; Ur-Rahman, Hamood; Tauqeer, T.; Ramer, Rodica

    2017-10-01

    A wideband heptagonal fractal monopole antenna with coplanar waveguide feed is designed and fabricated in X-band frequency range. Comparison of heptagonal fractal monopole antennas with two different substrates to achieve optimum efficiency for UWB applications is presented. FR4 and RT/Duroid 5880 substrates are used for antenna design and fabrication. Four iterations of base shape are used. Fractal antenna has omni-directional radiation pattern. Simulated and measured results showed that monopole fractal antenna with RT/Duroid 5880 substrate has better performance than fractal antenna with FR4 substrate in terms of bandwidth and return loss. Major application area of proposed antenna is wireless body area networks.

  8. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (˜6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.

  9. Zero Index Metamaterial for Designing High-Gain Patch Antenna

    Directory of Open Access Journals (Sweden)

    Yahong Liu

    2013-01-01

    Full Text Available A planar wideband zero-index metamaterial (ZIM based on mesh grid structure is studied. It is demonstrated that the real part of the index approaches zero at the wideband covering from 9.9 GHz to 11.4 GHz. Two conventional patch antennas whose operating frequencies are both in the range of zero-index frequencies are designed and fabricated. And then, the ZIM is placed in the presence of the conventional patch antennas to form the proposed antennas. The distance between the antenna and the ZIM cover is investigated. Antenna performances are studied with simulations and measurements. The results show that the more directional and higher gain patch antennas can be obtained. The measured results are in good agreement with the simulations. Compared to the conventional patch antenna without the ZIM, it is shown that the beamwidth of antenna with the ZIM cover becomes more convergent and the gain is much higher.

  10. Development of a low expansion, composite antenna subreflector with a frequency selective surface. [for Voyager spacecraft

    Science.gov (United States)

    Stonier, R. A.

    1977-01-01

    A Kevlar-49 epoxy, composite frequency-selective-surface subreflector was developed for the high gain antenna used on the Voyager spacecraft. The Kevlar-49 material was selected for this sandwich structure because a dielectric material was required, and the use of Kevlar-49 resulted in a composite sandwich with a low thermal coefficient of expansion and reduced weight over an equivalent fiberglass construction. A detailed description and the results of the development program are given and include the design requirements for the structure, the development testing of the materials that led to the final design configuration, and the processes used to fabricate this advanced composite spacecraft antenna component.

  11. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  12. The RF Energy Harvesting Antennas Operating in Commercially Deployed Frequency Bands: A Comparative Study

    Directory of Open Access Journals (Sweden)

    M. Mrnka

    2016-01-01

    Full Text Available This paper deals with suitable antennas for energy harvesting, which is a growing research field due to the utilization of nowadays ubiquitous and abundant RF energy. Four types of basic antenna structures suitable for harvesting applications, namely, the patch antenna, slot antenna, modified inverted F antenna, and dielectric resonator antenna, are compared from the viewpoint of reflection coefficient, efficiency, radiation patterns, and dimensions. The frequencies of interest were chosen so that they cover several main wireless systems operating between 0.8 GHz and 2.6 GHz, that is, GSM, UMTS, and WiFi.

  13. Correlation Coefficient Control For A Frequency Reconfigurable Dual-Band Compact MIMO Antenna Destined For LTE

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Buskgaard, Emil Feldborg; Pedersen, Gert Frølund

    2014-01-01

    In this contribution, we are proposing a compact design for an implementation of a two element MIMO antenna destined for LTE smart phones. The antennas are collocated at one end of the PCB to minimize antenna volume. Each element is dual-band and frequency reconfigurable using tunable capacitors...

  14. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  15. Low Frequency Radio Astronomical Antennas for the Lunar Environment

    Science.gov (United States)

    Burns, Jack O.; Lazio, J.; ROLSS DALI Teams

    2009-01-01

    Low radio frequencies (∼100 MHz) represent the last of the relatively unexplored wavebands in the electromagnetic spectrum for astrophysics. Such observations are very challenging from the surface of the Earth because of an abundance of human-made radio interference (e.g., FM bands, TV channels) and because of ionospheric refraction. The lunar farside presents a unique opportunity to fully open this cosmic window because of the demonstrated radio-quiet environment. The ultimate science goal of a lunar farside low frequency telescope is to explore a new frontier in cosmology, the so-called Dark Ages. This era occurs between Recombination (at z 1100) when the universe first becomes transparent (producing what we observe today as the CMB) and Reionization when the first stars and galaxies form (at z 10-20). During the Dark Ages, the universe was unlit by any star and the only detectable signal is likely to arise from neutral hydrogen absorption against the CMB (from the collapse of the first structures). Observing this absorption signal would be a powerful probe of fundamental cosmology. During the Dark Ages (z 20 - 150), when the 21-cm (1.4 GHz) neutral hydrogen line is redshifted into the low frequency radio band (10-30 MHz, 10-30 m), the absorption signal has the potential to be the richest of all cosmological data sets. In this poster, we will discuss the opportunities and options for low frequency radio antennas in both lunar orbit and on the lunar surface. We are investigating a novel concept to deploy a large number of low-mass antennas deposited on sheets of polyimide film. We will also describe results of laboratory vacuum testing at U. Colorado on polyimide film cycled between -150 C and 100 C, and exposed to far-ultraviolet light, with conditions like those on the lunar surface.

  16. Aspects of High-Q Tunable Antennas and Their Deployment for 4G Mobile Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2016-01-01

    Tunable antennas are very promising for future generations of mobile communications, where broad frequency coverage will be required increasingly. This work describes the design of small high-Quality factor (Q) tunable antennas based on Micro-Electro-Mechanical Systems (MEMS), which are capable o...

  17. Highly sensitive antenna using inkjet overprinting with particle-free conductive inks.

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Otsuka, Kanji

    2012-11-01

    Printed antennas with low signal losses and fast response in high-frequency bands have been required. Here we reported on highly sensitive antennas using additive patterning of particle-free metallo-organic decomposition silver inks. Inkjet overprinting of metallo-organic decomposition inks onto copper foil and silver nanowire line produced antenna with mirror surfaces. As a result, the overprinted antennas decreased their return losses at 0.5-4.0 GHz and increased the speed of data communication in WiFi network.

  18. Isolation of High-Q Antennas for Mobile Handsets

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Isolation, beween the antennas at low frequencies (700 MHz), is one of the major issues in 4th Generation Long Term Evolution. This paper presents a practical method to improve the isolation between the ports of Tx an Rx antennas through narrow-band antennas used in separate transmit and receive ...... mode. Furthermore, a patented feeding technique is applied to feed the antenna, which helps improving the isolation between the antenna ports. An isolation of better than -22dB at 700 MHz, is shown to be possible to achieve, by utilizing this method....

  19. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    Science.gov (United States)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  20. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda)

    Science.gov (United States)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Alcator C-Mod Team

    2013-05-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  1. Minimum Lens Size Supporting the Leaky-Wave Nature of Slit Dipole Antenna at Terahertz Frequency

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2016-01-01

    Full Text Available We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in which the slit dipole antenna works as a leaky-wave antenna. The slit dipole antenna consists of a planar feeding structure, which is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz. The numerical results show that the antenna gain responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius. The lens with the radius of 1.2λo is found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon lens.

  2. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    Science.gov (United States)

    2015-03-26

    realized as constant- angular structures, such as biconical and bowtie antennas . Inevitably, the ge- ometry must be truncated at some point, so physical...COMPUTATIONAL ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Casey E. Fillmore, Capt, USAF...ELECTROMAGNETIC STUDIES FOR LOW-FREQUENCY COMPENSATION OF THE REFLECTOR IMPULSE-RADIATING ANTENNA THESIS Presented to the Faculty Department of Electrical and

  3. Frequency-Selective Surface to Prevent Interference Between Radar and SATCOM Antennas

    NARCIS (Netherlands)

    Monni, S.; Neto, A.; Gerini, G.; Nennie, F.; Tijhuis, A.

    2009-01-01

    Interference between neighboring antennas operating in nearby frequency ranges can lead to damage of the front-end electronics. This letter presents the design of a frequency-selective surface (FSS) aimed at preventing the saturation of the low noise amplifiers of a phased-array radar antenna due to

  4. OLFAR - Orbiting low frequency antennas for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high

  5. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  6. Compact MIMO Microstrip Antennas for USB Dongle Operating in 2.5–2.7 GHz Frequency Band

    Directory of Open Access Journals (Sweden)

    Vladimir Ssorin

    2012-01-01

    Full Text Available This paper considers design of microstrip MIMO antennas for an LTE/WiMAX USB dongle operating in the 2.5–2.7 GHz frequency band. The MIMO system includes two antenna elements with an additional requirement of high isolation between them that is especially difficult to realize due to size limitations of a USB dongle. Three approaches to achieve the needed system characteristics using microstrip PCB antennas are proposed. For the first design, high port-to-port isolation is achieved by using a decoupling techniques based on a direct connection of the antenna elements. For the second approach, high port-to-port isolation of the MIMO antenna system is realized by a lumped decorrelation capacitance between antenna elements feeding points. The third proposed antenna system does not use any special techniques, and high port-to-port isolation is achieved by using only the properties of a developed printed inverted-F antenna element. The designed MIMO antenna systems have the return loss S11 and the insertion loss S21 bandwidths of more than 200 MHz at the −8 dB level with the correlation coefficient lower than 0.1 and exhibit pattern diversity when different antenna elements are excited. Experimental measurements of the fabricated antenna systems proved the characteristics obtained from electromagnetic simulation.

  7. Antenna-by-Antenna and Joint-over-Antenna MIMO Signal Detection Techniques for Turbo-Coded SC/MMSE Frequency Domain Equalization

    OpenAIRE

    Karjalainen, J; Kansanea, K.; Veselinovic, N.; Matsumoto, T

    2005-01-01

    This paper investigates iterative frequency domain techniques for the reception of spatially multiplexed single carrier signals transmitted over frequency-selective multiple input multiple output (MIMO) channels. The investigated equalizers are based on the soft-cancellation (SC) and minimum mean square error (MMSE) altering technique for turbo-coded single carrier point-to-point MIMO systems. We consider two different transmit antenna separation techniques in the frequency domain: (1) antenn...

  8. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Energy Technology Data Exchange (ETDEWEB)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  9. OLFAR - Orbiting Low Frequency Antennas for Radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Verhoeven, Chris; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. Huge efforts are currently made to establish low frequency Earthbound

  10. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    Science.gov (United States)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  11. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  12. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulations...

  13. A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Khac Kiem

    2015-01-01

    Full Text Available A compact 2×2 metamaterial-MIMO antenna for WLAN applications is presented in this paper. The MIMO antenna is designed by placing side by side two single metamaterial antennas which are constructed based on the modified composite right/left-handed (CRLH model. By adding another left-handed inductor, the total left-handed inductor of the modified CRLH model is increased remarkably in comparison with that of conventional CRLH model. As a result, the proposed metamaterial antenna achieves 60% size reduction in comparison with the unloaded antenna. The MIMO antenna is electrically small (30 mm × 44 mm with an edge-to-edge separation between two antennas of 0.06λ0 at 2.4 GHz. In order to reduce the mutual coupling of the antenna, a defected ground structure (DGS is inserted to suppress the effect of surface current between elements of the proposed antenna. The final design of the MIMO antenna satisfies the return loss requirement of less than −10 dB in a bandwidth ranging from 2.38 GHz to 2.5 GHz, which entirely covers WLAN frequency band allocated from 2.4 GHz to 2.48 GHz. The antenna also shows a high isolation coefficient which is less than −35 dB over the operating frequency band. A good agreement between simulation and measurement is shown in this context.

  14. Automated composite ellipsoid modelling for high frequency GTD analysis

    Science.gov (United States)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  15. Effects of GPR antenna configuration on subpavement drain detection based on the frequency-shift phenomenon

    Science.gov (United States)

    Bai, Hao; Sinfield, Joseph V.

    2017-11-01

    The water and clay content of subsurface soil can significantly influence the detection results obtained from ground penetrating radar (GPR). Due to the variation of the material properties underground, the center frequency of transmitted GPR signals shifts to a lower range as wave attenuation increases. Examination of wave propagation in the subsurface employing an attenuation filter based on a linear system model shows that received GPR signals will be shifted to lower frequencies than those originally transmitted. The amount of the shift is controlled by a wave attenuation factor, which is determined by the dielectric constant, electric conductivity, and magnetic susceptibility of the transmitted medium. This paper introduces a receiver-transmitter-receiver dual-frequency configuration for GPR that employs two operational frequencies for a given test - one higher and one slightly lower - to take advantage of this phenomenon to improve subpavement drain detection results. In this configuration, the original signal is transmitted from the higher frequency transmitter. After traveling through underground materials, the signal is received by two receivers with different frequencies. One of the receivers has the same higher center frequency as the transmitter, and the other receiver has a lower center frequency. This configuration can be expressed as Rx(low-frequency)-Tx(high-frequency)-Rx(high-frequency) and was applied in both laboratory experiments and field tests. Results are analyzed in the frequency domain to evaluate and compare the properties of the signal obtained by both receivers. The laboratory experiment used the configuration of Rx(400MHz)-Tx(900MHz)-Rx(900MHz). The field tests, in addition to the configuration used in the lab tests, employed another configuration of Rx(270MHz)-Tx(400MHz)-Rx(400MHz) to obtain more information about this phenomenon. Both lab and field test results illustrate the frequency-shift phenomenon described by theoretical

  16. Tunable antenna radome based on graphene frequency selective surface

    National Research Council Canada - National Science Library

    Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li

    2017-01-01

    ... to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells...

  17. Design of energy conscious antenna system for WLAN frequency band

    CSIR Research Space (South Africa)

    Bembe, MJ

    2009-08-01

    Full Text Available The electronically steerable parasitic array radiator (ESPAR) antenna system is configured with one feed radiating element and N-parasitic radiating elements. The radiation pattern is electronically controlled by means of the variable devices...

  18. Dual Polarization Multi-Frequency Antenna Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative approaches for broadband multi-function antennas that conserve vehicle weight and reduce drag are welcome solutions for all airborne platforms including...

  19. Meandered-line antenna with integrated high-impedance surface.

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  20. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  1. Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands

    Science.gov (United States)

    2015-09-01

    2.2 Patch Rogers 6010 14 3. Results and Discussion 20 4. Future Work 20 5. References 23 Distribution List 26 iv List of Figures Fig. 1...ARL-TR-7462 ● SEP 2015 US Army Research Laboratory Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands...Circularly Polarized Patch Antenna for Two Frequency Bands by Jahin S Habib Sensors and Electron Devices Directorate, ARL

  2. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  3. Olfar: orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  4. Frequency Reconfigurable Circular Patch Antenna with an Arc-Shaped Slot Ground Controlled by PIN Diodes

    Directory of Open Access Journals (Sweden)

    Yao Chen

    2017-01-01

    Full Text Available In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz, UMTS (2.11–2.20 GHz, WiBro (2.3–2.4 GHz, and Bluetooth (2.4–2.48 GHz frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.

  5. Modeling of high gain helical antenna for improved performance ...

    African Journals Online (AJOL)

    The modeling of High Gain Helical Antenna structure is subdivided into three sections : introduction of helical structures ,Numerical analysis, modeling and simulation based on the parameters of helical antenna. The basic foundation software for the research paper is Matlab technical computing software, the modeling were ...

  6. Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2016-01-01

    Full Text Available A compact frequency reconfigurable antenna for mobile handset application is proposed in this paper. The antenna consists of an inverted L-shaped feeding strip, a shorter grounded strip, and a longer grounded strip which is connected with four inductors by using a single-pole four-throw RF switch. When we change the working states of the RF switch, the corresponding inductor is connected with the long grounded strip and different resonant modes of the antenna can be realized. The measured −6 dB impedance bandwidth of the presented antenna is 683–960 MHz and 1460–2820 MHz, which is able to cover the LTE700/GSM850/900 and GPS/DCS1800/PCS1900/UMTS2100/LTE2300/2500 bands. The antenna gain, radiation efficiency, and radiation patterns are also described in the paper.

  7. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang

    2017-10-01

    We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.

  8. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor.

    Science.gov (United States)

    Islam, Md Moinul; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal; Samsuzzaman, Md; Misran, Norbahiah; Arshad, Haslina

    2015-07-23

    The design of a compact metamaterial ultra-wideband (UWB) antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR), capacitive loaded strip (CLS) and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR) measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST)) and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  9. Model of the Radio Frequency (RF) Excitation Response from Monopole and Dipole Antennas in a Large Scale Tank

    Science.gov (United States)

    Wilson, Jeffrey D.; Zimmerli, Gregory A.

    2012-01-01

    Good antenna-mode coupling is needed for determining the amount of propellant in a tank through the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different monopole and dipole antenna mounting configurations and positions were modeled and responses simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum.

  10. Improved High-Rejection Filters and MEMS-Enabled Smart Reconfigurable Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed work envisions development of high-rejection filters and smart reconfigurable antennas using MEMS switches. Adaptive feature of the proposed antenna...

  11. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2017-09-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  12. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  13. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  14. Thermal loss and soldering effect study of high-Q antennas in handheld devices

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Pedersen, Gert Frølund

    2013-01-01

    High-Q antennas are attractive because, besides being narrow-band, they have the advantage of being more compact and therefore occupy less volume in a mobile device. However, they can become very lossy especially at lower frequencies. In this paper it is investigated how low a thermal loss...

  15. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer

    Science.gov (United States)

    2017-04-14

    Journal Publications (under review) 1. A Pattanayak and SP Duttagupta, “A Novel Broadband Reflect-array Design with sub-wavelength ring resonators...AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4076 5c.  PROGRAM ELEMENT NUMBER

  16. Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap

    Science.gov (United States)

    Dewan, Raimi; Rahim, M. K. A.; Himdi, Mohamed; Hamid, M. R.; Majid, H. A.; Jalil, M. E.

    2017-01-01

    A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.

  17. Compact multi-band frequency reconfigurable planar monopole antenna for several wireless communication applications

    Directory of Open Access Journals (Sweden)

    M. Abou Al-Alaa

    2014-05-01

    Full Text Available A compact reconfigurable multi-band monopole antenna is presented. To achieve frequency reconfigurability, a PIN diode is used. There are two states of switch. State 1: when the switch is OFF, the antenna operates at four bands: 2.45, 3, 3.69, and 5.5 GHz with impedance bandwidth of 9.95, 5.96, 12.57, and 10.76%, respectively. State 2: when a switch is ON, the antenna operates at 2.64, 3.67, 4.94, and 5.3 GHz with impedance bandwidth of 21.15, 11.76, 5.79, and 4.12%, respectively. Folded and meandered techniques are used for miniaturize antenna size. Antenna size is 15 mm × 37 mm × 0.8 mm and the radiator part is 15 mm × 9 mm × 0.8 mm. The proposed antenna is used in several applications such as Bluetooth (2400–2484 MHz, WLAN [802.11b/g/n (2.4–2.48 GHz, 802.11y (3.657–3.69 GHz, 802.11y (4.9 GHz, 802.11a/h/j/n (5.2 GHz], Wi-MAX (2.5–2.69 GHz, LTE (band 7, band 38, band 41, and band 43 and S-DMB (2605–2655 MHz. The antenna is analyzed using the transient solver of CST Microwave Studio. The proposed antenna was fabricated and tested. Measurements and simulations show good agreement.

  18. Compact First-Order Probe for Spherical Near-Field Antenna Measurements at Low Frequencies

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2017-01-01

    Guidelines for designing compact and lightweight first-order probes for spherical near-field antenna measurements at frequencies below 1 GHz that exploit first-order properties of electrically small self-resonant radiators combined into superdirective endfire arrays are established theoretically...... is just 343 mm above a 720-mm circular ground plane and weighs about 5 kg....

  19. Porcelain-coated antenna for radio-frequency driven plasma source

    Science.gov (United States)

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  20. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  1. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2013-01-01

    Significant gain and bandwidth improvement of inkjet-printed antennas with integrated artificial magnetic conductor (AMC) is achieved by utilizing wideband ground-backed frequency selective surfaces (FSSs) to overcome the high losses of organic substrates such as paper. A microstrip-fed monopole mounted on an artificial magnetic conductor is demonstrated to improve the gain by 5 dB over previous works and exhibit much wider impedance bandwidth while maintaining a thin antenna profile and a 20% electrical size reduction. The effect of AMC bandwidth on substrate losses and the gain reduction caused by finite AMC array effects are investigated in an effort to produce high-gain, miniaturized, low-cost wearable and structure mount antennas. © 2013 IEEE.

  2. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  3. One Dimensional Capacitive Loading in a Frequency Selective Surface for Low Profile Antenna Applications

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.; Herzig, Paul

    2011-01-01

    In this paper, the impact of adding discrete capacitive loading along one dimension of a frequency selective surface for low profile antenna applications is presented for the first time. The measured data demonstrates comparable performance between a non-loaded and a capacitively-loaded FSS with a significant reduction in the number of cells and/or cell geometry size. Additionally, the provision of discrete capacitive loads reduces the FSS susceptibility to fabrication tolerances based on placement of a fixed grid capacitance. The bandwidth increased from 1.8% to 7.3% for a total antenna thickness of approx. lambda/22, and from 1.5% to 9.2% for a thickness of approx. lambda/40. The total antenna area for each case was reduced by 55% and 12%, respectively.

  4. High-Frequency Learning.

    Science.gov (United States)

    Hollenbeck, Michelle D.

    1997-01-01

    For the past five years, Andover, Kansas middle-schoolers in an amateur radio club and class have sent and received Morse code messages, assembled and soldered circuit boards, designed and built antenna systems, and used computer programs to analyze radio communications problems. A successful bond issue financed a ham shack enabling students to…

  5. Mode Matching for Optical Antennas.

    Science.gov (United States)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-24

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  6. Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2012-09-01

    A complete characterization of the inkjet printing process using metallic nanoparticle inks on a paper substrate for microwave frequencies up to 12.5 GHz as well as its application to low-cost, high gain and wideband antenna design are demonstrated in this work. Laser and heat sintering of metallic nanoparticles are compared on paper substrate for the first time which demonstrate immense cost and time benefits of laser sintering. The antennas fabricated using the characterized process include a Vivaldi for the UWB band which exhibits a significantly higher gain of up to 8 dBi as compared to the currently published inkjet printed antennas, and a novel slow-wave log periodic dipole array which employs a new miniaturization technique to show 20% width reduction. © 1963-2012 IEEE.

  7. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  8. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2015-10-06

    Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state-of-the-art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far-field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low-cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far-field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.

  9. Gain Enhancement of a Wide Slot Antenna Using a Second-Order Bandpass Frequency Selective Surface

    Directory of Open Access Journals (Sweden)

    A. Chatterjee

    2015-06-01

    Full Text Available Gain enhancement of a wide slot antenna over a wide frequency band using a low profile, second order bandpass frequency selective surface (FSS as a superstrate is presented in this paper. The proposed multilayered FSS with non-resonant unit cells in each layer allows in-phase transmission of waves radiated from the antenna over a 3dB bandwidth of about 50%. The design allows an enhancement of upto 4dBi in the antenna gain over the entire frequency band (5-8GHz of operation. The FSS provides a very low insertion loss between the two transmission poles along with a linearly decreasing transmission phase over the band. The composite structure shows an impedance bandwidth (-10dB of 65% with an average gain between 6-8dBi over the frequency band with a peak gain of 9dBi. Measurement results of the fabricated prototype matches well with the predicted values.

  10. Highly-Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reconfigurable antennas are attractive for remote sensing, surveillance and communications, since they enable changes in operating frequency and / or radiation...

  11. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  12. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    Directory of Open Access Journals (Sweden)

    Xue-Xia Yang

    2016-01-01

    Full Text Available A novel millimeter wave coplanar waveguide (CPW fed Fabry-Perot (F-P antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of S11 less than −10 dB is from 34 to 37.7 GHz (10.5%, and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.

  13. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Syed Imran Hussain Shah

    2017-11-01

    Full Text Available In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz and 15% (2.1–2.45 GHz for the unfolded state and 20% (1.3–1.6 GHz and 14% (2.3–2.5 GHz for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  14. Blind Identification of Distributed Antenna Systems with Multiple Carrier Frequency Offsets

    OpenAIRE

    Yu, Yuanning; Petropulu, Athina P.; Poor, H. Vincent

    2007-01-01

    In spatially distributed multiuser antenna systems, the received signal contains multiple carrier-frequency offsets (CFOs) arising from mismatch between the oscillators of transmitters and receivers. This results in a time-varying rotation of the data constellation, which needs to be compensated at the receiver before symbol recovery. In this paper, a new approach for blind CFO estimation and symbol recovery is proposed. The received base-band signal is over-sampled, and its polyphase compone...

  15. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.

    2014-01-08

    A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.

  16. Screen-printed silver-ink antennas for frequency-reconfigurable architectures in LTE phones

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Holmgaard, Tobias; Christensen, Morten

    2014-01-01

    Screen printing is a proven manufacturing technology enabling high volume production at low cost. This letter investigates the achievable efficiency of a screen-printed silver antenna structure for 4G mobile phone implementation, with a market-ready solution. The contribution of each element of t...

  17. Flexible magnetic composite for antenna applications in radio frequency identification (RFID)

    Science.gov (United States)

    Martin, Lara Jean

    2008-10-01

    This work includes formulation of mechanically flexible magnetic composites and application to a quarter-wavelength microstrip patch antenna benchmarking structure operating in the lower UHF spectrum (˜300-500 MHz) to investigate capability for miniaturization. A key challenge is to introduce sufficiently low magnetic loss for successful application. Particles of NiZn ferrite and BaCo ferrite, also known as Co2Z, were characterized. Flexible magnetic composites comprised of 40 vol% NiZn ferrite or BaCo ferrite particles in a silicone matrix were formulated. Effects of treating the particles with silane in the formulation process were not detectable, but larger particle size showed to increase epsilon* and mu*. By comparing epsilon* and mu* of the composites, BaCo ferrite was selected for the antenna application. Antennas on the developed magnetic composite and pure silicone substrates were electromagnetically modeled in a full-wave FEM EM solver. A prototype of the antenna on the magnetic composite was fabricated. Good agreement between the simulated and measured results was found. Comparison of the antennas on the magnetic composite versus the pure silicone substrate showed miniaturization capability of 2.4X and performance differences of increased bandwidth, reduced Q, and reduced gain. A key finding of this study is that a small amount of permeability (mur˜2.5) can provide relatively substantial capability for miniaturization, while sufficiently low magnetic loss can be introduced for successful application at the targeted operating frequency. The magnetic composite showed the capability to fulfill this balance and to be a feasible option for RFID applications in the lower UHF spectrum.

  18. Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors

    Institute of Scientific and Technical Information of China (English)

    Sun Yun-Fei; Sun Jan-Dong; Zhang Xiao-Yu; Qin Hua; Zhang Bao-Shun; Wu Dong-Min

    2012-01-01

    An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters Lgs (the gap between the gate and the source/drain antenna) and Lw (the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45 × 102 V/W at a frequency of 903 GHz at room temperature.

  19. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  20. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai; Liu, ZhiWei [School of Aerospace Science and Technology, Xidian University, Xi' an 710071 (China)

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory's effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.

  1. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar

    2010-10-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  2. Self-matched high-Q reconfigurable antenna concept for mobile terminals

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2014-01-01

    -band. Narrow-band antennas can exhibit high losses, because of the relative high current density per area and limited tuning/matching component Q. To address this, a self-matched antenna design is introduced, having the tunable capacitor as the only physical component. The Tx and Rx narrow-band antennas...

  3. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  4. High-Q antennas: Simulator limitations

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    Increasing the mesh steps - i.e. the accuracy of the model - of a structure leads to converging results towards reality. With high-field structures, discretization of the domain in a transient simulation becomes of important matter. It is shown in this work that for these structures convergence...

  5. High-gain dipole antenna using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate for 5G applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.

  6. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Science.gov (United States)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  7. Assessment of the underground construction details of a road pavement using GPR antenna systems with different frequencies

    Science.gov (United States)

    Alani, Amir M.; Tosti, Fabio; Bianchini Ciampoli, Luca; Benedetto, Francesco; Benedetto, Andrea

    2017-04-01

    The assessment of the underground construction details of a road infrastructure is a problem of great concern in highway engineering. The case becomes complicated especially when damages reoccur after carrying out remedial surface maintenance and repair works over the life cycle of the infrastructure. The challenge will be exacerbated at the presence of underground watercourses, such that the geotechnical stability of the entire road structure could be threatened. In this respect, ground-penetrating radar (GPR) has been recognised and accepted as one of the most effective non-destructive testing (NDT) techniques that could be employed in identifying the cause/s of such problems. The recent advancements and developments made in the field of GPR hardware as well as the current level of understanding of the applications and processing techniques of the GPR data have immensely added to the reliability in the utilisation of this tool in variety of subsurface investigation projects. In view of this, the work presented in here focuses on the assessment of the underground construction details of a road pavement using different frequency GPR antenna systems. In addition to this, the possible presence and location of an underground watercourse was investigated in this work. The existence of the latter problem was perceived due to reoccurrence of longitudinal and traversal road surface cracking as well as subsidence at a particular location of the road. Reoccurrence of this damage was interpreted and related to the possible existence of an underground watercourse. The original design and the construction of the road were as such to prevent this movement. Therefore it seemed necessary to perform a GPR survey to investigate and confirm the underground construction details of the road. To this purpose, the identified area was surveyed using high to low frequency antennas with 2000 MHz, 900 MHz, 600 MHz and 200 MHz central frequencies of investigation. Scans were performed at 1m

  8. Small-Size Eight-Band Frequency Reconfigurable Antenna Loading a MEMS Switch for Mobile Handset Applications

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2014-01-01

    Full Text Available A planar small-size eight-band frequency reconfigurable antenna for LTE/WWAN mobile handset applications is proposed. The proposed antenna consists of a feeding strip and a coupled strip, with a total dimension of 10 × 29.5 mm2. Reconfigurability is realized by incorporating a one-pole four-throw RF switch, which is embedded in the coupled strip and changes the resonant modes for the lower band. By combining four different working modes, the proposed antenna successfully realize the eight-band operation, covering the operating bands of 700~787 MHz, 824~960 MHz, and 1710~2690 MHz. In addition, the simple DC bias circuit of the RF switch has little effect on the antenna performances, with no significant reduction in antenna efficiency and variations in the radiation patterns. The measured antenna efficiencies are 40%~50% and over 60% for the lower band and the upper band, respectively. Prototypes of the proposed frequency reconfigurable antenna incorporating the one-pole four-throw switch are fabricated and measured. The measured results including return losses and radiation characteristics are presented.

  9. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude....... The methods are successfully evaluated on field-test data obtained from measurements on a large-scale in-door test field....

  10. Statistical Channel Model with Multi-Frequency and Arbitrary Antenna Beamwidth for Millimeter-Wave Outdoor Communications

    OpenAIRE

    Samimi, Mathew K.; Rappaport, Theodore S.

    2015-01-01

    This paper presents a 3-dimensional millimeter-wave statistical channel impulse response model from 28 GHz and 73 GHz ultrawideband propagation measurements. An accurate 3GPP-like channel model that supports arbitrary carrier frequency, RF bandwidth, and antenna beamwidth (for both omnidirectional and arbitrary directional antennas), is provided. Time cluster and spatial lobe model parameters are extracted from empirical distributions from field measurements. A step-by-step modeling procedure...

  11. 6.1 Research Areas in the Antenna Group

    Science.gov (United States)

    2014-07-01

    Gas Sensors: Steven Keller ...........2 2.3 Design of Extremely Low Profile and Broadband Antennas Using Anisotropic Magnetic Metamaterials... textile -integrated, and multifunctional antennas realized from emerging nanomaterials (e.g., carbon nanotubes [CNT] and graphene). The application of...platforms and high durability antennas for conformal, textile - integrated, and/or vehicle-integrated antenna applications. Frequencies of interest range

  12. Thermal Loss Becomes an Issue for Tunable Narrow-band Antennas in Fourth Generation Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    Antenna tuning is a very promising technique to cope with the expansion of the mobile communication frequency spectrum. Tunable antennas can address a wide range of operating frequencies, while being highly integrated. In particular, high-Q antennas (also named narrow-band antennas) are very...

  13. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    Science.gov (United States)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  14. Mode-matching for Optical Antennas

    CERN Document Server

    Feichtner, Thorsten; Hecht, Bert

    2016-01-01

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  15. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  16. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  17. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  18. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    Science.gov (United States)

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  19. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    Science.gov (United States)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  20. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Youn, E-mail: dongyoun.shin@gmail.co [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Lee, Yongshik, E-mail: yongshik.lee@yonsei.ac.k [School of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Kim, Chung Hwan, E-mail: chkim@kimm.re.k [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-09-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 {sup o}C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 {mu}{Omega} cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  1. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  2. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Directory of Open Access Journals (Sweden)

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  3. An X-Band Dual-Polarized Vivaldi Antenna with High Isolation

    Directory of Open Access Journals (Sweden)

    Denghui Huang

    2017-01-01

    Full Text Available An X-band dual-polarized Vivaldi antenna with high isolation is proposed. The procedure of this antenna design includes the conventional Vivaldi antenna with regular slot edge (RSE, the dual-polarized Vivaldi antenna with two Vivaldi antennas which have different feeding point positions in a cross-shaped form, and the two Vivaldi antennas with a galvanic contact in soldering point. By applying the RSE, it reduced the dimensions of the Vivaldi antenna and improved its radiation performance. The modified antenna is fabricated and measured. The measured results show that S11<-10 dB at the entire X-band for the two Vivaldi antennas. The isolation (S21 between the two feeding ports, which has been improved by applying the different feeding point positions and the galvanic contact in soldering point, is better than 34 dB at X-band. In addition, the cross-polarized discrimination is better than 21 dB for the two Vivaldi antennas, and the measured results also include the gain of two Vivaldi antennas.

  4. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  5. High Gain Patch Antenna with Composite Right-Left Handed Structure and Dendritic Cell Metamaterials

    Science.gov (United States)

    Liu, Yahong; Zhao, Xiaopeng

    2010-04-01

    We present a novel high-gain patch antenna utilizing composite right-left handed (CRLH) structure and dendritic cell metamaterials. The proposed CRLH antenna, composed of modified Sievenpiper mushroom unit-cells, is based on the positive first-order resonance mode for high gain. In addition, the dendritic cell metamaterials are used to surround the proposed antenna to further increase the antenna directivity and gain due to suppressing the surface waves. The experimental results show that the gain and the directivity of the proposed antenna with CRLH and dendritic cells can be improved by 3.88 dB and 8.82, respectively, in comparison with a conventional patch antenna. Moreover, a 10-dB bandwidth with 9.55% is achieved. The measured results are in good agreement with the simulated ones.

  6. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  7. Measurement of the amplitude pattern and the frequency characteristic of ISM-band antennas using WiFi routers

    Directory of Open Access Journals (Sweden)

    Sadchenko A. V.

    2016-12-01

    Full Text Available The quality of wireless network depends essentially on the directional characteristics of the antennas, the most important of which are the amplitude radiation pattern (RP and the frequency response (FR, which is understood as a change of the gain coefficient in the working frequency band. At the same time, equipment for measuring the characteristics of the antennas in real conditions is very expensive, difficult to deploy, configure and maintain. In most cases, the measurement accuracy requirements are significantly lower than in laboratory measurements. This fact allows using the equipment which is part of the wireless network itself. The aim of this work is to develop a simplified procedure for measuring the amplitude RP and frequency characteristics of antennas for the rapid assessment of electromagnetic environment during deployment of wireless networks, when the requirements for measurement accuracy are not critical. In this article we propose to use as a UHF calibrated power generator a standard Wi-Fi router with a coaxial output, i.e. with the possibility to connect an external antenna. Certified routers 802.11n standard of 2.4 GHz band, regardless of the manufacturer, provide the following parameters: output power range of 20-100 mW, receiver sensitivity of 80-85 dBm, dynamic range of the receiver - 90 dBm. Using system settings of the router allows one to rapidly change the frequency in the range of 2400-2483.5 MHz with a step of 5-20 MHz. The practical value of the proposed methodology for measuring Wi-Fi antennas characteristics consists in substantial saving of time and costs during deployment and adjusting of wireless networks. This method can be successfully used for testing city wireless video surveillance systems and public access points to the local and global resources of city network.

  8. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    Science.gov (United States)

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  9. High-Performance transparent Meta-surface for C-/X-Band Lens Antenna Application

    Science.gov (United States)

    Cai, Tong; Wang, Guangming

    2017-01-01

    A novel strategy of designing high-performance transparent meta-surfaces is proposed by using an ABBA system. The ABBA element provides a new freedom to largely enhance the transmission of a transmissive meta-surface and suppress the fluctuations in the transmission amplitude by tuning the coupling among cascaded layers. Dual-band operating property is straightforwardly performed by employing the polarization-control principle. A well-designed transparent meta-surface, operating at f 1=6.5 GHz and f 2=10.5 GHz, consists of 13×17 ABBA elements with parabolic phase distributions along different dimensions. Perfect focusing effects with the same focal length and small reflection are unambiguously observed at both frequencies under excitation of differently-polarized waves, indicating strong phase compensating capacities and high efficiencies of the meta-lens. For practical application, a dual-band lens antenna (LA) is implemented by launching the carefully-designed meta-lens with a self-made Vivaldi antenna. Numerical and experimental results coincide well, indicating that the proposed LA advances in many aspects such as high radiation gain of 18.7 dB at f 1 and 23 dB at f 2, competitive aperture efficiencies better than 30% and also a simple fabrication process based on a standard printed-circuit-board (PCB) technology. The finding opens up a new avenue to design high-performance meta-surfaces operating in multi-band or achieving integrated functionalities.

  10. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  11. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  12. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite.

    Science.gov (United States)

    Inui, Tetsuji; Koga, Hirotaka; Nogi, Masaya; Komoda, Natsuki; Suganuma, Katsuaki

    2015-02-01

    A high-dielectric-constant and flexible cellulose nanopaper composite is prepared by mixing a small amount of silver nanowires with cellulose nanofibers. The nanopaper antenna is downsized by about a half when using the nanopaper substrate. The nanopaper antenna has potential in wearable wireless communication devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  14. A Novel Solution for Decoupling of Two Closely Spaced Antennas at Low Frequencies

    DEFF Research Database (Denmark)

    Bonev, Ivan Bonev; Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    In this paper, we present a novel technique to increase the isolation between two very closely spaced planar inverted F antennas (PIFA) on a common ground-plane. The proposed decoupling structure consists of thin wire (TW) array and two Z elements. For the proposed antenna at low band, the improved...

  15. Wide-frequency range, dynamic matching network and power system for the "Shoelace" radio frequency antenna on the Alcator C-Mod tokamak.

    Science.gov (United States)

    Golfinopoulos, Theodore; LaBombard, Brian; Burke, William; Parker, Ronald R; Parkin, William; Woskov, Paul

    2014-04-01

    A wide-frequency range (50-300 kHz) power system has been implemented for use with a new RF antenna - the "Shoelace" antenna - built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

  16. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  17. A High-Efficiency Compact Planar Antenna for ISM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2017-01-01

    Full Text Available A novel high-efficiency compact planar antenna at 433 MHz with minimized size and low-cost and easy to integrate into the ISM wireless applications is designed, fabricated, and measured. Capacitive strips that are formed by cutting inter-digital slots and the meander lines on both sides are introduced to greatly reduce the antenna size yet maintain the high efficiency. The proposed antenna has a simple planar structure and occupies a small area (i.e., 45 × 30 mm2. This novel electrically small antenna can be operated well without any lumped elements for impedance matching. Details of the antenna design and experimental results are presented and discussed.

  18. A study of three-half-turn and frame antennae for ion cyclotron range of frequency plasma heating in the URAGAN-3M torsatron

    Energy Technology Data Exchange (ETDEWEB)

    Lysoivan, A.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Moiseenko, V.E. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Plyusnin, V.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Kasilov, S.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Bondarenko, V.N. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Chechkin, V.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Fomin, I.P. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Grigor`eva, L.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Konovalov, V.G. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Koval`ov, S.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Litvinov, A.P. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Mironov, Yu.K. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Nazarov, N.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Pavlichenko, O.S. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Pavlichenko, R.O. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Shapoval, A.N. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Skibenko, A.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Volkov, E.D. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center

    1995-01-01

    Numerical and experimental results of Alfven wave heating of plasmas in the frequency range below the ion cyclotron frequency ({omega}<{omega}{sub ci}) are presented. Two different types of antenna were used for plasma production and heating: a frame type antenna (FTA) conventionally used in the URAGAN-3M device and a three-half-turn antenna (THTA) proposed recently to avoid the deleterious effects of conversion of fast wave to slow wave in the plasma periphery and to perform plasma core heating more effectively. Numerical modeling of electromagnetic field excitation in the URAGAN-3M plasma by the FTA and THTA was performed using a one-dimensional code. The results of calculations showed better performance of the compact THTA compared with the FTA for the case of a high density plasma (approximately 10{sup 13}cm{sup -3}). When using the THTA, the experiments performed showed the possibility of dense plasma production (more than 2x10{sup 13}cm{sup -3}) and heating, which had not been obtained earlier in the URAGAN-3M. Shifting the power deposition profile deeper inside the plasma body with the THTA resulted in modification of the plasma density profile and an improvement in plasma confinement. ((orig.)).

  19. High-frequency behavior of magnetic composites

    Science.gov (United States)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-07-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  20. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  1. Highly Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly-integrated, reconfigurable radar antenna arrays fabricated on flexible substrates offer high functionality in a portable package that can be rolled up and...

  2. The Design and Simulation of High Impedance Surface in Airborne Telemetry Antenna

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Lian

    2017-01-01

    Full Text Available Aiming to the problems that excessive reduction of airborne telemetry antenna’s size will cause a sharp deterioration of the antenna’s bandwidth and gain, this paper proposed that using a high-impedance surface in the airborne telemetry antenna. As the size and bandwidth of the high-impedance surface is far from being able to meet the application requirements, this paper designed a new high-impedance surface which can be applied to the telemetry transmitter antenna, and reduced the profile size of the telemetry antenna and increased the gain of the antenna at the same time. In addition, based on the equivalent circuit model, we have resolved the contradictory situation of small size and wide band gap in the high-impedance surface design. The results show that the low profile, high gain and wide bandwidth of the telemetry antenna can be achieved by using the new high-impedance surface. The antenna structure and design ideas presented in this paper can significantly improve the performance of airborne telemetry antenna.

  3. Highly sensitive and selective sugar detection by terahertz nano-antennas

    CERN Document Server

    Lee, Dong-Kyu; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Kim, Jae Hun; Lee, Taikjin; Son, Joo-Hiuk; Park, Q-Han; Seo, Minah

    2015-01-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz frequency range. This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz t...

  4. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  5. System and antenna design considerations for highly elliptical orbits as applied to the proposed Archimedes Constellation

    Science.gov (United States)

    Paynter, C.; Cuchanski, M.

    1995-01-01

    The paper discusses various aspects of the system design for a satellite in a highly elliptical inclined orbit, and presents a number of antenna design options for the proposed Archimedes mission. A satellite constellation was studied for the provision of multi media communication services in the L and S Band for northern latitudes. The inclined elliptical orbit would allow coverage of Europe, America, and East Asia. Using Canada and North America as the baseline coverage area, this paper addresses system considerations such as the satellite configuration and pointing, beam configuration, and requirements for antennas. A trade-off is performed among several antenna candidates including a direct radiating array, a focal-fed reflector, and a single reflector imaging system. Antenna geometry, performance, and beam forming methods are described. The impact of the designs on the antenna deployment is discussed.

  6. First Radio Astronomy Examination of the Low-Frequency Broadband Active Antenna Subarray

    Directory of Open Access Journals (Sweden)

    A. A. Stanislavsky

    2014-01-01

    Full Text Available We present the 25-element active antenna array and its remote control in the framework of the GURT project, the Ukrainian Radio Telescope of a new age. To implement beamforming, the array is phased with the help of discrete cable delay lines in analog manner. The remote control of the array is carried out through the paired encoder and decoder that can transmit parallel data about antenna codes serially. The microcontroller provides the online interaction between personal computer and beamformers with the help of the encoder-decoder system through wires or wireless. The antenna pattern has been measured by radio astronomy methods.

  7. Highly efficient multifunctional metasurface for high-gain lens antenna application

    Science.gov (United States)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  8. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  9. Three-dimensional broadband and high-directivity lens antenna made of metamaterials

    Science.gov (United States)

    Chen, Xi; Feng Ma, Hui; Ying Zou, Xia; Xiang Jiang, Wei; Jun Cui, Tie

    2011-08-01

    We present the theoretical modeling and prototype demonstration of a three-dimensional broadband, low-loss, dual-polarization, and high-directivity lens antenna using gradient index (GRIN) metamaterials, which is composed of multi-layer microstrip square-ring arrays. The elements of metamaterials, closed square-ring units of variable sizes, are distributed on the planar substrate to satisfy the radial gradient index function and the axial impedance matching layer configuration of the lens. The gradient-index metamaterials are designed to transform the spherical wave-front into the planar wave-front and to minimize the reflection loss. A prototype lens antenna, which consists of a metal conical horn and the gradient-index lens, are simulated, constructed, and measured. The resemblance of simulation and measurement results shows that the prototype lens antenna maintains low return loss and high directivity on the whole X-band (from 8 GHz to 12 GHz). Compared to the traditional horn antenna, the metamaterial GRIN lens antenna has much superior performance—for instance, the gain increases by 6 dBi at 12 GHz. These results demonstrate the feasibility of such a light weight slab metamaterial lens for broadband and high-directivity antenna applications, such as in radar and communication systems. We have used the lens antennas in the measurements of a three-dimensional invisibility cloak due to the high directivity.

  10. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  11. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  12. High-Performance Wireless via the Merger of CI Chip-Shaped DS-CDMA and Oscillating-Beam Smart Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Nassar Carl R

    2004-01-01

    Full Text Available We introduce a novel merger of direct sequence code division multiple access (DS-CDMA and smart antenna arrays. With regard to the DS-CDMA scheme, we employ carrier interferometry DS-CDMA (CI/DS-CDMA, a novel implementation of DS-CDMA where chips are decomposable into narrowband frequency components. With regard to the antenna array, we deploy the oscillating-beam smart array. Here, applying proper time-varying phases to the array elements, we create small movement (oscillation in the antenna array's pattern, while steering the antenna pattern main lobe to the position of the intended user. The oscillating antenna pattern creates a time-varying channel with a controllable coherence time. This, in turn, provides transmit diversity in the form of a time diversity gain at the mobile receiver side. At the receiver, three stages of combining are available: combining time components of the received signal within symbol duration (each experiencing a different fade to enhance performance via time diversity; combining frequency components which make up the CI/DS-CDMA chip to enhance the performance via frequency diversity; and combining across chips to eliminate the interfering users on the system. Merging CI/DS-CDMA with the oscillating-beam smart antenna at the base station, we achieve very high capacity via the merger of SDMA (available through directionality of the antenna array and code division multiple access (inherent in CI/DS-CDMA, and very high performance via the construction of receivers that exploit both transmit diversity and frequency diversity. We present the performance gains of the proposed merger.

  13. Metamaterial-Inspired Efficient Electrically Small Antenna

    DEFF Research Database (Denmark)

    Erentok, Aycan; Ziolkowski, R. W.

    2008-01-01

    Planar two-dimensional (2D) and volumetric three-dimensional (3D) metamaterial-inspired efficient electrically-small antennas that are easy to design; are easy and inexpensive to build; and are easy to test; are reported, i.e., the EZ antenna systems. The proposed 2D and 3D electrical- and magnetic......-based EZ antennas are shown to be naturally matched to a 50 source, i.e., without the introduction of a matching network. It is demonstrated numerically that these EZ antennas have high radiation efficiencies with very good impedance matching between the source and the antenna and, hence, that they have...... high overall efficiencies. The reported 2D and 3D EZ antenna designs are linearly scalable to a wide range of frequencies and yet maintain their easy-to-build characteristics. Several versions of the 2D EZ antennas were fabricated and tested. The measurement results confirm the performance predictions...

  14. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under...

  15. High-Frequency Antenna Arrays and Coupling Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ultra-compact superconducting on-chip-spectrometer has the potential to revolutionize far-IR through millimeter-wave observational astronomy and astrophysics,...

  16. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    OpenAIRE

    Xue-Xia Yang; Guan-Nan Tan; Bing Han; Hai-Gao Xue

    2016-01-01

    A novel millimeter wave coplanar waveguide (CPW) fed Fabry-Perot (F-P) antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS) and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CP...

  17. High-frequency instability of the sheath-plasma resonance

    Science.gov (United States)

    Stenzel, R. L.

    1989-01-01

    Coherent high frequency oscillations near the electron plasma frequency (omega approx. less than omega sub p) are generated by electrodes with positive dc bias immersed in a uniform Maxwellian afterglow plasma. The instability occurs at the sheath-plasma resonance and is driven by a negative RF sheath resistance associated with the electron inertia in the diode-like electron-rich sheath. With increasing dc bias, i.e., electron transit time, the instability exhibits a hard threshold, downward frequency pulling, line broadening and copious harmonics. The fundamental instability is a bounded oscillation due to wave evanescence, but the harmonics are radiated as electromagnetic waves from the electrodes acting like antennas. Wavelength and polarization measurements confirm the emission process. Electromagnetic waves are excited by electrodes of various geometries (planes, cylinders, spheres) which excludes other radiation mechanisms such as orbitrons or beam-plasma instabilities. The line broadening mechanism was identified as a frequency modulation via the electron transit time by dynamic ions. Ion oscillations at the sheath edge give rise to burst-like RF emissions. These laboratory observations of a new instability are important for antennas in space plasmas, generation of coherent beams with diodes, and plasma diagnostics.

  18. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  19. Orbiting low frequency antennas for radio astronomy(OLFAR): Distributing signal processing

    NARCIS (Netherlands)

    Rajan, Raj; Rajan, R.T.; Budianu, A.; Engelen, Steven; van der Veen, Alle-Jan; Bentum, Marinus Jan; Boonstra, Albert Jan; Verhoeven, Chris

    2011-01-01

    Recently, new and interesting science drivers have emerged in the ultra low frequency range of 0.3-30 MHz ranging from the epoch of re-ionization, exo-planets, ultra-high energy cosmic rays and studies of the astronomical dark ages. However at these wavelengths, ground based observations are

  20. High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems

    Science.gov (United States)

    Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan

    2006-01-01

    This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.

  1. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine......-structure cues. However, these conclusions rely on the assumptions that combination tones were properly masked and that the ability of listeners to hear out individual partials provides an adequate measure of resolvability. Those assumptions were tested by measuring the audibility of combination tones...... and their effects on pitch matches, the effects of relative component phases and of dichotic presentation, and listeners' ability to hear out individual partials. The results confirmed that combination tones affected pitch, but pitch remained salient when they were masked. The lack of dependence of pitch...

  2. Coupling element antenna with slot tuning for handheld devices at LTE frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2012-01-01

    . A reconfigurable slot is inserted in the ground plane in order to lower its resonance frequency. The tuning is done by a capacitor across the slot. It is shown that covering all frequencies between the 900-GSM band and the 700-LTE band can be achieved. The radiating structure also presents a resonance in the high...... LTE band which is unaffected by the tuning mechanism of the lower band. Moreover, the efficiency can be optimized by an analysis of the currents across the slot. The study also shows that holding the device does not lead to additional mismatch losses which will further improve the overall efficiency....

  3. Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band.

    Science.gov (United States)

    Iluz, Zeev; Boag, Amir

    2011-08-01

    A dual-Vivaldi nanoantenna is proposed to demonstrate the possibility of wideband operation at IR frequencies. The antenna geometry design is guided by the material properties of metals at IR frequencies. According to our numerical results, this nanoantenna has both high radiation efficiency and good impedance-matching properties over a wide frequency band (more than 122%) in the IR frequency band. The design is based on the well-known Vivaldi antenna placed on quartz substrate but operating as a pair instead of a single element. Such a pair of Vivaldi antennas oriented in opposite directions produces the main lobe in the broadside direction (normal to the axes of the antennas) rather than the usual peak gain along the axis (end fire) of a single Vivaldi antenna. The dual-Vivaldi nanoantenna is easy to fabricate in a conventional electron-beam lithography process, and it provides a large number of degrees of freedom, facilitating design for ultra-wideband operation. © 2011 Optical Society of America

  4. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    Science.gov (United States)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  5. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  6. A tunable microwave slot antenna based on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.; Dinescu, A. [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); Neculoiu, Dan; Bunea, Alina-Cristina, E-mail: alina.bunea@imt.ro [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); “Politehnica” University of Bucharest, Bd. Iuliu Maniu 1-3, 061071, Bucharest (Romania); Deligeorgis, George; Konstantinidis, George [Foundation for Research and Technology Hellas (FORTH), P.O. Box 1527, Vassilika Vuton, Heraklion 71110, Crete, Hellas (Greece); Mencarelli, Davide; Pierantoni, Luca [Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona (Italy); Modreanu, M. [Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork (Ireland)

    2015-04-13

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

  7. Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas

    Directory of Open Access Journals (Sweden)

    Manuel Pereira

    2009-06-01

    Full Text Available Most Ground Penetrating Radars (GPR cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna.

  8. Novel High-Gain Circularly Polarized Lens Antenna Using Single-Layer Transmissive Metasurface

    Science.gov (United States)

    Zhuang, Yaqiang; Wang, Guangming; Li, Haipeng; Guo, Wenlong

    2017-05-01

    A high-gain lens antenna employing single-layer focusing metasurface (MS) is proposed in this article. The single-layer element achieves a 360° transmission phase range with a transmission magnitude better than 0.9. And the focusing MS consists of 169 elements was designed by utilizing the technique of varying rotation angle to compensate the phase delay. Thus, a lens antenna is constructed by placing a circularly polarized (CP) patch antenna at the focal point of the MS. The fabricated lens antenna demonstrates a good performance of 4.6 % 3-dB axial ratio bandwidth and 6 % 1-dB gain bandwidth, respectively. Moreover, the maximum gain is 18.3 dBic at 15 GHz, which is enhanced by 11.4 dBic compared with the patch antenna. Due to the single-layer structure, this design has a low profile and easy fabrication process compared with the conventional designs, making it an attractive alternative to compact high-gain antenna.

  9. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    Science.gov (United States)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  10. An Application of Artificial Neural Network to Compute the Resonant Frequency of E-Shaped Compact Microstrip Antennas

    Science.gov (United States)

    Akdagli, Ali; Toktas, Abdurrahim; Kayabasi, Ahmet; Develi, Ibrahim

    2013-09-01

    An application of artificial neural network (ANN) based on multilayer perceptrons (MLP) to compute the resonant frequency of E-shaped compact microstrip antennas (ECMAs) is presented in this paper. The resonant frequencies of 144 ECMAs with different dimensions and electrical parameters were firstly determined by using IE3D(tm) software based on the method of moments (MoM), then the ANN model for computing the resonant frequency was built by considering the simulation data. The parameters and respective resonant frequency values of 130 simulated ECMAs were employed for training and the remaining 14 ECMAs were used for testing the model. The computed resonant frequencies for training and testing by ANN were obtained with the average percentage errors (APE) of 0.257% and 0.523%, respectively. The validity and accuracy of the present approach was verified on the measurement results of an ECMA fabricated in this study. Furthermore, the effects of the slots loading method over the resonant frequency were investigated to explain the relationship between the slots and resonant frequency.

  11. Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

    Science.gov (United States)

    2017-08-11

    is the resource management problems involving multiple antennas per aerial platform, limited available bandwidth and geometric blockage involving the...ARL-TR-8093•AUG 2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High -Capacity Backbone by Peng Wang and Brian...2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High -Capacity Backbone by Peng Wang and Brian Henz Computational

  12. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  13. Development and testing of the S-band antenna subsystem for the Mariner Mars 1971 spacecraft

    Science.gov (United States)

    Brejcha, A. G.

    1971-01-01

    The Mariner Mars 1971 S-band antenna subsystem is used to transmit and receive S-band signals to and from the Deep Space Instrumentation Facility ground stations. The antenna subsystem consists of a low-gain antenna, a medium-gain antenna, a directional coupler, a high-gain antenna, and all transmission lines required to interconnect the antennas to the spacecraft radio frequency subsystem. The low-gain antenna is used to transmit signals during cruise and receive signals throughout the mission. The medium-gain antenna is coupled to the low-gain antenna via the directional coupler and is used to transmit and receive signals during Mars orbit insertion. The high-gain antenna is used to transmit high data rate signals primarily during Mars orbit.

  14. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  15. Development and Qualification of an Antenna Pointing Mechanism for the ExoMars High-Gain Antenna

    Science.gov (United States)

    St-Andre, Stephane; Dumais, Marie-Christine; Lebel, Louis-Philippe; Langevin, Jean-Paul; Horth, Richard; Winton, Alistair; Lebleu, Denis

    2015-09-01

    The European Space Agency ExoMars 2016 mission required a gimbaled High Gain Antenna (HGA) for orbiter-to-earth communications. The ExoMars Program is a cooperative program between ESA and ROSCOSMOS with participation of NASA. The ExoMars Program industrial consortium is led by THALES ALENIA SPACE.This paper presents the design and qualification test results of the Antenna Pointing Mechanism (APM) used to point the HGA towards Earth. This electrically redundant APM includes motors, drive trains, optical encoders, cable cassette and RF Rotary Joints.Furthermore, the paper describes the design, development and the qualification approach applied to this APM. The design challenges include a wide pointing domain necessary to maximise the communication duty cycle during the early operation phase, the interplanetary cruise phase and during the mission’s orbital science phase. Other design drivers are an extended rotation cycle life with very low backlash yielding little wear and accurate position feedback on both axes. Major challenges and related areas of development include:• Large moments are induced on the APM due to aerobraking forces when the Mars atmosphere is used to slow the orbiter into its science mission orbit,• Thermal control of the critical components of the APM due to the different environments of the various phases of the mission. Also, the large travel range of the actuators complicated the radiator design in order to maintain clearances and to avoid overheating.• The APM, with a mass less than 17.5 kg, is exposed to a demanding dynamic environment due to its mounting on the spacecraft thrust tube and aggravated by its elevated location on the payload.• Power and Data transmission between elevation and azimuth axes through a compact large rotation range spiral type cable cassette.• Integration of a 16 bit redundant encoder on both axes for position feedback: Each encoder is installed on the back of a rotary actuator and is coupled using the

  16. Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band

    Science.gov (United States)

    Chugunov, Yu. V.; Grach, V. S.; Pasmanik, D. L.

    2013-07-01

    We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth's surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant "monopole" loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the "cold" plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.

  17. Broadband slant linearly polarized biconical antenna

    Science.gov (United States)

    Lakshminarayana, D.; Prasad, R. V. H.; Murthy, T. G. K.

    1993-06-01

    A broadband biconical antenna with a slant linear polarizer, operating over 2-26 GHz range was designed and fabricated. The results of tests are presented, including the return loss plot of the antenna, radiation patterns at 2, 10, and 26 GHz for vertical and horizontal polarizations in azimuth and elevation planes, and curves indicating the elevation beam-width and gain of the antenna vs. frequency. The antenna gives an omni deviation of +/- 3 dB over 2-26 GHz. It is highly compact, and thus is suitable for systems where space requirements are very stringent.

  18. High Temperature Antenna Measurement System with GSG or GS Contact Probing Capability

    Science.gov (United States)

    Jordan, Jennifer L.; Scardelletti, Maximilian C.; Ponchak, George E.

    2009-01-01

    Applications that require data transmission at high temperatures are becoming more common due to growing commercial and military needs. Antennas are an indispensable part of these systems and the ability to characterize them at elevated temperatures is quite complicated with little or no information being reported on the subject [1]. This paper describes a measurement system that can characterize planar antennas up 600 C with ground-signal-ground (GSG) or ground-signal (GS) probe contacts. The return loss and radiation patterns of a folded slot antenna (FSA), designed to operate at 5 GHz (no ground plane on back side) and fabricated on an alumina substrate, are presented at room temperature (RT) and 250 C [2]. All measurements were made with Agilent's Precision Network Analyzer (PNA) E8361. The return loss and radiation patterns were also measured on a Styrofoam chuck to illustrate the effect the high temperature measurement system has on the patterns.

  19. Investigating airborne low frequency GPR antenna-ground coupling through modelling

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available upwards near to the surface. The void then becomes a serious hazard to vehicles driving on the surface, and there have been accidents where vehicles have been lost. It has been shown that Ground Penetrating Radar (GPR) can be used to identify... their bandwidth (Arcone, 1995). In this study, a resistively loaded, unshielded 2 m dipole is considered. The dipole antenna is modelled as a monopole operating against a plane of symmetry. A 3D Finite-Difference Time-Domain (FDTD) model is used to simulate...

  20. Spherical mode analysis of planar frequency-independent multi-arm antennas based on its surface current distribution

    Directory of Open Access Journals (Sweden)

    G. Armbrecht

    2006-01-01

    Full Text Available Deployment in the design of mobile radio terminals focuses on the implementation of multiradio transmission systems, using a multiplicity of different radio standards combined with high-speed data communication over multiple-input multiple-output (MIMO and multimode diversity techniques. Hence, planar log.-per. four-arm antennas are predistined to meet the requirements of future mobile multiradio RF-frontends and will be introduced and analysed in terms of an efficient spherical mode analysis by means of surface current distribution in order to derive an analytic access to MIMO- and polarisation-diversity performance computation. A remarkable parameter reduction and a faster numerical analysis with respect to conventional techniques may be achieved. The sources in the near-field antenna region are based on the numerical computation of surface currents involving the finite element method (FEM. Relations between the variations of the geometrical antenna parameters and the excitation of discrete spherical modes are presented and will be analysed in detail.

  1. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  2. Low-Cost and High-Gain SIW Circularly Polarized Circular-Horn-Loaded Antenna for Broadband Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ming Du

    2017-09-01

    Full Text Available A wideband, low-cost and high-gain circularly polarized (CP circular-horn-loaded antenna based on substrate integrated waveguide (SIW technology operating at Ka band is presented. The proposed antenna, which is built on a single-layer substrate, consists of five parts: a short-ended SIW, a centro-symmetric wide slot, an L-shaped probe, a circular horn and a transition from SIW to air-filled rectangular waveguide for measurement. The slot is etched on the upper ground of the SIW, while the L-shaped probe for generating CP wave is printed inside the slot and connected to the SIW. A circular horn is also loaded on the surface of the SIW slot for high gain. Then, the proposed antenna with a dimension of 45×45×24.16 mm3 was fabricated and measured. The measured results show that the antenna has a wide impedance matching bandwidth of 28.6% from 30 to 40 GHz for |S11| ≤10 dB and a wide axial ratio (AR bandwidth of 22.8% from 31.5 to 39.6 GHz for AR ≤ 3 dB. The measured maximum gain is 15.6 dBi at 36 GHz with slight fluctuations over the 30–40-GHz frequency range. This kind of antenna merits low cost and easy integration with common differential circuits at the same time.

  3. Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies

    Science.gov (United States)

    Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal

    2017-07-01

    We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.

  4. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  5. Design of a slot-coupled radial line helical array antenna for high power microwave applications

    Directory of Open Access Journals (Sweden)

    Longzhou Yu

    2017-09-01

    Full Text Available An eight-ring radial helical array antenna based on a novel slot-coupled structure is designed and simulated. The novel coupling structure has the advantages of high power-handling capacity and excellent coupling ability. The simulation results of the array antenna agree well with theoretical calculations, and the aperture efficiency is about 78.1% when the beam is in the normal direction. The power-handling capacity is about 100 MW on vacuum condition. The simulation results also show that the gain is 30.7 dB and the main lobe’s axial ratio is 0.25 dB. Furthermore, the structure of the antenna is compact, and it may be applied to larger circular helical arrays to realize higher gain and higher power-handling capacity.

  6. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  7. Application of smart antennas in CDMA mobile communication system

    Science.gov (United States)

    Guo, Congliang; Zhou, Yingui; Liu, Tonghui; Wang, Rongsheng; Liu, Shijian

    2001-10-01

    Full coverage in mobile service region will elate mobile telephone customers. Limited frequency resources make mobile system capacity poor. High capacity and full coverage are two main key problems for system design. CDMA system has advantage of customer capacity, and Antenna array brings its coverage ability and intelligence into full play. Smart antenna combined with code division multiple access will improve mobile telecom system performance. Increasing system performance and capacity appear through enhancing desired signal and suppressing interference signals. Several kinds of antenna array techniques including beam forming, diversity, switched-beam antenna array and sectorization were discussed here in detail. The small antenna applications in TDMA mobile telecommunication systems are also discussed.

  8. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  9. HIGH DYNAMIC RANGE OBSERVATIONS OF SOLAR CORONAL TRANSIENTS AT LOW RADIO FREQUENCIES WITH A SPECTRO-CORRELATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, K.; Ramesh, R.; Kathiravan, C.; Rajalingam, M. [Indian Institute of Astrophysics, Bangalore-560034 (India); Abhilash, H. N., E-mail: khariharan@iiap.res.in [Poornaprajna College, Udupi-576101 (India)

    2016-02-15

    A new antenna system with a digital spectro-correlator that provides high temporal, spectral, and amplitude resolutions has been commissioned at the Gauribidanur Observatory near Bangalore in India. Presently, it is used for observations of the solar coronal transients in the scarcely explored frequency range ≈30–15 MHz. The details of the antenna system, the associated receiver setup, and the initial observational results are reported. Some of the observed transients exhibited quasi-periodicity in their time profiles at discrete frequencies. Estimates of the associated magnetic field strength (B) indicate that B ≈ 0.06–1 G at a typical frequency such as 19.5 MHz.

  10. Probe-Fed Stacked Microstrip Patch Antenna for High-Resolution Polarimetric C-Band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes a C-band, dual-linear polarization wideband antenna for use in the next-generation of the Danish high-resolution, airborne polarimetric synthetic aperture radar (SAR) system, EMISAR. The design and performance of a probe-fed, stacked microstrip patch element, operating from 4...

  11. Resonant frequencies of irregularly shaped microstrip antennas using method of moments

    Science.gov (United States)

    Deshpande, Manohar D.; Shively, David G.; Cockrell, C. R.

    1993-01-01

    This paper describes an application of the method of moments to determine resonant frequencies of irregularly shaped microstrip patches embedded in a grounded dielectric slab. For analysis, the microstrip patch is assumed to be excited by a linearly polarized plane wave that is normal to the patch. The surface-current density that is induced on the patch because of the incident field is expressed in terms of subdomain functions by dividing the patch into identical rectangular subdomains. The amplitudes of the subdomain functions, as a function of frequency, are determined using the electric-field integral equation (EFIE) approach in conjunction with the method of moments. The resonant frequencies of the patch are then obtained by selecting the frequency at which the amplitude of the surface-current density is real. The resonant frequencies of the equilateral triangular and other nonrectangular patches are computed using the present technique, and these frequencies are compared with measurements and other independent calculations.

  12. SAR Study of Mobile Phones as a function of Antenna Q

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Jagielski, Ole

    2015-01-01

    High-Q tunable antennas are good alternatives to low-Q passive antennas because the antenna size can be smaller while covering the required long-term evolution (LTE) frequency bands. However, among other things, specific absorption rate (SAR) can become a challenge due to the relative high current...... density associated with high-Q antennas. The higher energy stored in the electric and magnetic near-field components can result in higher SAR. Hence, SAR study of high-Q antennas is necessary which, if not addressed, might not comply with the SAR safety guidelines. In this paper, SAR as a function...... of antenna Q is investigated numerically as well as experimentally at two distinct frequencies (720 and 1700 MHz). It is found that SAR increases as a function of antenna Q when no losses are considered. But when losses are included, there is no more a clear trend between SAR and antenna Q. Thus, the final...

  13. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  14. Highly tunable ultra-narrow-resonances with optical nano-antenna phased arrays in the infrared

    Science.gov (United States)

    Li, Shi-Qiang; Zhou, Wei; Guo, Peijun; Buchholz, D. Bruce; Qiu, Ziwei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-09-01

    We report our recent development in pursuing high Quality-Factor (high-Q factor) plasmonic resonances, with vertically aligned two dimensional (2-D) periodic nanorod arrays. The 2-D vertically aligned nano-antenna array can have high-Q resonances varying arbitrarily from near infrared to terahertz regime, as the antenna resonances of the nanorod are highly tunable through material properties, the length of the nanorod, and the orthogonal polarization direction with respect to the lattice surface,. The high-Q in combination with the small optical mode volume gives a very high Purcell factor, which could potentially be applied to various enhanced nonlinear photonics or optoelectronic devices. The 'hot spots' around the nanorods can be easily harvested as no index-matching is necessary. The resonances maintain their high-Q factor with the change of the environmental refractive index, which is of great interest for molecular sensing.

  15. A Novel Design of Micromachined Horn Antenna for Millimeter and Sub-millimeter Applications

    Directory of Open Access Journals (Sweden)

    A.Ansari

    2007-04-01

    Full Text Available A novel design of micromachined horn antenna is presented. Horn excited with a quasi-Yagi antenna. In this paper micromachining process of this antenna, and simulation results of a horn structure operate around 330GHz using Agilent High Frequency Structure Simulator (HFSS software is presented. The results indicate a gain around 10dB, directivity 10.5dB and resonant dipole impedance 48.3Ω for horn antenna. The micromachined horn antenna is a high-efficiency antenna suitable for applications in millimeter-wave imaging systems, remote-sensing, and radio astronomy.

  16. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    Science.gov (United States)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  17. Integrated Broadband Bowtie Antenna on Transparent Silica Substrate

    CERN Document Server

    Zhang, Xingyu; Wang, Shiyi; Subbaraman, Harish; Pan, Zeyu; Zhan, Qiwen; Chen, Ray T

    2016-01-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent silica substrate. The bowtie antenna is designed with broad RF bandwidth to cover the X-band in the electromagnetic spectrum. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. Taking advantage of the low-k silica substrate, high enhancement factor can be achieved without the unwanted reflection and scattering from the backside silicon handle which is the issue of using an SOI substrate. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on silica substrates and then measuring their resonance frequencies. In addition, the far-field rad...

  18. High Sensitivity Very Low Frequency Receiver for Earthquake Data Acquisition.

    Science.gov (United States)

    Munir, A.; Najmurrokhman, A.

    2017-03-01

    high sensitivity very low frequency (VLF) receiver is developed based on AD744 monolithic operational amplifier (Op-Amp) for earthquake data acquisition. In research related natural phenomena such as atmospheric noise, lightning and earthquake, a VLF receiver particularly with high sensitivity is utterly required due to the low power of VLF wave signals received by the antenna. The developed receiver is intended to have high sensitivity reception for the signals in frequency range of 10-30kHz allocated for earthquake observation. The VLF receiver which is portably designed is also equipped with an output port connectable to the soundcard of personal computer for further data acquisition. After obtaining the optimum design, the hardware realization is implemented on a printed circuit board (PCB) for experimental characterization. It shows that the sensitivity of realized VLF receiver is almost linear in the predefined frequency range for the input signals lower than -12dBm and to be quadratic for the higher level input signals.

  19. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  20. Science and Antenna Array Trade Studies for Low Frequency Radio Observatories on the Lunar Surface

    Science.gov (United States)

    MacDowall, R. J.; Burns, J. O.

    2017-10-01

    A "low-frequency" radio astronomy observatory on the lunar surface would serve to address science goals that cannot be achieved by ground-based observatories. We describe status and plans for such an observatory.

  1. Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz

    Science.gov (United States)

    Morimoto, Ryota; Hirata, Akimasa; Laakso, Ilkka; Ziskin, Marvin C.; Foster, Kenneth R.

    2017-03-01

    This study computes the time constants of the temperature elevations in human head and body models exposed to simulated radiation from dipole antennas, electromagnetic beams, and plane waves. The frequency range considered is from 1 to 30 GHz. The specific absorption rate distributions in the human models are first computed using the finite-difference time-domain method for the electromagnetics. The temperature elevation is then calculated by solving the bioheat transfer equation. The computational results show that the thermal time constants (defined as the time required to reach 63% of the steady state temperature elevation) decrease with the elevation in radiation frequency. For frequencies higher than 4 GHz, the computed thermal time constants are smaller than the averaging time prescribed in the ICNIRP guidelines, but larger than the averaging time in the IEEE standard. Significant differences between the different head models are observed at frequencies higher than 10 GHz, which is attributable to the heat diffusion from the power absorbed in the pinna. The time constants for beam exposures become large with the increase in beam diameter. The thermal time constant in the brain is larger than that in the superficial tissues at high frequencies, because the brain temperature elevation is caused by the heat conduction of energy absorbed in the superficial tissue. The thermal time constant is minimized with an ideal beam with a minimum investigated diameter of 10 mm this minimal time constant is approximately 30 s and is almost independent of the radiation frequency, which is supported by analytic methods. In addition, the relation between the time constant, as defined in this paper, and ‘averaging time’ as it appears in the exposure limits is discussed, especially for short intense pulses. Similar to the laser guidelines, provisions should be included in the limits to limit the fluence for such pulses.

  2. High-Directivity Antenna Array Based on Artificial Electromagnetic Metamaterials with Low Refractive Index

    Directory of Open Access Journals (Sweden)

    Zhigang Xiao

    2015-01-01

    Full Text Available Planar metamaterials (MTMs with low refractive index are proposed as a cover in a high-gain patch antenna array configuration. This MTMs array antenna has the following features: the number of array elements significantly decreases compared with the conventional array; the elements spacing is larger than a wave length by far; the feeding network is simpler. MTMs are made of two layers of periodic square metallic grids and placed above the feeding array. With the same aperture size, the directivity of MTMs-cover antenna array is higher than the conventional antenna array. The simulation results show that an array of 2 × 2 patch elements integrated with MTMs yields about 26 dB of directivity which is higher than that of conventional 8 × 8 patch array. Furthermore, on the condition of the same aperture size, an array patch with 4 × 4 elements integrated with the MTMs-cover has an equivalent gain compared with the conventional patch array with 16 × 16 array elements. Obviously, the former has a simpler feeding network and higher aperture efficiency. The experimental work has verified that the 2 × 2 array case and the measured results have good agreement with the simulation.

  3. Graphene array antenna for 5G applications

    Science.gov (United States)

    Sa'don, Siti Nor Hafizah; Kamarudin, Muhammad Ramlee; Ahmad, Fauzan; Jusoh, Muzammil; Majid, Huda A.

    2017-02-01

    Fifth generation (5G) needs to provide better coverage than the previous generation. However, high frequency and millimeter wave experience penetration loss, propagation loss and even more loss in energy for long distance. Hence, a graphene array antenna is proposed for high gain to cover a long distance communications since array antenna enables in providing more directive beams. The investigation is conducted on three types of substrates with gain achieved is more than 7 dBi. The gain obtained is good since it is comparable with other studies. In addition, these antennas consume small numbers of elements to achieve high gain.

  4. Antennas tune in to high-energy particles

    CERN Document Server

    Gorham, P W

    2001-01-01

    After 40 years of research, physicists met at the first international workshop on the radio detection of high energy particles to discuss the detection of high-energy cosmic rays and neutrinos using radio waves. (0 refs).

  5. A Compact Printed Slot Antenna with High Out-of-band Rejection for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    P. Moeikham

    2016-12-01

    Full Text Available The suppression of electromagnetic interferences (EMIs caused by the out-of-band operation is required for broadband antennas. To achieve this purpose, a compact broadband printed slot antenna with build-in filters for band notching is presented. The filters, including I-shaped and inverse L-shaped narrow slits and an L-shaped conductor strip, whose lengths correspond to half wavelengths, were integrated in the proposed antenna structure. The mitigation of the EMIs at the frequency ranges of 2.7 to 3.2 GHz, 4.1 to 4.7 GHz, and over 6.1 GHz was obtained. The proposed antenna capably operated at WLAN/WiMAX frequency ranges of 2.26 to 2.68 GHz, 3.28 to 4.09 GHz, and 4.75 to 6.04 GHz. The nearly omni-directional and likely bi- directional radiation patterns were given by the proposed antenna in xz and yz planes, respectively. Therefore, this antenna is suitable for various WLAN/WiMAX applications.

  6. High-efficiency reflectarray antenna using a compact focusing meta-lens

    Science.gov (United States)

    Cai, T.; Wang, G.-M.; Liang, J.-G.

    2017-03-01

    The mechanisms of achieving high phase efficiency of a meta-surface are researched and analyzed systematically. For a reflective element, an electrically small size, a complete phase-shift range of more than 360°, and also a smooth phase response play an essential role in determining the high phase efficiency. Based on the design principle, an excellent element is proposed consisting of an isotropic three-turn square-ring resonator (ITSR) on a single-layer slab. The characterizations of the ITSR element are investigated in depth through theoretical calculation, comparative analysis, and electromagnetic (EM) simulation. A focusing meta-lens, with a parabolic phase distribution, is well optimized using 14 × 14 elements. Good focusing effect is demonstrated within a wide bandwidth of more than 1 GHz. Exciting the meta-lens with a waveguide feed antenna at the focus, a high-efficiency reflectarray antenna is designed, which shows a series of advances, such as high aperture efficiency of better than 70%, 1-dB gain bandwidth wider than 13.07%, and also competitive radiation gain. The proposed strategy opens an avenue to new types of high-efficiency RMSs and reflectarray antennas with enhanced radiation characteristics.

  7. High frequency pressure oscillator for microcryocoolers

    OpenAIRE

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at ...

  8. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  9. Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna

    Science.gov (United States)

    Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin

    2017-12-01

    In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11–10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.

  10. Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    A design of an active antenna with a dielectric resonator stabilized high-electron-mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained.

  11. High frequency pressure oscillator for microcryocoolers

    Science.gov (United States)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  12. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  13. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in orde...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  14. Application of Multi-Band Signals to Suppress the Diffraction Lobes in MIMO Radar with Highly Directional Antennas

    Directory of Open Access Journals (Sweden)

    S. I. Nefedov

    2015-01-01

    Full Text Available When emitting the orthogonal signals the MIMO radar generally uses widely directional antennas of transmitting and receiving elements (sites. Principles of MIMO radar are generally applicable at highly directional antennas. For a small sites spacing and application of narrowly focused and synchronous scanning antenna provides new benefits for MIMO radar. These include an increase in the power potential, detection range and easy of synchronous radar zone scanning with equivalent narrow spatial beam.For MIMO radar with narrow radiation patterns it is typical to have a diffraction pattern within the equivalent scanning beam, consisting of a large number of intense grating lobes. The structure of the diffraction pattern and the width of the lobes depend on the inter-element distance (base and the coordinates of MIMO radar position. The angular width of the diffraction pattern is equal to the width of the identical patterns at positions. Removing the angular ambiguity will require special measures to reduce the level of the lateral lobes This paper is devoted to assessing the degree of side lobes reduction by the use of multi-band multi-frequency signals with non-overlapping groups of multi - frequency bands with two versions of the co-processing between the groups of frequency components - additive and multiplicative.It is shown for the embodiment of MIMO radar with 5- receiver and 5-transmitter positions and narrow beam patterns and 5-frequency signal in the band of 1.6 MHz that increasing initial frequency of spectrum up to 10% leads to the fact that diffraction maxima of the lobe for increasing frequencies coincide with minima in the diffraction pattern at the original frequency. This was the basis for using multi-band signals when suppressing the diffraction lobes in MIMO radar. The embodied MIMO radar with two-way 5-frequency signal and detuning initial frequencies 10% shows that the additive treatment gives diffraction of lobe suppression -3

  15. Experimental demonstration of directive Si3N4 optical leaky wave antenna with semiconductor perturbations at near infrared frequencies

    CERN Document Server

    Zhao, Qiancheng; Huang, Yuewang; Campione, Salvatore; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01

    Directive optical leaky wave antennas (OLWAs) with tunable radiation pattern are promising integrated optical modulation and scanning devices. OLWAs fabricated using CMOS-compatible semiconductor planar waveguide technology have the potential of providing high directivity with electrical tunability for modulation and switching capabilities. We experimentally demonstrate directive radiation from a silicon nitride ($Si_3N_4$) waveguide-based OLWA. The OLWA design comprises 50 crystalline Si perturbations buried inside the waveguide, with a period of 1 {\\mu}m, each with a length of 260 nm and a height of 150 nm, leading to a directive radiation pattern at telecom wavelengths. The measured far-field radiation pattern at the wavelength of 1540 nm is very directive, with the maximum intensity at the angle of 84.4{\\deg} relative to the waveguide axis and a half-power beam width around 6.2{\\deg}, which is consistent with our theoretical predictions. The use of semiconductor perturbations facilitates electronic radiat...

  16. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    Science.gov (United States)

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-09-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen.

  17. Impact of the handset form factor on inverted-F antennas performance

    DEFF Research Database (Denmark)

    Margues, Pablo Fernández; Despointes, E. H.; Barrio, Samantha Caporal Del

    2012-01-01

    This paper describes the portability of a multiband antenna design over a printed circuit board (PCB) of different sizes. The antenna consists of two inverted-F antennas (IFA) operating at the same resonance frequency, for multiple-input multiple-output (MIMO) operation. The frequency range...... presented in this paper is EGSM900 for the low band and IMT-E for the high band, but the results can be extended to bands 5 and 6 with a tunable antenna. Simulations of the antenna behavior with increasing-size ground plane will be compared to the measurements of three common ground plane sizes...

  18. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  19. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    Science.gov (United States)

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  20. Land and Undersea Field Testing of Very Low Frequency RF Antennas and Loop Transceivers

    Science.gov (United States)

    2017-12-01

    has a cut-off frequency at around 20 kilohertz. In warm weather, the amplifier will still function at 21.7 kilohertz, but in cold weather the...low, so through-water VLF communications remain relevant. True background noise cannot be accurately determined if there are additional, artificial...feet) 14.0 9.5 5.0 25 REFERENCES Bowen, M. M., A. C. Fraser-Smith, and P. R. McGill. 1992. “Long-Term Averages of Globally - Measured ELF/VLF Radio

  1. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  2. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  3. Genetic Algorithm Optimization of a High-Directivity Microstrip Patch Antenna Having a Rectangular Profile

    Directory of Open Access Journals (Sweden)

    J.W. Jayasinghe

    2013-09-01

    Full Text Available A single high-directivity microstrip patch antenna (MPA having a rectangular profile, which can substitute a linear array is proposed. It is designed by using genetic algorithms with the advantage of not requiring a feeding network. The patch fits inside an area of 2.54lambda x 0.25lambda, resulting in a broadside pattern with a directivity of 12 dBi and a fractional impedance bandwidth of 4%. The antenna is fabricated and the measurements are in good agreement with the simulated results. The genetic MPA provides a similar directivity as linear arrays using a corporate or series feeding, with the advantage that the genetic MPA results in more bandwidth.

  4. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  5. Dielectrically Loaded Biconical Antennas

    Science.gov (United States)

    Nusseibeh, Fouad Ahmed

    1995-01-01

    Biconical antennas are of great interest to those who deal with broadband applications including the transmission/reception of pulses. In particular, wide-angle conical antennas are an attractive choice in many applications including Electronic Support Measures (ESM) and the measurements of transient surface currents and charge densities on aircraft. Dielectric loading in the interior region of a conical antenna can be used to reduce the size of the antenna especially at low frequencies and/or for structural strength. Therefore, having an analytical solution for the input impedance and the frequency response is very helpful in optimizing the design and understanding the behavior of the antenna. From the quasi-analytical solution for the input impedance and the electric field of a wide-angle conical antenna, it can be seen that the dielectric loading in the antenna region improves the input impedance at low frequencies, but increases the number of resonance points and the magnitude of these peaks. When an inhomogeneous dielectric load is used, the magnitude of the resonance peaks is decreased (depending on the way the load is distributed), improving the input impedance of the antenna significantly. Introducing a dielectric load in the interior region of an electrically short receiving cone makes the antenna behave as an electrically longer antenna. However, this is not true for the case for electrical1y long antennas. For the case of pulse transmission, the dielectric load affects only the amplitude. Of course, if the dielectric fills the whole space, both transmitting and receiving antennas behave as electrically longer antennas.

  6. 8×8 Planar Phased Array Antenna with High Efficiency and Insensitivity Properties for 5G Mobile Base Stations

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    An insensitive planar phased array antenna with high efficiency function for 5G applications is introduced in this study. 64-elements of compact slot-loop antenna elements have been used to form the 8×8 planar array. The antenna is designed on a low cost FR4 substrate and has good performance...... in terms of gain and efficiency. This property has been achieved by applying a new slot-loop resonators. The proposed antenna is designed to operate at 21-23.5 GHz and has a same performance for different values of dielectric constant and loss tangent. It has high-gain, high-efficiency radiation beams...... at both sides of the substrate and could be used for mobile base station (MBS) applications. The proposed planar array could be integrated with the transceivers on the low-cost printed circuit boards (PCBs) to reduce the manufacturing cost....

  7. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  8. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  9. Novel high-frequency air transducers

    Science.gov (United States)

    Schiller, S.; Hsieh, C.-K.; Chou, C.-H.; Khuri-Yakub, B. T.

    The properties of ligneous materials have been evaluated in order to improve the insertion loss and bandwidth of air-based ultrasonic transducers. It is found that cork and balsa wood have the appropriate impedance to match with air, though their attenuation coefficients are prohibitive for high-frequency operation. For multiple matching layer devices, ligneous materials could be made useful in the 1-10 MHz frequency range.

  10. Frequency Estimation Techniques For High Dynamic Trajectories

    Science.gov (United States)

    Vilnrotter, V. A.; Hinedi, S. M.; Kumar, R.

    1989-01-01

    Report presents comparative study of four techniques for estimating frequency of sinusoidal signal received in presence of noise when transmitter and/or receiver experiencing very high dynamics. Four techniques involve approximate-maximum-likelihood estimator, extended Kalman filter, cross-product automatic frequency control loop, and digital phase locked loop, respectively. In numerical simulations, each technique applied to signal from transmitter maneuvering along common trajectory; performance of each examined to determine its useful operating range, and performances compared.

  11. THz leaky-wave antenna with high-directivity and beam-steering using CPW CRLH meta-material resonators

    Science.gov (United States)

    Si, Li-Ming; Sun, Hou-Jun; Lv, Xin

    2009-07-01

    A novel coplanar waveguide (CPW)-based composite right/left-handed (CRLH) structure for terahertz (THz) leaky wave antennas (LWAs) application with high directivity and beam steering capability is introduced. The structure of the CRLH-TL was composed of a slot and embedded resonators termed metamaterial resonators using planar CPW technology. There were three steps involved to design the structure of metamaterial resonator and position distribution of metamaterial resonators in the composite right/left-handed (CRLH) transmission lines. First, equivalent circuit model method (also called "transmission line model method") was used to create an equivalent circuit model of the element of metamaterial resonator. Second, from the equivalent circuit model, it was possible to correspond to two basic equivalent circuit parameters "series impedance and shunt admittance" from artificial transmission line structure "CPW-based metamaterial resonator". Finally, the dimensions of metamaterial resonator were calculated and optimized according to the dispersion diagram. Meanwhile, ohmic loss needs to be considered because it is high at THz wave and above frequency region. The LWAs with CPW-based CRLH could implement high-directivity and backward-to-forward beam steering which differs from the conventional one. A balanced CPW CRLH LWA is designed at the transition frequency of 1485 GHz and performances of high-directivity and wide-angle continuous beam-steering are demonstrated.

  12. Design of an RF Antenna for a Large0Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.A.; Freeman, R.L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  13. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    Directory of Open Access Journals (Sweden)

    Ding Xu

    2016-08-01

    Full Text Available Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  14. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  15. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  16. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  17. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  18. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume...... required by the wide-band antenna....

  19. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  20. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chloroba......Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium...... of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix....

  1. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  2. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  3. Synthesis of high magnetic moment soft magnetic nanocomposite powders for RF filters and antennas

    Science.gov (United States)

    Chinnasamy, Chins; Malallah, Yaaqoub; Jasinski, Melania M.; Daryoush, Afshin S.

    2015-04-01

    Fe60Co40 alloy nanoparticles with an average particle size of 30 nm were successfully synthesized in gram scale batches using the modified polyol process. The X-ray diffraction and microstructure studies clearly show the formation of the alloy nanoparticles. The saturation magnetization for the gram scale synthesized Fe60Co40 alloy nanoparticles is in the range of 190-205 emu/g at room temperature. The as-synthesized nanoparticles were used to fabricate transmission lines on FR4 substrate to perform radio frequency (RF) characterization of the nanoparticles at ISM RF bands of interest (all in GHz range). The complex permeability extraction of composite Fe60Co40 nanoparticles were performed using perturbation technique applied to microstrip transmission lines by relative measurement of full two port scattering parameter with respect to a baseline FR4 substrate. The extracted results show attractive characteristics for small size antennas and filters.

  4. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...

  5. High-efficiency dual-polarized patch antenna array with common waveguide feed

    OpenAIRE

    Vilaltella Esteve, Robert

    2013-01-01

    Treball realitzat a l'Institut für Hochfrequenztechnik (IHF)de la Universität Stuttgart [ANGLÈS] A concept for a dual-polarized patch antenna array with large bandwidth and high efficiency is proposed. A short overmoded waveguide section is connected to a square feed waveguide on one side, and to the common groundplane of a 2x2 or a 3x3 patch array on the other side. Each square-shaped patch is coupled to the waveguide by crossed slots in the groundplane. The coupled resonances of the patc...

  6. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    Science.gov (United States)

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  7. A Dual-Band Multiple Input Multiple Output Frequency Agile Antenna for GPSL1/Wi-Fi/WLAN2400/LTE Applications

    Directory of Open Access Journals (Sweden)

    Sajid Aqeel

    2016-01-01

    Full Text Available A novel dual-band, single element multiple input multiple output (MIMO dielectric resonator antenna (DRA with a modest frequency tuning ability is presented in this communication. The proposed antenna operates at GPS L1/Bluetooth/Wi-Fi/LTE2500/WLAN2400 frequency bands. A single dielectric resonator element is fed by two coaxial probes to excite the orthogonal modes. A couple of slots are introduced on the ground plane to improve the isolation between antenna ports. The slots also serve the purpose of reconfiguration in the lower band on placement of switches at optimized locations. The measured impedance bandwidth is 5.16% (1.41–1.49 GHz in the lower band and 26% (2.2–2.85 GHz in the higher band. The lower band reconfigures with an impedance bandwidth of 6.5% (1.55–1.65 GHz when PIN diodes are switched ON. The gain, efficiency, correlation coefficient, and diversity gain of the MIMO DRA are presented with a close agreement between simulated and measured results.

  8. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  9. Core/Shell and High Aspect Ratio Magnetic Oxide Nanoparticles for Antenna Applications

    Science.gov (United States)

    Ekiert, Thomas F., Jr.; O'Malley, Matthew; Yocum, Brandon; Lippold, Jennifer; Lyle, Mallory; Griner, Angela; Flynn, Cory; Nickel, Anna; Alexander, Max D., Jr.

    2012-02-01

    Improved antenna gain, reduced antenna aperture size, and improved bandwidth are of interest to an increasingly mobile world. To obtain these improvements our efforts are directed at developing new magnetic oxide nanoparticle/polymer composites with modifiable permeability and permittivity and low electrical losses. Our approach consists of producing core/shell and shape controlled magnetic nanoparticles. Methods of synthesis utilize microwave and traditional heating to perform hydrothermal and solvothermal reactions. Decomposition of metal acetylacetonates is performed using various alcohols resulting in spherical nanoparticles with diameters of 8-16 nm and 3-7 nm for Fe3O4 and CoFe2O4, respectively. Microwave methods result in similar particles, but are produced in an hour or less as compared to 48 hrs via the traditional solvothermal method. Successive growths are used to produce larger monolithic particles as well as core/shell systems where exchange coupling between the core and shell is observed. Hexaferrite particles have been produced via hydrothermal synthesis, while high aspect ratio Fe3O4 nanoparticles ( 10-100 nm) produced via hydrothermal synthesis result in nanoneedles with high μr.

  10. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    Science.gov (United States)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten; Linnanto, Juha M.; Rätsep, Margus; Pedersen, Marie Østergaard; Lambrev, Petar H.; Dorogi, Márta; Garab, Győző; Thomsen, Karen; Jegerschöld, Caroline; Frigaard, Niels-Ulrik; Lindahl, Martin; Nielsen, Niels Chr.

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix. PMID:27534696

  11. Scalable polymer-based ferrite composites with matching permeability and permittivity for high-frequency applications

    Science.gov (United States)

    Wang, Yunqi; Edwards, Eleanor; Hooper, Ian; Clow, Nathan; Grant, Patrick S.

    2015-08-01

    Materials with relatively high and equal permeability and permittivity are promising for applications in telecommunications, but so far, few practical candidates have been identified. In this work, functional composites consisting of epoxy resin and Ni0.4Zn0.6Fe2O4 ferrite particles have been fabricated by a scalable and flexible casting route. It has been experimentally demonstrated that at frequencies in the 100 MHz range, the composite with ferrite loading of 53 vol% can achieve broadband impedance matching to free space with a refractive index of approximately 6, giving antenna miniaturization, which has been demonstrated by the casting of the impedance-matched composite into hemispheres suitable for electrically small antennas.

  12. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  13. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  14. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  15. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  16. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  17. Compact Dual Band Antenna Design for Ku / Ka Band Applications

    Directory of Open Access Journals (Sweden)

    A. Kandwal

    2017-10-01

    Full Text Available This communication proposes a compact 16 GHz / 30 GHz dual band antenna design for Ku / Ka band applications. The antenna consists of two layers with lower layer having the fed patch and the upper layer having non-periodic element array. The antenna has been designed to operate at two different frequencies with compact dimensions of (8mm x 8mm using Rogers RT 5880. The compact size of this proposed antenna also makes it suitable for integration with the microwave and millimeter wave circuits. The proposed antenna provides high radiation efficiency and a peak gain of about 8 dB at the resonant frequencies with reduced side lobe levels.

  18. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  19. High Frequency Guided Wave Virtual Array SAFT

    Science.gov (United States)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  20. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    Landstuhl Regional Medical Center, Germany; and †United States Army Institute of Surgical Research, Fort Sam Houston, Texas. The author does not have...AND ADDRESS(ES) United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Engl J Med 1981;305:1375–9. 25. Pillow JJ. High-frequency oscillatory ventilation: mecha- nisms of gas exchange and lung mechanics. Crit Care Med

  1. High Frequency Components in Bottlenose Dolphin Echolocation Signals

    National Research Council Canada - National Science Library

    Toland, Ronald

    1998-01-01

    .... To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed in which an acoustic filter, used to suppress the high frequencies...

  2. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  3. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  4. High frequency image-based flow detection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, R [National Heart and Lung Institute, Royal Brompton Hospital, London SW3 6NP (United Kingdom); Prager, R W [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Gee, A H [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Treece, G M [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2004-01-01

    Tumour angiogenesis refers to neovascular development on a microvascular scale and is an early indicator of cancer. Prototype high frequency pulsed Doppler systems using 50 MHz transducers have been reported to detect microvascular flow in vessels 0.02 mm to 0.5 mm in diameter at superficial depths of 0.5 mm. Detecting flow in microvasculature at deeper depths requires lower frequency transducers with a resulting tradeoff in spatial resolution. Using a 22 MHz transducer, we demonstrate a speckle decorrelation technique to detect in vitro flow in soft tubing of 0.5 mm diameter at a depth of 2 cm. This image-based decorrelation technique is capable of detecting flow in significantly narrower diameters down to 0.125 mm by decreasing the region of interest.

  5. Coupled Simulation-Measurements Platform for the Evaluation of Frequency Reuse in the 2.45 GHz ISM Band for Multimode Nodes with Multiple Antennas

    Directory of Open Access Journals (Sweden)

    Verdier Jacques

    2010-01-01

    Full Text Available We address the problem of efficiently evaluating performance of concurrent radio links on overlapped channels. In complex network topologies with various standards and frequency channels, simulating a realistic PHY layer communication is a key point. The presented coupled simulation-measurement platform offers a very promising way of rapidly modelling and validating effective performance of multimode, multichannel and multiantenna radio nodes. An accurate analysis of radio channel is performed and then realistic performance with or without antenna processing is shown, verifying theoretical performance. Finally, available performance of concurrent communications on overlapped channels is exposed, showing that this approach is viable to enhance network capacity.

  6. Multiband Antennas for SDR Applications

    Directory of Open Access Journals (Sweden)

    E. Surducan

    2009-01-01

    Full Text Available We present multiband antennas configurations for SDR applications. Using a composite folded dipole structure as starting point, we derived more complex antenna configurations to support multiple communication protocols for mobile application with linear and circular polarizations. Prototypes as single antenna with circular polarization, tunable single antenna with PIN diode and MIMO systems with three and four antennas, all derivatives of the same basic structure, were produced in an iterative fashion until the desired parameters were achieved. These antennas are suitable for microstrip circuit realizations and can be included in the printed circuit board (PCB of the device, or used as stand alone. The shapes and measurement results are presented throughout the paper. From the illustrated graphs it can be seen that the stand-alone antennas exhibit positive gain for all the frequency bands of interest while the separation between antennas, for the multiple-input multiple-output (MIMO case, is better than 15 dB.

  7. Asynchronous BCI control using high-frequency SSVEP

    National Research Council Canada - National Science Library

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-01-01

    ...) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range...

  8. High-power femtosecond Raman frequency shifter.

    Science.gov (United States)

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  9. Absolute Antenna Calibration at the US National Geodetic Survey

    Science.gov (United States)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  10. Radiofrequency magnetic resonance coils and communication antennas: Simulation and design strategies.

    Science.gov (United States)

    Giovannetti, Giulio; Tiberi, Gianluigi

    2017-12-01

    Coils simulation and design is a fundamental task to maximize Signal-to-Noise Ratio in Magnetic Resonance applications. In the meantime, in the last years the issue of accurate communication antennas analysis has grown. Coil design techniques take advantage of computer simulations in dependence on the magnetic field wavelength and coil sizes. In particular, since at high frequencies coils start to behave as antennas, modern Magnetic Resonance coil development exploits numerical methods typically employed for antennas simulation. This paper reviews coil and antenna performance parameters and focuses on the different simulation approaches in dependence on the near/far field zones and operating frequency. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Science.gov (United States)

    Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal

    2013-01-01

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376

  12. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Directory of Open Access Journals (Sweden)

    Mohammad Habib Ullah

    2013-11-01

    Full Text Available A new meta-surface structure (MSS with a near-zero refractive index (NZRI is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS, a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  13. Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near-field antenna measurements with high-order probes

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2010-01-01

    A complete antenna pattern characterization procedure for spherical near-field antenna measurements employing a high-order probe and a full probe correction is described. The procedure allows an (almost) arbitrary antenna to be used as a probe. Different measurement steps of the procedure...... and the associated data processing are described in detail, and comparison to the existing procedure employing a first-order probe is made. The procedure is validated through measurements....

  14. Broadband active electrically small superconductor antennas

    Science.gov (United States)

    Kornev, V. K.; Kolotinskiy, N. V.; Sharafiev, A. V.; Soloviev, I. I.; Mukhanov, O. A.

    2017-10-01

    A new type of broadband active electrically small antenna (ESA) based on superconducting quantum arrays (SQAs) has been proposed and developed. These antennas are capable of providing both sensing and amplification of broadband electromagnetic signals with a very high spurious-free dynamic range (SFDR)—up to 100 dB (and even more)—with high sensitivity. The frequency band can range up to tens of gigahertz, depending on Josephson junction characteristic frequency, set by fabrication. In this paper we review theoretical and experimental studies of SQAs and SQA-based antenna prototypes of both transformer and transformer-less types. The ESA prototypes evaluated were fabricated using a standard Nb process with critical current density 4.5 kA cm-2. Measured device characteristics, design issues and comparative analysis of various ESA types, as well as requirements for interfaces, are reviewed and discussed.

  15. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  16. A High-gain and Low-scattering Waveguide Slot Antenna of Artificial Magnetic Conductor Octagonal Ring Arrangement

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-04-01

    Full Text Available A novel design of high-gain and low-scattering waveguide slot antenna is proposed in this paper. Firstly the scattering pattern of artificial magnetic conductor (AMC composite surface is estimated by array factor analysis method. The comparison between octagonal ring arrangement and chessboard arrangement proves that the former arrangement has the characteristic of diffuseness-like and expands the bandwidth of radar cross section (RCS reduction. Secondly, the metal surface of waveguide slot antenna (WSA is replaced by the octagonal ring arrangement composite surface (ORACS. The gain is improved because of spurious radiation units which are around the slot. At the same time using the phase cancellation principle, a backscatter null achieves RCS reduction in the vertical direction. Experimental results show that the novel antenna after loading with the ORACS, the gain is improved by 5dB; the bandwidth of RCS reduction (reduction greater than 10dB is 5.24-5.92 GHz.

  17. Printed UHF RFID antennas with high efficiencies using nano-particle silver ink.

    Science.gov (United States)

    Lee, Yongshik; Kim, Chung Hwan; Shin, Dong-Youn; Kim, Young Gook

    2011-07-01

    One of the most popular targets of conductive ink technology is to print RFID tag antennas. However, the printed RFID antennas, manufactured by conductive silver ink which is generally based on microsized silver particles, have lower conductivity and consequently lower radiation efficiency than those by conventional copper etching method. This work demonstrates nano-particle conductive silver ink that is capable of printing UHF RFID antennas with improved radiation efficiency. Compared with commercial micro-particle silver ink, the solid content of metal is much higher in the proposed nanoparticle silver ink, leading to better electrical properties. Two types of dipole antennas are printed with the proposed nano-particle as well as with commercial micro-particle inks. Also, the same antennas are fabricated by copper etching. With these conductive inks, a straight and a meandered dipole antennas are fabricated and their radiation efficiencies are measured with the Wheeler cap method. Experimental results show that the radiation efficiencies of the antennas based on nanoparticle silver ink are superior to those printed with the micro-particle silver ink, and are comparable to those of popular copper antennas.

  18. Design and Measurements of a Hybrid RF-MEMS Reconfigurable Loop Antenna on a Flexible Substrate (PREPRINT)

    Science.gov (United States)

    2010-06-01

    presented and discussed herein. Design Concept and Structure The designed loop antenna consists of a coplanar waveguide-fed ( CPW ) loop that is...the input impedance presented at the antenna terminals at the resonant frequencies becomes very high. When one switch is turned ‘on’ and the...other ‘off’ (Fig. 1b or Fig. 1c), the antenna functions as a traveling-wave loop at its main resonant frequency of operation. The simulated results

  19. Quartz antenna with hollow conductor

    Science.gov (United States)

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  20. New Modelling Capabilities in Commercial Software for High-Gain Antennas

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Lumholt, Michael; Meincke, Peter

    2012-01-01

    type of EM software tool aimed at extending the ways engineers can use antenna measurements in the antenna design process. The tool allows reconstruction of currents and near fields on a 3D surface conformal to the antenna, by using the measured antenna field as input. The currents on the antenna......This paper presents an overview of selected new modelling algorithms and capabilities in commercial software tools developed by TICRA. A major new area is design and analysis of printed reflectarrays where a fully integrated design environment is under development, allowing fast and accurate...... characterization of the reflectarray element, an initial phaseonly synthesis, followed by a full optimization procedure taking into account the near-field from the feed and the finite extent of the array. Another interesting new modelling capability is made available through the DIATOOL software, which is a new...

  1. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  2. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  3. Recent activities in printed Antennas at LeRC

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  4. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  5. One-step fabrication of a highly conductive and durable copper paste and its flexible dipole tag-antenna application.

    Science.gov (United States)

    Shin, Keun-Young; Lee, James S; Hong, Jin-Yong; Jang, Jyongsik

    2014-03-21

    A highly conductive and durable copper (Cu) paste was successfully fabricated via acid treatment and mechanical blending with corrosion inhibitors. A screen-printed Cu pattern was evaluated as a dipole tag-antenna with long term and thermal stability, and structural flexibility.

  6. Modular transmit/receive arrays using very-high permittivity dielectric resonator antennas.

    Science.gov (United States)

    O'Reilly, Thomas P A; Ruytenberg, Thomas; Webb, Andrew G

    2018-03-01

    Dielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very high permittivity materials to construct modular flexible transceive arrays of a variable numbers of elements for operation at 7T. DRAs were constructed using rectangular blocks of ceramic (lead zirconate titanate, εr  = 1070) with the transverse electric (TE)01 mode tuned to 298 MHz. Finite-difference time-domain simulations were used to determine the B1 and specific absorption rate distributions. B1+ maps were acquired in a phantom to validate the simulations. Performance was compared to an equally sized surface coil. In vivo images were acquired of the wrist (four elements), ankle (seven elements), and calf muscle (16 elements). Coupling between DRAs spaced 5 mm apart on a phantom was -18.2 dB compared to -9.1 dB for equivalently spaced surface coils. DRAs showed a higher B1+ intensity close to the antenna but a lower penetration depth compared to the surface coil. DRAs show very low coupling compared to equally sized surface coils and can be used in transceive arrays without requiring decoupling networks. The penetration depth of the current DRA geometry means they are ideally suited to imaging of extremities. Magn Reson Med 79:1781-1788, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  8. Rydberg Dipole Antennas

    Science.gov (United States)

    Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher

    2017-04-01

    Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.

  9. Low-Interference Dual Resonant Antenna Configurations for Multistandard Multifunction Handsets and Portable Computers

    Directory of Open Access Journals (Sweden)

    Mohamed Sanad

    2012-01-01

    Full Text Available Low-interference dual resonant antenna configurations are developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the important wireless applications in portable communication equipment. The frequency bands of the dual antenna configuration can be adjusted according to the wireless applications that are required to be covered. The bandwidth that can be covered by each antenna is about 80% without using matching or tuning circuits. Three sample dual antenna configurations with different frequency bands are presented. The interference between the low-band and high-band antennas of these three configurations is investigated, and the ways of reducing this interference are studied. The most effective factor on the interference between the low-band and high-band antennas is their relative orientations. When the low-band and high-band antennas of each configuration are perpendicular to each other, the isolation between them significantly increases. This eliminates the need for any special tools or techniques to suppress the mutual coupling between them. The new antennas have very small cross-sectional areas, and they are made of a flexible material. They do not require any additional components or ground planes. They can be used as internal, external, or partially internal and partially external antennas.

  10. Deployable antenna

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  11. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  12. MSU Antenna Pattern Data

    Science.gov (United States)

    Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip

    2000-01-01

    The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.

  13. Bird Face Microstrip Printed Monopole Antenna Design for Ultra Wide Band Applications

    Science.gov (United States)

    Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Md. Moinul; Islam, Mohammad Tariqul; Rahman, Md. Atiqur

    2016-11-01

    In this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1-12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.

  14. Antenna design considerations for MIMO TV white-space handsets

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; De Carvalho, Elisabeth

    2013-01-01

    The trend in wireless communication is to provide high-speed services utilizing MIMO antenna systems. Moreover, cognitive radio (CR) technology targets to exploit the so-called TV white space (TVWS) utilizing tunable antennas operating over vacant TV bands. The joint requirements for cognition...... and spatial multiplexing expressed by sufficient antenna matching and decoupling bandwidth, frequency agility over the TVWS as well as minimum occupying space and complexity impose significant challenges to antenna engineers. The paper discusses the major design considerations for compact TVWS terminals...... and presents a promising approach that empowers the TVWS device with CR-MIMO capabilities under modern smartphone size constraints. The idea is to aggregate a pair of antennas per communication port for a) providing attractive bandwidth properties across the desired TV bands and b) isolating the communication...

  15. The classical and theoretical simulation for dominant radiated frequencies of plasma nanowire in presence of a long monopole antenna with long wavelength radiation

    Science.gov (United States)

    Safari, S.; Jazi, B.

    2017-05-01

    A theoretical model based on the classical theory for the simulation of scattering phenomena of long wavelength electromagnetic waves from plasma nanowires is investigated. A line source as a monopole antenna radiator is considered, which radiates with frequency ω in the vicinity of plasma nanowires parallel to the nanowire axis. A mathematical relation for resonance frequency is obtained. It is shown that in the resonance situation, plasma nanowires represent most of the response to the presence of electromagnetic waves. Mathematical computations are done for both the cold and warm approximations of plasma cases. The diagrams of the variation of resonance frequency versus the variation of temperature, geometrical dimension, and carrier density of plasma nanowires are presented. Also, a mathematical relation for subsidiary resonance frequency with considering two line sources with opposite charge is offered. The diagrams of subsidiary resonance frequency versus the variation of temperature, geometrical dimension, and carrier density of plasma nanowires are presented. It is shown that the presented model provides a color diagnostic system for the determination of size, the number, and distribution of nanowires immersed in a fluid based on their temperature and geometrical dimension.

  16. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    Science.gov (United States)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  17. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc...

  18. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    NARCIS (Netherlands)

    Zweiphenning, W. J E M; van 't Klooster, M. A.; van Diessen, E.; van Klink, N. E C; Huiskamp, G. J M; Gebbink, T. A.; Leijten, F. S S; Gosselaar, P. H.; Otte, W. M.; Stam, C. J.; Braun, K. P J; Zijlmans, G. J M

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas

  19. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  20. Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low Cross-Polarization

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim

    2001-01-01

    This paper describes the development and performance of a wideband dual linear polarization microstrip antenna array used in the Danish high-resolution airborne multifrequency polarimetric synthetic aperture radar, EMISAR. The antenna was designed for an operating frequency of 1.25 GHz±50 MHz...

  1. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  2. Plant Responses to High Frequency Electromagnetic Fields

    Science.gov (United States)

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  3. Ion source antenna development for the Spallation Neutron Source

    Science.gov (United States)

    Welton, R. F.; Stockli, M. P.; Kang, Y.; Janney, M.; Keller, R.; Thomae, R. W.; Schenkel, T.; Shukla, S.

    2002-02-01

    The operational lifetime of a radio-frequency (rf) ion source is generally governed by the length of time the insulating structure protecting the antenna survives during exposure to the plasma. Coating the antenna with a thin layer of insulating material is a common means of extending the life of such antennas. When low-power/low-duty factor rf excitation is employed, antenna lifetimes of several hundred hours are typical. When high-power, >30 kW, and high-duty cycles, ˜6%, are employed, as is the case of the Spallation Neutron Source (SNS) ion source, antenna lifetime becomes unacceptably short. This work addresses this problem by first showing the results of microanalysis of failed antennas from the SNS ion source, developing a model of the damage mechanism based on plasma-insulator interaction, using the model to determine the dimensional and material properties of an ideal coating, and describing several approaches currently under way to develop a long-lived antenna for the SNS accelerator. These approaches include thermal spray coatings, optimized porcelain enamel coatings, refractory enamel coatings, and novel antenna geometries designed to operate with low rf electric fields.

  4. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  5. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Science.gov (United States)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  6. Performance of High-Permittivity Ceramic-Polymer Composite as a Substrate for UHF RFID Tag Antennas

    Directory of Open Access Journals (Sweden)

    A. A. Babar

    2012-01-01

    Full Text Available A high-permittivity ceramic-polymer composite substrate is fabricated and proposed for its potential use in UHF RFID tags. The substrate is developed using high-permittivity Barium Titanate (BaTiO3 ceramic powder mixed with polydimethylsiloxane (PDMS polymer. The resulting composite achieves a soft, hydrophobic, heat resistant, low loss, and flexible material with high dielectric constant. The percentage of the ceramic powder in the composite helps in achieving variable permittivity values. When this material is used as a substrate for a tag antenna, it will help the tag to be reduced in size, to conform to uneven or rough surface, and to be less vulnerable to breakage or other environmental damages. A small passive UHF RFID tag antenna is designed, fabricated, and attached to this type of composite substrate, to demonstrate the performance of this composite material.

  7. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  8. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  9. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  10. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  11. Reconfigurable, Wideband Radar Transceiver and Antenna for P-band Stretch Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes to develop a Reconfigurable Wideband Radar Transceiver, with direct digital synthesis of P-band radar frequencies, novel high bandwidth P-band antenna...

  12. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    Science.gov (United States)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  13. High frequency characterization of conductive inks embedded within a structural composite

    Science.gov (United States)

    Pa, Peter; McCauley, Raymond; Larimore, Zachary; Mills, Matthew; Yarlaggada, Shridhar; Mirotznik, Mark S.

    2015-06-01

    Woven fabric composites provide an attractive platform for integrating electromagnetic functionality—such as conformal load-bearing antennas and frequency selective surfaces—into a structural platform. One practical fabrication method for integrating conductive elements within a woven fabric composite system involves using additive manufacturing systems such as screen printing. While screen printing is an inherently scalable, flexible and cost effective method, little is known about the high frequency electrical properties of its conductive inks when they are embedded within the woven fabric composite. Thus, we have completed numerical and experimental studies to determine the electrical conductivity of screen printable conductive inks that are embedded within this composite. We have also performed mechanical studies to evaluate how printing affects the structural performance of the composite.

  14. A Joint Frequency-Domain Equalization (Fde and Antenna Diversity Combining Method for the Multipath Fading in the Frequency-Selective Channel

    Directory of Open Access Journals (Sweden)

    Wang Jinpeng

    2016-01-01

    Full Text Available In this study, a theoretical foundation is built to evaluate the downlink performance of an MC-CDMA cellular system with site diversity operation with and receive antenna diversity combining. An expression for the theoretical conditional bit error rate (BER for the given set of channel gains is derived based on Gaussian approximation of the interference components in the composite receive signal. The local average BER is then obtained by averaging the conditional BER over the given set of channel gains using Monte-Carlo numerical method. The outage probability is measured from the numerically obtained cumulative distribution of the local average BER to determine the downlink capacity. Results from theoretical computation are compared to the results from computer simulation and discussed.

  15. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  16. A High Power Frequency Doubled Fiber Laser

    Science.gov (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  17. Ultra-broadband near-field antenna for terahertz plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Knap, W. [Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb, UMR 5221 (France)

    2015-01-15

    A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type of antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.

  18. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy.

    Science.gov (United States)

    Zweiphenning, W J E M; van 't Klooster, M A; van Diessen, E; van Klink, N E C; Huiskamp, G J M; Gebbink, T A; Leijten, F S S; Gosselaar, P H; Otte, W M; Stam, C J; Braun, K P J; Zijlmans, G J M

    2016-01-01

    High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.

  19. Introduction to smart antennas

    CERN Document Server

    Balanis, Constantine A

    2007-01-01

    As the growing demand for mobile communications is constantly increasing, the need for better coverage, improved capacity, and higher transmission quality rises. Thus, a more efficient use of the radio spectrum is required. Smart antenna systems are capable of efficiently utilizing the radio spectrum and is a promise for an effective solution to the present wireless systems' problems while achieving reliable and robust high-speed high-data-rate transmission. The purpose of this book is to provide the reader a broad view of the system aspects of smart antennas. In fact, smart antenna systems co

  20. High-performance low-power smart antenna for smart world applications

    CSIR Research Space (South Africa)

    Lysko, AA

    2014-10-01

    Full Text Available controlled from the operating system (OS) level driver. The antenna system is composed of the parasitic array antenna, driver software code, and an embedded controller. The system diagram is shown in Fig. 1a. The driver working under Linux, sets...WiFi (Multiband Atheros Driver for WiFi) Linux driver for 802.11a/b/g universal network interface card (NIC) for Atheros chipsets cards. The MadWiFi is the bridge between end user applications and the NIC. Just like most of the IEEE802.11 drivers...

  1. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakage...

  2. A study of the radio frequency spectrum emitted by high-energy air showers with LOFAR

    NARCIS (Netherlands)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N G

    2015-01-01

    The LOw Frequency ARray (LOFAR) is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10 - 240 MHz, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. The detection of the radio signal emitted by extensive air showers

  3. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  4. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas........ In the beginning, ad-hoc available antennas were shipped around the various ranges. Soon it became clear that the comparisons were restricted by the properties of the antenna. The European Space Agency (ESA) stimulated and supported the development of a dedicated VAlidation STandard (VAST) antenna, specifically...

  5. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  6. Lower Hybrid antennas for nuclear fusion experiments

    CERN Document Server

    Hillairet, Julien; Bae, Young-Soon; Bai, X; Balorin, C; Baranov, Y; Basiuk, V; Bécoulet, A; Belo, J; Berger-By, G; Brémond, S; Castaldo, C; Ceccuzzi, S; Cesario, R; Corbel, E; Courtois, X; Decker, J; Delmas, E; Delpech, L; Ding, X; Douai, D; Ekedahl, A; Goletto, C; Goniche, M; Guilhem, D; Hertout, P; Imbeaux, F; Litaudon, X; Magne, R; Mailloux, J; Mazon, D; Mirizzi, F; Mollard, P; Moreau, P; Oosako, T; Petrzilka, V; Peysson, Y; Poli, S; Preynas, M; Prou, M; Saint-Laurent, F; Samaille, F; Saoutic, B

    2015-01-01

    The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of several hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as "Lower Hybrid" (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.

  7. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits use...

  8. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  9. Validation of Emulated Omnidirectional Antenna Output Using Directive Antenna Data

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Karstensen, Anders; Nielsen, Jesper Ødum

    2017-01-01

    In this paper, we present validation of a method for constructing a virtual omnidirectional antenna in the azimuth plane. The virtual omnidirectional antenna utilizes a combination of data from directive horn antennas. The aim is to utilize the high gain of the horn antenna to improve the dynamic...... range of channel sounding measurements conducted in the centimeter and millimeter wave bands. The resulting complex impulse response from the virtual omnidirectional antenna is used to find the power-delay-profile (PDP). This is then compared to measurements conducted at the same time using a real...... omnidirectional antenna. The validation shows that the synthesized omnidirectional is capable of predicting main components and the slope of the PDP. Further, it is shown that by choosing angular sampling steps corresponding to the half power beam width (HPBW) of the used antenna similar power levels can...

  10. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    Science.gov (United States)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  11. A novel paradigm for high isolation in multiple antenna systems with user's influence

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund; Knudsen, Mikael Bergholz

    2010-01-01

    (UMTS) bands are investigated, showing also the influence of different hand phantoms in average use trough Finite-Difference TimeDomain (FDTD) simulations. It is confirmed that the way a mobile phone is held is very important in determining the amount of absorption loss, detuning and antenna isolation...

  12. Low-index-metamaterial for gain enhancement of planar terahertz antenna

    Directory of Open Access Journals (Sweden)

    Qing-Le Zhang

    2014-03-01

    Full Text Available We theoretically present a high gain planar antenna at terahertz (THz frequencies by combing a conventional log-periodic antenna (LPA with a low-index-metamaterial (LIM, |n| < 1. The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width and more than 4 dB gain enhancement are seen within a certain frequency range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.

  13. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  14. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  15. Gain Estimation of Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2008-09-01

    Full Text Available A simple formula of approximate gain estimation is verified for the doubly curved reflector antenna. Numerical simulations using physical optics and experimental results of the shaped-beam doubly curved reflector antenna are compared with the simple approximation of gain. That approximation could be very valuable for system engineers to accurately estimate antenna gain and coverage pattern and perform EMC calculations (estimations of interferences and susceptibilities even for the operation and out of operation frequency bands of shapedbeam antenna.

  16. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    OpenAIRE

    S. Arumugam S. Ramareddy M. Sridhar

    2011-01-01

    This paper presents a novel soft-switching pulse width modulation (PWM) utility frequency AC to high frequency (HF) AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which ...

  17. A Compact Dual-Band RFID Tag Antenna Mountable on Metallic Objects

    Directory of Open Access Journals (Sweden)

    Byeonggwi Mun

    2015-01-01

    Full Text Available A compact (50 × 50 × 4 mm3 dual-band radio frequency identification (RFID tag antenna mountable on metallic objects is proposed for the ultra-high frequency (UHF band (917∼923.5 MHz and the microwave (MW band (2.4∼2.45 GHz. With the proximity-coupled feed loop, the proposed antenna consists of two symmetric planar inverted-F antenna (PIFA elements for the UHF band passive tag and a meander microstrip patch antenna for the MW band active tag. The performance of the proposed antenna is verified by mounting it on the different sizes of the metallic object. Furthermore, the passive tag antenna in the UHF band furthermore may be used for energy harvesting techniques to improve the lifetime of the active tag in the MW band. The measured maximum read range is 5.50 m in the UHF band and 14.15 m in the MW band when the proposed tag antenna is mounted on the metallic objects. The total efficiency for all operating frequency bands is higher than 50%. High isolation (>12 dB between tag antennas in the UHF band and the MW band is achieved.

  18. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Pete [Univ. of Kansas, Lawrence, KS (United States)

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  19. Isolation between three antennas at 700 MHz

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert F.

    2015-01-01

    To address the antenna design challenges posed by many frequency bands, introduced with long-term evolution deployment, this study proposes the use of separate transmit (Tx) and receive (Rx) narrow-band antennas. In addition, a diversity Rx (Dx) antenna is needed for multiple-input multiple......-output performance. Although the isolation between two antennas at low frequencies (700 MHz) is crucial for the successful implementation of 4G in handheld terminals, it becomes more challenging when considering isolation among three antennas (one Tx and two Rx antennas) at low frequencies. Hence, a method...... that improves the isolation between the ports of one Tx and two Rx antennas is presented here. Publishe...

  20. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  1. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  2. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  3. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  4. Compact Low Weight High Gain Broadband Antenna by Polarization-Rotation Technique for X-Band Radar

    Directory of Open Access Journals (Sweden)

    Amir Reza Dastkhosh

    2014-01-01

    Full Text Available Less efficiency and gain is achieved by existence of aperture blocking phenomena in cassegrain antenna caused by the presence of subreflector or antenna feed. Also, length of feed cables causes delay which is another undesirable problem in antennas, since errors and less precision of detecting targets are created. To overcome these problems, low weight and compact optimized polarization-rotation monopulse cassegrain antenna is designed in this paper. The goal of our proposed rotating antenna is achievement of sum and difference patterns for target tracking in monopulse radar. In our work, left part of hyperbolic subreflector instead of right one has been used for reducing size of the antenna. The antenna is fabricated by grid wires instead of solid sheet metal reflectors and with composite technology for decreasing its weight. Width and volume of the antenna reduce by about 50% in comparison to other reflector antennas. This antenna has been simulated and manufactured in X-band and simulation data are in good agreement with measured ones. The antenna has the average gain of 35 dB from 8.5 up to 9.5 GHz. Also the antenna feed bandwidth is more than 50% and the antenna has efficiency of about 50% from 8 up to 10 GHz.

  5. Design of Meander Antenna for UHF Partial Discharge Detection of Transformers

    Directory of Open Access Journals (Sweden)

    Mengjie Li

    2014-05-01

    Full Text Available Ultra high frequency (UHF partial discharge (PD detection approaches take advantages of strong anti-interference ability, and have been considered as a promising technology for online monitoring PD signals. This paper presents a meander antenna with wide frequency band and small size for UHF PD detection in power transformers. The optimal geometric parameters of the meander antenna were obtained through the parametric investigation. A prototype of the proposed antenna was fabricated. Actual PD experiments were carried out for typical artificial insulation defect models while the antenna was used for PD measurements. The experimental results show that the proposed meander antenna is suitable and effective for UHF online monitoring of PDs in transformers.

  6. A Compact Wideband Stacked Antenna for the Tri-Band GPS Applications

    Directory of Open Access Journals (Sweden)

    Maher M. Abd Elrazzak

    2008-01-01

    Full Text Available A compact wideband stacked patch antenna is presented for the applications of GPS systems. This antenna covers the L1, L2, and L5 GPS bands of operating frequencies 1.575, 1.227, and 1.176 GHz, respectively. High permittivity dielectric materials are used to minimize the antenna dimensions. The obtained antenna is of dimensions 32×18×2.117 mm. To verify the design, the time dependence field distribution, the scattering parameters, and the radiation pattern are presented. The scattering parameters show that the antenna operates at the GPS frequencies with lower than −10 dB. The finite difference time domain (FDTM with the perfect matched layer (PML is used in the present analysis.

  7. Efficient evaluation of antenna fields by a time-domain multipole analysis

    Directory of Open Access Journals (Sweden)

    J. Adam

    2009-05-01

    Full Text Available The contribution describes a systematic method to efficiently determine frequency-domain electromagnetic antenna fields and characteristics for a broad spectrum via a single time-domain (e.g., Finite-Difference Time-Domain, FDTD calculation. From a time-domain simulation of an antenna driven by a wide-band signal, a single modified Fourier transformation yields the frequency-domain multipole amplitudes. The corresponding multipole expansions are valid for the entire spectrum of the input pulse and at any point outside a minimum sphere enclosing the antenna. This allows a computationally cheap and elegant post-processing of arbitrary antenna characteristics. As an example of use the method is applied to determine high-resolution three-dimensional radiation patterns of an antipodal Vivaldi antenna.

  8. Efficient combination of acceleration techniques applied to high frequency methods for solving radiation and scattering problems

    Science.gov (United States)

    Lozano, Lorena; Algar, Ma Jesús; García, Eliseo; González, Iván; Cátedra, Felipe

    2017-12-01

    An improved ray-tracing method applied to high-frequency techniques such as the Uniform Theory of Diffraction (UTD) is presented. The main goal is to increase the speed of the analysis of complex structures while considering a vast number of observation directions and taking into account multiple bounces. The method is based on a combination of the Angular Z-Buffer (AZB), the Space Volumetric Partitioning (SVP) algorithm and the A∗ heuristic search method to treat multiple bounces. In addition, a Master Point strategy was developed to analyze efficiently a large number of Near-Field points or Far-Field directions. This technique can be applied to electromagnetic radiation problems, scattering analysis, propagation at urban or indoor environments and to the mutual coupling between antennas. Due to its efficiency, its application is suitable to study large antennas radiation patterns and even its interactions with complex environments, including satellites, ships, aircrafts, cities or another complex electrically large bodies. The new technique appears to be extremely efficient at these applications even when considering multiple bounces.

  9. Development of Metamaterial Composites for Compact High Power Microwave Systems and Antennas

    Science.gov (United States)

    2016-05-01

    After the cores had been fractured into smaller pieces, these were sealed in vacuum bags and pressed between steel plates of a hydraulic press. This...Systems and Antennas DISTRIBUTION A. Approved for public release: distribution unlimited. 11 If we now assume that the alternating portion...residual losses respectfully. Eddy current losses occur due to an alternating magnetic field which induces circular currents in a magnetic material that in

  10. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  11. On the synthesis of multiple frequency tone burst stimuli for efficient high frequency auditory brainstem response.

    Science.gov (United States)

    Ellingson, Roger M; Dille, Marilyn L; Leek, Marjorie R; Fausti, Stephen A

    2008-01-01

    The development and digital waveform synthesis of a multiple-frequency tone-burst (MFTB) stimulus is presented. The stimulus is designed to improve the efficiency of monitoring high-frequency auditory-brainstem-response (ABR) hearing thresholds. The pure-tone-based, fractional-octave-bandwidth MFTB supports frequency selective ABR audiometry with a bandwidth that falls between the conventional click and single-frequency tone-burst stimuli. The MFTB is being used to identify high frequency hearing threshold change due to ototoxic medication which most generally starts at the ultra-highest hearing frequencies and progresses downwards but could be useful in general limited-bandwidth testing applications. Included is a Mathcad implementation and analysis of our MFTB synthesis technique and sample performance measurements of the MFTB stimulus configuration used in a clinical research ABR system.

  12. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  13. A new fabrication method for precision antenna reflectors for space flight and ground test

    Science.gov (United States)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1991-01-01

    Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.

  14. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-01-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  15. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  16. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  17. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Meunier, L. [Fusion for Energy, 08019 Barcelona (Spain); Kuznetsov, V. [Efremov Institute, FSUE NIIEFA, St. Petersburg, 196641 (Russian Federation); Beaumont, B.; Lamalle, P. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance (France); Conchon, D. [ATMOSTAT Co, F-94815 Villejuif (France); Languille, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2016-11-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  18. Short Wave Multipolar Antenna for Propagation by NVIS Effect

    OpenAIRE

    Pereira, Igor; Martins, Maria João; Baptista, António; Gonçalves, Mariano

    2017-01-01

    The objectives of this papper is to design, build and test an antenna resonant at the frequencies of 4, 5, 6, and 7 MHz, in the high frequency band (HF). With this antenna we want to explore and use NVIS (Near Vertical Incidence Sky wave), which consists in using the ionosphere as a reflector layer of sky waves, that reach the ionosphere with angles near vertical incidence. When reflected, these waves achieve distances from dozens to hundreds of kilometers for the established communication. F...

  19. Spectroscopic ellipsometry characterization of nano-crystalline diamond films prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mistrik, J., E-mail: jan.mistrik@upce.cz [Institute of Applied Physics and Mathematics, University of Pardubice, Studentska 95, 53210 Pardubice (Czech Republic); Janicek, P. [Institute of Applied Physics and Mathematics, University of Pardubice, Studentska 95, 53210 Pardubice (Czech Republic); Taylor, A.; Fendrych, F.; Fekete, L.; Jager, A. [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Prague 8 (Czech Republic); Nesladek, M. [IMOMEC Division, IMEC, Institute for Materials Research, University Hasselt, Wetenschapspark 1, B3590 (Belgium)

    2014-11-28

    A series of nanocrystalline diamond (NCD) films were deposited by a custom made microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery at different substrate temperatures (520–600 °C) and pulsed plasma frequencies (2.7–14.3 kHz) in a hydrogen rich working gas mixture of H{sub 2}/CH{sub 4}/CO{sub 2}. Films were deposited onto naturally oxidized Si wafers pre-seeded with nanodiamond particles. Spectro-ellipsometry characterization of the NCD films was carried out considering various model structures (single and bi-layer models) and various NCD optical constant parameterizations (Tauc–Lorentz and effective medium approximation with different non-diamond component representations). It has been shown that substrate temperature can be lowered with a simultaneous increase in pulsed plasma frequency while still providing high quality NCD films with non-diamond component fraction in the bulk layer of about 5% (identically estimated by ellipsometry and Raman spectroscopy). Films' thickness and their surface roughness were found consistent with atomic force and secondary electron microscopies. Among various NCD structure models the most appropriate has been selected. - Highlights: • Assessment of most appropriate model structure for nano-crystalline diamond (NCD) films • Interrelation between deposition conditions and diamond quality of NCD films • Identification of non-diamond component in NCD films • Comparison of results obtained by ellipsometry and Raman spectroscopies.

  20. High frequency plant regeneration from desiccated calli of indica rice

    African Journals Online (AJOL)

    An efficient and reproducible protocol is required to achieve high frequency transformation from transformed calli. We report here high frequency plant regeneration from mature seed derived embryogenic calli of two recalcitrant indica rice cultivars HKR-46 and HKR-126 after partial desiccation treatment. Embryogenic and ...

  1. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  2. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  3. Multifrequency Printed Antennas Loaded with Metamaterial Particles

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-06-01

    Full Text Available This paper provides a review of printed antennas loaded with metamaterial particles. This novel technique allows developing printed antennas with interesting features such as multifrequency (simultaneous operation over two or more frequency bands and multifunctionality (e. g. radiation pattern diversity. Moreover, compactness is also achieved and the main advantages of conventional printed antennas (light weight, low profile, low cost ... are maintained. Different types of metamaterial-loaded printed antennas are reviewed: printed dipoles and patch antennas. Several prototypes are designed, manufactured and measured showing good results. Furthermore, simple but accurate equivalent models are proposed. These models allow an easy and quick design of metamaterial-loaded printed antennas. Finally, two interesting applications based on the proposed antennas are reviewed: the patch antennas are used as radiating elements of emerging active RFID systems in the microwave band and the metamaterial-loaded printed dipoles are employed to increase the performance of log-periodic arrays.

  4. Fiber-optic transmission system information for the testing of active phased antenna arrays in an anechoic chamber.

    Science.gov (United States)

    Saveleiv, I. K.; Sharova, N. V.; Tarasenko, M. Yu; Yalunina, T. R.; Davydov, V. V.; Rud’, V. Yu

    2017-11-01

    The results of the research of the developed fiber-optic transmission systems for analog high frequency signal are represented. On its basis, a new method to identify various structural defects in the active phased antenna arrays is elaborated.

  5. FREQUENCY DETERMINATION OF HIGH-FREQUENCY LINK FOR PERCPECTIVE ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    D. O. Zabarylo

    2014-12-01

    Full Text Available Purpose. Total mileage of Ukrainian electric railways is distributed approximately equally between the areas of direct and alternating current. A double system of electric rolling stock is used to pass jointing places of different current kinds without train’s stop. Therefore introduction of such rolling stock of a new concept that is using an asynchronous traction drive is prospective for Ukrainian railways. Apart from advantages a rolling stock of similar concept has significant disadvantages, it is pulse energy consumption from the power supply, and it can affect the reliability of track automatic devices, and consequently, the train traffic safety. In addition the specific power of traction transformer is considerably inferior to the power density of other traction elements. The promising schemes using an intermediary link of increased frequency, which consist of a transformer and inverter, have been proposed for disadvantages amendments. The main task for the further introduction of prospective circuit is to determine the operating frequency for high frequency link. Methodology. The method of thermal parameters calculation of semiconductor devices has been used for determination switching transistors of maximum operating frequency. To obtain analytical expressions curves of energy, released during the IGBT (insulated-gate bipolar transistor switching from its current load approximation method is used. Findings. The permissible frequency of low-frequency link is determinated by load current of intermediate transformer. Operating frequency range of a link depending on load current has been determined. A comparative analysis of the switching characteristics of 65 class IGBT production by companies Infineon and ABB has been performed. Originality. The further determination method of the maximum operating frequency of intermediate link for circuit with high-frequency transformer has been developed. Practical value. The established operating

  6. Modelling and measurement of high switching frequency conducted EMI

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-11-01

    Full Text Available High density high switching frequency power converter conducted EMC had been analysed, modelling the noise source and noise path, while providing accurate conducted EMC noise levels comparable to accredited noise measurements up to 100 MHz...

  7. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  8. A study of radio frequency spectrum emitted by high energy air showers with LOFAR

    Science.gov (United States)

    Rossetto, Laura; Bonardi, Antonio; Buitink, Stijn; Corstanje, Arthur; Enriquez, J. Emilio; Falcke, Heino; Hörandel, Jörg R.; Mitra, Pragati; Mulrey, Katie; Nelles, Anna; Rachen, Jörg P.; Schellart, Pim; Scholten, Olaf; Thoudam, Satyendra; Trinh, Gia; ter Veen, Sander; Winchen, Tobias

    2017-03-01

    The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by cosmic ray induced air showers, and to characterize the geometry of the observed cascade in a detailed way. We present here a study of the radio frequency spectrum in the 30 - 80 MHz regime, and its correlation with some geometrical parameters of the extensive air shower. An important goal of this study is to find a correlation between the frequency spectrum and the primary particle type. Preliminary results on how the frequency spectrum changes as function of distance to the shower axis, and as function of primary particles mass composition are shown. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays.

  9. High Fidelity Solar and Heliospheric Imaging at Low Radio Frequencies: Progress and Future Prospects

    Science.gov (United States)

    Lonsdale, C.; Oberoi, D.; Kozarev, K. A.; Morgan, J.; Benkevitch, L. V.; Erickson, P. J.; Crowley, M.; McCauley, P.; Cairns, I.

    2016-12-01

    The latest generation of low frequency interferometric arrays is revolutionizing solar and heliospheric imaging capabilities. Via a combination of large numbers of independent antennas and greatly increased computing capacity, sufficient information can now be gathered and processed to generate high fidelity images at high time and frequency resolution. For the first time, it is possible to reconstruct spatially, temporally and spectrally complex solar emissions in detail, to measure interplanetary scintillation for many sources simultaneously over wide fields of view, and to track heliospheric disturbances via rapidly evolving propagation effects. These new and rapidly improving capabilities will help to address a range of long-standing scientific questions in the field. We review the current state of the art of low frequency imaging instruments, with particular emphasis on, and examples from, the Murchison Widefield Array (MWA). The limitations and challenges of such arrays are explored, and the prospects for next-generation ground and space based arrays yielding additional major advances in capability are reviewed.

  10. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    Science.gov (United States)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  11. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  12. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  13. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    resistant communications for high priority military ground, sea, and air assets. The system consists of four satellites in Geosynchronous Earth Orbit that...submarine terminals, and airborne terminals. The mission control segment controls satellites on orbit , monitors satellite health, and provides...Schriever Air Force Base (AFB). Due to the proprietary nature of the AEHF Space Satellite (on- orbit ) Segment, this segment is not considered core and the

  14. Extended high frequency audiometry in users of personal listening devices.

    Science.gov (United States)

    Kumar, Poornima; Upadhyay, Prabhakar; Kumar, Ashok; Kumar, Sunil; Singh, Gautam Bir

    Noise exposure leads to high frequency hearing loss. Use of Personal Listening Devices may lead to decline in high frequency hearing sensitivity because of prolonged exposure to these devices at high volume. This study explores the changes in hearing thresholds by Extended High Frequency audiometry in users of personal listening devices. A descriptive, hospital based observational study was performed with total 100 subjects in age group of 15-30years. Subjects were divided in two groups consisting of 30 subjects (Group A) with no history of Personal Listening Devices use and (Group B) having 70 subjects with history of use of Personal Listening Devices. Conventional pure tone audiometry with extended high frequency audiometry was performed in all the subjects. Significant differences in hearing thresholds of Personal Listening Device users were seen at high frequencies (3kHz, 4kHz and 6kHz) and extended high frequencies (9kHz, 10kHz, 11kHz, 13kHz, 14kHz, 15kHz and 16kHz) with p value 5years usage at high volume. Thus, it can be reasonably concluded that extended high frequencies can be used for early detection of NIHL in PLD users. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of Numerical Codes for Modeling Electromagnetic Behavior at High Frequencies Near Large Objects

    Science.gov (United States)

    Joshi, R. P.

    2003-01-01

    A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to

  16. An equivalent roughness model for seabed backscattering at very high frequencies using a band-matrix approach

    DEFF Research Database (Denmark)

    Wendelboe, Gorm; Jacobsen, Finn; Bell, Judith

    2007-01-01

    This work concerns modeling of very high frequency (>100 kHz) sonar images obtained from a sandy seabed. The seabed is divided into a discrete number of 1D height profiles. For each height profile the backscattered pressure is computed by an integral equation method for interface scattering between...... two homogeneous media as formulated by Chan (IEEE Trans. Antennas Propag. 46, 142-149 (1998)). However, the seabed is inhomogeneous, and volume scattering is a major contributor to backscattering. The SAX99 experiments revealed that the density in the unconsolidated sediment within the first 5 mm...

  17. Development of magnetodielectric materials to be used in additive manufacturing processes for high-frequency applications

    Science.gov (United States)

    Parsons, Paul Emerson, II

    Electrical devices for very-high frequency (VHF, 0.03 -- 0.3 GHz) and ultra-high frequency (UHF, 0.3 -- 3.0 GHz) are commonly used for communications. However, the wavelengths, lambda, of these frequency bands correspond to lengths between 10 and 0.1 m, resulting in prohibitively large devices. Materials with an index of refraction, n, greater than 1 can be used to effectively shrink these devices by a factor of 1/ n. In this thesis, magnetodielectric materials (MDM), where n ≥1, have been made to be used in additive manufacturing processes with strict particle size requirements and were developed using various methods, such as polyol reduction and conventional ceramic solid state processing. These materials were characterized using x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), vibrating sample magnetometry (VSM), to determine their crystalline, physical, and direct current (DC) magnetization properties. The techniques used to synthesize the MDM yielded particles that were chemically similar, but had drastically different physical properties which heavily influences their high-frequency electromagnetic properties. These materials were then uniformly dispersed into a non-conducting medium, such as a low-electrical loss polymer or resin, and formed into composite samples with variable volumetric loading. These composite samples were measured using several techniques to characterize the frequency-dependent electromagnetic (EM) properties, such as relative permeability, relative permittivity, and their respective losses. Finite element method (FEM) simulations were performed using these MDM-composites to design a spiral antenna to be used at approximately 585 MHz.

  18. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    Science.gov (United States)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  19. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  20. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation

    Directory of Open Access Journals (Sweden)

    Arthur J. Cheng

    2017-09-01

    Full Text Available Electrically-evoked low-frequency (submaximal force is increased immediately following high-frequency stimulation in human skeletal muscle. Although central mechanisms have been suggested to be the major cause of this low-frequency force potentiation, intramuscular factors might contribute. Thus, we hypothesized that two intramuscular Ca2+-dependent mechanisms can contribute to the low-frequency force potentiation: increased sarcoplasmic reticulum Ca2+ release and increased myofibrillar Ca2+ sensitivity. Experiments in humans were performed on the plantar flexor muscles at a shortened, intermediate, and long muscle length and electrically evoked contractile force and membrane excitability (i.e., M-wave amplitude were recorded during a stimulation protocol. Low-frequency force potentiation was assessed by stimulating with a low-frequency tetanus (25 Hz, 2 s duration, followed by a high-frequency tetanus (100 Hz, 2 s duration, and finally followed by another low-frequency (25 Hz, 2 s duration tetanus. Similar stimulation protocols were performed on intact mouse single fibers from flexor digitorum brevis muscle, whereby force and myoplasmic free [Ca2+] ([Ca2+]i were assessed. Our data show a low-frequency force potentiation that was not muscle length-dependent in human muscle and it was not accompanied by any increase in M-wave amplitude. A length-independent low-frequency force potentiation could be replicated in mouse single fibers, supporting an intramuscular mechanism. We show that at physiological temperature (31°C this low-frequency force potentiation in mouse fibers corresponded with an increase in sarcoplasmic reticulum (SR Ca2+ release. When mimicking the slower contractile properties of human muscle by cooling mouse single fibers to 18°C, the low-frequency force potentiation was accompanied by minimally increased SR Ca2+ release and hence it could be explained by increased myofibrillar Ca2+ sensitivity. Finally, introducing a brief 200

  1. Intramuscular Contributions to Low-Frequency Force Potentiation Induced by a High-Frequency Conditioning Stimulation.

    Science.gov (United States)

    Cheng, Arthur J; Neyroud, Daria; Kayser, Bengt; Westerblad, Håkan; Place, Nicolas

    2017-01-01

    Electrically-evoked low-frequency (submaximal) force is increased immediately following high-frequency stimulation in human skeletal muscle. Although central mechanisms have been suggested to be the major cause of this low-frequency force potentiation, intramuscular factors might contribute. Thus, we hypothesized that two intramuscular Ca2+-dependent mechanisms can contribute to the low-frequency force potentiation: increased sarcoplasmic reticulum Ca2+ release and increased myofibrillar Ca2+ sensitivity. Experiments in humans were performed on the plantar flexor muscles at a shortened, intermediate, and long muscle length and electrically evoked contractile force and membrane excitability (i.e., M-wave amplitude) were recorded during a stimulation protocol. Low-frequency force potentiation was assessed by stimulating with a low-frequency tetanus (25 Hz, 2 s duration), followed by a high-frequency tetanus (100 Hz, 2 s duration), and finally followed by another low-frequency (25 Hz, 2 s duration) tetanus. Similar stimulation protocols were performed on intact mouse single fibers from flexor digitorum brevis muscle, whereby force and myoplasmic free [Ca2+] ([Ca2+]i) were assessed. Our data show a low-frequency force potentiation that was not muscle length-dependent in human muscle and it was not accompanied by any increase in M-wave amplitude. A length-independent low-frequency force potentiation could be replicated in mouse single fibers, supporting an intramuscular mechanism. We show that at physiological temperature (31°C) this low-frequency force potentiation in mouse fibers corresponded with an increase in sarcoplasmic reticulum (SR) Ca2+ release. When mimicking the slower contractile properties of human muscle by cooling mouse single fibers to 18°C, the low-frequency force potentiation was accompanied by minimally increased SR Ca2+ release and hence it could be explained by increased myofibrillar Ca2+ sensitivity. Finally, introducing a brief 200 ms pause

  2. Probing High Frequency Noise with Macroscopic Resonant Tunneling

    OpenAIRE

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R; Johansson, J; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-01-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~ 4 GHz. We have also derived an expression for the MRT lineshape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid m...

  3. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  4. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna.

    Science.gov (United States)

    Zhao, Chenglong; Liu, Yongmin; Yang, Jing; Zhang, Jiasen

    2014-08-07

    We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between performance and cost. The design takes into account the practical experimental conditions so that the parameters chosen in the simulation are well within the reach of current nano-fabrication technologies. Our results can be used as a direct guidance for designing high-performance, low-cost plasmonic nanodevices for the study of bio-molecule and enzyme dynamics at the single-molecule level.

  5. Design of folded waveguide antenna for Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Fogelman, C.H.; Bigelow, T.S.; Carter, M.D.; Hoffman, D.J.; Riemer, B.W.; Yugo, J.J. [Oak Ridge National Lab., TN (United States); Golovato, S.N.; Bonoli, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-12-01

    The Oak Ridge National Laboratory (ORNL) ion cyclotron range of frequencies (ICRF) antenna for Alcator C-Mod is a folded waveguide (FWG) antenna designed to determine whether the FWG can serve as a high power density, ceramic-free antenna for both present heating and fast wave current drive (FWCD) applications and for future tokamaks such as the International Thermonuclear Experimental Reactor (ITER) and the Tokamak Physics Experiment (TPX). The FWG is particularly attractive because it has a low internal electric field per unit power coupled to the Plasma. This results in more power capability and has been demonstrated by 1-MW (unloaded) tests on the Radio Frequency Test Facility (RFTF). The experiment will characterize the impact of an FWG on impurity control in the presence of high power density and on central beating. The antenna is designed to withstand the tokamak environment, including high heat fluxes, high-temperature bakeout, and major disruptions, without vacuum leaks. The front face is curved to fit the plasma outline. Two front plates are fabricated for the antenna one with full-width slits at every other location between vanes and the other with alternating right and left half-width slits at every location between vanes for pi-phasing.

  6. Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2016-12-01

    Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.

  7. High-frequency broadband modulation of electroencephalographic spectra

    Directory of Open Access Journals (Sweden)

    Julie A Onton

    2009-12-01

    Full Text Available High-frequency cortical potentials in electroencephalographic (EEG scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA into maximally independent component (IC processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (~15-200 Hz power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities.

  8. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  9. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  10. A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    A. Bakkali

    2016-01-01

    Full Text Available In this paper, we focus on ambient radio frequency energy available from commercial broadcasting stations in order to provide a system based on RF energy harvesting using a new design of receiving antenna. Several antenna designs have been proposed for use in RF energy harvesting systems, as a pertinent receiving antenna design is highly required since the antenna features can affect the amount of energy harvested. The proposed antenna is aimed at greatly increasing the energy harvesting efficiency over Wi-Fi bands: 2.45 GHz and 5 GHz. This provides a promising alternative energy source in order to power sensors located in harsh environments or remote places, where other energy sources are impracticable. The dual-band antenna can be easily integrated with RF energy harvesting system on the same circuit board. Simulations and measurements were carried out to evaluate the antenna performances and investigate the effects of different design parameters on the antenna performance. The receiving antenna meets the required bandwidth specification and provides peak gain of more than 4 dBi across the operating band.

  11. Earless toads sense low frequencies but miss the high notes

    DEFF Research Database (Denmark)

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A

    2017-01-01

    , four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...

  12. Factors Affecting the Benefits of High-Frequency Amplification

    Science.gov (United States)

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  13. Automated Screening for High-Frequency Hearing Loss

    NARCIS (Netherlands)

    Vlaming, M.S.M.G.; MacKinnon, R.C.; Jansen, M.; Moore, D.R.

    2014-01-01

    OBJECTIVE: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies

  14. High-frequency monitoring of quasars with absorption lines

    Science.gov (United States)

    Cegłowski, Maciej; Hayashi, Takayuki J.; Kunert-Bajraszewska, Magdalena; Katarzyński, Krzysztof

    2017-10-01

    An investigation of the origin of the broad absorption lines observed in some quasars was performed. We selected a sample of the most luminous objects and observed them with the VERA interferometer at 22 GHz. We also used a single 32-meter antenna, located near Toruń in Poland, to monitor variability of these quasars at 30 GHz. We succeed in detecting 16 out of 19 initially selected objects. The main aim of our observations was to determine the spacial orientation of the observed sources and their evolutionary status. We investigated their radio maps, performed the variability studies, and examined their radio spectra as well as the emission in the broadband frequency range. Most of the quasars from our sample seem to evolve in a similar way to young radio objects. However, radio structures of two sources may suggest that these objects are restarted active galactic nuclei. This may indicate a diversity of evolutionary stages in our sample. Six of the investigated sources were classified as candidates for the variable objects.

  15. Joint Optimization of Microstrip Patch Antennas Using Particle Swarm Optimization for UWB Systems

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2013-01-01

    Full Text Available Ultra wideband (UWB systems are the most appropriate for high data rate wireless transmission with low power consumption. However, the antenna design for UWB has been a challenging task. Moreover, it is always desirable to have more freedom by designing different shape antennas with identical characteristics so that they can be used in either transmitter or receiver depending on other physical constraints such as area. To tackle these issues, in this paper, we have investigated a joint optimization of three different shape-printed monopole antennas, namely, printed square monopole antenna, printed circular monopole antenna and printed hexagonal monopole antenna, for UWB applications. More specifically, we have obtained the optimized geometrical parameters of these antennas by minimizing the mean-square-error for desired lower band edge frequency, quality factor, and bandwidth. The objective of joint optimization is to have identical frequency characteristics for the aforementioned three types of PMA which will give a freedom to interchangeably use them at either side, transmitting or receiving. Moreover, we employ particle swarm optimization (PSO algorithm for our problem as it is well known in the literature that PSO performs well in electromagnetic and antenna applications. Simulation results are presented to show the performance of the proposed design.

  16. COMPACT DUAL-BAND INVERTED L SHAPED MONOPOLE ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K Sumathi

    2015-12-01

    Full Text Available A highly compact and an optimized design of an Inverted L shaped printed monopole antenna with a simple compact ground plane is proposed. To make the designed antenna suitable for implantation it is embedded in FR-4 substrate and is presented. The antenna is designed for dual-band operation at 2.4GHz and 5.2GHz. It is suitable for Wireless Local Area Network (WLAN applications with return loss (S11 < -10dB. The antenna has two different resonant current paths that support two resonances at 2.44GHz and 5.18GHz (forming an F-shaped structure. The size of the antenna is 32.5mm × 19.6mm × 1.6mm. The antenna design is simulated using the tool Advanced Design System (ADS 2014. This antenna design has good return loss and radiation characteristics in both the required frequency bands. The radiation pattern obtained from the proposed antenna is an Omni directional radiation pattern in the E and H plane over the frequency ranges 2.4GHz and 5.2GHz.

  17. Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates

    Directory of Open Access Journals (Sweden)

    S. Bedra

    2017-05-01

    Full Text Available In this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials.  Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.

  18. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    is incorporated in a parabolic FSS reflector antenna that is investigated by full-wave analysis tools, and the antenna shows performance comparable to conventional reflector antennas within its frequency band of operation. A planar prototype FSS is manufactured and measured with particular attention to the impact......Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...... on the performance of an L-band antenna radiating through the FSS. From these investigations, it is concluded that the FSS antenna concept is well suited for hybrid L- and Ka-band operation. A printed reflectarray antenna with FSS ground-plane is demonstrated. The reflectarray produces a collimated beam as a curved...

  19. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  20. Antenna theory and practice

    Science.gov (United States)

    Chatterjee, Rajeswari

    The fundamental operating principles and applications of antennas are examined in an introductory textbook for undergraduate engineering students. The theory of EM fields and radiation is reviewed, and consideration is given to thin linear, cylindrical, and biconical antennas; antenna arrays; loop, helical, slot, microstrip, horn, reflector, and lens antennas; leaky-wave and surface-wave antennas; dielectric and dielectric-loaded metallic antennas; and wideband antennas. Also discussed are antenna synthesis, practical antennas for different wavebands, antenna measurements, EM wave propagation, and problems in antenna design. Diagrams, drawings, graphs, and sample problems are provided.

  1. Production of high-energy particles in laser and Coulomb fields and the e+e- antenna.

    Science.gov (United States)

    Kuchiev, M Yu

    2007-09-28

    A strong laser field and the Coulomb field of a nucleus can produce e(+) e(-) pairs. It is shown for the first time that there is a large probability that electrons and positrons created in this process collide after one or several oscillations of the laser field. These collisions can take place at high energy, resulting in several phenomena. The quasielastic collision e(+) e(-) --> e(+) e(-) allows acceleration of leptons in the laser field to higher energies. The inelastic collisions allow production of high-energy photons e(+) e(-) --> 2 gamma and muons e(+) e(-) --> micro(+) micro(-). The yield of high-energy photons and muons produced via this mechanism exceeds exponentially their production through conventional direct creation in laser and Coulomb fields. A relation of the phenomena considered with the antenna mechanism of multiphoton absorption in atoms is discussed.

  2. Polyurethane membranes for flexible centimeter-wave patch antennas

    Science.gov (United States)

    Baron, Samuel; Guiffard, Benoit; Sharaiha, Ala

    2014-07-01

    In this paper, we present the original use of a recyclable and low cost soft polymer, polyurethane (PU) (ɛr ≈ 3.5 at 10 GHz), as part of a dielectric substrate of a microstrip patch antenna. The combination of simple membrane manufacturing process and the low Young’s modulus of PU (EPU ≈ 30 MPa) are employed in an X-band antenna application in this study. The PU dielectric characterizations indicate the high loss tangent value (tan δ ≈ 0.1 at 10 GHz). Membrane supported technology is used to reduce the influence of this high loss and increase the antenna efficiency. The measurement of antenna performances such as efficiency (η ≈ 31.7%) confirms the viability of the technological process and the specific patch antenna design developed in this work. Besides, the potential of the PU-based soft patch antenna for frequency agility (3.88%) via mechanical reconfiguration is also shown.

  3. Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells

    Science.gov (United States)

    Subramanian, Alagesan; Pan, Zhenghui; Rong, Genlan; Li, Hongfei; Zhou, Lisha; Li, Wanfei; Qiu, Yongcai; Xu, Yijun; Hou, Yuan; Zheng, Zhaozhao; Zhang, Yuegang

    2017-03-01

    The light harvesting efficiency of an acceptor dye can be enhanced by judicious choice and/or design of donor materials in the Förster resonance energy transfer (FRET) based dye-sensitized solar cells (DSSCs). In this work, we explore graphene quantum dots (GQDs) as energy relay antennas for the high power conversion efficiency Ru-based N719 acceptor dyes. The absorption, emission, and time decay spectral results evidence the existence of the FRET, the radiative energy transfer (RET), and a synergistic interaction between GQDs and N719 dye. The FRET efficiency is measured to be 27%. The GQDs co-sensitized DSSC achieves an efficiency (ƞ) of 7.96% with a Jsc of 16.54 mAcm-2, which is 30% higher than that of a N719-based DSSC. GQDs also reduce the charge recombination, which results in an increased open-circuit voltage up to 770 mV. The incident photon-to-current conversion efficiency and UV-Vis absorption measurement reveal that the enhanced absorption of the GQDs antennas is responsible for the improved Jsc in the whole UV-Visible region, while the RET/FRET and the synergistic effect contribute to the significant increase of Jsc in the UV region.

  4. Shedding light on fractals: exploration of the Sierpinski carpet optical antenna

    NARCIS (Netherlands)

    Chen, T.L.

    2015-01-01

    We describe experimental and theoretical investigations of the properties of a fractal optical antenna-the Sierpinski carpet optical antenna. Fractal optical antennas are inspired by fractal antennas designed in radio frequency (RF) region. Shrinking the size of fractal optical antennas from fractal

  5. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  6. Music students: conventional hearing thresholds and at high frequencies

    National Research Council Canada - National Science Library

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    .... To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful...

  7. BIOLOGICAL EFFECTS OF HIGH-FREQUENCY ELECTROMAGNETIC WAVES

    Science.gov (United States)

    In this report the author discusses the influence of high-frequency electromagnetic waves on living matter, especially in the field of microwaves. He...of electromagnetic waves . Symptoms of damage are listed and methods of protection discussed.

  8. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  9. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  10. Gender & High Frequency vs. Low Frequency tasks in a context of Joint-Liability Incentives.

    OpenAIRE

    Marianne Bernatzky; José María Cabrera; Alejandro Cid

    2014-01-01

    We study the impact of high and low frequency incentives in a joint-liability framework on six academic outcomes of undergraduate students using a randomized field experiment. As recently documented in health literature, incentives to exercise are effective in developing healthy habits. Therefore, we design groups of three students and provide a premium to the homework’s grade if all the members of the group (three) meet some requirements. We investigate how the frequency of these take home t...

  11. High quality tissue miniarray technique using a conventional TV/radio telescopic antenna.

    Science.gov (United States)

    Elkablawy, Mohamed A; Albasri, Abdulkader M

    2015-01-01

    The tissue microarray (TMA) is widely accepted as a fast and cost-effective research tool for in situ tissue analysis in modern pathology. However, the current automated and manual TMA techniques have some drawbacks restricting their productivity. Our study aimed to introduce an improved manual tissue miniarray (TmA) technique that is simple and readily applicable to a broad range of tissue samples. In this study, a conventional TV/radio telescopic antenna was used to punch tissue cores manually from donor paraffin embedded tissue blocks which were pre-incubated at 40oC. The cores were manually transferred, organized and attached to a standard block mould, and filled with liquid paraffin to construct TmA blocks without any use of recipient paraffin blocks. By using a conventional TV/radio antenna, it was possible to construct TmA paraffin blocks with variable formats of array size and number (2-mm x 42, 2.5-mm x 30, 3-mm x 24, 4-mm x 20 and 5-mm x 12 cores). Up to 2-mm x 84 cores could be mounted and stained on a standard microscopic slide by cutting two sections from two different blocks and mounting them beside each other. The technique was simple and caused minimal damage to the donor blocks. H and E and immunostained slides showed well-defined tissue morphology and array configuration. This technique is easy to reproduce, quick, inexpensive and creates uniform blocks with abundant tissues without specialized equipment. It was found to improve the stability of the cores within the paraffin block and facilitated no losses during cutting and immunostaining.

  12. Music students: conventional hearing thresholds and at high frequencies

    OpenAIRE

    Lüders,Débora; Gonçalves, Cláudia Giglio de Oliveira; de Moreira Lacerda, Adriana Bender; Ribas,Ângela; Conto,Juliana de

    2014-01-01

    INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audio...

  13. Efficacy of Conventional and High-Frequency Ventilation at Altitude

    Science.gov (United States)

    1988-12-01

    evacuation; Mechanical ventilation ;--andL If.’jJI t’ 06 I 12 i ~High-Frequency ventilation ’& ~.~.- 19 ABSTRACT (Continue on reverse If neesry and identify by...The inspired gas and the subsequent rate of appearance of these gases in arterial blood were monitored. With conventional mechanical ventilation (CMV...AND HIGH-FREQUENCY VENTILATION AT ALTITUDE INTRODUCTION The logistics of aeromedical evacuation of patients requiring mechanical ventilation is

  14. Testing the efficiency of high-frequency foreign exchange market

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2004-01-01

    Full Text Available This paper deals with the efficiency of the high-frequency foreign exchange market. The objective of this paper is to investigate whether standard statistical tests give the same results for time series resampled at intervals of 15.30 and 60 min. The data used for the purpose of this paper contain major currency pairs such as EUR/USD, GBP/USD and JPY/USD. The results of statistical tests indicate that the high frequency intervals (15-minute are not random and should not be considered independent. On the other hand, tests with lower frequency rates (30 and 60 min indicate rising randomness of the market.

  15. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.

    Science.gov (United States)

    Wen, X; Datta, A; Traverso, L M; Pan, L; Xu, X; Moon, E E

    2015-11-03

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  16. A Compact Wide-Band Hybrid Dielectric Resonator Antenna with Enhanced Gain and Low Cross-Polarization

    Directory of Open Access Journals (Sweden)

    Feibiao Dong

    2017-01-01

    Full Text Available By loading two printed patches to the dielectric resonator antenna (DRA, a compact wide-band hybrid dielectric resonator antenna with enhanced gain and low cross-polarization is presented. The proposed antenna utilizes a combination of a rectangular dielectric resonator and two printed patches. Due to the hybrid design, multiple resonances were obtained. By adding two air layers between the dielectric resonator and the printed patches, the bandwidth has been significantly improved. Compared to the traditional hybrid dielectric resonator antenna, the proposed antenna can achieve wide bandwidth, high gain, low cross-polarization, and even small size simultaneously. The prototype of the proposed antenna has been fabricated and tested. The measured −10 dB return loss bandwidth is 25.6% (1.7–2.2 GHz. The measured antenna gains are about 6.3 and 8.2 dBi in the operating frequency band. Low cross-polarization levels of less than −28.5 dB and −43 dB in the E-plane and H-plane are achieved. Moreover, the overall dimensions of the antenna are only 67 × 67 × 34 (mm3. The proposed antenna is especially attractive for small base antenna applications.

  17. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  18. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  19. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  20. Inverted S-shaped compact antenna for X-band applications.

    Science.gov (United States)

    Samsuzzaman, M; Islam, M T

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the -10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69-9.14 GHz), at middle band is 9.13% (10.47-11.48 GHz), and at upper band is 3.79% (11.53-11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications.

  1. Inverted S-Shaped Compact Antenna for X-Band Applications

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz, at middle band is 9.13% (10.47–11.48 GHz, and at upper band is 3.79% (11.53–11.98 GHz. Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ×0.60λ×0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications.

  2. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    Science.gov (United States)

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  3. Logarithmic periodic dipole antennas for the Auger engineering radio array

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Oliver, E-mail: seeger@physik.rwth-aachen.de [3. Physikalisches Institut A, RWTH Aachen University (Germany)

    2012-01-11

    The Pierre Auger Observatory constitutes the largest detector for measurements of ultra-high-energy cosmic rays (UHECRs) through extended air showers. Radio signals originating from the shower development have been detected with suitable antennas in the 50 MHz regime. The Auger engineering radio array (AERA) is being established to exploit the radio technique at these high energies. The favoured antenna for the first stage of AERA is a logarithmic periodic dipole antenna (LPDA) especially designed to suit the demands of cosmic-ray detection at the Auger site. This antenna is characterized by ultra-broadband sensitivity in the frequency range from 30 to 80 MHz and allows polarization-sensitive measurements of radio signals from all incoming directions. Our characterization of this LPDA includes careful evaluation of the frequency range obtained by combining wire-based dipoles, stability and weather testing, quality assurance in the mass production process, and a benchmark measurement of the sensitivity obtained with the time dependence of the galactic radio background. For the final setup, a fully calibrated radio-detection system including antennas, filters and low-noise amplifiers is required. We present our approach for this calibration in simulations and measurements.

  4. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  5. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    are developed through this methodology. Furthermore, the probability of reducing this frequency containment reserve requirement is investigated through this methodology with activation of different volumes and speed of frequency restoration reserve. Wind power generation for 2020 and 2030 scenarios......In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...... imbalances caused due to high penetration of wind power. An algorithm is proposed and developed to estimate the power imbalances due to wind power forecast error following activation of different operating reserves. Frequency containment reserve requirements for mitigating these power imbalances...

  6. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  7. Unusual Solar Decameter Radio Bursts with High Frequency Cut off

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. M.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.

    2015-03-01

    Solar bursts with high frequency cut off were observed by the URAN-2 radio telescope (Poltava, Ukraine) on 18 August, 2012 in the frequency range 8-32 MHz. Durations of these bursts changed from 30 to 70 s. It is much longer than that for standard type III bursts. Drift rates are much smaller than those of type III bursts are, though much larger than those for decameter type II bursts. In some cases, the drift rate sign changes from the negative to positive one. Some of these bursts have fine structures. Stripes of the fine structures have small drift rates of 20-40 kHz/s. Polarizations of these bursts made about 10 % that apparently indicates that they are generated at the second harmonic of the local plasma frequency. The connection of bursts with the high frequency cut off with compact ejections from the behind-limb active regions is confirmed.

  8. Extended high frequency audiometry in polycystic ovary syndrome.

    Science.gov (United States)

    Kucur, Cuneyt; Kucur, Suna Kabil; Gozukara, Ilay; Seven, Ali; Yuksel, Kadriye Beril; Keskin, Nadi; Oghan, Fatih

    2013-01-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting 5-10% of women in reproductive age. Insulin resistance, dyslipidemia, glucose intolerance, hypertension, and obesity are metabolic disorders accompanying the syndrome. PCOS is a chronic proinflammatory state and the disease is associated with endothelial dysfunction. In diseases with endothelial damage, hearing in high frequencies are mostly effected in early stages. We evaluated extended high frequency hearing loss in PCOS patients. Forty women diagnosed as PCOS and 25 healthy controls were included in this study. Age and BMI of PCOS and control groups were comparable. Each subject was tested with low (250-2000 Hz), high (4000-8000 Hz), and extended high frequency audiometry (8000-20000). Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000-14000 Hz in PCOS group compared to control group. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  9. Probing high-frequency noise with macroscopic resonant tunneling

    Science.gov (United States)

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R.; Johansson, J.; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-05-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~4 GHz. We have also derived an expression for the MRT line shape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.

  10. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  11. Downsized Bow-Tie Antenna with Folded Elements

    Science.gov (United States)

    Nagatoshi, Mio; Tanaka, Shingo; Horiuchi, Satoru; Morishita, Hisashi

    It has been reported that by adding two folded elements, bow-tie antenna can be miniaturized, but the antenna has VSWR degradation problem. In this paper, the details of the VSWR degradation are investigated and the physical mechanism of the degradation is clarified. The best position for folded element is also shown. Moreover, the bow-tie antenna is bent in half in order to realize more size reduction. When the two folded elements are added to the half bent bow-tie antenna, the lowest operation frequency goes down and the proposed antenna can be more downsized than the previous proposed antenna. The gain is slightly lower than that of the previous model, however, the antenna area is reduced from 31%, which is the antenna area ratio of privious proposed antenna and conventional bow-tie antenna, to 19%. The bandwidth of 92% is obtained for VSWR≤2.

  12. Performance Enhancement of the Patch Antennas Applying Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Mohamed N. Azermanesh

    2007-09-01

    Full Text Available This paper reports on the application of micromachining technology for performance enhancement of two types of compact antennas which are becoming a common practice in microsystems. Shorted patch antennas (SPA and folded shorted patch antennas operating in the 5-6 GHz ISM band, with intended application in short-range wireless communications, are considered. The electrical length of antennas are modified by etching the substrate of the antennas, thus providing a new degree of freedom to control the antenna operating properties, which is the main novelty of our work. The gain and bandwidth of the antennas are increased by increasing the etching depth. However, etching the substrate affects the operating frequency as well. To keep the operating frequency at a pre-specified value, the dimension of the antennas must be increased by deepening the etching depth. Therefore, a trade off between the performance enhancement of the antennas and the dimensional enlargement is required.

  13. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  14. A Compact Multiband Metamaterial based Microstrip Patch Antenna for Wireless communication Applications

    OpenAIRE

    Nikhil Kulkarni; G. B. Lohiya

    2017-01-01

    In this paper, a metamaterial based compact multiband microstrip antenna is proposed which can give high gain and directivity. Metamaterials are periodic structures and have been intensively investigated due to the particular features such as ultra-refraction phenomenon and negative permittivity and/or permeability. A metamaterialbased microstrip patch antenna with enhanced characteristics and multi band operation will be investigated in this work. The multiple frequency operation will be ach...

  15. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  16. A Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Frequency-Selective Fading Channels with Power Control Error

    Directory of Open Access Journals (Sweden)

    Yong-Seok Kim

    2004-08-01

    Full Text Available An improved antenna array (AA has been introduced, in which reverse-link synchronous transmission technique (RLSTT is incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI, the beamformer estimates the desired user's complex weights, enhancing its signal and reducing cochannel interference (CCI from the other directions. In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such as the shape of multipath intensity profile (MIP, the number of antennas, and power control error (PCE. Theoretical analysis, confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.

  17. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  18. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  19. High frequency in vitro shoot regeneration of Momordica balsamina ...

    African Journals Online (AJOL)

    A protocol was developed for in vitro propagation by multiple shoot induction of Momordica balsamina (Cucurbitaceae), a climber with high medicinal and nutritional values. High frequencies of multiple shoot regeneration were achieved from auxillary bud of nodal explants. The bud explants were cultured on MS media ...

  20. A compact dual-band dual-port diversity antenna for LTE

    Directory of Open Access Journals (Sweden)

    L. mouffok

    2012-07-01

    Full Text Available The design of a compact dual-band dual-port antenna system is presented. It operates in two frequency bands, 790-862 MHz and 2500-2690 MHz, thereby making it suitable for Long Term Evolution (LTE handheld devices. The proposed system is composed of two orthogonal inverted-F antennas (IFA to perform diversity in mobile terminals. A good agreement is observed between simulated and experimental results. The high antenna diversity capability of the proposed system is highlighted with the calculation of envelope correlation coefficient, mean effective and diversity gains for different environment scenarii.

  1. A Dual-polarized Microstrip Subarray Antenna for an Inflatable L-band Synthetic Aperture Radar

    Science.gov (United States)

    Zawadzki, Mark; Huang, John

    1999-01-01

    Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.

  2. Occupational exposure to anaesthetic gases and high-frequency audiometry.

    Science.gov (United States)

    Giorgianni, Concetto; Gangemi, Silvia; Tanzariello, Maria Giuseppina; Barresi, Gaetano; Miceli, Ludovica; D'Arrigo, Graziella; Spatari, Giovanna

    2015-09-01

    Occupational exposure to anaestethic gases has been suggested to induce auditory damages. The aim of this study is to investigate high-frequency audiometric responses in subjects exposed to anaesthetic gases, in order to highlight the possible effects on auditory system. The study was performed on a sample of 30 medical specialists of Messina University Anaesthesia and Intensive care. We have used tonal audiometry as well as high-frequency one. We have compared the responses with those obtained in a similar control group not exposed to anaesthetic gases. Results were compared statistically. Results show a strong correlation (p = 0.000) between left and right ear responses to all the audiometric tests. The exposed and the control group run though the standard audiometry analysis plays different audiometric responses up only to higher frequencies (2000 HZ p = 0.009 and 4000 Hz p = 0.04); in high-frequency audiometry, as all other frequencies, the attention is drew to the fact that the sample groups distinguish themselves in a significantly statistic way (10,000 Hz p = 0.025, 12,000 Hz p = 0.008, 14,000 Hz p = 0.026, 16,000 Hz p = 0.08). The highest values are the ones related to exposed subjects both in standard (2000 Hz p = 0.01, 4000 Hz p = 0.02) and in high-frequency audiometry (10,000 Hz p = 0.011, 12,000 Hz p = 0.004, 14,000 Hz p = 0.012, 16,000 Hz p = 0.004). Results, even if preliminary and referred to a low-range sample, show an involvement of the anatomic structure responsible for the perception of high-frequency audiometric responses in subjects exposed to anaesthetic gases. © The Author(s) 2012.

  3. Antenna systems meet the diverse requirements of EW applications

    Science.gov (United States)

    Ettling, L. G.

    In meeting the requirements for Electronic Support Measure systems and Electronic Countermeasures (ESM/ECM), the antennas that provide the primary interface between friendly equipment and a potentially hostile external electromagnetic environment characteristically employ extremely broad operating frequency bands and wide polarization ranges. Missions cover the spectrum from omnidirectional acquisition to high resolution direction finding. Attention is presently given to ESM/ECM antenna systems that are representative of the full complement available at the current state of technology development, including cavity-backed planar spirals, omnidirectional biconical horns and conical spirals, and a long-periodic dipole array.

  4. Stereotactic CT-Guided Percutaneous Microwave Ablation of Liver Tumors With the Use of High-Frequency Jet Ventilation: An Accuracy and Procedural Safety Study.

    Science.gov (United States)

    Engstrand, Jennie; Toporek, Grzegorz; Harbut, Piotr; Jonas, Eduard; Nilsson, Henrik; Freedman, Jacob

    2017-01-01

    The purpose of the present study is to evaluate the accuracy and safety of antenna placement performed with the use of a CT-guided stereotactic navigation system for percutaneous ablation of liver tumors and to assess the safety of high-frequency jet ventilation for target motion control. Twenty consecutive patients with malignant liver lesions for which surgical resection was contraindicated or that were not readily visible on ultrasound or not accessible by ultrasound guidance were included in the study. Patients were treated with percutaneous microwave ablation performed using a CT-guided stereotactic navigation system. High-frequency jet ventilation was used to reduce liver motion during all interventions. The accuracy of antenna placement, the number of needle readjustments required, overall safety, and the radiation doses were assessed. Microwave ablation was completed for 20 patients (28 lesions). Performance data could be evaluated for 17 patients with 25 lesions (mean [± SD] lesion diameter, 14.9 ± 5.9 mm; mean lesion location depth, 87.5 ± 27.3 mm). The antennae were placed with a mean lateral error of 4.0 ± 2.5 mm, a depth error of 3.4 ± 3.2 mm, and a total error of 5.8 ± 3.2 mm in relation to the intended target. The median number of antenna readjustments required was zero (range, 0-1 adjustment). No major complications were related to either the procedure or the use of high-frequency jet ventilation. The mean total patient radiation dose was 957.5 ± 556.5 mGy × cm, but medical personnel were not exposed to irradiation. Percutaneous microwave ablation performed with CT-guided stereotactic navigation provides sufficient accuracy and requires almost no repositioning of the needle. Therefore, it is technically feasible and applicable for safe treatments.

  5. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  6. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  8. Optimized tissue heating by adopting high frequency electrotherapy

    Directory of Open Access Journals (Sweden)

    Jae-cheol Lee

    2015-11-01

    Full Text Available We have developed an electronics circuit that generates a high voltage with a frequency of 0.3–2 MHz to build an electro therapy system that can optimize tissue heating characteristics. These characteristics are used in medical applications. This paper is focused on the analysis of high frequency electro-therapy system to optimize tissue heating with the help of a high voltage pulse signal, which peak voltage is almost 2 kV. This optimized tissue heating between the inner tissue and the thermal distributions has examined in terms of frequency and voltage. The target tissue heating is composed of a single electrode in an experiment that has especially conducted to find the tissue heating characteristics. In the end, a new method for electro-therapy is developed, which is applicable to a specific tissue depth.

  9. [The treatment of glottic carcinoma with high-frequency electrotome].

    Science.gov (United States)

    Mao, Huadong; Xie, Hongwu; Wang, Yakang; Liang, Suqing

    2014-02-01

    To investigate the surgery management of glottic carcinoma with high-frequency electrotome. Twenty cases of patients with glottic carcinoma were treated by cordectomy under micro-laryngoscopy with high-frequency electrotome. The 20 patients were followed up from 5 months to 6 years, retained good laryngeal function and structure: 1 case had local recurrences after 6 months, underwent total laryngectomy, and now no recurrence had been found: 19 cases (mild adhesions of vocal cords formed in 2 cases) had no local recurrence nor lymph node metastasis. It is unnecessary to invest in expensive equipment in the cordectomy under micro-laryngoscopy with high frequency electrotome under general anesthesia and the result is satisfactory.

  10. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  11. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  12. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5(th)-generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  13. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  14. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty.

    Science.gov (United States)

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-03-10

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna's optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional-derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness.

  15. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  16. Lead extraction experience with high frequency excimer laser.

    Science.gov (United States)

    Tanawuttiwat, Tanyanan; Gallego, Daniel; Carrillo, Roger G

    2014-09-01

    A higher frequency Excimer laser sheath using an 80-Hz pulse repetitive rate was approved by the Food and Drug Administration in April 2012. We reported our initial clinical experience with a high-frequency Excimer laser sheath and compared it with lower-frequency laser sheaths which have been previously used. In this single center, retrospective cohort study, we evaluated patients who underwent lead extraction from December 2008 to May 2013. Those who underwent lead removal without using a laser sheath or with approaches other than subclavian were excluded. Primary endpoints included total laser time, number of pulses, and complications. Data on clinical characteristics, lead type, indications, and outcomes were prospectively collected and analyzed. A total of 427 patients were included in the study (72.6% male; age 67.9 ± 15.23 years). Lower frequency and higher frequency laser sheaths were used in 315 and 112 patients, respectively. A total of 821 leads were removed with 765 leads (93.2%) extracted using the Excimer laser sheath. Lead age was 5.71 ± 4.96 years. Complete extraction was seen in all patients. A higher-frequency laser sheath was associated with a lower laser time and a lower total number of laser pulses even after adjustments for the number of leads, type of leads, and lead age. In the higher frequency group, mortality rate was 0.9% and minor complication rate was 3.6%. When compared with the lower-frequency laser sheath, the higher-frequency laser sheath requires less laser times and more efficient amount of pulses for lead extraction with comparable success rate. Due to the rarity of major and minor complications, no statistical significance was found between the two groups. ©2014 Wiley Periodicals, Inc.

  17. Early deactivation of slower muscle fibres at high movement frequencies.

    Science.gov (United States)

    Blake, Ollie M; Wakeling, James M

    2014-10-01

    Animals produce rapid movements using fast cyclical muscle contractions. These types of movements are better suited to faster muscle fibres within muscles of mixed fibre types as they can shorten at faster velocities and achieve higher activation-deactivation rates than their slower counterparts. Preferential recruitment of faster muscle fibres has previously been shown during high velocity contractions. Additionally, muscle deactivation takes longer than activation and therefore may pose a limitation to fast cyclical contractions. It has been speculated that slower fibres may be deactivated before faster fibres to accommodate their longer deactivation time. This study aimed to test whether shifts in muscle fibre recruitment occur with derecruitment of slow fibres before faster fibres at high cycle frequencies. Electromyographic (EMG) signals were collected from the medial gastrocnemius at an extreme range of cycle frequencies and workloads. Wavelets were used to resolve the EMG signals into time and frequency space and the primary sources of variability within the EMG frequency spectra were identified through principal component analysis. Early derecruitment of slower fibres was evident at the end of muscle excitation at higher cycle frequencies, as determined by reduced low-frequency EMG content, and additional slower fibre recruitment was present at the highest cycle frequency. The duration of muscle excitation reached a minimum of about 150 ms and did not change for the three highest cycle frequencies, suggesting a duration limit for the medial gastrocnemius. This study provides further evidence of modifications of muscle fibre recruitment strategies to meet the mechanical demands of movement. © 2014. Published by The Company of Biologists Ltd.

  18. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  19. Extracting cardiac myofiber orientations from high frequency ultrasound images

    Science.gov (United States)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (pig hearts.

  20. Asynchronous BCI control using high-frequency SSVEP

    Directory of Open Access Journals (Sweden)

    Laciar Leber Eric

    2011-07-01

    Full Text Available Abstract Background Steady-State Visual Evoked Potential (SSVEP is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz, medium (12-30 and high frequency (> 30 Hz. SSVEP-based Brain-Computer Interfaces (BCI are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. Methods This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult. The signal processing method is based on Fourier transform and three EEG measurement channels. Results The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Conclusions Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.