WorldWideScience

Sample records for high frequency antenna

  1. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  2. High-Frequency Antenna Arrays and Coupling Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — We are fabricating antenna arrays and coupling structure for frequencies in the 200-300 GHz frequency bands. The primary motivation of this work is to develop...

  3. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  4. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  5. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  6. On the Conductive Loss of High-Q Frequency Reconfigurable Antennas for LTE Frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del

    2018-01-01

    Intrinsically narrowband and highly tunable systems are a promising way to address the bandwidth challenge of LTE. However, narrowband antennas exhibit low efficiencies. This paper details the loss mechanism of narrowband antennas by investigating the contribution of the resistance of the tuner...

  7. High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies

    International Nuclear Information System (INIS)

    de Lustrac, A.; Gadot, F.; Akmansoy, E.; Brillat, T.

    2001-01-01

    In this letter, we experimentally demonstrate the capability of a controllable photonic bandgap (CPBG) material to conform the emitted radiation of a planar antenna at 12 GHz. The CPBG material is a variable conductance lattice fabricated with high-frequency PIN diodes soldered along metallic stripes on dielectric printed boards. Depending on the diode bias, the emitted radiation of the antenna can be either transmitted or totally reflected by the material. In the transmission state, the antenna radiation is spatially filtered by the CPBG material in a sharp beam perpendicular to the surface of the material. [copyright] 2001 American Institute of Physics

  8. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    Science.gov (United States)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  9. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling....

  10. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  11. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  12. Printed silver nanowire antennas with low signal loss at high-frequency radio

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  13. ICRF [Ion Cyclotron Range of Frequencies] heating and antenna coupling in a high beta tokamak

    International Nuclear Information System (INIS)

    Elet, R.S.

    1988-01-01

    Maxwell's Equations are solved in two-dimensions for the electromagnetic fields in a toroidal cavity using the cold plasma fluid dielectric tensor in the Ion Cyclotron Range of Frequencies (ICRF). The Vector Wave Equation is transformed to a set of two, coupled second-order partial differential equations with inhomogeneous forcing functions which model a wave launcher. The resulting equations are finite differenced and solved numerically with a complex banded matrix algorithm on a Cray-2 computer using a code described in this report. This code is used to study power coupling characteristics of a wave launcher for low and high beta tokamaks. The low and high beta equilibrium tokamak magnetic fields applied in this model are determined from analytic solutions to the Grad-Shafranov equation. The code shows good correspondence with the results of low field side ICRF heating experiments performed on the Tokamak of Fontenay-Aux-Roses (TFR). Low field side and high field side antenna coupling properties for ICRF heating in the Columbia High Beta Tokamak (HBT) experiment are calculated with this code. Variations of antenna position in the tokamak, ionic concentration and plasma density, and volume-averaged beta have been analyzed for HBT. It is found that the location of the antenna with respect to the plasma has the dominant role in the design of an ICRF heating experiment in HBT. 10 refs., 52 figs., 13 tabs

  14. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  15. Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas

    Science.gov (United States)

    Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.

    2009-12-01

    The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.

  16. Bistatic High Frequency Radar Ocean Surface Cross Section for an FMCW Source with an Antenna on a Floating Platform

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2016-01-01

    Full Text Available The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform are derived for a frequency-modulated continuous wave (FMCW source. Based on previous work, the derivation begins with the general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived. The new first- and second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for the FMCW waveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCW waveform reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is found to be similar to that for a pulsed waveform.

  17. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  18. A Compact Frequency Reconfigurable Antenna for LTE Mobile Handset Applications

    Directory of Open Access Journals (Sweden)

    Munyong Choi

    2015-01-01

    Full Text Available A compact (8 × 62 × 5 mm3; 2.48 cc frequency reconfigurable antenna that uses electrical switching with PIN diodes is proposed for the low frequency LTE band (699 MHz–862 MHz, high frequency LTE band (2496 MHz–2690 MHz, GSM850/900 bands (824 MHz–960 MHz, and DCS/PCS/WCDMA bands (1710 MHz–2170 MHz. The penta-band PIFA is first designed for GSM850/900/DCS/PCS/WCDMA bands by using two slits and ground pins within a limited antenna volume (8 × 54.6 × 5 mm3; 2.18 cc. The frequency reconfigurable antenna based on this penta-band PIFA is thus proposed to additionally cover all LTE bands. The proposed antenna has two PIN diodes with an optimal location. For State 1 (PIN diode 1: ON state, PIN diode 2: OFF state, the proposed antenna covers the low frequency LTE band, DCS/PCS/WCDMA bands, and high frequency LTE band. For State 2 (PIN diode 1: OFF state, PIN diode 2: ON state, the antenna covers the GSM850/900 bands. Simulated and measured results show that the total efficiency of the proposed antenna was greater than 40% for all operating frequency bands.

  19. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  20. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  1. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    2013-12-01

    Full Text Available The ultra-high-frequency (UHF method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM waves excited by partial discharge (PD. As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.

  2. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  3. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  4. High Frequency Aircraft Antennas

    Science.gov (United States)

    1968-05-03

    is ob- tained if the current on the loop is assunned to be a superposition of two oppositely directed uniform traveling -wave currents of equal...effect will be to slow down the traveling wave currents on the loop and thus make the loop appear larger in size. Equations (6), (7), and (IÜ...18C/NDT + 1 NTRAN3=ü L»0 CALL LINSEG<NWIRE.L»X.Y.Z.5I . SALP ,CAB.SAB) N = L NN=N+1 WR|TE(6«11) IF(N-100) 4 1,41.500 41 CONTINUE Jl = l J2

  5. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...

  6. Investigation of a nanostrip patch antenna in optical frequencies

    Science.gov (United States)

    Kashyap, Nitesh; Wani, Zamir Ahmad; Jain, Rishi; Khusboo; Dinesh Kumar, V.

    2014-08-01

    This is the first report and investigation of a patch antenna in optical frequency range. Variety of plasmonic nanoantenna reported so far is good at enhancing the local field intensity of light by orders of magnitude. However, their far-field radiation efficiency is very poor. The proposed patch antenna emits a directional beam with high efficacy in addition to enhancing the intensity of near field. The nano-patch antenna (NPA) consists of a square patch of gold film of dimension 480 nm2, placed on a substrate of dielectric constant \\varepsilon_{{r}} = 3.9 and thickness 150 nm with a ground plane of gold film of dimension 1,080 nm2. The NPA resonates at 210 THz and has gain nearly 2 dB and radiation efficiency 45.18 %. The NPA might be useful in variety of applications such as optical communication, nano-photonics, biosensing, and spectroscopy.

  7. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  8. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  9. Fractal Based Triple Band High Gain Monopole Antenna

    Science.gov (United States)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  10. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  11. Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System

    Directory of Open Access Journals (Sweden)

    Sri Maldia Hari Asti

    2012-01-01

    Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.

  12. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.

  13. Low profile frequency agile MIMO slot antenna with TCM characterization

    KAUST Repository

    Ghalib, Asim

    2017-06-07

    In this paper, a frequency reconfigurable multiple-input-multiple-output (MIMO) slot antenna is presented. The proposed design is low profile and compact with wide tunability range, covering several well-known frequency bands from 1800 MHz to 2450 MHz. The frequency reconfigurability is achieved by loading the annular slot with varactor diodes. The antenna system is also analyzed for MIMO performance metrics. Moreover, the effect of circular slot antenna on the chassis modes is also investigated using the theory of characteristic modes (TCM). The physical principle behind frequency reconfigurability is also investigated using TCM analysis. An interesting finding is observed using varactor diodes for frequency reconfigurability, that is the reactive impedance loading does not alter the modal significance (MS) plots but only aid in the input impedance matching at different frequency bands.

  14. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    Science.gov (United States)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  15. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  16. Realization and Measurement of a Wearable Radio Frequency Identification Tag Antenna

    Directory of Open Access Journals (Sweden)

    Shudao ZHOU

    2014-06-01

    Full Text Available The realization and measurements of a wearable Radio Frequency Identification tag antenna which achieves good simulation results in the Ultimate High Frequency band under the standard of the United States in design procedures is presented. The wearable tag antenna is constructed using a flexible substrate, on whose surface the antenna patch is adhered. A bowtie shape is chosen as the geometry of the antenna patch because of its large bandwidth that brings to the tag and its simple structure. The substrate of the tag antenna is realized using a foam material while the patch on the substrate surface is cut out from copper foil tape. Then, the impedance of the realized tag antenna is extracted from S parameters which are measured with a vector network analyzer with a coaxial fixture. Finally, the radiation pattern of the tag is characterized by normalized reading distances of different directions of the antenna integrated with a microchip, thus indicating the validity of the realized tag antenna.

  17. Tunable antenna radome based on graphene frequency selective surface

    Science.gov (United States)

    Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li

    2017-09-01

    In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.

  18. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas.

    Science.gov (United States)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-05

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  19. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  20. Swept frequency measurements of microwave antennas in feline and canine brain

    International Nuclear Information System (INIS)

    Salcman, M.; Neuberth, G.; Nudelman, R.W.; Ferraro, F.T.; Hartman, M.

    1986-01-01

    Interstitial microwave hyperthermia may prove to be an important therapy for malignant brain tumors. For safety and efficiency, the size and number of intracranial microwave antennas needs to be limited. Low power swept frequency measurements of VSWR were carried out in the brains of anesthetized cats and dogs utilizing stereotactically placed monopole antennas. The coupling efficiency of antennas at any frequency was degraded (VSWR>2:1) if a length of antenna less than 2h was inserted or if a plastic catheter was utilized. Such measurements indicate that (h) can be shortened 25% from the resonant length without seriously degrading antenna performance. The total length can be halved if a catheter with a high dielectric is used. High power tests (2-10w) of short antennas at 915 MHz in a ceramic catheter (e = 10) at 45-50 0 C produce thermal fields approximately 2 cm in diameter in normal brain. It should be possible to efficiently and safely heat human brain tumors of average size utilizing these antennas and catheters at 915 MHz

  1. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  2. Frequency band adjustment match filtering based on variable frequency GPR antennas pairing scheme for shallow subsurface investigations

    Science.gov (United States)

    Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.

    2018-02-01

    Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is

  3. Development of Radio Frequency Antenna Radiation Simulation Software

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Rozaimah Abd Rahim; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2014-01-01

    Antennas are widely used national wide for radio frequency propagation especially for communication system. Radio frequency is electromagnetic spectrum from 10 kHz to 300 GHz and non-ionizing. These radiation exposures to human being have radiation hazard risk. This software was under development using LabVIEW for radio frequency exposure calculation. For the first phase of this development, software purposely to calculate possible maximum exposure for quick base station assessment, using prediction methods. This software also can be used for educational purpose. Some results of this software are comparing with commercial IXUS and free ware NEC software. (author)

  4. Low-frequency computational electromagnetics for antenna analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K. (Los Alamos National Lab., NM (USA)); Burke, G.J. (Lawrence Livermore National Lab., CA (USA))

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  5. Challenges for Frequency-Reconfigurable Antennas in Small Terminals

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Pedersen, Gert Frølund

    2012-01-01

    This paper gives an overview of the techniques published over the past years to address continuous frequency tuning. It presents the challenges that have been encountered and relates to each other the parameters that influence the losses of the resulting antenna structure. A mock-up is made with ...... with a PIFA and a packaged RF-MEMS tunable capacitor to measure its efficiency as the resonance is tuned towards the LTE-700 band....

  6. A Printable Silicon Nano-Field Effect Transistor with High Operating Frequency for Large-Area Deployable Active Phased-Array Antennas, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible electronic circuits can be easily integrated with large area (>10m aperture), inflatable antennas to provide distributed control and processing...

  7. Mantle cloaking for co-site radio-frequency antennas

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Alessio, E-mail: alessio.monti@uniroma3.it; Barbuto, Mirko [“Niccolò Cusano” University, Via Don Carlo Gnocchi 3, Rome 00166 (Italy); Soric, Jason; Alù, Andrea [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto [Department of Engineering, “Roma Tre” University, Via Vito Volterra 62, Rome 00146 (Italy); Trotta, Fabrizio [Antenna Department, ELETTRONICA S.p.A., Via Tiburtina Valeria Km 13700, Rome 00131 (Italy)

    2016-03-14

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  8. Mantle cloaking for co-site radio-frequency antennas

    International Nuclear Information System (INIS)

    Monti, Alessio; Barbuto, Mirko; Soric, Jason; Alù, Andrea; Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto; Trotta, Fabrizio

    2016-01-01

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  9. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  10. Aspects of High-Q Tunable Antennas and Their Deployment for 4G Mobile Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2016-01-01

    Tunable antennas are very promising for future generations of mobile communications, where broad frequency coverage will be required increasingly. This work describes the design of small high-Quality factor (Q) tunable antennas based on Micro-Electro-Mechanical Systems (MEMS), which are capable...... of operation in the frequency ranges 600 - 960 MHz and 1710 - 2690 MHz. Some aspects of high-Q tunable antennas are investigated through experimental measurements and the result are presented. Results show that more than -30 dB of isolation can be achieved between the Transmit (Tx) and Receive (Rx) antennas...

  11. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  12. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (˜6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.

  13. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  14. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  15. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  16. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    Science.gov (United States)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  17. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda)

    Science.gov (United States)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Alcator C-Mod Team

    2013-05-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  18. Minimum Lens Size Supporting the Leaky-Wave Nature of Slit Dipole Antenna at Terahertz Frequency

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2016-01-01

    Full Text Available We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in which the slit dipole antenna works as a leaky-wave antenna. The slit dipole antenna consists of a planar feeding structure, which is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz. The numerical results show that the antenna gain responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius. The lens with the radius of 1.2λo is found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon lens.

  19. Narrowband-to-Narrowband Frequency Reconfiguration with Harmonic Suppression Using Fractal Dipole Antenna

    Directory of Open Access Journals (Sweden)

    S. A. Hamzah

    2013-01-01

    Full Text Available Harmonic suppressed fractal antenna with switches named TMFDB25 is developed to select desired frequency band from 400 MHz to 3.5 GHz. The radiating element length is changed to tune the operating frequency while the stub is used to eliminate the undesired harmonic frequency. The balun circuit is reduced by 75% from the original size. The antenna is built on a low loss material. It has the ability to select a single frequency out of fifteen different bands and maintain the omnidirectional radiation pattern properties. Furthermore, the antenna is designed, built, and tested. Simulation and measurement results show that the antenna operates well at the specific frequency range. Therefore, the antenna is suitable to be used for switching frequencies in the band of TV, GSM900/1800, 3G, ISM 2.4 GHz, and above.

  20. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  1. OLFAR - Orbiting low frequency antennas for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high

  2. Compliance boundaries for multiple-frequency base station antennas in three directions.

    Science.gov (United States)

    Thielens, Arno; Vermeeren, Günter; Kurup, Divya; Joseph, Wout; Martens, Luc

    2013-09-01

    In this article, compliance boundaries and allowed output powers are determined for the front, back, and side of multiple-frequency base station antennas, based on the root-mean-squared electric field, the whole-body averaged specific absorption rate (SAR), and the 10 g averaged SAR in both the limbs and the head and trunk. For this purpose, the basic restrictions and reference levels defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for both the general public and occupational exposure are used. The antennas are designed for Global System for Mobile Communications around 900 MHz (GSM900), GSM1800, High Speed Packet Access (HSPA), and Long Term Evolution (LTE), and are operated with output powers at the individual frequencies up to 300 W. The compliance boundaries are estimated using finite-difference time-domain simulations with the Virtual Family Male and have been determined for three directions with respect to the antennas for 800, 900, 1800, and 2600 MHz. The reference levels are not always conservative when the radiating part of the antenna is small compared to the length of the body. Combined compliance distances, which ensure compliance with all reference levels and basic restrictions, have also been determined for each frequency. A method to determine a conservative estimation of compliance boundaries for multiple-frequency (cumulative) exposure is introduced. Using the errors on the estimated allowed powers, an uncertainty analysis is carried out for the compliance distances. Uncertainties on the compliance distances are found to be smaller than 122%. Copyright © 2013 Wiley Periodicals, Inc.

  3. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  4. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  5. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  6. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  7. Multiuser Carrier Frequency Offset Estimation for OFDMA Uplink Based on Multi-Antenna

    Science.gov (United States)

    Zhang, Weile; Wang, Junsong; Yin, Qinye; Feng, Ang

    In this letter, a novel method is proposed for carrier-frequency offset (CFO) estimation for multiple users in orthogonal frequency division multiple access (OFDMA) uplink with the generalized carrier assignment scheme (GCAS). The base station (BS) is equipped with multiple antennas, and each user's CFO can be estimated by the ESPRIT-like method that utilizes the rotation invariance of the space-domain snapshot matrix. The method is still effective even in fully loaded system with all subcarriers allocated to users. Simulation results illustrate the high performance of the proposed algorithm.

  8. Compact MIMO Microstrip Antennas for USB Dongle Operating in 2.5–2.7 GHz Frequency Band

    Directory of Open Access Journals (Sweden)

    Vladimir Ssorin

    2012-01-01

    Full Text Available This paper considers design of microstrip MIMO antennas for an LTE/WiMAX USB dongle operating in the 2.5–2.7 GHz frequency band. The MIMO system includes two antenna elements with an additional requirement of high isolation between them that is especially difficult to realize due to size limitations of a USB dongle. Three approaches to achieve the needed system characteristics using microstrip PCB antennas are proposed. For the first design, high port-to-port isolation is achieved by using a decoupling techniques based on a direct connection of the antenna elements. For the second approach, high port-to-port isolation of the MIMO antenna system is realized by a lumped decorrelation capacitance between antenna elements feeding points. The third proposed antenna system does not use any special techniques, and high port-to-port isolation is achieved by using only the properties of a developed printed inverted-F antenna element. The designed MIMO antenna systems have the return loss S11 and the insertion loss S21 bandwidths of more than 200 MHz at the −8 dB level with the correlation coefficient lower than 0.1 and exhibit pattern diversity when different antenna elements are excited. Experimental measurements of the fabricated antenna systems proved the characteristics obtained from electromagnetic simulation.

  9. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  10. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    Science.gov (United States)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  11. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  12. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  13. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulatio...... and mock-ups are presented....

  14. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  15. A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Khac Kiem

    2015-01-01

    Full Text Available A compact 2×2 metamaterial-MIMO antenna for WLAN applications is presented in this paper. The MIMO antenna is designed by placing side by side two single metamaterial antennas which are constructed based on the modified composite right/left-handed (CRLH model. By adding another left-handed inductor, the total left-handed inductor of the modified CRLH model is increased remarkably in comparison with that of conventional CRLH model. As a result, the proposed metamaterial antenna achieves 60% size reduction in comparison with the unloaded antenna. The MIMO antenna is electrically small (30 mm × 44 mm with an edge-to-edge separation between two antennas of 0.06λ0 at 2.4 GHz. In order to reduce the mutual coupling of the antenna, a defected ground structure (DGS is inserted to suppress the effect of surface current between elements of the proposed antenna. The final design of the MIMO antenna satisfies the return loss requirement of less than −10 dB in a bandwidth ranging from 2.38 GHz to 2.5 GHz, which entirely covers WLAN frequency band allocated from 2.4 GHz to 2.48 GHz. The antenna also shows a high isolation coefficient which is less than −35 dB over the operating frequency band. A good agreement between simulation and measurement is shown in this context.

  16. Wideband Cavity Backed Spiral Antenna for Stepped Frequency Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Lenler-Eriksen, Hans-Rudolph

    2005-01-01

    A 1.7 turn cavity backed coplanar waveguide to coplanar strip-fed logarithmic uniplanar spiral antenna is presented and compared to a 1.5 turn spiral antenna. The 1.7 turn spiral antenna has a wide beamwidth, are circular polarised and has a bandwidth with a return loss better than 6 dB in the fr......B in the frequency band from 0.25 GHz to 4.5 GHz (18:1). The antenna is useful for Ground Penetrating Radar (GPR)....

  17. Dual Polarization Multi-Frequency Antenna Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative approaches for broadband multi-function antennas that conserve vehicle weight and reduce drag are welcome solutions for all airborne platforms including...

  18. Design of energy conscious antenna system for WLAN frequency band

    CSIR Research Space (South Africa)

    Bembe, MJ

    2009-08-01

    Full Text Available . The modification can be achieved by loading the antenna elements with lumped circuits and a matching network system. This will be done by using the genetic algorithm optimisation technique....

  19. Meandered-line antenna with integrated high-impedance surface.

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  20. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  1. Frequency-Tunable antenna by input-impedance-tunable CMOS RF-Frontend

    NARCIS (Netherlands)

    Haider, Nadia; Oude Alink, M.S.; Caratelli, Diego; Klumperink, Eric A.M.; Yarovoy, Alexander G.

    2013-01-01

    Variable-impedance matching between the antenna and the RF-frontend provides several potential advantages, including changing operational frequency, compensating for unintentional mismatch, improving scanning capability, and reducing noise and interference signal levels. In this article a concept of

  2. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  3. Computation of the frequency response of a nonlinearly loaded antenna within a cavity

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2004-01-01

    Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.

  4. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  5. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  6. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  7. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  8. Olfar: orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  9. Frequency Reconfigurable Circular Patch Antenna with an Arc-Shaped Slot Ground Controlled by PIN Diodes

    Directory of Open Access Journals (Sweden)

    Yao Chen

    2017-01-01

    Full Text Available In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz, UMTS (2.11–2.20 GHz, WiBro (2.3–2.4 GHz, and Bluetooth (2.4–2.48 GHz frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.

  10. Design of a Super High Frequency (SHF) Extremely High Frequency (EHF) Satellite Communications (SATCOM) Terminal (SEST) for New Construction Naval Surface Ships using the systems engineering process

    OpenAIRE

    Harrell, Steven B.

    1996-01-01

    Alternative means of satisfying the high bandwidth and protected communications requirements for New Construction Naval Surface Ships in the midst of conflicting reduced radar cross section (RCS) requirements were investigated using the systems engineering process. Various antenna, ranging from parabolic dish antennas to Luneberg lens antennas to phased array antennas, and feed and amplifier combinations were considered to provide a dual-band Super High Frequency (SHF) and Extr...

  11. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    International Nuclear Information System (INIS)

    Li Chen; Tan Qiu-Lin; Xue Chen-Yang; Zhang Wen-Dong; Li Yun-Zhi; Xiong Ji-Jun

    2015-01-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. (paper)

  12. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    Science.gov (United States)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  13. Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications

    Science.gov (United States)

    Yang, Lingsheng; Cheng, Biyu; Jia, Hongting

    2018-04-01

    In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.

  14. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  15. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  16. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-07-01

    Full Text Available The design of a compact metamaterial ultra-wideband (UWB antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR, capacitive loaded strip (CLS and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  17. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    Science.gov (United States)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  18. Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, Ameneh, E-mail: ameneh.nejati@gmail.com [Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghzadeh, Ramezan Ali [Faculty of Electrical and Computer Engineering, K.N Toosi University of Technology, Tehran (Iran, Islamic Republic of); Geran, Fatemeh [Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2014-09-15

    In this paper, microstrip patch antenna with frequency selective surface (FSS) and photonic band gap (PBG) structures in the frequency range of 0.5–0.7 THz is presented for wireless communications. Proposed patch antenna is designed on a substrate with uniform and non-uniform PBG structures. Here, the effects of substrate thickness, various radii and arrangement of holes on antenna resonance in both PBG forms are studied. Near zero characteristic on uniform and non-uniform PBG substrate is compared and the results show that along with increase in hole radius, antenna operating frequency and bandwidth are increased. Also, the FSS structure is designed as a perfect absorber. Finally, by using FSS and PBG structures simultaneously, gain enhancement, increase in directivity and pattern shaping are studied at THz field. The antenna gain in final structure is increased by 2 dBi (32%) in comparison to simple form and Half-Power beam width is reduced from 100°×80° in simple form to 72°×48° by using FSS and PBG. All simulations and designs are done by Ansoft HFSS and CST Microwave Studio simulation tools with different full wave methods.

  19. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  20. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  1. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  2. Josephson admittance spectroscopy application for frequency analysis of broadband THz antennas

    International Nuclear Information System (INIS)

    Volkov, O Yu; Divin, Yu Yu; Gubankov, V N; Gundareva, I I; Pavlovskiy, V V

    2010-01-01

    Application of Josephson admittance spectroscopy for the spectral analysis of a broad-band log-periodic superconducting antenna was demonstrated at the frequency range from 50 to 700 GHz. The [001]-tilt YBa 2 Cu 3 O 7-x bicrystal Josephson junctions, integrated with sinuous log-periodic YBa 2 Cu 3 O 7-x antennas, were fabricated on NdGaO 3 bicrystal substrates. A real part of the antenna admittance ReY(f) as a function of the frequency f was reconstructed from the modification of the dc current-voltage characteristic of the junction, induced by the antenna. Resonance features were observed in the recovered ReY(f)-spectra with a periodicity in the logarithmic frequency scale, corresponding to log-periodic geometry of the antenna. The ReY(f)-spectra, recovered by Josephson spectroscopy, were compared with the ReY(f)-spectra, obtained by CAD simulation, and both spectra were shown to be similar in their main features. A value of 23 was obtained for an effective permittivity of the NdGaO3 bicrystal substrates by fitting simulated data to those obtained from Josephson spectroscopy.

  3. Antennas.

    Science.gov (United States)

    1982-03-03

    arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r

  4. Compact multi-band frequency reconfigurable planar monopole antenna for several wireless communication applications

    Directory of Open Access Journals (Sweden)

    M. Abou Al-Alaa

    2014-05-01

    Full Text Available A compact reconfigurable multi-band monopole antenna is presented. To achieve frequency reconfigurability, a PIN diode is used. There are two states of switch. State 1: when the switch is OFF, the antenna operates at four bands: 2.45, 3, 3.69, and 5.5 GHz with impedance bandwidth of 9.95, 5.96, 12.57, and 10.76%, respectively. State 2: when a switch is ON, the antenna operates at 2.64, 3.67, 4.94, and 5.3 GHz with impedance bandwidth of 21.15, 11.76, 5.79, and 4.12%, respectively. Folded and meandered techniques are used for miniaturize antenna size. Antenna size is 15 mm × 37 mm × 0.8 mm and the radiator part is 15 mm × 9 mm × 0.8 mm. The proposed antenna is used in several applications such as Bluetooth (2400–2484 MHz, WLAN [802.11b/g/n (2.4–2.48 GHz, 802.11y (3.657–3.69 GHz, 802.11y (4.9 GHz, 802.11a/h/j/n (5.2 GHz], Wi-MAX (2.5–2.69 GHz, LTE (band 7, band 38, band 41, and band 43 and S-DMB (2605–2655 MHz. The antenna is analyzed using the transient solver of CST Microwave Studio. The proposed antenna was fabricated and tested. Measurements and simulations show good agreement.

  5. Frequency selective surfaces integrated with phased array antennas

    NARCIS (Netherlands)

    Monni, S.

    2005-01-01

    Frequency Selective Surfaces (FSS's) are periodic arrays of patches and/or slots etched on a metal plate, having frequency and angular ??ltering properties. The FSS response to an excitation (for example a plane wave) is characterized in terms of its re ection and transmission coe??cient, and

  6. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications.

    Science.gov (United States)

    Shah, Syed Imran Hussain; Lim, Sungjoon

    2017-11-20

    In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900-1120 MHz) and 15% (2.1-2.45 GHz) for the unfolded state and 20% (1.3-1.6 GHz) and 14% (2.3-2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  7. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  8. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2013-01-01

    Significant gain and bandwidth improvement of inkjet-printed antennas with integrated artificial magnetic conductor (AMC) is achieved by utilizing wideband ground-backed frequency selective surfaces (FSSs) to overcome the high losses of organic substrates such as paper. A microstrip-fed monopole mounted on an artificial magnetic conductor is demonstrated to improve the gain by 5 dB over previous works and exhibit much wider impedance bandwidth while maintaining a thin antenna profile and a 20% electrical size reduction. The effect of AMC bandwidth on substrate losses and the gain reduction caused by finite AMC array effects are investigated in an effort to produce high-gain, miniaturized, low-cost wearable and structure mount antennas. © 2013 IEEE.

  9. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    Science.gov (United States)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  -1 and n  =  -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  10. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    International Nuclear Information System (INIS)

    Beaskoetxea, U; Beruete, M; Navarro-Cía, M

    2016-01-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n   =  −1 and n   =  −2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation. (paper)

  11. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  12. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    Science.gov (United States)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  13. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    Science.gov (United States)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  14. Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2012-09-01

    A complete characterization of the inkjet printing process using metallic nanoparticle inks on a paper substrate for microwave frequencies up to 12.5 GHz as well as its application to low-cost, high gain and wideband antenna design are demonstrated in this work. Laser and heat sintering of metallic nanoparticles are compared on paper substrate for the first time which demonstrate immense cost and time benefits of laser sintering. The antennas fabricated using the characterized process include a Vivaldi for the UWB band which exhibits a significantly higher gain of up to 8 dBi as compared to the currently published inkjet printed antennas, and a novel slow-wave log periodic dipole array which employs a new miniaturization technique to show 20% width reduction. © 1963-2012 IEEE.

  15. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  16. A high-gain high-power L-band antenna for field test applications

    Science.gov (United States)

    Abe, David K.; Tran, George T.; Knop, C. M.

    1995-09-01

    A high-gain, prime-focus parabolic dish antenna system was designed and constructed for experimental use in the field. The antenna was designed to radiate in L-band at peak power levels exceeding 1 X 106 watts. A 3.6 m diameter, commercial off-the-shelf parabolic dish antenna was modified with a custom-designed waveguide horn feed. The system was mounted on an antenna pedestal to allow for fine (approximately 0.001 degrees) elevation and azimuth control; the antenna and pedestal were mounted on a 4.3 m long trailer for mobility in the field. The antenna has a measured gain of 32 dBi and a 3-dB beamwidth of approximately 4.5 degrees. The system was successfully operated in the field in L-band at peak power levels exceeding 5 MW. The design, calibration, and testing of the antenna system will be presented.

  17. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2015-10-06

    Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state-of-the-art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far-field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low-cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far-field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.

  18. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  19. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  20. Elliptical metasurfaces for cloaking and antenna applications at microwave and terahertz frequencies

    Science.gov (United States)

    Mehrpourbernety, Hossein

    microwave frequencies. In this work, we propose a novel approach to reduce the mutual coupling between two closely spaced strip dipole antennas with the elliptical metasurfaces formed by conformal printed arrays of sub-wavelength periodic elements. We show that by covering each strip with the metasurface cloak, the antennas become invisible to each other and their radiation patterns are restored as if they were isolated. The electromagnetic scattering analysis pertained to the case of antennas with the frequencies far from each other is shown to be as a good approximation of a 2-D metallic strip scattering cancellation problem solved by expressing the incident and scattered fields in terms of radial and angular Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. In addition, we extend the novel approach based on the concept of mantle cloaking in order to reduce the mutual near-field and far-field coupling between planar antennas in printed technology. To present the idea, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies and show that by cloaking the radiating part of each antenna, the antennas become invisible to each other, and thus, the mutual coupling between the antennas is suppressed drastically. The cloak structure is realized by a conformal elliptical metasurface formed by confocal printed arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the restoration of the radiation patterns of the antennas as if they were isolated.

  1. A High Performance Frequency Standard and Distribution System for Cassini Ka-Band Experiment

    National Research Council Canada - National Science Library

    Wang, R. T; Calhoun, M. D; Kirk, A; Diener, W. A; Dick, G. J; Tjoelker, R. L

    2005-01-01

    ...), and 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO) and frequency-lock-loop, are integrated to achieve the very high performance, ground based frequency reference at a remote antenna site located 16 km from the hydrogen maser...

  2. Highly-Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reconfigurable antennas are attractive for remote sensing, surveillance and communications, since they enable changes in operating frequency and / or radiation...

  3. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  4. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Syed Imran Hussain Shah

    2017-11-01

    Full Text Available In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz and 15% (2.1–2.45 GHz for the unfolded state and 20% (1.3–1.6 GHz and 14% (2.3–2.5 GHz for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  5. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    Science.gov (United States)

    2015-03-26

    like the “winner”. Now the time domain characteris- tics are compared for a full understanding of the antenna performance. The boresight impulse...radio frequency distinct native attributes 121 TD time domain TDR time domain reflectometry TEM transverse electromagnetic TRP total radiated power UHF...cies. These undesirable backlobes have never been hypothesized, predicted or mea- sured, likely due in part to their alignment outside the primary

  6. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.

    2014-01-08

    A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.

  7. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin; Niver, Edip

    2011-01-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without

  8. Screen-printed silver-ink antennas for frequency-reconfigurable architectures in LTE phones

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Holmgaard, Tobias; Christensen, Morten

    2014-01-01

    Screen printing is a proven manufacturing technology enabling high volume production at low cost. This letter investigates the achievable efficiency of a screen-printed silver antenna structure for 4G mobile phone implementation, with a market-ready solution. The contribution of each element...

  9. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  10. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar

    2010-10-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  11. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar; Johnson, Mark; Jungdong Park,; Adabi, Ehsan; Jones, Kevin; Niknejad, Ali

    2010-01-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  12. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  13. Effect on antenna structure of high power rf during plasma operation

    International Nuclear Information System (INIS)

    Haste, G.R.; Thomas, C.E.; Fadnek, A.; Carter, M.D.; Beaumont, B.; Becoulet, A.; Kuus, H.; Saoutic, B.

    1993-01-01

    High-power, long-pulse operation on the Tore Supra tokamak results in considerable stress on the plasma-facing components. The ICH antennas must deliver high-power rf(up to 4 MW per antenna) in this environment. The antenna structure is therefore subjected to the power flux resulting from the interaction between rf and the edge plasma. The structure's response during operation is described, as is the condition of the antenna after prolonged use

  14. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  15. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Science.gov (United States)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  16. Wideband or Dual-Band Low-Profile Circular Patch Antenna with High Gain and Sidelobe Suppression

    DEFF Research Database (Denmark)

    Squadrito, Paolo; Zhang, Shuai; Pedersen, Gert F.

    2018-01-01

    This paper presents a wideband or dual-band circular disk antenna with high gain and sidelobe suppression (SLS). The antenna has a single layer and single-fed configuration. The antenna can operate with the radiation field superposition of TM12 and TM14 modes at one frequency, which provides high...... gain and SLS. A circle of 10 shorting vias with non-identical diameters are loaded inside the antenna cavity in order to excite the field superposition of TM11 and TM13 modes at another frequency. By modifying the radius of the vias, the resonant frequency with the TM11 and TM13 superposition can...... be tuned closer to or further away from the one with the TM12 and TM14 superposition. In this way, a wideband or dual-band behavior can be obtained with high gain and SLS. The proposed antenna achieves the impedance bandwidth of 6.46% for the wideband case, which is over 6 times wider than the previous...

  17. High coupling performance of JT-60U ICRF antennas

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.; Sato, M.; Hosogane, N.; Nemoto, M.; Yamamoto, T.

    1994-01-01

    Sufficient coupling of an ICRF antenna for high power experiments was obtained even for a wide gap between the separatrix and the antenna in JT-60U. The loading resistances for an out-of-phase mode are over 4 Ω for a gap of 13 cm between the separatrix and the Faraday shield over the wide range of electron density from 1 x 10 19 to 5.5 x 10 19 m -3 . In particular, the loading resistances for an in-phase mode are about 5 Ω for a gap of 33 cm between the separatrix and the Faraday shield for the same plasma parameters. However, the heating response for the out-of phase mode is much stronger than that for the in-phase mode. (author). Letter-to-the-editor. 11 refs, 6 figs

  18. Assessment of the underground construction details of a road pavement using GPR antenna systems with different frequencies

    Science.gov (United States)

    Alani, Amir M.; Tosti, Fabio; Bianchini Ciampoli, Luca; Benedetto, Francesco; Benedetto, Andrea

    2017-04-01

    The assessment of the underground construction details of a road infrastructure is a problem of great concern in highway engineering. The case becomes complicated especially when damages reoccur after carrying out remedial surface maintenance and repair works over the life cycle of the infrastructure. The challenge will be exacerbated at the presence of underground watercourses, such that the geotechnical stability of the entire road structure could be threatened. In this respect, ground-penetrating radar (GPR) has been recognised and accepted as one of the most effective non-destructive testing (NDT) techniques that could be employed in identifying the cause/s of such problems. The recent advancements and developments made in the field of GPR hardware as well as the current level of understanding of the applications and processing techniques of the GPR data have immensely added to the reliability in the utilisation of this tool in variety of subsurface investigation projects. In view of this, the work presented in here focuses on the assessment of the underground construction details of a road pavement using different frequency GPR antenna systems. In addition to this, the possible presence and location of an underground watercourse was investigated in this work. The existence of the latter problem was perceived due to reoccurrence of longitudinal and traversal road surface cracking as well as subsidence at a particular location of the road. Reoccurrence of this damage was interpreted and related to the possible existence of an underground watercourse. The original design and the construction of the road were as such to prevent this movement. Therefore it seemed necessary to perform a GPR survey to investigate and confirm the underground construction details of the road. To this purpose, the identified area was surveyed using high to low frequency antennas with 2000 MHz, 900 MHz, 600 MHz and 200 MHz central frequencies of investigation. Scans were performed at 1m

  19. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    Science.gov (United States)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  20. Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements

    Energy Technology Data Exchange (ETDEWEB)

    Loui, Hung; Strassner, II, Bernd H.

    2018-03-20

    The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).

  1. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  2. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude...... and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  3. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan, E-mail: yan.z@chula.ac.th [International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-05-15

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement results confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.

  4. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  5. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11WLAN (5.2/5.8 GHz) applications.

  6. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  7. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    Science.gov (United States)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  8. Self-matched high-Q reconfigurable antenna concept for mobile terminals

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2014-01-01

    This study presents reconfigurable antenna design for a front end (FE) that has separate transmit (Tx) and receive (Rx) path. In such an FE, the Tx and Rx antennas can be content with covering only the transmit and receive channels in a frequency band. Therefore they can be quite narrow-band. Nar...

  9. Development of a High Temperature Antenna Pointing Mechanism for BepiColombo Planetary Orbiter

    Science.gov (United States)

    Campo, Pablo; Barrio, Aingeru; Puente, Nicolas; Kyle, Robert

    2013-09-01

    BepiColombo is an ESA mission to Mercury its planetary orbiter (MPO) has two antenna pointing mechanism, High gain antenna pointing mechanism steers and points a large reflector which is integrated at system level by TAS-I Rome. Medium gain antenna (MGA) APM points a 1.5 m boom with a horn antenna. Both radiating elements exposed to sun fluxes as high as 10 solar constants without protections.The pointing mechanism is a major challenge as high performances are required in a harsh environment. It has required the development of new technologies, and components specially dedicated for the mission needs. Some of the state of the art required for the mission was achieved during the preparatory technology development activities [1]. However the number of critical elements involved, and the difficulties of some areas have required the continuation of the developments, and new research activities had to be launched in CD phase. Some of the major concerns and related areas of development are:- High temperature and long life requirements for the gearhead motors (up to 15500 equivalent APM revolutions, 19 million motor revolution)- Low thermal distortion of the mechanical chain, being at the same time insulating from external environment and interfaces (55 arcsec pointing error)- Low heat leak to the spacecraft (in the order of 50W per APM)- High precision position control, low microvibration noise and error stability in motion (16 arcsec/s)- High power radio frequency (18W in band Ka, 30 in X band) with phase stability for use in radio-science (3mm in Ka band, 5o in X band).- Wide range of motion (full 360o with end-stops)Currently HGA APM EQM azimuth and elevation stages are assembled and ready for test at actuator level.

  10. The short-term effects of antenna insulation thickness on path losses in wireless telemetry implants at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Lukas Kneisz

    2013-07-01

    Full Text Available Various physiological parameters can be monitored non-invasively using wireless biotelemetry links. The development of sophisticated ultra low power consuming transceivers allows the transmission of large amounts of data from the inside of the body to an external receiver in real time at microwave frequencies.Antenna impedance matching is crucial for obtaining an acceptable propagation link budget in a wireless telemetry link. The dielectric properties of biological tissue induce detuning to transceiver antennas when implanted into the body. To counteract detuning problems, implant antennas are coated with biocompatible insulating material. The study investigates the propagation losses of a wireless communication link at different insulation thicknesses of medical grade silicone in the Industrial-Scientific-Medical (ISM radio band at 2.45 GHz. The wireless link consisted of an implantable unit which was placed between two pads of tissue substitute material and an external receiver which was connected to a laptop. Predefined data packets were transmitted from the implant, the received packets were analyzed, packet errors and packet losses were logged and the received signal strength indicator values (RSSI were recorded. Our results showed that the mean RSSI values of insulated transmitter antennas - embedded in tissue equivalent material - provide more safety distance to critical receiver sensitivity level than uncoated antennas.The conducted measurements let us conclude that with increasing thickness of the insulation layer, the antenna becomes less sensitive to detuning by adjacent tissue substitute material. Therefore tuned antennas are less influenced by the surrounding tissue after implantation.

  11. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  12. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  13. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  14. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    International Nuclear Information System (INIS)

    Shin, Dong-Youn; Lee, Yongshik; Kim, Chung Hwan

    2009-01-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 o C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 μΩ cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  15. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Youn, E-mail: dongyoun.shin@gmail.co [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Lee, Yongshik, E-mail: yongshik.lee@yonsei.ac.k [School of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Kim, Chung Hwan, E-mail: chkim@kimm.re.k [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-09-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 {sup o}C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 {mu}{Omega} cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  16. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  17. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Directory of Open Access Journals (Sweden)

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  18. Radio Frequency Enhanced Plasma Potential and Flows in the Scrap-Off Layer of an Active Antenna

    Science.gov (United States)

    Martin, Michael John

    Ion cyclotron resonance heating (ICRH) systems are critical components of current and future tokamak experiments aimed at producing nuclear fusion energy. During ICRH a host of deleterious effects occur, including increased heat flux to plasma facing components and modification of launched wave power. A suspected root cause of these effects is the radio frequency (RF) rectification of the plasma potential. Interest in the antenna scrape-off layer (SOL) region has drawn increasing interest, as it is recognized that mitigating these effects is necessary to achieving fusion power. This dissertation investigates the RF rectification of the plasma potential and the resulting cross-field flows that form due to an active RF antenna. The experiment is performed in the Large Plasma Device (LAPD) utilizing a fast wave antenna and RF amplifier system developed for these studies. The RF system is capable of 150 kW output power for a 1 ms pulse that is repeated at the 1 Hz repetition rate of the LAPD plasma discharge. Upon application of the RF pulse to the antenna, the DC plasma potential, measured with an emissive probe, dramatically increases in certain spatial locations by a factor greater than 10 Te. The largest plasma potentials are observed at locations magnetically connected to the top and bottom of the antenna, and they exist only in the private SOL created between the antenna and a limiter placed 3.6 m away along the LAPD axis. The DC rectified potentials scale linearly with the antenna current over a factor of 12x in the applied current. These DC potentials increase plasma materials interactions (PMI), resulting in the sputtering of antenna materials whose presence is detected in the bulk plasma by the coatings that develop on probe diagnostics. The DC rectified potentials persist in the plasma long after the RF current in the antenna has rung down on the same time scales as the change in the density. At the top and bottom of the antenna are circular flows, often

  19. Excitation of waves in plasma near the ion cyclotron frequency using surface-wave antennas with auxillary passive gaps

    International Nuclear Information System (INIS)

    Longinov, A.V.; Lukinov, V.A.

    1992-01-01

    It is proposed to use a system of auxiliary passive gaps to excite waves in a plasma traveling in one direction parallel to the magnetic field, in order to localize the radiating surface of a surface-wave antenna. Using excitation of ion Bernstein waves in the plasma as an example the main properties of such an antenna system have been studied. It is shown that the use of passive gaps permits high directionality to be achieved for the radiation and allows the size of the radiating surface of the antenna to be controlled. 10 refs., 6 figs

  20. Planar Circularly Symmetric Electromagnetic Band-Gap Antennas for Low Cost High Performance Integrated Antennas

    NARCIS (Netherlands)

    Neto, A.; LLombart, N.; Gerini, G.; Maagt, P.J. de

    2009-01-01

    The use of Planar Circularly Symmetric (PCS) Electromagnetic Band-Gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  1. Planar circularly symmetric Electromagnetic Band-Gap antennas for low cost high performance integrated antennas

    NARCIS (Netherlands)

    Neto, A.; Llombart, N.; Gerini, G.; de Maagt, P.J.I.

    2009-01-01

    The use of planar circularly symmetric (PCS) electromagnetic band-gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  2. An all metal array of antennae for RF heating of TOKAMAKS in the ion cyclotron range of frequency

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lebot, H.; Adam, J.; Kuus, H.

    1980-09-01

    500 KW, the maximum available RF power, at a frequency of 60 MHz and in 50 to 100 ms pulses, has been launched in TFR plasmas using an array of 4 half turn antennae. The array has a potential power capability of 1 MW through a single port. The electrical coupling efficiency is about 90%

  3. Performance prediction of high Tc superconducting small antennas using a two-fluid-moment method model

    Science.gov (United States)

    Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.

    1992-01-01

    The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.

  4. High-Tc superconducting antenna-coupled microbolometer on silicon

    Science.gov (United States)

    Rice, Joseph P.; Grossman, Erich N.; Borcherdt, L. J.; Rudman, D. A.

    1994-05-01

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-Tc superconductor YBa2Cu3O7 (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 X 10-6 W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 microsecond(s) , a responsivity of the 1000 V/W range, and a noise-equivalent power in the 10-12 W/Hz1/2 range at 1000 Hz.

  5. High-{Tc} superconducting antenna-coupled microbolometer on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.P.; Grossman, E.N.; Borcherdt, L.J.; Rudman, D.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Cryoelectronic Metrology Group

    1994-12-31

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 {times} 10{sup {minus}6} W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 {micro}s, a responsivity in the 1,000 V/W range, and a noise-equivalent power (NEP) in the 10{sup {minus}12} W/Hz{sup 1/2} range at 1,000 Hz.

  6. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  7. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  8. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  9. Binaural beats at high frequencies.

    Science.gov (United States)

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  10. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  11. Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna

    Directory of Open Access Journals (Sweden)

    Dedi Atunggal

    2018-06-01

    Full Text Available GPS modules have been used for various applications in recent years. Its early development came in parallel with the advancement of Unmanned Aerial Vehicle (UAV technology. Nowadays, it is also used in in geographic information system (GIS data acquisition/census, mapping surveys, structure stability monitoring systems and many other applications. GPS modules generally have several positioning features, including standard positioning service (SPS, static positioning, precise point positioning (PPP, post processing kinematic (PPK and real time kinematic (RTK GPS. GPS modules in general are only equipped with a microstrip-type antenna or better known as patch antenna. Results from related research show that GPS module with this type of antenna has sub meter accuracy when used for PPK or RTK GPS method. The use of geodetic antennas is very potential to increase GPS position accuracy by up to centimeter level. This paper discusses the evaluation of GPS module measurements with geodetic type antennas for precise positioning using RTK GPS. This paper is focused on the resolution of GPS cycle ambiguity that is often expressed by the term fixing ratio and the accuracy of measurement results obtained. To provide a comprehensive description of the performance of GPS module, in this research two types of GPS module were used; single and dual frequency. Both types of GPS modules were used to conduct simultaneous observation on an open and obstructed observation location.

  12. Recent results from a continuous wave stepped frequency GPR system using a new ground-coupled multi-element antenna array

    Science.gov (United States)

    Linford, Neil; Linford, Paul; Payne, Andy

    2016-04-01

    The recent availability of multi-channel GPR instrumentation has allowed high-speed acquisition of densely sampled data sets over unprecedented areas of coverage. Such instrumentation has been of particular interest for the mapping of near-surface archaeological remains where the ability to collect GPR data at very close sample spacings (<0.1m) can provide a unique insight to both image and assess the survival of historic assets at a landscape scale. This paper reviews initial results obtained with a 3d-Radar GeoScope MkIV continuous wave stepped frequency (CWSF) GPR system utilising both initial prototypes and production versions of a newly introduced ground coupled antenna array. Whilst this system originally utilised an air-coupled antenna array there remained some debate over the suitability of an air-coupled antenna for all site conditions, particularly where a conductive surface layer, typical of many archaeological sites in the UK, may impede the transfer of energy into the ground. Encouraging results obtained from an initial prototype ground-coupled antenna array led to the introduction of a full width 22 channel G1922 version in March 2014 for use with the MkIV GeoScope console, offering faster acquisition across a wider frequency bandwidth (60MHz to 3GHz) with a cross-line 0.075m spacing between the individual elements in the array. Field tests over the Roman remains at Silchester corroborated the results from the earlier prototype, demonstrating an increased depth of penetration at the site compared to the previous air-coupled array. Further field tests were conducted with the G1922 over a range of sites, including Roman villa sites, formal post-medieval garden remains and a medieval farmstead to assess the response of the ground-coupled antenna to more challenging site conditions, particularly through water saturated soils. A full production DXG1820 version of the antenna became available for field work in 2015 offering optimisation of the individual

  13. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  14. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  15. Beyond dipolar regime in high-order plasmon mode bowtie antennas

    Science.gov (United States)

    Cuche, Aurélien; Viarbitskaya, Sviatlana; Kumar, Upkar; Sharma, Jadab; Arbouet, Arnaud; Girard, Christian; Dujardin, Erik

    2017-03-01

    Optical nanoantennas have shown their great potential for far-field to near-field coupling and for light confinement in subwavelength volumes. Here, we report on a multimodal configuration for bright and polarization-dependent bowtie antenna based on large and highly crystalline gold prisms. Each individual prism constituting an antenna arm sustains high order plasmon modes in the visible and near infrared range that allow for high field confinement and two-dimensional optical information propagation. We demonstrate by scanning two-photon luminescence (TPL) microscopy and numerical simulations based on the Green dyadic method that these bowtie antennas result in intense hot spots in different antenna locations as a function of the incident polarization. Finally, we quantify the local field enhancement above the antennas by computing the normalized total decay rate of a molecular system placed in the near field of the antenna gap as a function of the dipole orientation. We demonstrate the existence of a subtle relation between antenna geometry, polarization dependence and field enhancement. These new multimodal optical antennas are excellent far field to near field converter and they open the door for new strategies in the design of coplanar optical components for a wide range of applications including sensing, energy conversion or integrated information processing.

  16. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    Science.gov (United States)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  17. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  18. 60 GHz antenna measurement setup using a VNA without external frequency conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2014-01-01

    an alternative solution which makes use of a standard wideband VNA without external frequency conversion units. The operational capability of the Planar Near-Field (PNF) Antenna Measurement Facility at the Technical University of Denmark was recently extended to 60 GHz employing an Agilent E8361A VNA (up to 67...... GHz). The upgrade involved procurement of very few additional components: two cables operational up to 65 GHz and an openended waveguide probe for tests in U-band (40-60 GHz). The first tests have shown good performance of the PNF setup: 50-60 dB dynamic range and small thermal drift in magnitude...... and phase, 0.06 dB and 6 degrees peak-to-peak deviations over 4 hours. A PNF measurement of a 25 dBi Standard Gain Horn was carried out and the results were compared to those from the DTU-ESA Spherical Near-Field Facility with a good agreement in the validity region. Uncertainty investigations regarding...

  19. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  20. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  1. A study of three-half-turn and frame antennae for ion cyclotron range of frequency plasma heating in the URAGAN-3M torsatron

    International Nuclear Information System (INIS)

    Lysoivan, A.I.; Moiseenko, V.E.; Plyusnin, V.V.; Kasilov, S.V.; Bondarenko, V.N.; Chechkin, V.V.; Fomin, I.P.; Grigor'eva, L.I.; Konovalov, V.G.; Koval'ov, S.V.; Litvinov, A.P.; Mironov, Yu.K.; Nazarov, N.I.; Pavlichenko, O.S.; Pavlichenko, R.O.; Shapoval, A.N.; Skibenko, A.I.; Volkov, E.D.

    1995-01-01

    Numerical and experimental results of Alfven wave heating of plasmas in the frequency range below the ion cyclotron frequency (ω ci ) are presented. Two different types of antenna were used for plasma production and heating: a frame type antenna (FTA) conventionally used in the URAGAN-3M device and a three-half-turn antenna (THTA) proposed recently to avoid the deleterious effects of conversion of fast wave to slow wave in the plasma periphery and to perform plasma core heating more effectively. Numerical modeling of electromagnetic field excitation in the URAGAN-3M plasma by the FTA and THTA was performed using a one-dimensional code. The results of calculations showed better performance of the compact THTA compared with the FTA for the case of a high density plasma (approximately 10 13 cm -3 ). When using the THTA, the experiments performed showed the possibility of dense plasma production (more than 2x10 13 cm -3 ) and heating, which had not been obtained earlier in the URAGAN-3M. Shifting the power deposition profile deeper inside the plasma body with the THTA resulted in modification of the plasma density profile and an improvement in plasma confinement. ((orig.))

  2. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  3. Highly Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly-integrated, reconfigurable radar antenna arrays fabricated on flexible substrates offer high functionality in a portable package that can be rolled up and...

  4. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  5. Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

    Directory of Open Access Journals (Sweden)

    M. Kvicera

    2012-12-01

    Full Text Available Building penetration loss models presented in our previous paper [1] were valid for various scenarios, propagation conditions, frequency bands and hemispherical receiving antenna pointing towards zenith. These models had a significantly rising trend of penetration loss with increasing elevation angle of the link in common. In this paper we show that when working with non-isotropic terminal antennas, this trend relates primarily to the elevation trend of the corresponding reference level dependent on the receiving antenna radiation pattern. This is demonstrated by the results of single-input multiple-output (SIMO measurement trials performed at L-band in an office building and a brick building in the city of Prague. Further, based on the detailed analysis, a method to modify the elevation trend of a particular penetration loss model for different receiving antenna radiation patterns is derived and experimentally validated.

  6. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  7. Highly efficient multifunctional metasurface for high-gain lens antenna application

    Science.gov (United States)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  8. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.; Ghaffar, Farhan A.; Park, Sung I.; Rogers, John A.; Shamim, Atif; Hussain, Muhammad Mustafa

    2015-01-01

    electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far-field communications and can operate at constant

  9. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  10. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  11. High-Performance Wireless via the Merger of CI Chip-Shaped DS-CDMA and Oscillating-Beam Smart Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Nassar Carl R

    2004-01-01

    Full Text Available We introduce a novel merger of direct sequence code division multiple access (DS-CDMA and smart antenna arrays. With regard to the DS-CDMA scheme, we employ carrier interferometry DS-CDMA (CI/DS-CDMA, a novel implementation of DS-CDMA where chips are decomposable into narrowband frequency components. With regard to the antenna array, we deploy the oscillating-beam smart array. Here, applying proper time-varying phases to the array elements, we create small movement (oscillation in the antenna array's pattern, while steering the antenna pattern main lobe to the position of the intended user. The oscillating antenna pattern creates a time-varying channel with a controllable coherence time. This, in turn, provides transmit diversity in the form of a time diversity gain at the mobile receiver side. At the receiver, three stages of combining are available: combining time components of the received signal within symbol duration (each experiencing a different fade to enhance performance via time diversity; combining frequency components which make up the CI/DS-CDMA chip to enhance the performance via frequency diversity; and combining across chips to eliminate the interfering users on the system. Merging CI/DS-CDMA with the oscillating-beam smart antenna at the base station, we achieve very high capacity via the merger of SDMA (available through directionality of the antenna array and code division multiple access (inherent in CI/DS-CDMA, and very high performance via the construction of receivers that exploit both transmit diversity and frequency diversity. We present the performance gains of the proposed merger.

  12. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  13. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-01-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  14. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under...

  15. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  16. Reflection measurement of waveguide-injected high-power microwave antennas.

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  17. Rf sheaths and impurity generation by ICRF [ion cyclotron range of frequencies] antennas

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1988-11-01

    In general, Faraday screen elements in an ICRF antenna are not aligned precisely along the combined toroidal and poloidal magnetic fields. When plasma of density n > 2ε 0 V/eg 2 /approximately/ 10 9 cm -3 is present in the gap between elements, electron response to the parallel electric field shorts out the electric field over most of the gap, leaving a narrow sheath of positive space charge and intense electric field. Here V denotes the voltage across the gap and g the gap spacing. This intense electric field accelerates ions up to an appreciable fraction of the gap voltage (/approximately/ 1 kV), sufficient to cause physical sputtering of the screen material. Impurities so generated constitute the principal limitation on power density (kW/cm 2 ) for ICRF antennas. ICRF antenna and Faraday screen design principles which minimize sputtering are discussed. 24 refs., 9 figs., 1 tab

  18. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    International Nuclear Information System (INIS)

    Jr, R M Marinho; Magalhaes, N S; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection

  19. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    CERN Document Server

    Marinho, R M; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection.

  20. Antenna development for astroparticle and radioastronomy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Didier, E-mail: charrier@emn.fr [Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Universite de Nantes (France)

    2012-01-11

    An active dipole antenna is in operation since five years at the Nancay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of 'Butterfly' antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m Multiplication-Sign 1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  1. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  2. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  3. An algorithm for the analysis of inductive antennas of arbitrary cross-section for heating in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1986-10-01

    The application of Ion Cyclotron Range of Frequency (ICRF) heating to near ignited plasmas will require launching structures that will be capable of withstanding the harsh plasma environment. The recessed antenna configuration is expected to provide sufficient protection for the structure, but to date no analysis has been done to determine if adequate coupling can be achieved in such a configuration. In this work we present a method for determining the current distribution for the antenna in the direction transverse to current flow and predict antenna loading in the presence of plasma. Antennas of arbitrary cross section are analyzed above ground planes of arbitrary shape. Results from ANDES, the ANtenna DESign code, are presented and compared to experimental results

  4. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  5. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.; Shamim, Atif

    2014-01-01

    .2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications

  6. Correlation Coefficient Control For A Frequency Reconfigurable Dual-Band Compact MIMO Antenna Destined For LTE

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Buskgaard, Emil Feldborg; Pedersen, Gert Frølund

    2014-01-01

    . The MIMO performance is investigated in two different channel models through efficiency, branch power imbalance and envelope correlation. The proposed antennas have acceptable levels of isolation between them, even in the low-bands, while having a good efficiency. Furthermore, the correlation coefficient...

  7. Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas

    Directory of Open Access Journals (Sweden)

    Manuel Pereira

    2009-06-01

    Full Text Available Most Ground Penetrating Radars (GPR cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna.

  8. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  9. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  10. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.

    2017-12-05

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  11. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  12. Radio-Frequency design of a Lower Hybrid Slotted Waveguide Antenna.

    Czech Academy of Sciences Publication Activity Database

    Helou, W.; Goniche, M.; Hillairet, J.; Žáček, František; Achard, J.; Adámek, Jiří; Bogár, Ondrej; Mollard, P.; Pascal, J.-Y.; Poli, S.; Šesták, David; Volpe, R.; Zajac, Jaromír

    2017-01-01

    Roč. 123, November (2017), s. 223-227 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : Lower Hybrid Current Drive * Slotted Waveguide Antenna * Phased arrays Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 https://www.sciencedirect.com/science/article/pii/S0920379617304076

  13. Development and Qualification of an Antenna Pointing Mechanism for the ExoMars High-Gain Antenna

    Science.gov (United States)

    St-Andre, Stephane; Dumais, Marie-Christine; Lebel, Louis-Philippe; Langevin, Jean-Paul; Horth, Richard; Winton, Alistair; Lebleu, Denis

    2015-09-01

    The European Space Agency ExoMars 2016 mission required a gimbaled High Gain Antenna (HGA) for orbiter-to-earth communications. The ExoMars Program is a cooperative program between ESA and ROSCOSMOS with participation of NASA. The ExoMars Program industrial consortium is led by THALES ALENIA SPACE.This paper presents the design and qualification test results of the Antenna Pointing Mechanism (APM) used to point the HGA towards Earth. This electrically redundant APM includes motors, drive trains, optical encoders, cable cassette and RF Rotary Joints.Furthermore, the paper describes the design, development and the qualification approach applied to this APM. The design challenges include a wide pointing domain necessary to maximise the communication duty cycle during the early operation phase, the interplanetary cruise phase and during the mission’s orbital science phase. Other design drivers are an extended rotation cycle life with very low backlash yielding little wear and accurate position feedback on both axes. Major challenges and related areas of development include:• Large moments are induced on the APM due to aerobraking forces when the Mars atmosphere is used to slow the orbiter into its science mission orbit,• Thermal control of the critical components of the APM due to the different environments of the various phases of the mission. Also, the large travel range of the actuators complicated the radiator design in order to maintain clearances and to avoid overheating.• The APM, with a mass less than 17.5 kg, is exposed to a demanding dynamic environment due to its mounting on the spacecraft thrust tube and aggravated by its elevated location on the payload.• Power and Data transmission between elevation and azimuth axes through a compact large rotation range spiral type cable cassette.• Integration of a 16 bit redundant encoder on both axes for position feedback: Each encoder is installed on the back of a rotary actuator and is coupled using the

  14. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  15. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  16. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  17. Investigating airborne low frequency GPR antenna-ground coupling through modelling

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available . The plane of symmetry is a perfect electric conductor. The models are run using two rock materials: granite and dolerite, from the catalogue in Vogt (2000). These two materials cover the range of electrical properties expected for Karoo sediments... that is refracted into the ground away from the antenna travels along the surface at a greater velocity than the propagation in the ground, causing a propagation shape that has “ears” which are flatter than the typical spherical propagation in the earth...

  18. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  19. Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies

    Science.gov (United States)

    Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal

    2017-07-01

    We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.

  20. Experimental study of very low frequency radiation of the loop antenna installed aboard the Mir-Progress-28-Soyuz TM-2 orbital complex in the Earth ionosphere

    International Nuclear Information System (INIS)

    Armand, N.A.; Semenov, Yu.P.; Chertok, B.E.

    1988-01-01

    The cosmic experiment on studying electromagnetic waves of very low frequency (VLF) (5kHz) in the Earth ionosphere, using two loop antennas, each 20 m in diameter, unfolded aboard the Progress-28 cargoship, and a reception of these waves aboard the Mir orbital station is carried out for the first time from the 26th to 28th of March, 1987. Characteristics of such antennas in the ionosphere are invesigated experimentally; VLF signal recording at distances from 1 to 40 km from the radiation is carried out. The reactance of the electrically small loop antenna in the ionospheric plasma under conditions of the experiment out (the antenna current does not exceed 80A) is established to have practically no difference from the reactance in free space. Analysis of experimental data obtained has shown that they agree satsfactorily with the results of calculations carried out on the basis of the linear theory for a cold plasma model

  1. Low-Cost and High-Gain SIW Circularly Polarized Circular-Horn-Loaded Antenna for Broadband Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ming Du

    2017-09-01

    Full Text Available A wideband, low-cost and high-gain circularly polarized (CP circular-horn-loaded antenna based on substrate integrated waveguide (SIW technology operating at Ka band is presented. The proposed antenna, which is built on a single-layer substrate, consists of five parts: a short-ended SIW, a centro-symmetric wide slot, an L-shaped probe, a circular horn and a transition from SIW to air-filled rectangular waveguide for measurement. The slot is etched on the upper ground of the SIW, while the L-shaped probe for generating CP wave is printed inside the slot and connected to the SIW. A circular horn is also loaded on the surface of the SIW slot for high gain. Then, the proposed antenna with a dimension of 45×45×24.16 mm3 was fabricated and measured. The measured results show that the antenna has a wide impedance matching bandwidth of 28.6% from 30 to 40 GHz for |S11| ≤10 dB and a wide axial ratio (AR bandwidth of 22.8% from 31.5 to 39.6 GHz for AR ≤ 3 dB. The measured maximum gain is 15.6 dBi at 36 GHz with slight fluctuations over the 30–40-GHz frequency range. This kind of antenna merits low cost and easy integration with common differential circuits at the same time.

  2. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  3. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  4. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  5. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  6. A Design of Dual Broadband Antenna in Mobile Communication System

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A design of dual broadband antenna is proposed in this paper; it consists of one low frequency unit and two high frequency units. The low frequency unit consists of a pair of printing vibrators; the high frequency unit consists of a pair of printing oscillators, which is bent at its end, and high frequency unit and low frequency unit are set on the same dielectric substrate. Through adding a parasitic unit on antenna, it can enhance frequency bandwidth without affecting the bandwidth. In the high frequency unit, it adopts gap-coupled microstrip line feeding method in order to get enough bandwidth. Through the test of dual broadband antenna, it can be found that, in the low frequency part, the antenna covers 20% bandwidth of the total bandwidth, and it covers the frequency from 800 MHz to 980 MHz. In the high frequency, the antenna covers 60% of total bandwidth and its frequency is from 1540 MHz to 2860 MHz, so the designed antenna can satisfy the frequency requirements of 2G/3G/LTE (4G communication system.

  7. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  8. Design of 5.8 GHz Integrated Antenna on 180nm Complementary Metal Oxide Semiconductor (CMOS) Technology

    Science.gov (United States)

    Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2018-03-01

    This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.

  9. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  10. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate

    KAUST Repository

    Cook, Benjamin Stassen; Shamim, Atif

    2013-01-01

    % electrical size reduction. The effect of AMC bandwidth on substrate losses and the gain reduction caused by finite AMC array effects are investigated in an effort to produce high-gain, miniaturized, low-cost wearable and structure mount antennas. © 2013 IEEE.

  11. Using radio frequency and ultrasonic antennas for inspecting pin-type insulators on medium-voltage overhead distribution lines

    Directory of Open Access Journals (Sweden)

    Cícero Lefort Borges

    2013-05-01

    Full Text Available This paper summarises the activities undertaken when using antennas (ultrasound and radiofrequency for identifying insulators in pre-failure state by detecting the noise emitted by the distribution line and correlating this with these insulators (porcelain pin type dielectric breakdown. This has led to developing low-cost maintenance procedures and providing support and criteria for engineer-ing decisions regarding replacing these insulators. The technique used two detectors; a radio frequency detector was used in a first investigation of a particular distribution line, set to 40 MHz and installed on the roof of a moving vehicle. The ultrasound detector was used for inspecting (phases A, B, C each structure (pole selected. Atmospheric conditions had no influence on defining pre-failure insulators (pin type based on the noise detection technique. Pin type insulators emitting noise should be replaced since measurement was made from the ground and near the base of the post.

  12. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  13. Triple-Notched Band CPW fed UWB Antenna with Metallic Reflector for High Gain Performance

    Directory of Open Access Journals (Sweden)

    K. G. Jangid

    2017-10-01

    Full Text Available This paper exhibits the design and performance of a coplanar waveguide (CPW fed triple notched band ultra-wide band (UWB antenna. Proposed prototype has two U-shaped slots on the patch and an inverted U slot in feed line with a metal reflector beneath the radiating element. Proposed structure renders wider impedance bandwidth extended between frequencies 2.71GHz to 12.92 GHz for VSWR 2. The utmost simulated gain of proposed antenna with reflector is close to 9.9dBi at 7.4GHz. A sharp reduction observed in the efficiency values of the proposed structure at stop bands. Perhaps, this structure proved as a useful tool for various applications in modern communication systems including UWB.

  14. Design and analysis of high gain array antenna for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Sri Jaya LAKSHMI

    2015-05-01

    Full Text Available The array of antennas generally used for directing the radiated power towards a desired angular sector. Arrays can be used to synthesize a required pattern that cannot be achieved with a single element. The geometrical arrangement, number of elements, phases of the array elements and relative amplitudes depends on the angular pattern. This paper is focused on the issues related to the design and implementation of 4×1 array microstrip antenna with aperture coupled corporate feed for wireless local area network applications. Parametric analysis with change in element spacing is attempted in this work to understand the directional characteristics of the radiation pattern. Gain of more than 14 db and the efficiency more than 93% is achieved from the current design at desired frequency band.

  15. Thermal Loss Becomes an Issue for Tunable Narrow-band Antennas in Fourth Generation Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    Antenna tuning is a very promising technique to cope with the expansion of the mobile communication frequency spectrum. Tunable antennas can address a wide range of operating frequencies, while being highly integrated. In particular, high-Q antennas (also named narrow-band antennas) are very...... compact, thus are good candidates to be embedded on fourth generation handsets. This study focuses on ‘high-Q’ tunable antennas and contributes with a characterisation of their loss mechanism, which is a major parameter in link-budget calculations. This study shows, through an example, that the tuner loss...

  16. A novel method of support vector machine to compute the resonant frequency of annular ring compact microstrip antennas

    Directory of Open Access Journals (Sweden)

    Ahmet Kayabasi

    2015-12-01

    Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.

  17. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency

    Science.gov (United States)

    Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.

    2018-01-01

    Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

  18. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer

    Science.gov (United States)

    2017-04-14

    61102F 6.  AUTHOR(S) Siddhartha Prakash Duttagupta 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7.  PERFORMING ORGANIZATION NAME(S) AND...this study by Asian Office of Aerospace Research and Development (AOARD), USA 06 March, 2017 DISTRIBUTION A. Approved for public release...D parabolic design. These include suitability for manufacturing, ease of testing, and flexibility of RAA design for different frequencies

  19. High Rate User Ka-Band Phased Array Antenna Test Results

    Science.gov (United States)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  20. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  1. Development of high power radio frequency components for fusion plasma heating. Final report, Revision 3

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this CRADA was to develop advanced microwave heating systems for both ion cyclotron heating and electron cyclotron heating for magnetic fusion reactors. This involved low-frequency (UHF), high-power (millimeter-wave) microwave components, such as antennas, windows, and matching elements. This CRADA also involved developing conceptual designs for new microwave sources. General Atomics built and tested the distributed cooled window and provided LLNL with transmission and reflection test data in order to then benchmark the EM computer codes. The combline antenna built and analyzed by LLNL was based on a GA design. GA provided LLNL with a number of niobium plates for hot pressing and provided the necessary guidance to allow successful bonding. GA representatives were on site at LLNL on numerous occasions to consult and give guidance on the ferroelectric tuner, combline antenna and distributed window analysis

  2. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  3. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  4. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  5. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  6. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  7. Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna

    Science.gov (United States)

    Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin

    2017-12-01

    In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11-10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.

  8. Lightweight, high-frequency transformers

    Science.gov (United States)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  9. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  10. To increase controllability of a large flexible antenna by modal optimization

    Science.gov (United States)

    Wang, Feng; Wang, Pengpeng; Jiang, Wenjian

    2017-12-01

    Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.

  11. 8×8 Planar Phased Array Antenna with High Efficiency and Insensitivity Properties for 5G Mobile Base Stations

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    An insensitive planar phased array antenna with high efficiency function for 5G applications is introduced in this study. 64-elements of compact slot-loop antenna elements have been used to form the 8×8 planar array. The antenna is designed on a low cost FR4 substrate and has good performance in ...... at both sides of the substrate and could be used for mobile base station (MBS) applications. The proposed planar array could be integrated with the transceivers on the low-cost printed circuit boards (PCBs) to reduce the manufacturing cost....

  12. Optimum concentric circular array antenna with high gain and side lobe reduction at 5.8 GHz

    Science.gov (United States)

    Zaid, Mohammed; Rafiqul Islam, Md; Habaebi, Mohamed H.; Zahirul Alam, AHM; Abdullah, Khaizuran

    2017-11-01

    The significance of high gain directional antennas stems from the need to cope up with the everyday progressing wireless communication systems. Due to low gain of the widely used microstrip antenna, combining multiple antennas in proper geometry increases the gain with good directive property. Over other array forms, this paper uses concentric circular array configuration for its compact structure and inherent symmetry in azimuth. This proposed array is composed of 9 elements on FR-4 substrate, which is designed for WLAN applications at 5.8GHz. Antenna Magus software is used for synthesis, while CST software is used for optimization. The proposed array is designed with optimum inter-element spacing and number of elements achieving a high directional gain of 15.7 dB compared to 14.2 dB of available literature, with a high reduction in side lobe level of -17.6 dB.

  13. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  14. The effect of active antennas on the hot-restrike of high intensity discharge lamps

    International Nuclear Information System (INIS)

    Hoebing, T; Bergner, A; Ruhrmann, C; Mentel, J; Awakowicz, P; Koch, B; Manders, F

    2014-01-01

    The ignition voltage of high intensity discharge (HID) lamps with mercury as the buffer gas may rise from 3 kV for the cold state up to more than 15 kV for a hot lamp. By coating a lamp burner with an electrically conductive layer, which operates as an active antenna, the ignition voltage of HID lamps can be significantly reduced. An active antenna connected to one of the lamp electrodes transports the potential from this electrode to the vicinity of the opposite electrode and generates an enhanced electric field inside the burner. On applying a symmetrically shaped ignition pulse, a weak pre-discharge within the first half-cycle produces free charge carriers initiating ignition of the lamp within the subsequent second half-cycle. The authors present a set-up for electrical and optical investigations of hot-restrike in HID lamps. The ignition voltage is measured for two different polarities as a function of the cooldown time. An analysis of its reduction is given. Furthermore, the pre-discharge is investigated by means of short-time photography. It is demonstrated that a negative polarity of the active antenna within the first half-cycle and a positive polarity within the second one is the most effective succession. (paper)

  15. High-frequency conductivity of photoionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anakhov, M. V.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [National Research Nuclear University “MEPhI,” (Russian Federation)

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  16. Cooking Appliances Using High-Frequency Heating

    OpenAIRE

    木村, 秀行; Hideyuki, KIMURA; (株)日立製作所機械研究所

    2007-01-01

    We have produced a guide suitable for people with no technical knowledge of cooking appliances that use high-frequency heating. In general, cooking appliances that use an electric heat source are popular since, they are simple to use because the offer easy heat control, are safe because they do not have naked flames, and do not make kitchens dirty because there is no exhaust. In recent years, high-efficiency cooking appliances using high-frequency heating technology have surged in popularity....

  17. Design of an RF Antenna for a Large-Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Freeman, R.L.

    2001-01-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure

  18. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-01-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10 -1 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In 'lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array. (author)

  19. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  20. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  1. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  2. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  3. Active Surface Compensation for Large Radio Telescope Antennas

    Directory of Open Access Journals (Sweden)

    Congsi Wang

    2018-01-01

    Full Text Available With the development of radio telescope antennas with large apertures, high gain, and wide frequency bands, compensation methods, such as mechanical or electronic compensation, are obviously essential to ensure the electrical performance of antennas that work in complex environments. Since traditional compensation methods can only adjust antenna pointing but not the surface accuracy, which are limited for obtaining high surface precision and aperture efficiency, active surface adjustment has become an indispensable tool in this field. Therefore, the development process of electrical performance compensation methods for radio telescope antennas is introduced. Further, a series of analyses of the five key technologies of active surface adjustment is presented. Then, four typical large antennas that have been designed with active main reflector technology are presented and compared. Finally, future research directions and suggestions for reflector antenna compensation methods based on active surface adjustment are presented.

  4. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  5. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  6. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  7. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  8. Nanostructures for Very High Frequency Electronics

    National Research Council Canada - National Science Library

    Gelmont, Boris

    2002-01-01

    The study of a new class of mesoscopic high frequency semi-conductor devices based on resonant tunneling in staggered-bandgap heterostructures with III-V semi-conductor ternary alloys such as AlGaSb...

  9. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  10. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  11. A Two Element Plasma Antenna Array

    Directory of Open Access Journals (Sweden)

    F. Sadeghikia

    2013-10-01

    Full Text Available This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.

  12. High frequency system project implementation plan

    International Nuclear Information System (INIS)

    Moon, L.L.

    1976-01-01

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed

  13. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  14. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  15. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    Science.gov (United States)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  16. A Dual-Band Multiple Input Multiple Output Frequency Agile Antenna for GPSL1/Wi-Fi/WLAN2400/LTE Applications

    Directory of Open Access Journals (Sweden)

    Sajid Aqeel

    2016-01-01

    Full Text Available A novel dual-band, single element multiple input multiple output (MIMO dielectric resonator antenna (DRA with a modest frequency tuning ability is presented in this communication. The proposed antenna operates at GPS L1/Bluetooth/Wi-Fi/LTE2500/WLAN2400 frequency bands. A single dielectric resonator element is fed by two coaxial probes to excite the orthogonal modes. A couple of slots are introduced on the ground plane to improve the isolation between antenna ports. The slots also serve the purpose of reconfiguration in the lower band on placement of switches at optimized locations. The measured impedance bandwidth is 5.16% (1.41–1.49 GHz in the lower band and 26% (2.2–2.85 GHz in the higher band. The lower band reconfigures with an impedance bandwidth of 6.5% (1.55–1.65 GHz when PIN diodes are switched ON. The gain, efficiency, correlation coefficient, and diversity gain of the MIMO DRA are presented with a close agreement between simulated and measured results.

  17. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  18. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  19. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  20. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  1. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    Science.gov (United States)

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  2. Design of a novel high efficiency antenna for helicon plasma sources

    Science.gov (United States)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  3. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  4. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  5. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    International Nuclear Information System (INIS)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-01-01

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10 4  S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks

  6. High Frequency Traders and Market Structure

    NARCIS (Netherlands)

    Menkveld, A.J.

    2014-01-01

    The arrival of high-frequency traders (HFTs) coincided with the entry of new markets and, subsequently, strong fragmentation of the order flow. These trends might be related as new markets serve HFTs who seek low fees and high speed. New markets only thrive on competitive price quotes that

  7. Micro-concave waveguide antenna for high photon extraction from nitrogen vacancy centers in nanodiamond

    Science.gov (United States)

    Rajasekharan, Ranjith; Kewes, Günter; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; McCallum, Jeffrey C.; Roberts, Ann; Benson, Oliver; Prawer, Steven

    2015-01-01

    The negatively charged nitrogen-vacancy colour center (NV− center) in nanodiamond is an excellent single photon source due to its stable photon generation in ambient conditions, optically addressable nuclear spin state, high quantum yield and its availability in nanometer sized crystals. In order to make practical devices using nanodiamond, highly efficient and directional emission of single photons in well-defined modes, either collimated into free space or waveguides are essential. This is a Herculean task as the photoluminescence of the NV centers is associated with two orthogonal dipoles arranged in a plane perpendicular to the NV defect symmetry axis. Here, we report on a micro-concave waveguide antenna design, which can effectively direct single photons from any emitter into either free space or into waveguides in a narrow cone angle with more than 80% collection efficiency irrespective of the dipole orientation. The device also enhances the spontaneous emission rate which further increases the number of photons available for collection. The waveguide antenna has potential applications in quantum cryptography, quantum computation, spectroscopy and metrology. PMID:26169682

  8. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  9. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  10. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  11. The photovoltaic planar antenna - high-tech with multifunctional utilisation of the physical properties of solar cells. Paper; Die photovoltaische Planarantenne - High-Tec durch multifunktionale Nutzung der physikalischen Eigenschaften von Solarzellen. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J.; Henze, N. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany)

    2001-07-01

    The use of the photovoltaic energy conversion for power supply has been practised successfully in communication technological facilities for years. Problems often arise regarding the optimal installation locations and orientations of the components Solar-Cell/-module and antenna, because they mutually visually or electromagnetically often disturb themselves. The partly very high direct costs also cause difficulties at the simultaneous use of both components. The vision arising at the ISET, was to use this unintentional effect of the parasitical irradiation as new multifunctional quality of solar cells. The ''Solar Planar Antenna'' could take both radio and energy supply functions of electric equipment or systems and make completely new equipment design and system concepts possible. After some finally promising tests the ''Solar Planar Antenna'' was applied as German, European, US-American and Japanese patent. The name SOLPLANT became a registered trademark. The ''Solar Planar Antenna'' shall be used in products where the simultaneous use of photovoltaic and Radio Frequency facilities are still incompatible. Some of the possible applications are compact measurement stations with RF-based communication, GPS-based navigation systems, communication base stations, antenna and battery charger at mobile telephone handsets, ''Bluetooth'' based computer devices and accessories like keyboards, trackballs or organisers. Together with a digital signal conditioning in combination with an array of ''Solar Planar Antennas'' a digital coil forming is possible. With this feature the antenna can be used as high gain antenna and it is possible to blind out noise and distortions. [German] Die Nutzung der photovoltaischen Energiewandlung zur Stromversorgung wird in kommunikationstechnischen Einrichtungen seit Jahren erfolgreich praktiziert. Probleme bereiten oft die optimalen

  12. New Modelling Capabilities in Commercial Software for High-Gain Antennas

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Lumholt, Michael; Meincke, Peter

    2012-01-01

    characterization of the reflectarray element, an initial phaseonly synthesis, followed by a full optimization procedure taking into account the near-field from the feed and the finite extent of the array. Another interesting new modelling capability is made available through the DIATOOL software, which is a new...... type of EM software tool aimed at extending the ways engineers can use antenna measurements in the antenna design process. The tool allows reconstruction of currents and near fields on a 3D surface conformal to the antenna, by using the measured antenna field as input. The currents on the antenna...... surface can provide valuable information about the antenna performance or undesired contributions, e.g. currents on a cable,can be artificially removed. Finally, the CHAMP software will be extended to cover reflector shaping and more complex materials,which combined with a much faster execution speed...

  13. Antenna development for astroparticle and radioastronomy experiments

    International Nuclear Information System (INIS)

    Charrier, Didier

    2012-01-01

    An active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of “Butterfly” antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m×1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  14. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-01-01

    For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  15. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  16. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  17. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    Yang, X.

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This

  18. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance

    Directory of Open Access Journals (Sweden)

    Marco Salucci

    2018-04-01

    Full Text Available The elementary radiator of a planar array for next generation millimeter-wave (mm-wave 5G base stations is described. The antenna is designed for high density interconnect (HDI manufacturing for yielding a compact, densely-interconnected, and highly-integrable stacked structure. The layout of the single element is determined by directly optimizing key radiation features of the whole planar arrangement according to specific application-driven requirements. In addition, thanks to the exploitation of a spline-shaped modelling of the radiator, suitable performance in terms of impedance matching, realized gain, half-power beamwidth (HPBW, polarization purity, and inter-element isolation are achieved within the 28-GHz pass-band. Moreover, integrated out-of-band filtering capabilities are obtained in selected and wide non-contiguous stop-bands without additional circuitry.

  19. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Directory of Open Access Journals (Sweden)

    Mohammad Habib Ullah

    2013-11-01

    Full Text Available A new meta-surface structure (MSS with a near-zero refractive index (NZRI is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS, a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  20. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  1. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    International Nuclear Information System (INIS)

    Yi, Xiaohua; Cho, Chunhee; Wang, Yang; Cooper, James; Tentzeris, Manos M; Leon, Roberto T

    2013-01-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack. (paper)

  2. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  3. Planning Optimization of the Distributed Antenna System in High-Speed Railway Communication Network Based on Improved Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Zhaoyu Chen

    2018-01-01

    Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.

  4. A High-gain and Low-scattering Waveguide Slot Antenna of Artificial Magnetic Conductor Octagonal Ring Arrangement

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-04-01

    Full Text Available A novel design of high-gain and low-scattering waveguide slot antenna is proposed in this paper. Firstly the scattering pattern of artificial magnetic conductor (AMC composite surface is estimated by array factor analysis method. The comparison between octagonal ring arrangement and chessboard arrangement proves that the former arrangement has the characteristic of diffuseness-like and expands the bandwidth of radar cross section (RCS reduction. Secondly, the metal surface of waveguide slot antenna (WSA is replaced by the octagonal ring arrangement composite surface (ORACS. The gain is improved because of spurious radiation units which are around the slot. At the same time using the phase cancellation principle, a backscatter null achieves RCS reduction in the vertical direction. Experimental results show that the novel antenna after loading with the ORACS, the gain is improved by 5dB; the bandwidth of RCS reduction (reduction greater than 10dB is 5.24-5.92 GHz.

  5. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  6. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array

  7. Microwave Ablation of Pulmonary Malignancies Using a Novel High-energy Antenna System

    Energy Technology Data Exchange (ETDEWEB)

    Little, Mark W.; Chung, Daniel; Boardman, Philip; Gleeson, Fergus V.; Anderson, Ewan M., E-mail: ewan.anderson@ouh.nhs.uk [Churchill Hospital, Department of Radiology (United Kingdom)

    2013-04-15

    To evaluate the technical success, safety, and imaging follow-up of malignant pulmonary nodules treated with a novel high-energy percutaneous microwave ablation (MWA) system. Between July 2010 and September 2011, a total of 23 patients, 12 men, mean age 68 (range 30-87) years with 29 pulmonary malignancies of median diameter 19 (range 8-57) mm, underwent computed tomography (CT)-guided MWA with a 16G microwave needle antenna enabling power up to 180 W. Technical success was defined as needle placement in the intended lesion without death or serious injury. Adequacy of ablation was assessed at 24 h on contrast-enhanced CT. Circumferential solid or ground glass opacification >5 mm was used to define an ideal ablation. Local tumor recurrence was assessed at 1, 3, and 6 months after ablation on contrast-enhanced CT. MWA was technically successful in 93 % (n = 27). Mean ablation duration was 3.6 (range 1-9) min. Ten patients (43 %) developed a pneumothorax as a result of the MWA; only 3 (13 %) required placement of a chest drain. Thirty-day mortality rate was 0 %. The mean hospital stay was 1.5 (range 1-7) days. A total of 22 lesions (75 %) were surrounded by {>=}5 mm ground glass or solid opacification after the procedure. At a median follow-up of 6 months, local recurrence was identified in 3 out of 26 lesions, giving a local control rate of 88 %. MWA using a high-power antenna of pulmonary malignancies is safe, technically achievable, and enables fast ablation times.

  8. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  9. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  10. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  11. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  12. The healthiness of JT-60 ICRF antenna and development of its temperature measurement device

    International Nuclear Information System (INIS)

    Hiranai, Shinichi; Yokokura, Kenji; Moriyama, Shinichi; Sato, Tomio; Ishii, Kazuhiro; Fujii, Tsuneyuki

    1998-03-01

    Ion Cyclotron Range of Frequency (ICRF) heating system in JT-60 employs two antennas to couple RF power in the range of 100 MHz to the plasma. The antennas are installed in the vacuum vessel of JT-60, facing to the high temperature plasma. Due to the severe heat load from the plasma, parts of the antenna surface are suffering from melt. It is important to investigate the mechanism of the heat load and the melting. 'Temperature measurement for ICRF antenna surface' employing an infrared thermographic camera has been developed, in order to investigate the heat load to the antenna and to maintain the antenna available. We have succeeded in minimizing the melting damage of the antenna surface using the temperature measurement device. (author)

  13. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...

  14. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  15. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  16. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  17. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  18. Antenna Beam Pattern Characteristics of HAPS User Terminal

    Science.gov (United States)

    Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob

    High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.

  19. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  20. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  1. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  2. High-performance low-power smart antenna for smart world applications

    CSIR Research Space (South Africa)

    Lysko, AA

    2014-10-01

    Full Text Available with the summary in Section IV. II. ANTENNA SYSTEM DESCRIPTION The antenna introduced in this paper is an advanced and compact array antenna-based system which sends/receives the signals into/from the air, with the direction of transmission/reception being... of radiation pattern. The optimization variables were the height of the antenna’s active and parasitic elements and the radius at which the parasitic elements are away from the active element. The manufactured prototype is shown in Fig. 1b. It is compact...

  3. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  4. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  5. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  6. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  7. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  8. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  9. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  10. Ion Bernstein wave antenna design for DIII-D

    International Nuclear Information System (INIS)

    Phelps, R.D.; Mayberry, M.J.; Pinsker, R.J.

    1989-01-01

    An array of two toroidal loop antennas has been designd and installed on the DIII-D tokamak to carry out Ion Bernstein Wave (IBW) heating experiments. The antenna will operate at the 2 MW level and provide direct excitation of the IBW over the frequency range of 30-60 MHz. This device will permit the study of coupling th IBW to divertor plasmas and will provide a menas for improving the confinement and stability of high beta plasmas through localized off-axis heating. This paper describes both the mechanical and electromagnetic design of the IBW antenna. (author). 2 refs.; 4 figs.; 1 tab

  11. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  12. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  13. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  14. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  15. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  16. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  17. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  18. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Science.gov (United States)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  19. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  20. Preface for the book: Antennas And Propagation for Body-Centric Wireless Communications

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2006-01-01

    The book address the following subjects: Body Centric Wireless Communications possibilities, Electromagnetic properties of the body, On-body Communication Channels at high and low frequency bands, Body Centric UWB Communications, Wearable Antennas for cellular and WLAN communications, Body...

  1. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  2. A compact planar multi-broad band monopole antenna for mobile devices

    Science.gov (United States)

    Zhong, Xiaoqing; Yao, Bin; Zheng, Qinhong; Yang, Jikong; Cao, Xiangqi

    2015-10-01

    A Multiple-frequency broadband planar monopole antenna is proposed in this Paper. The antenna is stimulated and numerically optimized by HFSS13.0 (High Frequency Structure Simulator). The size of it is 39mm×22mm×1.7mm. The antenna resonates at many frequencies. The parameter S112G(DCS1800 and PCS1900), 3G(UMTS), 4G(LTE2300 and LTE2500), ISM, WLAN. It is quiet appropriate for the present ultra-thin smart phones

  3. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    developed [4]. If OFDM signals are used for the radiation, the carriers can be split in even and odd carriers and fed to the two orthogonally polarized transmit antennas. By using OFDM, the de-correlation of the two subcarrier groups becomes inherently high. Due to the orthogonality of OFDM subcarriers the de-correlation only depends on the quality of the hardware and the signal processing. They can be simultaneously radiated and received by the two antennas. This could result in a significant improvement of the GPR sensor system. The antenna has been realized and first measurements have been conducted. During the forthcoming EGU 2015 General Assembly the detailed electromagnetic background and the function of the dual linear, orthogonal polarized antenna will be presented as well as results in GPR relevant frequencies. Also, an approach of a planar feeding network will be presented. This abstract is a contribution to Session GI3.1 "Civil Engineering Applications of Ground Penetrating Radar," organized by the COST Action TU1208. References [1] Carin, L.; Kapoor, R.; Baum, C.E., "Polarimetric SAR imaging of buried landmines," IEEE Transactions on Geoscience and Remote Sensing, vol. 36 iss. 6, pp.1985-1988, 1998. [2] T. Schultze, M. Porebska, W. Wiesbeck, and I. Willms, "Onsets for the recognition of objects and image refinement using UWB Radar," in Proceedings of the German Microwave Conference GeMiC 2008, CD-ROM, Hamburg-Harburg, Germany, Mar. 2008. [3] G. Adamiuk, S. Beer, W. Wiesbeck, and T. Zwick, "Dual-Orthogonal Polarized Antenna for UWB-IR Technology," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 981-984, Jul. 2009. [4] Adamiuk, W. Wiesbeck, and T. Zwick, "Differential Feeding as a Concept for the Realization of Broadband Dual-Polarized Antennas with Very High Polarization Purity," in 2009 IEEE International Symposium on Antennas & Propagation, Charleston, South Carolina, USA, Jun. 2009.

  4. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    Science.gov (United States)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  5. High-power microwave generation from a frequency-stabilized virtual cathode source

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.; Kinross-Wright, J.

    1988-01-01

    The evolution of virtual cathode based high-power microwave-source technology has been directed primarily toward achieving higher peak-power levels. As peak powers in excess of 10 GW have been reported, attention has begun to focus on techniques for producing a more frequency- and phase-stable virtual cathode source. Free-running virtual cathode microwave sources characteristically exhibit bandwidths in a single pulse of tens of percent, which makes them unsuitable for many applications such as power sources for phased array antennas and microwave linear accelerators. Presented here are results of an experimental approach utilizing a high-Q, resonant cavity surrounding the oscillating virtual cathode to achieve frequency stabilization and repeatable narrow-band operation. A cylindrical cavity resonator is used with the microwave power being extracted radially through circumferential slot apertures into L-band waveguide

  6. Optically Controlled Phased Array Antenna

    National Research Council Canada - National Science Library

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  7. MIMO channel capacity versus mutual coupling in multi antenna element system

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    In this paper the influence of mutual coupling on the capacity of a multiple-input multiple-output (MIMO) antenna system is demonstrated. No direct relation between the envelope correlation and the actual location and orientation of the antennas is found. Even though being essential for high MIMO...... capacity, configurations with the lowest envelope correlations are not necessarily the most suitable for a MIMO system. A certain bandwidth is required as well. Three planar inverted F-antennas (PIFA) located on the same 40 mm x 100 mm ground plane. The antennas that haves a resonant frequency of 1.8 GHz...

  8. Design, simulation and analysis a microstrip antenna using PU-EFB substrate

    Science.gov (United States)

    Mahmud, S. N. S.; Jusoh, M. A.; Jasim, S. E.; Zamani, A. H.; Abdullah, M. H.

    2018-04-01

    A low cost, light weight and easy to fabricate are the most important factor for future antennas. Microstrip patch antennas offer these advantages and suitable for communication and sensor application. This paper presents a design of simple microstrip patch antenna working on operating frequency of 2.4 GHz. The designed process has been carried out using MATLAB and HFSS software by entering 2.3 for the dielectric constant of PU-EFB. The results showed that high return loss, low bandwidth and good antenna radiation efficiency of which are -21.98 dB, 0.28 dB and 97.33%, respectively.

  9. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  10. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  11. Non-Foster Circuits for High Performance Antennas: Advantages and Practical Limitations

    Science.gov (United States)

    Jacob, Minu Mariam

    The demand for miniaturized, broadband communication systems has created a need for electrically small, broadband antennas. However, all passive electrically small antennas have a fundamental gain-bandwidth limitation related to their electrical size, as first described by Wheeler and Chu. This limitation can be overcome using active non-Foster circuits (negative inductors and/or negative capacitors), which can deliver a broadband input match with active matching techniques, or can help reduce phase dispersion using negative delay effects. This thesis will illustrate the advantages of non-Foster circuits in obtaining broadband small antennas, in addition to examining their practical limitations due to noise in receive applications, and nonlinearity in transmit applications.

  12. Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    Science.gov (United States)

    Yousefi, Tara

    There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and

  13. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  14. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  15. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  16. Fundamentals of antennas concepts and applications

    CERN Document Server

    Christodoulou, Christos G

    2001-01-01

    This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.

  17. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  18. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  19. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  20. HIGH FREQUENCY ELECTROSTATIC INSTABILITIES IN A PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M W; Auer, P L

    1963-06-15

    The dispersion relation is examined for a collisionless infinite plasma in the presence of an anisotropic Maxwellian velocity distribution and a uniform external magnetic field. Unstable solutions exist below the muitiples of the electron cyclotron frequency provided the temperature anisotropy is sufficiently large. The dependence of the growth rate upon harmonic number, density, angle of propagation with respect to the magnetic field, and frequency is discussed for zero as well as non-zero parallel temperatures. In the latter case, the waves are strongly damped as their frequency approaches a multiple of the gyro- frequency. (auth)

  1. Intercomparison of Methods for Determination of Resonant Frequency Shift of a Microstrip Patch Antenna Loaded with Hevea Rubber Latex

    Directory of Open Access Journals (Sweden)

    Nor Zakiah Yahaya

    2014-01-01

    Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.

  2. Performance Comparison Of Triangle Antenna of 60 GHz for 5G Wireless Communication Network

    Directory of Open Access Journals (Sweden)

    Aishah A.S.

    2017-01-01

    Full Text Available In this paper microstrip triangle with slot antenna for 5G wireless communication network are proposed. The microstip triangle antenna is design and operating 60 GHz milimeter-wave frequency band and it's suitable for 5G wireless communication. The substrates are chosen in the design, which are RogerRT5880 with copper thickness 0.035 mm to analyze their effect toward milimeter-wave performance on the designed. The designed and analysis is performed by using CST Microwave Studio. The lowest return loss of the antenna is -24.75dB which is triangle with slot and the maximum gain obtained is 6.82 db at the 59.68GHz for this antenna. The antenna is considering the gain, return loss and size, the microstrip antenna can be a suitable candidate for the 5G wireless application for short range high speed communication.

  3. Multislot microstrip antenna for ultra-wide band applications

    Directory of Open Access Journals (Sweden)

    Noor M. Awad

    2018-01-01

    Full Text Available In this paper designs of both planar ultra-wide band (UWB antenna and UWB antenna with two rejected bands are given. The antenna consists of a rectangular patch etched on FR4-substrate with 50 Ω feed line. The rectangular patch has one round cut at each corner with one slot in the ground plane. The simulated bandwidth with return loss (RL ⩾ 10 dB is 3.42–11.7 GHz. The rejected bands are the WLAN and X-bands, achieved by inserting slots in the patch and the feed. The simulated results of the proposed antenna indicate higher gain at the passbands while a sharp drop at the rejected bands is seen. The radiation pattern is of dipole shape in the E-plane and almost omnidirectional in the H-plane. The high frequency structure simulator (HFSS is used to design and simulate the antennas behavior over the different frequency ranges. Measurements confirm the antenna characteristic as predicted in the simulation with a slight shift in frequencies.

  4. High frequency characterization of conductive inks embedded within a structural composite

    Science.gov (United States)

    Pa, Peter; McCauley, Raymond; Larimore, Zachary; Mills, Matthew; Yarlaggada, Shridhar; Mirotznik, Mark S.

    2015-06-01

    Woven fabric composites provide an attractive platform for integrating electromagnetic functionality—such as conformal load-bearing antennas and frequency selective surfaces—into a structural platform. One practical fabrication method for integrating conductive elements within a woven fabric composite system involves using additive manufacturing systems such as screen printing. While screen printing is an inherently scalable, flexible and cost effective method, little is known about the high frequency electrical properties of its conductive inks when they are embedded within the woven fabric composite. Thus, we have completed numerical and experimental studies to determine the electrical conductivity of screen printable conductive inks that are embedded within this composite. We have also performed mechanical studies to evaluate how printing affects the structural performance of the composite.

  5. Contact resistance measurement structures for high frequencies

    NARCIS (Netherlands)

    Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.

    2011-01-01

    Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto

  6. Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate

    KAUST Repository

    Cook, Benjamin Stassen; Shamim, Atif

    2012-01-01

    for the UWB band which exhibits a significantly higher gain of up to 8 dBi as compared to the currently published inkjet printed antennas, and a novel slow-wave log periodic dipole array which employs a new miniaturization technique to show 20% width reduction

  7. A novel paradigm for high isolation in multiple antenna systems with user's influence

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund; Knudsen, Mikael Bergholz

    2010-01-01

    (UMTS) bands are investigated, showing also the influence of different hand phantoms in average use trough Finite-Difference TimeDomain (FDTD) simulations. It is confirmed that the way a mobile phone is held is very important in determining the amount of absorption loss, detuning and antenna isolation...

  8. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Pete [Univ. of Kansas, Lawrence, KS (United States)

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  9. AMELIORATE OF BANDWIDTH AND RETURN LOSS OF RECTANGULAR PATCH ANTENNA USING METAMATERIAL STRUCTURE FOR RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    RAJESH SAHA

    2016-09-01

    Full Text Available Radio Frequency Identification is an emerging research topic to identify any object automatically and it has applications in many fields like manufacture industry, business, animal tracking, vehicle tracking etc. In automatic identification system, the main role of radio frequency identification system is radiation and detection. The reader and the tag are the important components in radio frequency identification technology. In radio frequency identification system, antenna plays very significant role to transmit and receive data in both direction (i.e., from reader to tag and vice versa. An antenna with high gain, high directivity, high bandwidth and more down in negative S11 (dB value works as an effective antenna. So design and optimization of an effective antenna is very necessary for any application. In this paper, firstly itdesigned a rectangular patch antenna and simulated through High Frequency Structure Simulator. In next step, it designed a metamaterial structure having U shape Split Ring Resonator with both one and two port, on the rectangular patch antenna to improve the return loss and bandwidth of patch antenna; so that the performance of the tag can be increased for the radio frequency identification system. By simulation it has been seen that, two port antenna provides maximum return loss and bandwidth of - 41.2dB and 870MHz respectively. Finally, the output parameters such as return loss, gain, directivity that are obtained from simulation of the metamaterial Split Ring Resonator structure antenna are compared with the network output of Artificial Neural Network to find the Mean Square Error between the simulated output and Artificial Neural Network output.

  10. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  11. High-frequency modulation of ion-acoustic waves.

    Science.gov (United States)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  12. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  13. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  14. A Wideband High-Gain Dual-Polarized Slot Array Patch Antenna for WiMAX Applications in 5.8 GHz

    Directory of Open Access Journals (Sweden)

    Amir Reza Dastkhosh

    2012-01-01

    Full Text Available A low-cost, easy-to-fabricate, wideband and high-gain dual-polarized array antenna employing an innovative microstrip slot patch antenna element is designed and fabricated. The design parameters of the antenna are optimized using commercial softwares (Microwave Office and Zeland IE3D to get the suitable -parameters and radiation patterns. Finally, the simulation results are compared to the experimental ones and a good agreement is demonstrated. The antenna has an approximately bandwidth of 14% (5.15–5.9 GHz which covers Worldwide Interoperability Microwave Access (WiMAX/5.8. It also has the peak gain of 26 dBi for both polarizations and high isolation between two ports over a wide bandwidth.

  15. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  16. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  17. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  18. Performance of a compact four-strap fast wave antenna

    International Nuclear Information System (INIS)

    Wukitch, S.J.

    2002-01-01

    Ion cyclotron range of frequency (ICRF) is expected to be a primary auxiliary heating source in future experiments and fusion reactors. Compact antennas with high power density able to withstand large disruption forces present significant challenges to ICRF antenna design. A compact four-strap antenna has been installed in Alcator C-Mod and its performance has been compared with a pair of two-strap antennas. The key design features are the long vacuum strip line feeds, folded current strap configuration, use of ceramic insulators in the Faraday screen, and open Faraday screen. The heating efficiency and impurity generation are nearly identical to the other antennas while the loading is ∼2.5 higher. The power handling of the antenna was limited by arcing at relatively low maximum voltage. The strip line and antenna strap had arc damage localized to regions where the RF E-field was parallel to the tokamak B-field. For E parallel B, the breakdown voltage was determined to be ∼15 kV/cm. Redesign of the strip line has resulted in an increase in the maximum voltage from 17 kV to 25 kV. Finally, the current strap is being modified to increase the maximum voltage to ∼35 kV. (author)

  19. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  20. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  1. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  2. ICRH antenna S-matrix measurements and plasma coupling characterisation at JET

    Science.gov (United States)

    Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET

    2018-04-01

    The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at  >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.

  3. Modulated convection at high frequencies and large modulation amplitudes

    International Nuclear Information System (INIS)

    Swift, J.B.; Hohenberg, P.C.

    1987-01-01

    Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed

  4. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...

  5. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  6. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  7. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  8. Effects of high frequency electromagnetic field emitted from digital cellular telephones on electronic pocket dosimeters

    International Nuclear Information System (INIS)

    Shizuhiko, Deji; Kunihide, Nishizawa

    2002-01-01

    High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 ± 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283μ Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection

  9. Effects of high frequency electromagnetic field emitted from digital cellular telephones on electronic pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Shizuhiko, Deji; Kunihide, Nishizawa [Nagoya Univ., Nagoya (Japan)

    2002-07-01

    High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 {+-} 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283{mu} Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection.

  10. Analysis of Various Frequency Selective Shielding Glass by FDTD method

    OpenAIRE

    笠嶋, 善憲; Kasashima, Yoshinori

    2012-01-01

    A frequency Selective shielding (FSS) glass is a print of many same size antennas on a sheet of glass, and it has high shielding properties for one specific frequency. This time, the author analyzed characteristics of various FSSs whose antenna types are different by FDTD method. The antenna types are cross dipole, circular loop, square loop, circular patch, and square patch. As the result, the FSSs can be composed of the various types of the antennas, and the FSSs have broad-band shielding c...

  11. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  12. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    International Nuclear Information System (INIS)

    Courtois, X.; Meunier, L.; Kuznetsov, V.; Beaumont, B.; Lamalle, P.; Conchon, D.; Languille, P.

    2016-01-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  13. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  14. All-dielectric rod antenna array for terahertz communications

    Science.gov (United States)

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  15. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  16. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  17. Coplanar stripline components for high frequency application

    Science.gov (United States)

    Goverdhanam, Kavita; Simons, Rainee N.; Dib, Nihad; Katehi, Linda P. B.

    1996-01-01

    In this paper, coplanar stripline discontinuities such as a slit, a right angle bend and a T-junction are characterized and their performance is parameterized with respect to frequency and geometry. Lumped equivalent circuits are presented for some of them. The element values are obtained from the measured discontinuity scattering (S) parameters. The experimental results are compared with theoretical data obtained using the Finite Difference Time Domain (FD-TD) technique for validation and show very good agreement.

  18. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  19. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  20. Fiber-optic transmission system information for the testing of active phased antenna arrays in an anechoic chamber.

    Science.gov (United States)

    Saveleiv, I. K.; Sharova, N. V.; Tarasenko, M. Yu; Yalunina, T. R.; Davydov, V. V.; Rud', V. Yu

    2017-11-01

    The results of the research of the developed fiber-optic transmission systems for analog high frequency signal are represented. On its basis, a new method to identify various structural defects in the active phased antenna arrays is elaborated.

  1. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  2. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  3. Recent results of JT-60U ICRF antenna operation

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.

    1994-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of attractive plasma heating methods for reactor grade tokamaks, because it is quite effective in the wide ranges of plasma density and temperature. An antenna which should inject high power into plasma has been developed intensively because the heating efficiency and the coupling properties depend on its design. The antenna was operated at a small antenna-plasma gap in the JT-60 in out of phase mode, which showed the high heating efficiency to obtain high loading resistance, and similarly to other tokamaks. However, in order to reduce heat load to the antenna from plasma, a wide gap is required in reactor grade tokamaks such as ITER, in which the gap is designed to be 0.15 m in CDA. Two new antennas were fabricated for the JT-60U, which were designed to obtain high loading resistance at a wide gap for (π,0) phasing. The JT-60U ICRF heating system is explained. Also the JT-60U antenna is described. Antenna conditioning has been conducted well in the initial operation period. The phasing mode was set at (π,0) phasing, in which high heating efficiency is expected. The procedure is explained. The coupling and radiation loss properties during ICRF heating are reported. The JT-60U ICRF antennas were conditioned quickly with about 70 shots. The maximum coupled power was 6.4 MW for (π,0) phasing, and the power density was 6.1 MW/m 2 . (K.I.)

  4. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  5. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    1999-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  6. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  7. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts 99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.

  8. Theory of the JET ICRH antenna

    International Nuclear Information System (INIS)

    Theilhaber, K.

    1984-01-01

    The JET antenna has been conceived as a 'limiter antenna', completely recessed in a lateral frame which has the dual purpose of protecting the conductors and limiting the plasma radius. The coupling of this antenna is calculated in slab geometry, using a variational formulation which finds the self-consistent currents in the antenna elements. Full account is taken of the modes excited inside the limiter frame and of their coupling to waves in the inhomogeneous plasma. This yields the antenna impedance as a function of frequency and the field structure inside the plasma, including power fluxes and dispersion, as a function of penetration. (author)

  9. COMWIN Antenna System Fiscal Year 2000 Report

    National Research Council Canada - National Science Library

    Adams, R

    2000-01-01

    .... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.

  10. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  11. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  12. High Frequency Acoustic Propagation using Level Set Methods

    Science.gov (United States)

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed

  13. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  14. Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2016-12-01

    Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.

  15. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  16. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  17. Performance improvement of 100 kW high frequency transmitter for CW operation

    International Nuclear Information System (INIS)

    Kwak, J. G.; Yoon, J. S.; Bae, Y. D.; Cho, C. G.; Wang, S. J.; Lee, K. D.

    2001-08-01

    For the plasma heating of KSTAR(Korea Superconducting Tokamak Advanced Research)by using ICH(Ion Cyclotron Heating), it is designed that the selective ion heating and current drive are performed by the transmitter with the rf power of 8 MW in the frequency range of 25-60 MHz. 100 kW HF transmitter was constructed for the high voltage/current test of ICH antenna and HF transmission components. The output power is about 100 kW around 30 MHz. Thomson 581 tetrode is used for the final amplifier whose cavity type is ground cathode. Overall gain is above 15 dB and the bandwidth is about 100 kHz

  18. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  19. COMPACT DUAL-BAND INVERTED L SHAPED MONOPOLE ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K Sumathi

    2015-12-01

    Full Text Available A highly compact and an optimized design of an Inverted L shaped printed monopole antenna with a simple compact ground plane is proposed. To make the designed antenna suitable for implantation it is embedded in FR-4 substrate and is presented. The antenna is designed for dual-band operation at 2.4GHz and 5.2GHz. It is suitable for Wireless Local Area Network (WLAN applications with return loss (S11 < -10dB. The antenna has two different resonant current paths that support two resonances at 2.44GHz and 5.18GHz (forming an F-shaped structure. The size of the antenna is 32.5mm × 19.6mm × 1.6mm. The antenna design is simulated using the tool Advanced Design System (ADS 2014. This antenna design has good return loss and radiation characteristics in both the required frequency bands. The radiation pattern obtained from the proposed antenna is an Omni directional radiation pattern in the E and H plane over the frequency ranges 2.4GHz and 5.2GHz.

  20. High frequency response of open quantum dots

    International Nuclear Information System (INIS)

    Brunner, R.; Meisels, R.; Kuchar, F.; Ferry, D.; Elhassan, M.; Ishibashi, K.

    2002-01-01

    Full text: We investigate the response of the transport through open quantum dots to millimeterwave radiation (up to 55 GHz). In the low-field region ( 11 cm -2 and a mobility of 1.2 10 6 cm 2 /Vs. By applying a sufficiently negative voltage to the gates the 2DES is split into two regions connected only by a dot-like region (about 350 nm diameter) between them. The DC data exhibit backscattering peaks at fields of a few tenth of a Tesla. Shubnikovde- Haas (SdH) oscillations appear above 0.5 T. While the SdH oscillations show the usual temperature dependence, the backscattering peaks are temperature independent up to 2.5 K. The backscattering peak shows a reduction of 10 percent due to the millimeterwave irradiation. However, due to the temperature independence of this peak, this reduction cannot simply be attributed to electron heating. This conclusion is supported by the observation of a strong frequency dependence of the reduction of the peak height. (author)

  1. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    Science.gov (United States)

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  2. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  3. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    Science.gov (United States)

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  4. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

    Science.gov (United States)

    Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun

    2017-08-25

    The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

  5. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  6. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1980-01-01

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  7. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    Abi Saad, R.; Melhem, Z.; Nader, C.; Zaatar, Y.; Zaouk, D.

    2011-01-01

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  8. Curtain Antenna Array Simulation Research Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Hongbo LIU

    2014-01-01

    Full Text Available For the radiating capacity of curtain antenna array, this paper constructs a three- line-four-column curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is around 18 m and the best communication effect will be achieved when the communication frequency is about 12.4 MHz.

  9. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  10. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  11. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  12. Frequency-Diversity Reception for Phase Modulation

    Science.gov (United States)

    Brockman, M. H.

    1984-01-01

    Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.

  13. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  14. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  15. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  16. Improving mental task classification by adding high frequency band information.

    Science.gov (United States)

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  17. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  18. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  19. High frequency characterization of Galfenol minor flux density loops

    Directory of Open Access Journals (Sweden)

    Ling Weng

    2017-05-01

    Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.

  20. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-09-15

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  1. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  2. High quality factor gigahertz frequencies in nanomechanical diamond resonators

    OpenAIRE

    Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.

    2007-01-01

    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...

  3. Performance Enhancement of the Patch Antennas Applying Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Mohamed N. Azermanesh

    2007-09-01

    Full Text Available This paper reports on the application of micromachining technology for performance enhancement of two types of compact antennas which are becoming a common practice in microsystems. Shorted patch antennas (SPA and folded shorted patch antennas operating in the 5-6 GHz ISM band, with intended application in short-range wireless communications, are considered. The electrical length of antennas are modified by etching the substrate of the antennas, thus providing a new degree of freedom to control the antenna operating properties, which is the main novelty of our work. The gain and bandwidth of the antennas are increased by increasing the etching depth. However, etching the substrate affects the operating frequency as well. To keep the operating frequency at a pre-specified value, the dimension of the antennas must be increased by deepening the etching depth. Therefore, a trade off between the performance enhancement of the antennas and the dimensional enlargement is required.

  4. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  5. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  6. Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

    Directory of Open Access Journals (Sweden)

    Kyoseung Keum

    2018-01-01

    Full Text Available In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of 15 mm × 50 mm × 1 mm. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

  7. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    International Nuclear Information System (INIS)

    McCarville, T.M.; Romesser, T.E.

    1985-01-01

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180 0 apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown

  8. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  9. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  10. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  11. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  12. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  13. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  14. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  15. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas....

  16. Design and development of ITER high-frequency magnetic sensor

    NARCIS (Netherlands)

    Ma, Y.; Vayakis, G.; Begrambekov, L. B.; Cooper, J.J.; Duran, I.; Hirsch, M.; Laqua, H.P.; Moreau, Ph.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.

    2016-01-01

    High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in

  17. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna

    Science.gov (United States)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.

    2018-03-01

    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  18. A Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Frequency-Selective Fading Channels with Power Control Error

    Directory of Open Access Journals (Sweden)

    Yong-Seok Kim

    2004-08-01

    Full Text Available An improved antenna array (AA has been introduced, in which reverse-link synchronous transmission technique (RLSTT is incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI, the beamformer estimates the desired user's complex weights, enhancing its signal and reducing cochannel interference (CCI from the other directions. In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such as the shape of multipath intensity profile (MIP, the number of antennas, and power control error (PCE. Theoretical analysis, confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.

  19. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  20. Coupling of RF antennas to large volume helicon plasma

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2018-04-01

    Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  1. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  2. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  3. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  4. Oscillographic Chronopotentiometry with High and Low Frequency Current

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.

  5. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  6. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  7. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  8. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela; Motamed, Mohammad; Runborg, Olof; Tempone, Raul

    2016-01-01

    or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral

  9. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  10. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  11. On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Laitinen, Tommi

    2011-01-01

    Azimuthal mode (m mode) truncation of a high-order probe pattern in probe-corrected spherical near-field antenna measurements is studied in this paper. The results of this paper provide rules for appropriate and sufficient m-mode truncation for non-ideal first-order probes and odd-order probes wi...

  12. Modeling an HF NVIS Towel-Bar Antenna on a Coast Guard Patrol Boat. A Comparison of WIPL-D and the Numerical Electromagnetics Code (NEC)

    National Research Council Canada - National Science Library

    Mora, Darla; Weiser, Christopher; McKaughan, Michael

    2005-01-01

    A Coast Guard patrol boat high-frequency (HF) near-vertical incident skywave (NVIS) antenna is selected as a test case to compare the electromagnetic modeling programs Numerical Electromagnetics Code, NEC and WIPL-D code...

  13. High and low spatial frequencies in website evaluations.

    Science.gov (United States)

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  14. High Order Differential Frequency Hopping: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-01-01

    Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.

  15. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  16. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  17. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Science.gov (United States)

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  18. All printed antenna based on silver nanoparticles for 1.8 GHz applications

    Science.gov (United States)

    Hassan, Arshad; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2016-08-01

    In this paper, we propose a novel printed antenna for 1.8 GHz band applications. The proposed antenna is made of silver nanoparticle-based radiating element and 0.04-mm thin, transparent and flexible polyethylene terephthalate (PET) substrate. The proposed antenna is designed and simulated by finite-element-method-based high-frequency structure simulator (HFSS). We obtain reflection coefficient of -23 dB, gain of 2.72 dBi and efficiency of 93.33 %. The resonance frequency of the antenna is also verified through national instrument (NI) Multisim simulation on the proposed equivalent circuit. We realize the antenna in a single process by commercial Dimatix material inkjet printer (DMP-3000) at ambient condition and characterize it by using vector network analyzer and spectrum analyzer. The measured reflection coefficient and -10 dB bandwidth are -32.2 dB and 190.5 MHz, respectively, which shows good agreement with HFSS and NI Multisim results. The proposed compact and optimum antenna printed on thin, transparent and fully bendable PET substrate becomes very attractive since it can overcome the limits of cost and size. These results suggest that the proposed antenna is well suitable for electronic devices operating over 1.8 GHz band such as Telos-B and other wearable printed devices.

  19. Electromagnetic simulations of JET ICRF ITER-like antenna with TOPICA and SSWICH asymptotic codes

    Directory of Open Access Journals (Sweden)

    Křivská Alena

    2017-01-01

    Full Text Available Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF heating is routinely used in the JET tokamak. To increase the ICRF heating power available from the A2 antennas, the ICRF ITER-Like Antenna (ILA was reinstalled for the 2015 JET ITER-like wall experimental campaign. The application of high levels of ICRF power typically results in increased plasma wall interaction which leads to the observation of enhanced influx of metallic impurities in the plasma edge. It is assumed that the impurity production is mainly driven by the parallel component of the Radio-Frequency (RF antenna electric near-field, E// (parallel to the confinement magnetic field of the tokamak, that is rectified in a thin boundary layer (RF sheath. Torino Polytechnic Ion Cyclotron Antenna (TOPICA code was used to compute E// field maps in front of the ILA and between its poloidal limiters in the presence of plasma using measured density profiles and various antenna feedings. E// field maps calculated between the poloidal limiters were used to estimate the poloidal distribution of RF-sheath Direct Current (DC potential in this private region of the ILA and make relative comparison of various antenna electrical settings. For this purpose we used the asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow-Wave (SSWICH-SW code. These estimations can help to study the formation of RF sheaths around the antenna and even at distant locations (∼3m away.

  20. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  1. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    Science.gov (United States)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  3. THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS.

    Science.gov (United States)

    Christie, R V; Loomis, A L

    1929-01-31

    1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths.

  4. Forecasting Value-at-Risk Using High-Frequency Information

    Directory of Open Access Journals (Sweden)

    Huiyu Huang

    2013-06-01

    Full Text Available in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500 returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval, or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it, using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging, which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.

  5. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  6. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  7. Vivaldi Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-12-01

    Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  8. A Simple Semaphore Signaling Technique for Ultra-High Frequency Spacecraft Communications

    Science.gov (United States)

    Butman, S.; Satorius, E.; Illott, P.

    2005-11-01

    For planetary lander missions such as the upcoming Phoenix mission to Mars, the most challenging phase of the spacecraft-to-ground communications is during the critical phase termed entry, descent, and landing (EDL). At 8.4 GHz (X-band), the signals received by the largest Deep Space Network (DSN) antennas can be too weak for even 1 bit per second (bps) and therefore not able to communicate critical information to Earth. Fortunately, the lander's ultra-high frequency (UHF) link to an orbiting relay can meet the EDL requirements, but the data rate needs to be low enough to fit the capability of the UHF link during some or all of EDL. On Phoenix, the minimum data rate of the as-built UHF radio is 8 kbps and requires a signal level at the Odyssey orbiter of at least minus 120 dBm. For lower signaling levels, the effective data rate needs to be reduced, but without incurring the cost of rebuilding and requalifying the equipment. To address this scenario, a simple form of frequency-shift keying (FSK) has been devised by appropriately programming the data stream that is input to the UHF transceiver. This article describes this technique and provides performance estimates. Laboratory testing reveals that input signal levels at minus 140 dBm and lower can routinely be demodulated with the proposed signaling scheme, thereby providing a 20-dB and greater margin over the 8-kbps threshold.

  9. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  10. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  11. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  12. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  13. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...

  14. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  15. Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2017-10-01

    Full Text Available This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of 5 × 5 metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels (H = 160 μm and H = 80 μm, thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels (H = 40 μm and H = 20 μm, it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

  16. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  17. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545......, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50

  18. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  19. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  20. First plasma experiments in Tore Supra with a new generation of high heat flux limiters for RF antennas

    International Nuclear Information System (INIS)

    Agarici, G.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Bucalossi, J.; Colas, L.; Durocher, A.; Gargiulo, L.; Ladurelle, L.; Lombard, G.; Martin, G.; Mollard, P.

    2000-01-01

    During the 1997 and 1998 Tore Supra shutdown, a first set of new antenna guard limiters was installed on one of the three ion cyclotron resonance heating (ICRH) antennas of Tore Supra. This limiter, which was one of the main technological studies of the 1998 campaign, was widely experimented in real plasma conditions, thus allowing the validation in situ, for the first time, of the technology of active metal casting (AMC) for plasma facing components. The huge improvement in the thermal response of the new limiter generation, compared to the old one, is shown on plasma pulses made identical in terms of antenna position and injected RF power profile. By using the infrared cameras installed inside Tore Supra and viewing the antennas front, the power density fluxes received by the carbon fibre composite (CFC) surface of the limiter were evaluated by correlation with the heat load tests made on the electrons beam facility of CEA/Framatome