WorldWideScience

Sample records for high frame-rate ultrasound

  1. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  2. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  3. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  4. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  5. Riding the Plane Wave: Considerations for In Vivo Study Designs Employing High Frame Rate Ultrasound

    Directory of Open Access Journals (Sweden)

    Jason S. Au

    2018-02-01

    Full Text Available Advancements in diagnostic ultrasound have allowed for a rapid expansion of the quantity and quality of non-invasive information that clinical researchers can acquire from cardiovascular physiology. The recent emergence of high frame rate ultrasound (HiFRUS is the next step in the quantification of complex blood flow behavior, offering angle-independent, high temporal resolution data in normal physiology and clinical cases. While there are various HiFRUS methods that have been tested and validated in simulations and in complex flow phantoms, there is a need to expand the field into more rigorous in vivo testing for clinical relevance. In this tutorial, we briefly outline the major advances in HiFRUS, and discuss practical considerations of participant preparation, experimental design, and human measurement, while also providing an example of how these frameworks can be immediately applied to in vivo research questions. The considerations put forward in this paper aim to set a realistic framework for research labs which use HiFRUS to commence the collection of human data for basic science, as well as for preliminary clinical research questions.

  6. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  7. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis vie...

  8. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  9. High-frame-rate digital radiographic videography

    Science.gov (United States)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  10. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    International Nuclear Information System (INIS)

    Daniels, Matthew J; Varghese, Tomy

    2010-01-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  11. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  12. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate

    Directory of Open Access Journals (Sweden)

    Anne Schützenberger

    2016-01-01

    Full Text Available The current use of laryngeal high-speed videoendoscopy in clinic settings involves subjective visual assessment of vocal fold vibratory characteristics. However, objective quantification of vocal fold vibrations for evidence-based diagnosis and therapy is desired, and objective parameters assessing laryngeal dynamics have therefore been suggested. This study investigated the sensitivity of the objective parameters and their dependence on recording frame rate. A total of 300 endoscopic high-speed videos with recording frame rates between 1000 and 15 000 fps were analyzed for a vocally healthy female subject during sustained phonation. Twenty parameters, representing laryngeal dynamics, were computed. Four different parameter characteristics were found: parameters showing no change with increasing frame rate; parameters changing up to a certain frame rate, but then remaining constant; parameters remaining constant within a particular range of recording frame rates; and parameters changing with nearly every frame rate. The results suggest that (1 parameter values are influenced by recording frame rates and different parameters have varying sensitivities to recording frame rate; (2 normative values should be determined based on recording frame rates; and (3 the typically used recording frame rate of 4000 fps seems to be too low to distinguish accurately certain characteristics of the human phonation process in detail.

  13. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  14. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  15. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  16. Demo : an embedded vision system for high frame rate visual servoing

    NARCIS (Netherlands)

    Ye, Z.; He, Y.; Pieters, R.S.; Mesman, B.; Corporaal, H.; Jonker, P.P.

    2011-01-01

    The frame rate of commercial off-the-shelf industrial cameras is breaking the threshold of 1000 frames-per-second, the sample rate required in high performance motion control systems. On the one hand, it enables computer vision as a cost-effective feedback source; On the other hand, it imposes

  17. Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    , a 7 MHz, 128-element, phased array transducer with lambda/2-spacing was used. Data is obtained using a single element as the transmitting aperture and all 128 elements as the receiving aperture. A full SA sequence consisting of 128 emissions was simulated by gliding the active transmitting element...... weights for each frequency sub-band. As opposed to the conventional, Delay and Sum (DS) beamformer, this approach is dependent on the specific data. The performance of the proposed MV beamformer is tested on simulated synthetic aperture (SA) ultrasound data, obtained using Field II. For the simulations...... across the array. Data for 13 point targets and a circular cyst with a radius of 5 mm were simulated. The performance of the MV beamformer is compared to DS using boxcar weights and Hanning weights, and is quantified by the Full Width at Half Maximum (FWHM) and the peak-side-lobe level (PSL). Single...

  18. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  19. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  20. Application of high-frame-rate neutron radiography to fluid measurement

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi

    1997-01-01

    To apply Neutron radiography (NR) technique to multiphase flow research, high frame-rate NR was developed by assembling up-to-date technologies for neutron source, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and no need for triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at the recording speeds of 250, 500 and 1000 frames/s. The qualities of those consecutive images were good enough to observe the flow pattern and behavior. It was demonstrated also that some characteristics of two-phase flow could be measured from those images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, rising velocity of bubbles, and wave height and interfacial area in annular flow could be obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction could be performed. For this purpose, a quantification method, i.e. Σ-scaling method, was proposed based upon the consideration on the effect of scattered neutrons. This method was tested against known void profiles and compared with existing measurement methods and a correlation for void fraction. It was confirmed that this new technique has significant advantages both in visualizing and measuring high-speed fluid phenomena. (J.P.N.)

  1. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2008-01-01

    ) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...

  2. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  3. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  4. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  5. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  6. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

    Directory of Open Access Journals (Sweden)

    Hezerul Abdul Karim

    2004-09-01

    Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

  7. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  8. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  9. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Coolen, Bram F.; Abdurrachim, Desiree; Castro, Rui M.; Prompers, Jeanine J.; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2013-01-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensi ng reconstruction. Key to our

  10. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tong-Ding, E-mail: snuohui@126.com; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-21

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  11. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  12. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  14. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  15. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  16. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  17. Joint variable frame rate and length analysis for speech recognition under adverse conditions

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Kraljevski, Ivan

    2014-01-01

    This paper presents a method that combines variable frame length and rate analysis for speech recognition in noisy environments, together with an investigation of the effect of different frame lengths on speech recognition performance. The method adopts frame selection using an a posteriori signal......-to-noise (SNR) ratio weighted energy distance and increases the length of the selected frames, according to the number of non-selected preceding frames. It assigns a higher frame rate and a normal frame length to a rapidly changing and high SNR region of a speech signal, and a lower frame rate and an increased...... frame length to a steady or low SNR region. The speech recognition results show that the proposed variable frame rate and length method outperforms fixed frame rate and length analysis, as well as standalone variable frame rate analysis in terms of noise-robustness....

  18. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  19. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  20. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    Science.gov (United States)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNRe., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  1. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  2. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  3. Impact of ultrasound video transfer on the practice of ultrasound

    Science.gov (United States)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  4. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  5. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  6. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  7. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  8. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  9. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    Science.gov (United States)

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  11. Impact of analyzing fewer image frames per segment during offline volumetric radiofrequency based intravascular ultrasound measurements of target lesions prior to percutaneous coronary interventions

    NARCIS (Netherlands)

    Huisman, J.; Hartmann, M.; Hartmann, M.; Mintz, G.S.; van Houwelingen, G.K.; Stoel, M.G.; de Man, F.H.; Louwerenburg, H.; von Birgelen, Clemens

    2012-01-01

    In the present study, we evaluated the impact of a 50% reduction in number of image frames (every second frame) on the analysis time and variability of offline volumetric radiofrequency-based intravascular ultrasound (RF-IVUS) measurements in target lesions prior to percutaneous coronary

  12. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  13. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.

    2012-01-01

    in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found...... in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...

  14. Effects of the frame acquisition rate on the sensitivity of gastro-oesophageal reflux scintigraphy

    Science.gov (United States)

    Codreanu, I; Chamroonrat, W; Edwards, K

    2013-01-01

    Objective: To compare the sensitivity of gastro-oesophageal reflux (GOR) scintigraphy at 5-s and 60-s frame acquisition rates. Methods: GOR scintigraphy of 50 subjects (1 month–20 years old, mean 42 months) were analysed concurrently using 5-s and 60-s acquisition frames. Reflux episodes were graded as low if activity was detected in the distal half of the oesophagus and high if activity was detected in its upper half or in the oral cavity. For comparison purposes, detected GOR in any number of 5-s frames corresponding to one 60-s frame was counted as one episode. Results: A total of 679 episodes of GOR to the upper oesophagus were counted using a 5-s acquisition technique. Only 183 of such episodes were detected on 60-s acquisition images. To the lower oesophagus, a total of 1749 GOR episodes were detected using a 5-s acquisition technique and only 1045 episodes using 60-s acquisition frames (these also included the high-level GOR on 5-s frames counted as low level on 60-s acquisition frames). 10 patients had high-level GOR episodes that were detected only using a 5-s acquisition technique, leading to a different diagnosis in these patients. No correlation between the number of reflux episodes and the gastric emptying rates was noted. Conclusion: The 5-s frame acquisition technique is more sensitive than the 60-s frame acquisition technique for detecting both high- and low-level GOR. Advances in knowledge: Brief GOR episodes with a relatively low number of radioactive counts are frequently indistinguishable from intense background activity on 60-s acquisition frames. PMID:23520226

  15. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  16. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  17. Frame Rate and Human Vision

    Science.gov (United States)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  18. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  19. Combined ultrasound and fluoroscopy guided port catheter implantation-High success and low complication rate

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; El-Sheik, Michael; Vogt, Michael; Wagner, Hans-Joachim

    2009-01-01

    Purpose: To evaluate peri-procedural, early and late complications as well as patients' acceptance of combined ultrasound and fluoroscopy guided radiological port catheter implantation. Materials and methods: In a retrospective analysis, all consecutive radiological port catheter implantations (n = 299) between August 2002 and December 2004 were analyzed. All implantations were performed in an angio suite under analgosedation and antibiotic prophylaxis. Port insertion was guided by ultrasonographic puncture of the jugular (n = 298) or subclavian (n = 1) vein and fluoroscopic guidance of catheter placement. All data of the port implantation had been prospectively entered into a database for interventional radiological procedures. To assess long-term results, patients, relatives or primary physicians were interviewed by telephone; additional data were generated from the hospital information system. Patients and/or the relatives were asked about their satisfaction with the port implantion procedure and long-term results. Results: The technical success rate was 99% (298/299). There were no major complications according to the grading system of SIR. A total of 23 (0.33 per 1000 catheter days) complications (early (n = 4), late (n = 19)) were recorded in the follow-period of a total of 72,727 indwelling catheter days. Infectious complications accounted for 0.15, thrombotic for 0.07 and migration for 0.04 complications per 1000 catheter days. Most complications were successfully treated by interventional measures. Twelve port catheters had to be explanted due to complications, mainly because of infection (n = 9). Patients' and relatives' satisfaction with the port catheter system was very high, even if complications occurred. Conclusion: Combined ultrasound and fluoroscopy guided port catheter implantation is a very safe and reliable procedure with low peri-procedural, early and late complication rate. The intervention achieves very high acceptance by the patients and

  20. Smartphone based automatic organ validation in ultrasound video.

    Science.gov (United States)

    Vaish, Pallavi; Bharath, R; Rajalakshmi, P

    2017-07-01

    Telesonography involves transmission of ultrasound video from remote areas to the doctors for getting diagnosis. Due to the lack of trained sonographers in remote areas, the ultrasound videos scanned by these untrained persons do not contain the proper information that is required by a physician. As compared to standard methods for video transmission, mHealth driven systems need to be developed for transmitting valid medical videos. To overcome this problem, we are proposing an organ validation algorithm to evaluate the ultrasound video based on the content present. This will guide the semi skilled person to acquire the representative data from patient. Advancement in smartphone technology allows us to perform high medical image processing on smartphone. In this paper we have developed an Application (APP) for a smartphone which can automatically detect the valid frames (which consist of clear organ visibility) in an ultrasound video and ignores the invalid frames (which consist of no-organ visibility), and produces a compressed sized video. This is done by extracting the GIST features from the Region of Interest (ROI) of the frame and then classifying the frame using SVM classifier with quadratic kernel. The developed application resulted with the accuracy of 94.93% in classifying valid and invalid images.

  1. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  2. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1981-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance

  3. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1983-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance. (Auth.)

  4. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  5. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution...... remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the −55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array...

  6. A video event trigger for high frame rate, high resolution video technology

    Science.gov (United States)

    Williams, Glenn L.

    1991-12-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  7. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  8. The effects of frame rate and resolution on users playing first person shooter games

    Science.gov (United States)

    Claypool, Mark; Claypool, Kajal; Damaa, Feissal

    2006-01-01

    The rates and resolutions for frames rendered in a computer game directly impact the player performance, influencing both the overall game playability and the game's enjoyability. Insights into the effects of frame rates and resolutions can guide users in their choice for game settings and new hardware purchases, and inform system designers in their development of new hardware, especially for embedded devices that often must make tradeoffs between resolution and frame rate. While there have been studies detailing the effects of frame rate and resolution on streaming video and other multimedia applications, to the best of our knowledge, there have been no studies quantifying the effects of frame rate and resolution on user performance for computer games. This paper presents results of a carefully designed user study that measures the impact of frame rate and frame resolution on user performance in a first person shooter game. Contrary to previous results for streaming video, frame rate has a marked impact on both player performance and game enjoyment while resolution has little impact on performance and some impact on enjoyment.

  9. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  10. Objective assessment of the impact of frame rate on video quality

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Korhonen, Jari; Forchhammer, Søren

    2012-01-01

    In this paper, we present a novel objective quality metric that takes the impact of frame rate into account. The proposed metric uses PSNR, frame rate and a content dependent parameter that can easily be obtained from spatial and temporal activity indices. The results have been validated on data ...

  11. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  12. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  13. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  14. Performance improvement of two-dimensional EUV spectroscopy based on high frame rate CCD and signal normalization method

    International Nuclear Information System (INIS)

    Zhang, H.M.; Morita, S.; Ohishi, T.; Goto, M.; Huang, X.L.

    2014-01-01

    In the Large Helical Device (LHD), the performance of two-dimensional (2-D) extreme ultraviolet (EUV) spectroscopy with wavelength range of 30-650A has been improved by installing a high frame rate CCD and applying a signal intensity normalization method. With upgraded 2-D space-resolved EUV spectrometer, measurement of 2-D impurity emission profiles with high horizontal resolution is possible in high-density NBI discharges. The variation in intensities of EUV emission among a few discharges is significantly reduced by normalizing the signal to the spectral intensity from EUV_—Long spectrometer which works as an impurity monitor with high-time resolution. As a result, high resolution 2-D intensity distribution has been obtained from CIV (384.176A), CV(2x40.27A), CVI(2x33.73A) and HeII(303.78A). (author)

  15. Trans-abdominal ultrasound evaluation of high-intensity focused ultrasound treatment of uterine leiomyoma

    International Nuclear Information System (INIS)

    Miao Wei; Huang Jin; Wang Junhua; Wang Yuling

    2010-01-01

    Objective: To determine the value of dynamic trans-abdominal ultrasound after high-intensity focused ultrasound (HIFU) treatment of uterine leiomyomas. Methods: The trans-abdominal ultrasound images of 63 patients before and after HIFU treatment of uterine leiomyomas were compared. Results: The volume and blood flow of leiomyomas were reduced after the HIFU treatment. Conclusion: Trans-abdominal ultrasound is a valuable method for evaluating the results of HIFU treatment of uterine leiomyomas. (authors)

  16. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  17. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    Science.gov (United States)

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  18. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Directory of Open Access Journals (Sweden)

    Ralph M. Barnes

    2016-11-01

    Full Text Available A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive and numeric format (percentage, natural frequency on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2 and 730 undergraduate college students (Experiments 1, 3, and 4 indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  19. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Science.gov (United States)

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  20. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    Science.gov (United States)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  1. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Happiness and Arousal: Framing Happiness as Arousing Results in Lower Happiness Ratings for Older Adults

    Directory of Open Access Journals (Sweden)

    Par eBjalkebring

    2015-06-01

    Full Text Available Older adults have been shown to describe their happiness as lower in arousal when compared to younger adults. In addition, older adults prefer low arousal positive emotions over high arousal positive emotions in their daily lives. We experimentally investigated whether or not changing a few words in the description of happiness could influence a person’s rating of their happiness. We randomly assigned 193 participants, aged 22-92 years, to one of three conditions (high arousal, low arousal, or control. In line with previous findings, we found that older participants rated their happiness lower when framed as high in arousal (i.e., ecstatic, to be bursting with positive emotions and rated their happiness higher when framed as low in arousal (i.e., satisfied, to have a life filled with positive emotions. Younger adults remained uninfluenced by the manipulation. Our study demonstrates that arousal is essential to understanding ratings of happiness, and gives support to the notion that there are age differences in the preference for arousal.

  3. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  4. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  5. A new coding concept for fast ultrasound imaging using pulse trains

    DEFF Research Database (Denmark)

    Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can he increased by simultaneous transmission of multiple beams using coded waveforms. However, the achievable degree of orthogonality among coded waveforms is limited in ultrasound, and the image quality degrades unacceptably due to interbeam interference....... In this paper, an alternative combined time-space coding approach is undertaken. In the new method all transducer elements are excited with short pulses and the high time-bandwidth (TB) product waveforms are generated acoustically. Each element transmits a short pulse spherical wave with a constant transmit...... delay from element to element, long enough to assure no pulse overlapping for all depths in the image. Frequency shift keying is used for "per element" coding. The received signals from a point scatterer are staggered pulse trains which are beamformed for all beam directions and further processed...

  6. Low-Complexity Variable Frame Rate Analysis for Speech Recognition and Voice Activity Detection

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Lindberg, Børge

    2010-01-01

    present a low-complexity and effective frame selection approach based on a posteriori signal-to-noise ratio (SNR) weighted energy distance: The use of an energy distance, instead of e.g. a standard cepstral distance, makes the approach computationally efficient and enables fine granularity search......Frame based speech processing inherently assumes a stationary behavior of speech signals in a short period of time. Over a long time, the characteristics of the signals can change significantly and frames are not equally important, underscoring the need for frame selection. In this paper, we......, and the use of a posteriori SNR weighting emphasizes the reliable regions in noisy speech signals. It is experimentally found that the approach is able to assign a higher frame rate to fast changing events such as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even...

  7. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  8. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  9. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  10. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  12. Hyperecho in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Tanaka, Katsuaki; Ito, Ryu; Ohto, Masao; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang Zhibiao

    2011-01-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method that can cause complete coagulation necrosis without requiring the insertion of any instruments. The hyperechoic grayscale change (hyperechoic region) is used as a sign that the treated lesion has been completely coagulated. The purpose of this study was to evaluate the first hyperechoic region during treatment using HIFU ablation according to various conditions, such as the sonication power, the depth of the tumor from the surface of the skin, and the shield rate. HIFU treatment was performed in 20 patients. The HIFU system (Chongqing Haifu Tech, Chongqing, China) was used under ultrasound guidance. Complete coagulation was achieved in 17 cases. Hyperechoic region were detected after HIFU ablation in 17 patients. The size of the hyperechoic region at a depth of >50 mm was significantly smaller than that at a depth of ≤50 mm. The number and power of the sonications for areas at a depth of >50 mm were significantly larger than those for areas at a depth of ≤50 mm. The number and power in cases with a shield rate of 31–60% were significantly larger than those in cases with a shield rate of 0–30%. When the shield rate was 0%, a hyperechoic region occurred, even when a maximum sonication power was not used. In all three cases with tumors located at a depth of greater than 70 mm and a shield rate of larger than 60%, a hyperechoic region was not seen. In conclusion, hyperechoic regions are easy to visualize in cases with tumors located at a depth of ≤50 mm or shield rates of 0–30%.

  13. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    Science.gov (United States)

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  14. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  15. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  16. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  17. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  18. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  19. Multi-Frame Rate Based Multiple-Model Training for Robust Speaker Identification of Disguised Voice

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2013-01-01

    Speaker identification systems are prone to attack when voice disguise is adopted by the user. To address this issue,our paper studies the effect of using different frame rates on the accuracy of the speaker identification system for disguised voice.In addition, a multi-frame rate based multiple......-model training method is proposed. The experimental results show the superior performance of the proposed method compared to the commonly used single frame rate method for three types of disguised voice taken from the CHAINS corpus....

  20. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  1. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  2. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  3. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    Science.gov (United States)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  4. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  5. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac.

    Science.gov (United States)

    Wang, Chih-Yu; Yang, Chih-Hui; Lin, Yung-Sheng; Chen, Chih-Hsin; Huang, Keng-Shiang

    2012-02-01

    A pulsatile ultrasound controlled drug release platform with diclofenac-loaded alginate microcapsules (fabricated with a home-made electrostatic device, 75% embedded rate) was established to evaluate anti-inflammation efficiency. Better anti-inflammation efficiency was found using the ultrasound system and the drug delivery can be adjusted based on the programmed ultrasound cycle. The results of the in vitro study show that an approx. 30% higher drug release rate was obtained by using continuous ultrasound irradiation (9-Watt, 180 min), and an approx. 16% higher drug release rate was obtained by using pulsatile ultrasound irradiation (9-Watt, 60 min) compared to without ultrasound activation. For the in vivo study, the anti-inflammatory test with carrageenan-induced rat's paw edema shows that diclofenac-loaded microcapsules followed by ultrasound irradiation (9-Watt, 60 min) contributed to an 81% inhibition rate, which was significantly higher than diclofenac only (approx. 60% higher). In addition, because of their heat conducting properties, gold nanoparticles encapsulated in the diclofenac-loaded microcapsules resulted in better drug release efficiency, but tended to depress the anti-inflammation effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  7. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  8. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    Science.gov (United States)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  9. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    OpenAIRE

    van de Lindt, John W.; Rechan, R. Karthik

    2011-01-01

    This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA). Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percen...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  11. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  12. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  13. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  14. [Ultrasound-guided peripheral catheterization].

    Science.gov (United States)

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  15. Extremely low-frame-rate digital fluoroscopy in catheter ablation of atrial fibrillation: A comparison of 2 versus 4 frame rate.

    Science.gov (United States)

    Lee, Ji Hyun; Kim, Jun; Kim, Minsu; Hwang, Jongmin; Hwang, You Mi; Kang, Joon-Won; Nam, Gi-Byoung; Choi, Kee-Joon; Kim, You-Ho

    2017-06-01

    Despite the technological advance in 3-dimensional (3D) mapping, radiation exposure during catheter ablation of atrial fibrillation (AF) continues to be a major concern in both patients and physicians. Previous studies reported substantial radiation exposure (7369-8690 cGy cm) during AF catheter ablation with fluoroscopic settings of 7.5 frames per second (FPS) under 3D mapping system guidance. We evaluated the efficacy and safety of a low-frame-rate fluoroscopy protocol for catheter ablation for AF.Retrospective analysis of data on 133 patients who underwent AF catheter ablation with 3-D electro-anatomic mapping at our institute from January 2014 to May 2015 was performed. Since January 2014, fluoroscopy frame rate of 4-FPS was implemented at our institute, which was further decreased to 2-FPS in September 2014. We compared the radiation exposure quantified as dose area product (DAP) and effective dose (ED) between the 4-FPS (n = 57) and 2-FPS (n = 76) groups.The 4-FPS group showed higher median DAP (599.9 cGy cm; interquartile range [IR], 371.4-1337.5 cGy cm vs. 392.0 cGy cm; IR, 289.7-591.4 cGy cm; P FPS group. No major procedure-related complications such as cardiac tamponade were observed in either group. Over follow-up durations of 331 ± 197 days, atrial tachyarrhythmia recurred in 20 patients (35.1%) in the 4-FPS group and in 27 patients (35.5%) in the 2-FPS group (P = .96). Kaplan-Meier survival analysis revealed no significant different between the 2 groups (log rank, P = .25).In conclusion, both the 4-FPS and 2-FPS settings were feasible and emitted a relatively low level of radiation compared with that historically reported for DAP in a conventional fluoroscopy setting.

  16. Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    Directory of Open Access Journals (Sweden)

    John W. van de Lindt

    2011-01-01

    Full Text Available This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA. Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percent of cement in a concrete mix with SDA for the construction of structural members in high seismic zones. This would help significantly redirect spray dryer ash away from landfills, thus, providing a sustainable greener alternative to concrete that uses only Portland cement, or only a small percentage of SDA or fly ash.

  17. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Science.gov (United States)

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  19. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  20. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  1. Proximity correction of high-dosed frame with PROXECCO

    Science.gov (United States)

    Eisenmann, Hans; Waas, Thomas; Hartmann, Hans

    1994-05-01

    Usefulness of electron beam lithography is strongly related to the efficiency and quality of methods used for proximity correction. This paper addresses the above issue by proposing an extension to the new proximity correction program PROXECCO. The combination of a framing step with PROXECCO produces a pattern with a very high edge accuracy and still allows usage of the fast correction procedure. Making a frame with a higher dose imitates a fine resolution correction where the coarse part is disregarded. So after handling the high resolution effect by means of framing, an additional coarse correction is still needed. Higher doses have a higher contribution to the proximity effect. This additional proximity effect is taken into account with the help of the multi-dose input of PROXECCO. The dose of the frame is variable, depending on the deposited energy coming from backscattering of the proximity. Simulation proves the very high edge accuracy of the applied method.

  2. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  3. Ultrasound-guided fine needle aspiration versus core needle biopsy: comparison of post-biopsy hematoma rates and risk factors.

    Science.gov (United States)

    Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young

    2017-07-01

    To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P core needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.

  4. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  5. TEKNIK ESTIMASI GERAK PENCARIAN PENUH DENGAN AKURASI SETENGAH PIKSEL UNTUK FRAME RATE UP CONVERSION VIDEO

    Directory of Open Access Journals (Sweden)

    ary satya prabhawa

    2014-10-01

    Full Text Available ABSTRAK Saat ini Teknologi video digital banyak digunakan pada aplikasi hiburan, contohnya adalah TV Digital dengan format HD. Dengan frame rate tinggi, pengkodean video akan menghasil laju bit lebih tinggi yaitu sampai 15 – 30 fps. Permasalahannya adalah kapasitas saluran transmisi memiliki kapasitas terbatas. Solusinya adalah menurunkan laju bit dengan menurunkan jumlah frame video ke penerima. Skema ini dikenal dengan Frame Rate Up-Conversion (FRUC video, dimana frame yang di encoder akan direkonstruksi kembali di decoder dengan membangkitkan frame intermediate (FI. FI dibangkitkan dengan teknik Motion Compensation Interpolation (MCI. Terkait dengan metode FRUC, penelitian ini mengajukan skema MCI unidirectional dengan pencarian gerak akurasi setengah piksel. Pada skema ini, sebuah motion vector (MV kandidat akan dicari di frame referensi, proses estimasi gerak dilakukan dengan menambah piksel sisipan diantara piksel eksisting. Sasarannya adalah meningkatkan akurasi MV kandidat. Hasil simulasi menunjukkan bahwa metode yang diajukan lebih baik sampai sebesar masing – masing 3,21 dB dan 3,11 dB pada wilayah pencarian 7 dan 15 piksel dibandingkan dengan metode frame repetition untuk sekuen video foreman dan hall monitor.

  6. MCP detector read out with a bare quad Timepix at kilohertz frame rates

    International Nuclear Information System (INIS)

    Vallerga, J; Tremsin, A; McPhate, J; Siegmund, O; Raffanti, R

    2011-01-01

    The existing Berkeley neutron sensitive MCP/Timepix hybrid detector has been very successful at demonstrating energy resolved spatial imaging with a single Timepix ASIC read out at a ∼ 30 Hz frame rate where each neutron's position and time (energy) is determined (X,Y,E). By increasing the detector format using a quad arrangement of Timepix readouts and increasing the frame rate to 1 kHz, we can increase our total event throughput by a factor of 120, thereby taking full advantage of the high fluxes of modern pulsed neutron sources (10 6 n cm -2 s -1 ). The key to this conversion is a new design for the ASIC readout, called the Berkeley Quad Timepix detector, consisting of 3 major subsystems. The first is a quad (2 x 2) bare Timepix ASIC board mounted directly behind the neutron sensitive MCPs in a hermetic vacuum enclosure with a sapphire window. The data from the Timepix ASICs flow to the second subsystem called the Interface board whose field programmable gate array (FPGA) rearranges and converts the digital bit stream to LVDS logic levels before sending downstream to the third subsystem, the Roach board. The Roach board is also FPGA based, and takes the data from all the ASICs and analyses the frames to extract information on the input events to pass on to the host PC. This paper describes in detail the hardware and firmware designs to accomplish this task.

  7. MRI screening-detected breast lesions in high-risk young women: the value of targeted second-look ultrasound and imaging-guided biopsy.

    Science.gov (United States)

    Peter, P; Dhillon, R; Bose, S; Bourke, A

    2016-10-01

    To analyse the value of targeted second-look ultrasound and imaging-guided biopsy in high-risk young women eligible for screening magnetic resonance imaging (MRI) in a tertiary referral centre in Perth, Western Australia. A retrospective analysis of eligible high-risk young women who underwent screening breast MRI and targeted second-look ultrasound between June 2012 and June 2014 was performed with review of data. Over a 2-year period, 139 women underwent high-risk screening MRI. Of these, 30 women (with a total of 45 lesions) were recalled for targeted second-look ultrasound. Thirty-four MRI-detected lesions were identified on targeted ultrasound with 19 of them proceeding to ultrasound-guided biopsy, while the remaining 15 lesions were considered benign on ultrasound, were not biopsied, and were stable on follow-up imaging 12 months later. One lesion proceeded to an MRI-guided biopsy to confirm a benign result. Of the 11 lesions not seen on ultrasound, nine underwent MRI biopsy, one proceeded directly to hook wire localisation and excision, and one did not return for biopsy and was lost to follow-up. The overall biopsy rate was 14.4%. The cancer detection rate was 1.4%. The results of this study indicate that targeted second-look ultrasound and ultrasound-guided biopsy is a cost-effective and time-efficient approach for MRI-detected lesions in young women at high risk of developing breast cancer. MRI-guided biopsy should be considered for ultrasonographically occult suspicious lesions as there is a low, but definite, risk of cancer. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Liu, Peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 µm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 µm×150 µm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-µm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e{sup −} rms after bump bonding and a threshold dispersion of 55 e{sup −} rms after calibration.

  9. Feasibility of recanalization of human coronary arteries using high-intensity ultrasound.

    Science.gov (United States)

    Ernst, A; Schenk, E A; Woodlock, T J; Alliger, H; Gottlieb, S; Child, S Z; Meltzer, R S

    1994-01-15

    To investigate the feasibility of ultrasonic recanalization of obstructed human coronary arteries in vitro, high-intensity ultrasound was applied to 16 coronary arteries obtained at autopsy, using a prototype instrument enabling insonification through a catheter tip. It was a 119 cm long, 0.95 mm thick wire in an 8Fr catheter connected to an external ultrasonic transformer and power generator. A 5 MHz phased-array 2-dimensional echocardiography instrument was used to determine minimal luminal diameter and percent diameter narrowing before and after ultrasound application. The ultrasonic energy was delivered at 21.5 kHz and with a 52 +/- 19 micrometer average amplitude of tip displacement. The mean percent luminal diameter narrowing, flow rate and mean pressure gradient before ultrasound exposure were 74 +/- 11%, 97 +/- 61 ml/min, and 92 +/- 18 mm Hg, respectively. After recanalization, the mean percent luminal diameter narrowing decreased to 45 +/- 17% (p ultrasound application. Mechanical fracture of the wire occurred in 8 cases (50%). No signs of thermal injury were found on histology. Thus, ultrasonic recanalization of human coronary arteries in vitro is feasible. It may reduce obstruction and improve blood flow. Debris sizes are sufficiently small to minimize the hazard of peripheral embolization.

  10. Dissecting the risky-choice framing effect

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-08-01

    Full Text Available Using five variants of the Asian Disease Problem, we dissected the risky-choice framing effect by requiring each participant to provide preference ratings for the full decision problem and also to provide attractiveness ratings for each of the component parts, i.e., the sure-thing option and the risky option. Consistent with previous research, more risky choices were made by respondents receiving negatively framed versions of the decision problems than by those receiving positively framed versions. However, different processes were evident for those scoring high and low on numeracy. Whereas the choices of the less numerate showed a large effect of frame above and beyond any influence of their evaluations of the separate options, the choices of the highly numerate were almost completely accounted for by their attractiveness ratings of the separate options. These results are consistent with an increased tendency of the highly numerate to integrate complex numeric information in the construction of their preferences and a tendency for the less numerate to respond more superficially to non-numeric sources of information.

  11. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  12. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  13. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  14. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  15. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    Science.gov (United States)

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  16. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    Directory of Open Access Journals (Sweden)

    Nishikant P Deshmukh

    Full Text Available A system for real-time ultrasound (US elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU based accelerated normalized cross-correlation (NCC elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE, which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM tracker, the system selects in-plane radio frequency (RF data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  17. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    Science.gov (United States)

    Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  18. Ultrasound Picture Archiving And Communication Systems

    Science.gov (United States)

    Koestner, Ken; Hottinger, C. F.

    1982-01-01

    The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.

  19. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  1. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    Science.gov (United States)

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  2. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    Science.gov (United States)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  3. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound

    International Nuclear Information System (INIS)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-01-01

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, γ, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at γ = 1.55 and 1:3.5 at γ = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at γ = 1, to 0.162 MPa, at γ 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s -1 , at γ = 1, to 36 m s -1 , at γ = 1.55. For γ < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound

  4. Seismic Load Rating Procedure for Welded Steel Frames Oligo-cyclic Fatigue

    International Nuclear Information System (INIS)

    Ratiu, Mircea D.; Moisidis, Nicolae T.

    2004-01-01

    A dynamic load rating approach for seismic qualification of cold-formed steel welded frames is presented. Allowable seismic loads are developed from cyclic and monotonic tests of standard cold-formed steel components commonly used for piping and electrical raceway supports. The method permits simplified qualification of all connections of frame components through a single load comparison. Test input consists of rotation/cycles-to-failure data and monotonic moment/rotation data. Cyclic data are statistically evaluated to determine an acceptable maximum seismic rotation for the connection. The allowable seismic load is determined from the corresponding static rotation. Application to seismic qualification procedures is discussed. (authors)

  5. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  6. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    Science.gov (United States)

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  7. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  8. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  9. Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.

    Science.gov (United States)

    Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D

    2018-05-01

    Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.

  10. Dispositional optimism, self-framing and medical decision-making.

    Science.gov (United States)

    Zhao, Xu; Huang, Chunlei; Li, Xuesong; Zhao, Xin; Peng, Jiaxi

    2015-03-01

    Self-framing is an important but underinvestigated area in risk communication and behavioural decision-making, especially in medical settings. The present study aimed to investigate the relationship among dispositional optimism, self-frame and decision-making. Participants (N = 500) responded to the Life Orientation Test-Revised and self-framing test of medical decision-making problem. The participants whose scores were higher than the middle value were regarded as highly optimistic individuals. The rest were regarded as low optimistic individuals. The results showed that compared to the high dispositional optimism group, participants from the low dispositional optimism group showed a greater tendency to use negative vocabulary to construct their self-frame, and tended to choose the radiation therapy with high treatment survival rate, but low 5-year survival rate. Based on the current findings, it can be concluded that self-framing effect still exists in medical situation and individual differences in dispositional optimism can influence the processing of information in a framed decision task, as well as risky decision-making. © 2014 International Union of Psychological Science.

  11. Evaluation of automatic time gain compensated in-vivo ultrasound sequences

    DEFF Research Database (Denmark)

    Axelsen, Martin Christian; Røeboe, Kristian Frostholm; Hemmsen, Martin Christian

    2010-01-01

    algorithm for automatic time gain compensation (TGC) on in-vivo ultrasound sequences. Forty ultrasound sequences were recorded from the abdomen of two healthy volunteers. Each sequence of 5 sec was recorded with 40 frames/sec. Post processing each frame, a mask is created wherein anechoic and hyper echoic...... regions are mapped. Near field hyper intensity and deep areas with low signal strength are also included in the mask. The algorithm uses this mask to create a parallel image where anechoic and hyper echoic regions are eliminated. From this, the mean power is calculated as a function of depth. The power...

  12. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  13. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    Science.gov (United States)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  14. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  15. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  17. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  18. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    Science.gov (United States)

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  19. Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera

    Directory of Open Access Journals (Sweden)

    Przybyło Jaromir

    2016-12-01

    Full Text Available Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm for fluorescent light to 6.6 bpm for dim daylight.

  20. Detection of the Single-Session Complete Ablation Rate by Contrast-Enhanced Ultrasound during Ultrasound-Guided Laser Ablation for Benign Thyroid Nodules: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    2016-01-01

    Full Text Available This study aimed to investigate the single-session complete ablation rate of ultrasound-guided percutaneous laser ablation (LA for benign thyroid nodules. LA was performed in 90 patients with 118 benign thyroid nodules. Contrast-enhanced ultrasound (CEUS was used to evaluate complete nodule ablation one day after ablation. Thyroid nodule volumes, thyroid functions, clinical symptoms and complications were evaluated 1, 3, 6, 12, and 18 months after ablation. Results showed that all benign thyroid nodules successfully underwent LA. The single-session complete ablation rates for nodules with maximum diameters ≤2 cm, 2-3 cm and ≥3 cm were 93.4%, 70.3% and 61.1%, respectively. All nodule volumes significantly decreased than that one day after ablation (P0.05. Three patients had obvious pain during ablation; one (1.1% had recurrent laryngeal nerve injury, but the voice returned to normal within 6 months after treatment. Thus, ultrasound-guided LA can effectively inactivate benign thyroid nodules. LA is a potentially viable minimally invasive treatment that offers good cosmetic effects.

  1. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  2. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  3. High-Society Framing: The Brooklyn Eagle and the Popularity of Twilight Sleep in Brooklyn.

    Science.gov (United States)

    Johnson, Bethany; Quinlan, Margaret M

    2017-01-01

    Twilight Sleep (TS) is an obstetric intervention during which a laboring woman enters a semiconscious state via injection. TS received enthusiastic support in Brooklyn, NY, in The Brooklyn Eagle (TBE) newspaper between 1914 and 1918. The purpose of this article is to analyze the framing of TS in TBE as the most popular obstetric intervention among wealthy, White socialites in Brooklyn during the period. The coverage in TBE prompted a nearly universally positive perception of TS among the newspaper's wider readership. After extensive historiographical research and rhetorical analysis of newspaper coverage of TS in TBE, we discovered a form of framing we call "high-society framing," rooted in both wealth and notoriety. We discuss four possible effects of high-society framing: The first is the ability of high-society framing to attract or repel the public regarding a health care issue, and the second is the impact of high-society framing on public perception of medical interventions, procedures, or pharmaceuticals. A third possible effect of high-society framing is that it can alter notions of necessity, and a fourth is that high-society framing can elicit a tacit acceptance of medical interventions, procedures, and pharmaceuticals, thus obfuscating risk. Finally, we argue that high-society framing has implications for the discussion of health care in present-day mediated discourses.

  4. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L., E-mail: liang.zhang@iphc.cnrs.fr [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, 250100 Jinan (China); Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France); Morel, F.; Hu-Guo, C.; Hu, Y. [Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2014-07-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm{sup 2}. The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors.

  5. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    International Nuclear Information System (INIS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Hu, Y.

    2014-01-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm 2 . The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors

  6. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  7. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  8. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    Science.gov (United States)

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  10. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  11. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localized block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA

  12. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    International Nuclear Information System (INIS)

    Shepard, A; Bednarz, B

    2016-01-01

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localized block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA

  13. Therapeutic effects of microbubble added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Lee, Jae Young; Kim, Bo Ram; Park, Eun Joo; Kim, Hoe Suk; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hae Ri [Dept. of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung (Korea, Republic of); Choi, Byung Ihn [Dept. of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2016-09-15

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  14. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Lee, Jae Young [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Kim, Hae Ri [Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457 (Korea, Republic of); Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Choi, Byung Ihn [Department of Radiology, Chung-Ang University Hospital, Seoul 06973 (Korea, Republic of)

    2016-11-01

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  15. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  16. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A [The Christie Hospital NHS Foundation Trust, Manchester, Greater Manchester (United Kingdom)

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  18. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    International Nuclear Information System (INIS)

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-01-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature

  19. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  20. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  1. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  2. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  3. Applicable value of real time interventional ultrasound guidance in family planning reproduction operation

    International Nuclear Information System (INIS)

    Wu Guoping; Zou Dongfang; Sun Jian; Dong Weihua

    2007-01-01

    Objective: To determine the clinical value of real time interventional ultrasound guidance in family planning reproduction operation. Methods: Under the guidance of ultrasound monitoring, 522 cases with high risk and difficult uterine operation were undertaken in our department. Results: The abdominal endoscopic contraceptive uterine operation under real time ultrasound monitoring was carried out for 522 cases in 4 years, with successful rates for high risk pregnancy as 287/289 cases, high risk troublesome withdrawal of contraceptive ring as 129/130 cases and puzzling uterine operation as 103/103 cases. The total successful rate reached 99.42%, without uterine rupture and other complications. Conclusion: The former complex, blind and difficult uterine operations turn to be simple, safe and reliable under the guidance of real time ultrasound. (authors)

  4. Attribute Framing and Goal Framing Effects in Health Decisions.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  5. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard at the National Measurement Institutes, e.g., NPL and PTB, can provide accurate calibration to a maximum frequency of 40MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application.

  6. Plunging ranulas: high-resolution ultrasound for diagnosis and surgical management

    International Nuclear Information System (INIS)

    Jain, Prabha; Jain, Ravi; Morton, Randall P.; Ahmad, Zahoor

    2010-01-01

    We see a high incidence of plunging ranulas, particularly in Maori and Polynesian populations. We have investigated the usefulness of ultrasound in the diagnosis and management of plunging ranulas and present our findings. Thirty-three new cases were examined over 4 years (June 2004 to October 2008). High-resolution ultrasound was very successful in determining the extent of the plunging ranula, confirming the cystic nature of the lesion, assessing the status of the mylohyoid muscle (a defect demonstrated in 100% of our cases) and evaluating the sublingual gland for rupture or herniation. Correlation with surgical findings was available for 30 cases. There was excellent ultrasonographic and surgical correlation, particularly with respect to submandibular space cystic collection (29 of 30 cases, 96.7%) and mylohyoid defects (27 of 30 cases, 90%). With the considerations of cost, accessibility and the fact that many of our patients are young (median of 20 years), ultrasound is recommended as the preferred examination for plunging ranula. (orig.)

  7. Plunging ranulas: high-resolution ultrasound for diagnosis and surgical management

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prabha [Middlemore Hospital, Counties Manakau, Department of Radiology, P.O. Box 93311, Otahuhu, Auckland (New Zealand); Jain, Ravi [Waikato Hospital, Department of Plastic Surgery, Hamilton (New Zealand); Morton, Randall P.; Ahmad, Zahoor [Middlemore Hospital, Counties Manakau, Department of ENT Surgery, P.O. Box 93311, Otahuhu, Auckland (New Zealand)

    2010-06-15

    We see a high incidence of plunging ranulas, particularly in Maori and Polynesian populations. We have investigated the usefulness of ultrasound in the diagnosis and management of plunging ranulas and present our findings. Thirty-three new cases were examined over 4 years (June 2004 to October 2008). High-resolution ultrasound was very successful in determining the extent of the plunging ranula, confirming the cystic nature of the lesion, assessing the status of the mylohyoid muscle (a defect demonstrated in 100% of our cases) and evaluating the sublingual gland for rupture or herniation. Correlation with surgical findings was available for 30 cases. There was excellent ultrasonographic and surgical correlation, particularly with respect to submandibular space cystic collection (29 of 30 cases, 96.7%) and mylohyoid defects (27 of 30 cases, 90%). With the considerations of cost, accessibility and the fact that many of our patients are young (median of 20 years), ultrasound is recommended as the preferred examination for plunging ranula. (orig.)

  8. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...... for the vector angle estimates was calculated for each box in every frame. For comparison three ultrasound experts evaluated the presence of complex flow in every box. The trial was blinded. For every sequence the mean standard deviation of the vector angle estimates were calculated for box1 {39...

  9. Advantages and disadvantages of high power ultrasound application in the dairy industry

    Directory of Open Access Journals (Sweden)

    Mislav Muža

    2009-12-01

    Full Text Available Preservation of food with thermal sterilisation is usually the most common way nowadays. Besides the positive aim of preservation regarding microorganisms’ reduction, elevated temperature in processing simultaneously causes serious changes in nutritive and organoleptical properties of food. Loss of food quality is related to structure and texture deformations, modification of macromolecules and creation of new compounds coming from reactions that are catalised with temperature. One of the new non-thermal processes that can in large scale improve different processes in food industry is ultrasound. In the last five years, new applications of high power ultrasound (HPU include inactivation of enzymes and microorganisms, assistance in membrane processes, improvement of dairy product texture, improvement of functional properties of proteins etc. High power ultrasound application is used in emulsification and milk homogenization, but in these processes the most important thing is to monitor possible negative effect like oxidation of fats, inactivation of valuable enzymes and denaturation of proteins. Controled and optimized application of ultrasound demands application of specific ultrasound frequency and optimal treatment time. Treatments should be performed at lower temperatures to avoid negative side effects on treated materials.

  10. High-speed photoacoustic imaging using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka

    2018-02-01

    Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.

  11. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  12. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  13. Carotid near-occlusion frequently has high peak systolic velocity on Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Khangure, Simon R.; Machnowska, Matylda; Fox, Allan J.; Hojjat, Seyed-Parsa; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Division of Neuroimaging, Toronto (Canada); Benhabib, Hadas [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); Groenlund, Christer [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Herod, Wendy [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); Maggisano, Robert [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); University of Toronto, Division of Vascular Surgery, Department of Surgery, Toronto (Canada); Sjoeberg, Anders [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Wester, Per [Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden); Karolinska Institutet Danderyds Hospital, Department of Clinical Sciences, Stockholm (Sweden); Hopyan, Julia [University of Toronto, Division of Neurology, Department of Medicine, Toronto (Canada); Johansson, Elias [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden)

    2018-01-15

    Carotid near-occlusion is a tight atherosclerotic stenosis of the internal carotid artery (ICA) resulting in decrease in diameter of the vessel lumen distal to the stenosis. Near-occlusions can be classified as with or without full collapse, and may have high peak systolic velocity (PSV) across the stenosis, mimicking conventional > 50% carotid artery stenosis. We aimed to determine how frequently near-occlusions have high PSV in the stenosis and determine how accurately carotid Doppler ultrasound can distinguish high-velocity near-occlusion from conventional stenosis. Included patients had near-occlusion or conventional stenosis with carotid ultrasound and CT angiogram (CTA) performed within 30 days of each other. CTA examinations were analyzed by two blinded expert readers. Velocities in the internal and common carotid arteries were recorded. Mean velocity, pulsatility index, and ratios were calculated, giving 12 Doppler parameters for analysis. Of 136 patients, 82 had conventional stenosis and 54 had near-occlusion on CTA. Of near-occlusions, 40 (74%) had high PSV (≥ 125 cm/s) across the stenosis. Ten Doppler parameters significantly differed between conventional stenosis and high-velocity near-occlusion groups. However, no parameter was highly sensitive and specific to separate the groups. Near-occlusions frequently have high PSV across the stenosis, particularly those without full collapse. Carotid Doppler ultrasound does not seem able to distinguish conventional stenosis from high-velocity near-occlusion. These findings question the use of ultrasound alone for preoperative imaging evaluation. (orig.)

  14. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  15. Sci-Thur AM: YIS – 03: Combining sagittally-reconstructed 3D and live-2D ultrasound for high-dose-rate prostate brachytherapy needle segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Hrinivich, Thomas; Hoover, Douglas; Surry, Kathleen; Edirisinghe, Chandima; D’Souza, David; Fenster, Aaron; Wong, Eugene [University of Western Ontario, London Regional Cancer Program/LHSC, London Regional Cancer Program/LHSC, Robarts Research Institute, London Regional Cancer Program/LHSC, Robarts Research Institute, University of Western Ontario (Canada)

    2016-08-15

    Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were used to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.

  16. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  17. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  18. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  19. Rate of alignment and communication using quantum systems in the absence of a shared frame of reference

    Science.gov (United States)

    Skotiniotis, Michael

    Quantum information theory is concerned with the storage, transmission, and manipulation of information that is represented in the degrees of freedom of quantum systems. These degrees of freedom are described relative to an external frame of reference. The lack of a requisite frame of reference imposes restrictions on the types of states quantum systems can be prepared in and the type of operations that can be performed on quantum systems. This thesis is concerned with the communication between two parties that lack a shared frame of reference. Specifically, I introduce a protocol whereby the parties can align their respective frames of reference, and a protocol for communicating quantum information in a reference frame independent manner. Using the accessible information to quantify the success of a reference frame alignment protocol I propose a new measure—the alignment rate—for quantifying the ability of a quantum state to stand in place of a classical frame of reference. I show that for the case where Alice and Bob lack a shared frame of reference associated with the groups G = U(1) and G = ZM (the finite cyclic group of M elements), the alignment rate is equal to the regularized, linearized G-asymmetry. The latter is a unique measure of the frameness of a quantum state and my result provides an operational interpretation of the G-asymmetry that was thus far lacking. In addition, I show that the alignment rate for finite cyclic groups of more than three elements is super-additive under the tensor product of two distinct pure quantum states. The latter is, to my knowledge, the first instance of a regularized quantity that exhibits super-additivity. In addition, I propose a reference-frame-independent protocol for communicating quantum information in the absence of a shared frame of reference associated with a general finite group G. The protocol transmits m logical qudits using r + m physical qudits prepared in a specific state that is reference-frame

  20. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  1. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  2. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  3. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  4. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C.

    Science.gov (United States)

    Caraveo, Omaro; Alarcon-Rojo, Alma D; Renteria, Ana; Santellano, Eduardo; Paniwnyk, Larysa

    2015-09-01

    The application of high-intensity ultrasound causes changes in the physical and chemical properties of biological materials including meat. In this study the physicochemical and microbiological characteristics of beef after the application of high-intensity ultrasound for 60 and 90 min and subsequent storage at 4 °C for 0, 2, 4, 6, 8 and 10 days were evaluated. The ultrasound-treated meat showed higher (P 0.05) between sonication times. The redness of ultrasound-treated meat was initially lower than that of control meat, but no difference (P > 0.05) was observed after day 8 of storage. The 90 min ultrasound-treated meat had higher (P < 0.05) yellowness during the entire storage period. Ultrasound decreased (P < 0.05) coliform, mesophilic and psychrophilic bacteria in the meat throughout the storage period; however, the original microbial loads increased constantly during refrigeration. The 90 min ultrasound-treated meat showed the greatest reduction in microbial load during storage. Coliforms and psychrophilic bacteria were the most affected by ultrasound. The application of high-intensity ultrasound to beef semitendinosus muscle stored at 4 °C decreased bacterial growth without affecting the physicochemical quality of meat. © 2014 Society of Chemical Industry.

  5. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are ...

  7. MO-DE-210-05: Improved Accuracy of Liver Feature Motion Estimation in B-Mode Ultrasound for Image-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: In similarity-measure based motion estimation incremental tracking (or template update) is challenging due to quantization, bias and accumulation of tracking errors. A method is presented which aims to improve the accuracy of incrementally tracked liver feature motion in long ultrasound sequences. Methods: Liver ultrasound data from five healthy volunteers under free breathing were used (15 to 17 Hz imaging rate, 2.9 to 5.5 minutes in length). A normalised cross-correlation template matching algorithm was implemented to estimate tissue motion. Blood vessel motion was manually annotated for comparison with three tracking code implementations: (i) naive incremental tracking (IT), (ii) IT plus a similarity threshold (ST) template-update method and (iii) ST coupled with a prediction-based state observer, known as the alpha-beta filter (ABST). Results: The ABST method produced substantial improvements in vessel tracking accuracy for two-dimensional vessel motion ranging from 7.9 mm to 40.4 mm (with mean respiratory period: 4.0 ± 1.1 s). The mean and 95% tracking errors were 1.6 mm and 1.4 mm, respectively (compared to 6.2 mm and 9.1 mm, respectively for naive incremental tracking). Conclusions: High confidence in the output motion estimation data is required for ultrasound-based motion estimation for radiation therapy beam tracking and gating. The method presented has potential for monitoring liver vessel translational motion in high frame rate B-mode data with the required accuracy. This work is support by Cancer Research UK Programme Grant C33589/A19727.

  8. Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima; Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Yoneyama, Tatsuya; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan)

    2008-09-15

    Gated single-photon emission computed tomography (SPECT) imaging of myocardium by {sup 99m}Tc and {sup 201}Tl is used extensively to measure quantitative cardiac functional parameters. However, factors affecting normal values for myocardial functional parameters and population-specific standards have not yet been established. The aim of the study was to determine the effect of sex, radiotracer, rotation angles and frame rates on resting myocardial wall thickening (WT) and to develop a Japanese standard of normal values for WT. Data from a total of 202 patients with low possibility of having cardiac problems were collected from nine hospitals throughout Japan. Patients were divided into five groups according to study protocol, and WT was evaluated according to the 17-segment and four-region (basal, mid and apical regions and the apex) polar map distribution. WT was generally higher in women than in men irrespective of the use of radiotracers, rotation angles or frame rates, and the difference was highly significant in the mid and apical regions. In any protocol used, resting myocardial thickening in the apex was higher than in the mid and apical regions, and thickening was lowest in the basal region, suggesting heterogeneous regional myocardial thickening (%) in normal subjects. Different rotation angles showed no significant change on WT, but different frame rates and tracers showed significant WT change in both sexes. Percent thickening of the myocardium was significantly higher in imaging by {sup 99m}Tc-labelled tracers than in {sup 201}Tl. Sex, radiotracers and frame rates had a significant effect on myocardial thickening, and the importance of population-specific standards should be emphasized. A normal database can serve as a standard for gated SPECT evaluation of myocardial thickening in a Japanese population and might be applicable to Asian populations having a similar physique. (orig.)

  9. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  10. Radiative recombination of highly charged ions: Enhanced rates at low energies

    International Nuclear Information System (INIS)

    Frank, A.; Mueller, A.; Haselbauer, J.; Schennach, S.; Spies, W.; Uwira, O.; Wagner, M.

    1992-01-01

    In a single-pass merged-beams experiment employing a dense cold electron target recombination of highly charged ions is studied. Unexpected high recombination rates are observed at low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates at E cm =0 eV for U 28+ and for Au 25+ ions. Considerable rate enhancement is also observed for Ar 15+ . This points to a general phenomenon which has to be interpreted as a consequence of high electron densities, low electron beam temperatures, high ion charge states and presence of strong magnetic fields. (orig.)

  11. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    Science.gov (United States)

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    Science.gov (United States)

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  13. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  14. Framing effects in medical situations: distinctions of attribute, goal and risky choice frames.

    Science.gov (United States)

    Peng, Jiaxi; Jiang, Yuan; Miao, Danmin; Li, Rui; Xiao, Wei

    2013-06-01

    To verify whether three different framing effects (risky choice, attribute and goal) exist in simulated medical situations and to analyse any differences. Medical decision-making problems were established, relating to medical skill evaluation, patient compliance and a selection of treatment options. All problems were described in positive and negative frame conditions. Significantly more positive evaluations were made if the doctor's medical records were described as 'of 100 patients, 70 patients became better' compared with those described as 'of 100 patients, 30 patients didn't become better'. Doctor's advice described in a negative frame resulted in significantly more decisions to comply, compared with advice described in a positive frame. Treatment options described in terms of survival rates resulted in significantly more adventurous choices compared with options described in terms of mortality rates. Decision-making reversal appeared in the risky choice and attribute frames, but not the goal frame. Framing effects were shown to exist in simulated medical situations, but there were significant differences among the three kinds of such effects.

  15. Ultrasound detection of nonpalpable mammographically occult malignancy

    International Nuclear Information System (INIS)

    Simpson, W.L.; Hermann, G.; Rausch, D.R.; Sherman, J.; Feig, S.A.; Bleiweiss, I.J.; Jaffer, S.

    2008-01-01

    To evaluate the prevalence of occult malignancy with screening breast ultrasound. All ultrasound-guided core needle breast biopsies performed between January 1, 1999, and June 30, 2001, were retrospectively reviewed. Lesions were identified during screening breast ultrasound in high-risk women with no mammographic or palpable abnormality in either breast, a unilateral mammographic or palpable abnormality in the contralateral breast, or a unilateral mammographic or palpable abnormality in a different quadrant of the same breast. All ultrasound-detected lesions were histologically verified. Six hundred and fifty-two women with a mean age of 49 years underwent 698 biopsies during the study period. Three hundred and forty-nine of these lesions were detected at screening breast ultrasound. Out of 349, 11 (3.2%) had a mammographically and clinically occult malignancy. Nine cancers were found in women with no mammographic or palpable abnormality. Two cancers were found in the same breast as the mammographic or palpable abnormality. None were found in the breast contralateral to a palpable or mammographic abnormality. Screening breast ultrasound of high-risk women has a similar detection rate for occult carcinoma as screening mammography, but has a low positive predictive value in cases where biopsy is performed. (author)

  16. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    Science.gov (United States)

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  17. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  18. A pilot study using Tissue Velocity Ultrasound Imaging (TVI to assess muscle activity pattern in patients with chronic trapezius myalgia

    Directory of Open Access Journals (Sweden)

    Brodin Lars-Åke

    2008-09-01

    Full Text Available Abstract Background Different research techniques indicate alterations in muscle tissue and in neuromuscular control of aching muscles in patients with chronic localized pain. Ultrasound can be used for analysis of muscle tissue dynamics in clinical practice. Aim This study introduces a new muscle tissue sensitive ultrasound technique in order to provide a new methodology for providing a description of local muscle changes. This method is applied to investigate trapezius muscle tissue response – especially with respect to specific regional deformation and deformation rates – during concentric shoulder elevation in patients with chronic trapezius myalgia and healthy controls before and after pain provocation. Methods Patients with trapezius myalgia and healthy controls were analyzed using an ultrasound system equipped with tissue velocity imaging (TVI. The patients performed a standardized 3-cm concentric shoulder elevation before and after pain provocation/exercise at a standardized elevation tempo (30 bpm. A standardized region of interest (ROI, an ellipsis with a size that captures the upper and lower fascia of the trapezius muscle (4 cm width at rest, was placed in the first frame of the loop registration of the elevation. The ROI was re-anchored frame by frame following the same anatomical landmark in the basal fascia during all frames of the concentric phase. In cardiac measurement, tissue velocities are measured in the axial projection towards and against the probe where red colour represents shortening and red lengthening. In the case of measuring the trapezius muscle, tissue deformation measurements are made orthogonally, thus, indirectly. Based on the assumption of muscle volume incompressibility, blue represents tissue contraction and red relaxation. Within the ROI, two variables were calculated as a function of time: deformation and deformation rate. Hereafter, max, mean, and quadratic mean values (RMS of each variable were

  19. Coded excitation and sub-band processing for blood velocity estmation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of broadband coded excitation and subband processing for blood velocity estimation in medical ultrasound. In conventional blood velocity estimation a long (narrow-band) pulse is emitted and the blood velocity is estimated using an auto-correlation based approach....... However, the axial resolution of the narrow-band pulse is too poor for brightness-mode (B-mode) imaging. Therefore, a separate transmission sequence is used for updating the B-mode image, which lowers the overall frame-rate of the system. By using broad-band excitation signals, the backscattered received...... signal can be divided into a number of narrow frequency bands. The blood velocity can be estimated in each of the bands and the velocity estimates can be averaged to form an improved estimate. Furthermore, since the excitation signal is broadband, no secondary B-mode sequence is required, and the frame...

  20. A quantitative analysis of two-dimensional manually segmented transrectal ultrasound axial images in planning high dose rate brachytherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Dabić-Stanković Kata

    2017-01-01

    Full Text Available Background/Aim. Prostate delineation, pre-planning and catheter implantation procedures, in high-dose rate brachytherapy (HDR-BT, are commonly based on the prostate manually segmented transrectal ultrasound (TRUS images. The aim of this study was to quantitatively analyze the consistency of prostate capsule delineation, done by a single therapist, prior to each HDR-BT fraction and the changes in the shape of the prostate capsule during HDR-BT, using two dimensional (2D TRUS axial image. Methods. A group of 16 patients were treated at the Medical System Belgrade Brachytherapy Department with definitive HDRBT. The total applied median dose of 52 Gy was divided into four individual fractions, each fraction being delivered 2– 3 weeks apart. Real time prostate axial visualization and the manual segmentation prior to each fraction were performed using B-K Medical ultrasound. Quantitative analyses, analysis of an area and shape were applied on 2D-TRUS axial images of the prostate. Area analyses were used to calculate the average value of the cross-sectional area of the prostate image. The parameters of the prostate shape, the fractal dimension and the circularity ratio of the prostate capsule contour were estimated at the maximum axial cross section of the prostate image. Results. The sample group consisted of four phases, each phase being performed prior to the first, second, third and fourth HDR-BT fraction, respectively. Statistical analysis showed that during HDR-BT fractions there were no significant differences in the average value of area, as well as in the maximum shape of prostate capsule. Conclusions. Quantitative analysis of TRUS axial prostate segmented images shows a successful capsule delineation in the series of manually segmented TRUS images, and the prostate maximum shape remaining unchanged during HDR-BT fractions.

  1. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    Science.gov (United States)

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  2. Development and Performance of Bechtel Nevada's Nine-Frame Camera System

    International Nuclear Information System (INIS)

    S. A. Baker; M. J. Griffith; J. L. Tybo

    2002-01-01

    Bechtel Nevada, Los Alamos Operations, has developed a high-speed, nine-frame camera system that records a sequence from a changing or dynamic scene. The system incorporates an electrostatic image tube with custom gating and deflection electrodes. The framing tube is shuttered with high-speed gating electronics, yielding frame rates of up to 5MHz. Dynamic scenes are lens-coupled to the camera, which contains a single photocathode gated on and off to control each exposure time. Deflection plates and drive electronics move the frames to different locations on the framing tube output. A single charge-coupled device (CCD) camera then records the phosphor image of all nine frames. This paper discusses setup techniques to optimize system performance. It examines two alternate philosophies for system configuration and respective performance results. We also present performance metrics for system evaluation, experimental results, and applications to four-frame cameras

  3. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  4. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  5. [Endoscopic ultrasound guided rendezvous for biliary drainage].

    Science.gov (United States)

    Knudsen, Marie Høxbro; Vilmann, Peter; Hassan, Hazem; Karstensen, John Gésdal

    2015-04-27

    Endoscopic retrograde cholangiography (ERCP) is currently standard treatment for biliary drainage. Endoscopic ultrasound guided rendezvous (EUS-RV) is a novel method to overcome an unsuccessful biliary drainage procedure. Under endoscopic ultrasound guidance a guidewire is passed via a needle from the stomach or duodenum to the common bile duct and from there on to the duodenum enabling ERCP. With a relatively high rate of success EUS-RV should be considered as an alternative to biliary drainage and surgical intervention.

  6. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound

    International Nuclear Information System (INIS)

    Teh, W.L.; Wilson, A.R.M; Evans, A.J.; Burrell, H.; Pinder, S.E.; Ellis, I.O.

    2000-01-01

    AIM: The pre-operative diagnosis of suspicious mammographic microcalcifications usually requires stereotactic needle biopsy. The aim of this study was to evaluate if high frequency 13 MHz ultrasound (HFUS) and power Doppler (PD) can aid visualization and biopsy of microcalcifications. MATERIALS AND METHODS: Forty-four consecutive patients presenting with microcalcifications without associated mammographic or palpable masses were examined with HFUS and PD. Ultrasound-guided core biopsy (USCB) was performed where possible. Stereotactic biopsy was carried out when US-guided biopsy was unsuccessful. Surgery was performed if a diagnosis of malignancy was made on core biopsy or if the repeat core biopsy was non-diagnostic. RESULTS: Forty-one patients (93%) had ultrasound abnormalities corresponding to mammographic calcification. USCB was performed on 37 patients. In 29/37, USCB obtained a definitive result (78.4%). USCB was non-diagnostic in 4/9 benign (44.4%) and 4/28 (14.3%) malignant lesions biopsied. The complete and absolute sensitivities for malignancy using USCB were 85.7% (24/28) and 81% (23/28), respectively. USCB correctly identified invasive disease in 12/23 (52.2%) cases. There was no significant difference in the presence of abnormal flow on PD between benign and malignant lesions. However, abnormal PD vascularity was present in 43.5% of invasive cancer and was useful in directing successful biopsy in eight cases. CONCLUSION: The combination of high frequency US with PD is useful in the detection and guidance of successful needle biopsy of microcalcifications particularly where there is an invasive focus within larger areas of DCIS. Teh, W.L. (2000)

  7. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    Science.gov (United States)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  8. Objective and structured assessment of lung ultrasound competence

    DEFF Research Database (Denmark)

    Skaarup, Søren Helbo; Laursen, Christian B.; Bjerrum, Anne Sofie

    2017-01-01

    RATIONALE: Point-of-care lung ultrasound imaging has substantial diagnostic value and is widely used in respiratory, emergency and critical care medicine. Like other ultrasound examinations, lung ultrasound is operator-dependent. The current recommendations for competence in lung ultrasound sets...... a fixed number of ultrasound procedures to be performed without considering different learning rates. Recommendations do not consider different uses of lung ultrasound across specialties. OBJECTIVE: To create a reliable, valid and feasible instrument to assess lung ultrasound competence that includes...... 23 ultrasound operators of different competence levels. Examination time was measured and skill was rated by experienced observers using the assessment tool. Inter-rater agreement was examined by two observers in 9 lung ultrasound examinations. RESULTS: Consensus was obtained within 3 Delphi rounds...

  9. Ultrasound-Guided Single-Injection Infraclavicular Block Versus Ultrasound-Guided Double-Injection Axillary Block: A Noninferiority Randomized Controlled Trial.

    Science.gov (United States)

    Boivin, Ariane; Nadeau, Marie-Josée; Dion, Nicolas; Lévesque, Simon; Nicole, Pierre C; Turgeon, Alexis F

    2016-01-01

    Single-injection ultrasound-guided infraclavicular block is a simple, reliable, and effective technique. A simplified double-injection ultrasound-guided axillary block technique with a high success rate recently has been described. It has the advantage of being performed in a superficial and compressible location, with a potentially improved safety profile. However, its effectiveness in comparison with single-injection infraclavicular block has not been established. We hypothesized that the double-injection ultrasound-guided axillary block would show rates of complete sensory block at 30 minutes noninferior to the single-injection ultrasound-guided infraclavicular block. After approval by our research ethics committee and written informed consent, adults undergoing distal upper arm surgery were randomized to either group I, ultrasound-guided single-injection infraclavicular block, or group A, ultrasound-guided double-injection axillary block. In group I, 30 mL of 1.5% mepivacaine was injected posterior to the axillary artery. In group A, 25 mL of 1.5% mepivacaine was injected posteromedial to the axillary artery, after which 5 mL was injected around the musculocutaneous nerve. Primary outcome was the rate of complete sensory block at 30 minutes. Secondary outcomes were the onset of sensory and motor blocks, surgical success rates, performance times, and incidence of complications. All outcomes were assessed by a blinded investigator. The noninferiority of the double-injection ultrasound-guided axillary block was considered if the limits of the 90% confidence intervals (CIs) were within a 10% margin of the rate of complete sensory block of the infraclavicular block. At 30 minutes, the rate of complete sensory block was 79% in group A (90% CI, 71%-85%) compared with 91% in group I (90% CI, 85%-95%); the upper limit of CI of group A is thus included in the established noninferiority margin of 10%. The rate of complete sensory block was lower in group A (proportion

  10. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue.

    Science.gov (United States)

    Buschmann, Johanna; Puippe, Gilbert; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Giovanoli, Pietro; Calcagni, Maurizio

    2014-04-01

    Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.

  11. Treatment of esophageal tumors using high intensity intraluminal ultrasound: first clinical results

    Directory of Open Access Journals (Sweden)

    Prat Frederic

    2008-06-01

    Full Text Available Abstract Background Esophageal tumors generally bear a poor prognosis. Radical surgery is generally the only curative method available but is not feasible in the majority of patients; palliative therapy with stent placement is generally performed. It has been demonstrated that High Intensity Ultrasound can induce rapid, complete and well-defined coagulation necrosis. Thus, for the treatment of esophageal tumors, we have designed an ultrasound applicator that uses an intraluminal approach to fill up this therapeutic gap. Methods Thermal ablation is performed with water-cooled ultrasound transducers operating at a frequency of 10 MHz. Single lesions extend from the transducer surface up to 10 mm in depth when applying an intensity of 14 W/cm2 for 10s. A lumen inside the therapy applicator provides path for an endoscopic ultrasound imaging probe operating at a frequency of 12 MHz. The mechanical rotation of the applicator around its axis enables treatment of sectorial or cylindrical volumes. This method is thus particularly suitable for esophageal tumors that may develop only on a portion of the esophageal circumference. Previous experiments were conducted from bench to in vivo studies on pig esophagi. Results Here we report clinical results obtained on four patients included in a pilot study. The treatment of esophageal tumors was performed under fluoroscopic guidance and ultrasound imaging. Objective tumor response was obtained in all cases and a complete necrosis of a tumor was obtained in one case. All patients recovered uneventfully and dysphagia improved significantly within 15 days, allowing for resuming a solid diet in three cases. Conclusion This clinical work demonstrated the efficacy of intraluminal high intensity ultrasound therapy for local tumor destruction in the esophagus.

  12. Wireless communication of real-time ultrasound data and control

    Science.gov (United States)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  13. Mechanical characterization of rocks at high strain rate

    Directory of Open Access Journals (Sweden)

    Konstantinov A.

    2012-08-01

    Full Text Available The paper presents the dynamic characterization in tension and compression of three rocks, Carrara marble, Onsernone gneiss and Peccia Marble, at high strain-rates. Two versions of a Split Hopkinson Bar have been used. The version for direct tension tests is installed at the DynaMat Laboratory of the University of Applied Sciences of Southern Switzerland, while the traditional version in compression is installed at the Laboratory of Dynamic Investigation of Materials of Lobachevsky State University. Results of the tests show a significantly strain-rate sensitive behaviour, exhibiting dynamic strength increasing with strain-rate. The experimental research has been developed in the frame of the Swiss-Russian Joint Research Program.

  14. Flurbiprofen Axetil Provides Effective Analgesia Without Changing the Pregnancy Rate in Ultrasound-Guided Transvaginal Oocyte Retrieval: A Double-Blind Randomized Controlled Trial.

    Science.gov (United States)

    Zhao, Hong; Feng, Yi; Jiang, Yan; Lu, Qun

    2017-10-01

    In this prospective double-blind randomized study, we evaluated the analgesic effect and potential effect on pregnancy rate of the nonsteroidal anti-inflammatory drug flurbiprofen axetil in patients undergoing ultrasound-guided transvaginal oocyte retrieval under propofol-remifentanil anesthesia. A total of 200 patients scheduled to undergo ultrasound-guided transvaginal oocyte retrieval were randomly allocated to receive 1.5 mg/kg of flurbiprofen axetil (FA group) or placebo (control group) 30 minutes before the procedure. Postoperative pain scores, embryo implantation rate, and pregnancy rate were recorded. Neuroendocrine biomarkers and prostaglandin E2 levels in follicular fluid were tested after oocyte retrieval. Patients in the FA group awakened earlier after surgery than patients in the control group (3.3 ± 2.6 vs 5.3 ± 3.4 minutes, P Flurbiprofen axetil given before ultrasound-guided transvaginal oocyte retrieval for patients under propofol-remifentanil general anesthesia relieves pain without any detrimental effect on clinical pregnancy rate.

  15. New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.

    Science.gov (United States)

    Chen, Xucai; Leeman, Jonathan E; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2014-01-01

    Thrombotic arterial occlusion is the principal etiology for acute cardiovascular syndromes such as stroke, myocardial infarction and unstable angina. Exposing the thrombus to ultrasound and microbubbles facilitates thrombus disruption, making "sonothrombolysis" a potentially powerful therapeutic strategy for thromboembolic diseases. However, optimization of such a strategy, and hence clinical translation, is constrained by an incomplete understanding of mechanisms by which ultrasound-induced microbubble vibrations disrupt blood clots. We posit that previously reported sonothrombolytic efficacy using inertial cavitation regimes was due, at least in part, to mechanical clot disruption by oscillating microbubbles. To test this hypothesis, we optically characterized lipid microbubble interactions with thrombus in the presence of ultrasound using a recently developed ultra-high-speed microscopy imaging system to visualize microbubble acoustic behaviors at megahertz frame rates. A microscope/acoustic stage designed for the system allowed an experimentally created thrombus and microbubbles to be insonified at a co-localized acoustic and optical focus during synchronized high-speed imaging. Under inertial cavitation conditions, large-amplitude microbubble oscillations caused thrombus deformation and pitting. Acoustic radiation forces (Bjerknes forces) further augmented microbubble-thrombus interaction. These observations suggest that a direct mechanical effect of oscillating lipid microbubbles on an adjacent thrombus may play a role in mediating clot disruption in the presence of specific ultrasound conditions. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. High strain-rate soft material characterization via inertial cavitation

    Science.gov (United States)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  17. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    Science.gov (United States)

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  18. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect

    Science.gov (United States)

    Gosling, Corentin J.; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation. PMID:28232808

  19. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect.

    Science.gov (United States)

    Gosling, Corentin J; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation.

  20. Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound

    International Nuclear Information System (INIS)

    Boda-Heggemann, J.; Walter, C.; Mai, S.; Dobler, B.; Wenz, F.; Lohr, F.; Dinter, D.

    2006-01-01

    Background and purpose: radiosurgery of liver metastases is effective but a technical challenge due to respiration-induced movement. The authors report on the initial experience of the combination of active breathing control (ABC registered ) with stereotactic ultrasound (B-mode acquisition and targeting [BAT registered ]) for frameless radiosurgery. Patient and methods: a patient with a solitary, inoperable liver metastasis from cholangiocellular carcinoma is presented. ABC registered was used for tumor/liver immobilization. Tumor/liver position was controlled and corrected using ultrasound (BAT registered ). The tumor was irradiated with a single dose of 24 Gy. Results: using ABC registered , the motion of the tumor was significantly reduced and the overall positioning error was registered allowed a rapid localization of the lesion during breath hold which could be performed without difficulties for 20 s. Overall treatment time was acceptable (30 min). Conclusion: frameless stereotactic radiotherapy with the combination of ABC registered and BAT registered allows the delivery of high single doses to targets accessible to ultrasound with high precision comparable to a frame-based approach. (orig.)

  1. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.

    Science.gov (United States)

    Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi

    2014-11-01

    A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.

  2. Approximate analysis of high-rise frames with flexible connections

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.

    2000-01-01

    An approximate hand method for estimating horizontal deflections in high-rise steel frames with flexible beam–column connections subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls which is expressed in non-dimensional structural

  3. Microbiological properties of poultry breast meat treated with high-intensity ultrasound.

    Science.gov (United States)

    Piñon, M I; Alarcon-Rojo, A D; Renteria, A L; Carrillo-Lopez, L M

    2018-01-03

    Lactic acid, psychrophilic, and mesophilic bacteria, Escherichia coli, Salmonella spp. and Staphylococcus aureus were enumerated on chicken breasts after treatment with different high intensity ultrasound (frequency 40 kHz, intensity 9.6 W/cm -2 ) application times (0, 30, and 50 min) and packaging atmospheres (aerobic and vacuum) after a 7-day storage. The experiment was performed in commercial 7-week-old chicken breasts. Counts were performed prior to and immediately after ultrasonication, and on the 7th day of chill-storage. After sonication and storage, mesophiles, psychrophiles, LAB and S. aureus increased statistically. Psychrophiles decreased significantly under anaerobic packaging. There were no differences among ultrasonication times in terms of mesophiles, psychrophiles, LAB, E. coli and Salmonella spp. S. aureus numbers had a significant reduction after 50 min sonication. Under these experimental conditions, high-intensity ultrasound for 50 min is a control method of S. aureus and the anaerobic packaging reduces numbers of psychrophiles in chicken breast. The effect of ultrasound is only significant after the storage time. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  5. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    V. Daeichin (Verya); T. van Rooij (Tom); I. Skachkov (Ilya); B. Ergin (Bulent); P. Specht (Patricia); A.A.P. Lima (Alexandre ); C. Ince (Can); J.G. Bosch (Hans); A.F.W. van der Steen (Ton); N. de Jong (Nico); K. Kooiman (Klazina)

    2017-01-01

    textabstractAlthough high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited

  6. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging : In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A.C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, A.F.W.; de Jong, N.; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially

  7. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A. C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, Antonius F. W.; de Jong, Nico; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available

  8. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of General Ultrasound Imaging? Ultrasound waves are ...

  10. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2008-01-01

    Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  11. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  12. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    International Nuclear Information System (INIS)

    Garra, B.

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  13. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    Energy Technology Data Exchange (ETDEWEB)

    Garra, B. [FDA, Silver Spring, MD (United States)

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  14. Framing violence: the effect of survey context and question framing on reported rates of partner violence

    OpenAIRE

    Regan, Katherine V.

    2008-01-01

    In this dissertation, I investigated two explanations for the variability in levels of partner violence found by large community surveys. In Study 1, I examined the effect of how questions about partner violence are introduced (question framing: conflict, violence-in-relationships, or attacks) on reports of partner violence. Although there was not a reliable effect of question framing, the pattern of findings was consistent across 3 of 4 analyses. Counter to predictions, an attacks question f...

  15. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  16. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    Energy Technology Data Exchange (ETDEWEB)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoronto.ca; Jones, Ryan M. [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Birman, Gabriel [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Hynynen, Kullervo [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada)

    2016-09-15

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  17. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    Science.gov (United States)

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  18. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  19. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Edstrom Jr., D. [Fermilab; Ruan, J. [Fermilab

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  20. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  1. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Wang Yang; Wang Wei; Wang Longxia; Wang Junyan; Tang Jie

    2011-01-01

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  2. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Wei, E-mail: wangyang301301@yahoo.com.cn [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Longxia; Wang Junyan; Tang Jie [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2011-07-15

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  3. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Directory of Open Access Journals (Sweden)

    Shiran M. B.

    2017-06-01

    Full Text Available Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130 filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130 filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05, while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules in the hemodialysis process.

  4. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Science.gov (United States)

    Shiran, M.B.; Barzegar Marvasti, M.; Shakeri-Zadeh, A.; Shahidi, M.; Tabkhi, N.; Farkhondeh, F.; Kalantar, E.; Asadinejad, A.

    2017-01-01

    Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130) filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130) filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05), while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules) in the hemodialysis process. PMID:28580332

  5. Ultrasound protocols to measure carotid intima-media thickness in trials; comparison of reproducibility, rate of progression, and effect of intervention in subjects with familial hypercholesterolemia and subjects with mixed dyslipidemia

    NARCIS (Netherlands)

    Dogan, Soner; Duivenvoorden, Raphaël; Grobbee, Diederick E.; Kastelein, John J. P.; Shear, Charles L.; Evans, Greg W.; Visseren, Frank L.; Bots, Michiel L.

    2010-01-01

    Background. Current ultrasound protocols to measure carotid intima-media thickness (CIMT) in trials rather differ. The ideal protocol combines high reproducibility with a high precision in the measurement of the rate of change in CIMT over time and with a precise estimate of a treatment effect. To

  6. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  7. FRAMING OF JOURNALISM DISCOURSE TO IMPROVE DISCOURSE COMPETENCE OF SENIOR HIGH SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Dadang S. Anshori

    2017-12-01

    Full Text Available This study aims to describe the analysis model of framing on journalism discourse in Indonesian textbooks in Senior High School to be used in language learning. This research used qualitative method with framing theory from Pan and Kosicki as an tool of analysis. The research data is journalism discourse in textbook amounted to 30 pieces of discourse taken from 10 text books of class X, XI, and XII in Senior High School. The results show the following: (1 The discourse of journalism has received acceptance in the world of education, especially in textbooks. The use of journalism discourse in 10 textbooks is very high and very diverse in terms of number, topic, source, and usage. (2 The journalism discourse in the textbook meets the criteria of reporting value, even if not all reporting value is fulfilled. (3 The frame construction of the journalism discourse in Indonesian textbooks is packaged in different angles according to news topics and facts. (4 The analysis model of journalism discourse framing is developed by focusing on the structural analysis of category, syntax, script, thematic, diction/phrase, and rhetoric.

  8. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    International Nuclear Information System (INIS)

    Chen, S.

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  9. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Mayo Clinic (United States)

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  10. Obstetric ultrasound aids prompt referral of gestational trophoblastic disease in marginalized populations on the Thailand-Myanmar border

    NARCIS (Netherlands)

    McGregor, Kathryn; Min, Aung Myat; Karunkonkowit, Noaeni; Keereechareon, Suporn; Tyrosvoutis, Mary Ellen; Tun, Nay Win; Rijken, Marcus J.; Hoogenboom, Gabie; Boel, Machteld; Chotivanich, Kesinee; Nosten, François; McGready, Rose

    2017-01-01

    Background: The use of obstetric ultrasound in the diagnosis of gestational trophoblastic disease (GTD) in high-income settings is well established, leading to prompt management and high survival rates. Evidence from low-income settings suggests ultrasound is essential in identifying complicated

  11. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  12. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  13. High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics.

    Science.gov (United States)

    Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej

    2015-01-01

    The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.

  14. A neuroimaging investigation of attribute framing and individual differences

    Science.gov (United States)

    Murch, Kevin B.

    2014-01-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759

  15. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  16. High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids.

    Science.gov (United States)

    Wagh, Ashwini; Birkin, Peter; Martini, Silvana

    2016-01-01

    High-intensity ultrasound (HIU) has been used in recent years to change the crystallization behavior of edible lipids. This technique can be used in combination with other processing technologies to tailor lipids' functional properties and broaden their application for various food products. In general, sonication induces crystallization, increases crystallization rate, and generates a harder and more elastic crystalline network characterized by smaller crystals with a sharper melting profile. An important application of HIU is to improve the hardness and elasticity of shortenings that have a low content of saturated fatty acids and are free of trans-fats. This review summarizes recent research that used HIU to change the physical and functional properties of edible lipids and focuses on the importance of controlling processing variables such as sonication power level and duration and crystallization temperature.

  17. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    Science.gov (United States)

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  18. Framing the ultimatum game: gender differences and autonomic responses.

    Science.gov (United States)

    Sarlo, Michela; Lotto, Lorella; Palomba, Daniela; Scozzari, Simona; Rumiati, Rino

    2013-01-01

    The present study aimed at investigating whether the way offers are framed in the Ultimatum Game (UG) affects behavioral and autonomic responses in men and women. The "I give you" and "I take" expressions were used as gain and loss frames, respectively. Skin conductance and heart rate were recorded as indices of autonomic activation in response to unfair, mid-value, and fair offers. Acceptance rates were higher in men than in women under the gain frame. Moreover, men showed higher acceptance rates under the gain than under the loss frame with mid-value offers, whereas women's choices were not affected by frame. On the physiological level, men produced differential autonomic response patterns during decision-making when offers were presented under gain and loss framing. The "I take" frame, by acting as a loss frame, elicited in men the characteristic defensive response pattern that is evoked by aversive stimulation, in which increases in skin conductance are coupled with increases in heart rate. On the other hand, the "I give you" frame, by acting as a gain frame, elicited in men increases in skin conductance associated with prevailing heart rate deceleratory responses, reflecting a state of enhanced attention and orienting. In contrast, women's autonomic reactivity was not affected by frame, consistent with behavioral results. Phasic changes in heart rate were crucial in revealing differential functional significance of skin conductance responses under different frames in men, thus questioning the assumption that this autonomic measure can be used as an index of negative emotional arousal in the UG.

  19. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  20. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  1. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  2. The value and economic analysis of routine postoperative carotid duplex ultrasound surveillance after carotid endarterectomy.

    Science.gov (United States)

    AbuRahma, Ali F; Srivastava, Mohit; AbuRahma, Zachary; Jackson, Will; Mousa, Albeir; Stone, Patrick A; Dean, L Scott; Green, Jason

    2015-08-01

    Several studies have reported on the role of postoperative duplex ultrasound surveillance after carotid endarterectomy (CEA) with varying results. Most of these studies had a small sample size or did not analyze cost-effectiveness. We analyzed 489 of 501 CEA patients with patch closure. All patients had immediate postoperative duplex ultrasound examination and were routinely followed up both clinically and with duplex ultrasound at regular intervals of 1 month, 6 months, 12 months, and every 12 months thereafter. A Kaplan-Meier analysis was used to estimate the rate of ≥50% and ≥80% post-CEA restenosis over time and the time frame of progression from normal to ≥50% or ≥80% restenosis. The cost of post-CEA duplex surveillance was also estimated. Overall, 489 patients with a mean age of 68.5 years were analyzed. Ten of these had residual postoperative ≥50% stenosis, and 37 did not undergo a second duplex ultrasound examination and therefore were not included in the final analysis. The mean follow-up was 20.4 months (range, 1-63 months), with a mean number of duplex ultrasound examinations of 3.6 (range, 1-7). Eleven of 397 patients (2.8%) with a normal finding on immediate postoperative duplex ultrasound vs 4 of 45 (8.9%) with mild stenosis on immediate postoperative duplex ultrasound progressed to ≥50% restenosis (P = .055). Overall, 15 patients (3.1%) had ≥50% restenosis, 9 with 50% to duplex ultrasound), which equals $1,408,320, to detect only four patients with ≥80% to 99% restenosis who may have been potential candidates for reintervention. This study shows that the value of routine postoperative duplex ultrasound surveillance after CEA with patch closure may be limited, particularly if the finding on immediate postoperative duplex ultrasound is normal or shows minimal disease. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Using a Graphics Turing Test to Evaluate the Effect of Frame Rate and Motion Blur on Telepresence of Animated Objects

    DEFF Research Database (Denmark)

    Borg, Mathias; Johansen, Stine Schmieg; Krog, Kim Srirat

    2013-01-01

    A limited Graphics Turing Test is used to determine the frame rate that is required to achieve telepresence of an animated object. For low object velocities of 2.25 and 4.5 degrees of visual angle per second at 60 frames per second a rotating object with no added motion blur is able to pass the t...

  4. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  5. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  6. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    Science.gov (United States)

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Post-General Anesthesia Ultrasound-Guided Venous Mapping Increases Autogenous Access Placement Rates.

    Science.gov (United States)

    Png, C Y Maximilian; Korayem, Adam; Finlay, David J

    2018-04-18

    This study investigates the impact of introducing a post-general anesthesia ultrasound mapping (PAUS) on the type of vascular access chosen for hemodialysis in patients without previous accesses. 203 of 297 consecutive patients met inclusion criteria and were reviewed. Within-subjects analysis was performed on patients with both an outpatient ultrasound-guided vein mapping and a PAUS using sign tests and Wilcoxon signed ranked tests. Further, a between-subjects analysis added patients with only the outpatient vein mapping; demographic and comorbidity data were analyzed using t-tests and chi-squared tests. An ordinal logit regression was run for the type of access placed, while a bivariate logit regression was used to compare rates of autogenous access maturation. 165 (81%) patients received both a standard outpatient vein mapping and a PAUS. At the outpatient vein mapping, 130 (79%) patients had suitable veins for an autogenous access while 35 (21%) patients did not have suitable veins for an autogenous access and were planned for a prosthetic access. During PAUS, all 165 (100%) patients were found to have suitable veins for autogenous access formation (P<0.001). When comparing specific autogenous access configurations, Wilcoxon signed rank testing showed significantly more preferable access configurations in the PAUS group compared to the outpatient mapping (P<0.001); Outpatient mapping resulted in 81 (47%) radiocephalic accesses, 10 (6%) radiobasilic accesses, 20 (12%) brachiocephalic accesses, 19 (12%) brachiobasilic accesses and 35 (21%) prosthetic accesses planned, in contrast to 149 (90%) radiocephalic accesses, 3 (2%) radiobasilic accesses, 10 (6%) brachiocephalic accesses, 3 (2%) brachiobasilic accesses and 0 prosthetic accesses when the same patients were analyzed using PAUS. With the analysis expanded to include the 38 (19%) patients with only the outpatient vein mapping (without-PAUS), the Wilcoxon-Mann-Whitney test showed no significant differences

  8. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  9. Message framing in social networking sites.

    Science.gov (United States)

    Kao, Danny Tengti; Chuang, Shih-Chieh; Wang, Sui-Min; Zhang, Lei

    2013-10-01

    Online social networking sites represent significant new opportunities for Internet advertisers. However, results based on the real world cannot be generalized to all virtual worlds. In this research, the moderating effects of need for cognition (NFC) and knowledge were applied to examine the impact of message framing on attitudes toward social networking sites. A total of 216 undergraduates participated in the study. Results reveal that for social networking sites, while high-NFC individuals form more favorable attitudes toward negatively framed messages than positively framed messages, low-NFC individuals form more favorable attitudes toward positively framed messages than negatively framed messages. In addition, low-knowledge individuals demonstrate more favorable attitudes toward negatively framed messages than positively framed messages; however, the framing effect does not differentially affect the attitudes of high-knowledge individuals. Furthermore, the framing effect does not differentially affect the attitudes of high-NFC individuals with high knowledge. In contrast, low-NFC individuals with low knowledge hold more favorable attitudes toward positively framed messages than negatively framed messages.

  10. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  11. High-intensity focused ultrasound in the treatment of breast tumours.

    Science.gov (United States)

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  12. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    Science.gov (United States)

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  13. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang-Ying; Ding, Hong-Yu [Shandong University, Department of Ultrasonography, Qianfoshan Hospital, Jinan (China); Zheng, Lei; Sun, Bai-Sheng [Chinese People' s Armed Police Force, Department of Radiology, Shandong Provincial Corps Hospital, Jinan (China); Li, En-Miao [Jinan Third People' s Hospital, Department of Ultrasonography, Jinan (China); Shi, Hao [Shandong University, Department of Radiology, Qianfoshan Hospital, Jinan (China)

    2015-01-15

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  15. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    International Nuclear Information System (INIS)

    Zhang, Guang-Ying; Ding, Hong-Yu; Zheng, Lei; Sun, Bai-Sheng; Li, En-Miao; Shi, Hao

    2015-01-01

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  16. A neuroimaging investigation of attribute framing and individual differences.

    Science.gov (United States)

    Murch, Kevin B; Krawczyk, Daniel C

    2014-10-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z.; Alzimami, Khalid S.; Sulieman, Abdelmoneim; Fagiri, Maram A.

    2015-01-01

    High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period

  18. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  20. Novel low-power ultrasound digital preprocessing architecture for wireless display.

    Science.gov (United States)

    Levesque, Philippe; Sawan, Mohamad

    2010-03-01

    A complete hardware-based ultrasound preprocessing unit (PPU) is presented as an alternative to available power-hungry devices. Intended to expand the ultrasonic applications, the proposed unit allows replacement of the cable of the ultrasonic probe by a wireless link to transfer data from the probe to a remote monitor. The digital back-end architecture of this PPU is fully pipelined, which permits sampling of ultrasonic signals at a frequency equal to the field-programmable gate array-based system clock, up to 100 MHz. Experimental results show that the proposed processing unit has an excellent performance, an equivalent 53.15 Dhrystone 2.1 MIPS/ MHz (DMIPS/MHz), compared with other software-based architectures that allow a maximum of 1.6 DMIPS/MHz. In addition, an adaptive subsampling method is proposed to operate the pixel compressor, which allows real-time image zooming and, by removing high-frequency noise, the lateral and axial resolutions are enhanced by 25% and 33%, respectively. Realtime images, acquired from a reference phantom, validated the feasibility of the proposed architecture. For a display rate of 15 frames per second, and a 5-MHz single-element piezoelectric transducer, the proposed digital PPU requires a dynamic power of only 242 mW, which represents around 20% of the best-available software-based system. Furthermore, composed by the ultrasound processor and the image interpolation unit, the digital processing core of the PPU presents good power-performance ratios of 26 DMIPS/mW and 43.9 DMIPS/mW at a 20-MHz and 100-MHz sample frequency, respectively.

  1. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  2. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  3. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging.

    Science.gov (United States)

    Declèves, Anne-Emilie; Rychak, Joshua J; Smith, Dan J; Sharma, Kumar

    2013-11-01

    Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.

  4. Feasibility of ultrasound-guided intraarticular contrast injection for MR arthrography

    International Nuclear Information System (INIS)

    Baek, Soo Jin; Lee, Jong Min; Kang, Duck Sick

    2005-01-01

    To assess the feasibility of ultrasound-guided intraarticular contrast injection using the posterior approach for MR arthrography. Between June 2002 and October 2004, 132 patients (29 female, 103 male: mean age, 33.6 years) underwent ultrasound-guided intraarticular contrast media injection (40 ml saline + 10 ml 2% lidocaine + 0.2 ml gadopentetate dimeglumine + 0.4 ml epinephrine) for MR arthrography. The patients were classified into four groups, viz. the no leakage group, the minor leakage with successful intraarticular injection group, the major leakage with unsuccessful intraarticular injection group, and the injection failure group. The 'no leakage' and 'minor leakage' groups were considered to be technical successes, while the 'major leakage' and 'injection failure' groups were regarded as technical failures. The technical success rate of ultrasound-guided intraarticular contrast injection using the posterior approach for MR Arthrography was 99.2% (131/132 patients) and one patients 0.7% (1/132 patients) was included in the 'major leakage' group. Ultrasound-guided intraarticular contrast injection using the posterior approach for MR arthrography was feasible with a high success rate

  5. High frequency ultrasound imaging in pupillary block glaucoma.

    Science.gov (United States)

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  6. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  7. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  8. ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods.

    Science.gov (United States)

    Boni, Enrico; Bassi, Luca; Dallai, Alessandro; Guidi, Francesco; Meacci, Valentino; Ramalli, Alessandro; Ricci, Stefano; Tortoli, Piero

    2016-10-01

    Open scanners offer an increasing support to the ultrasound researchers who are involved in the experimental test of novel methods. Each system presents specific performance in terms of number of channels, flexibility, processing power, data storage capability, and overall dimensions. This paper reports the design criteria and hardware/software implementation details of a new 256-channel ultrasound advanced open platform. This system is organized in a modular architecture, including multiple front-end boards, interconnected by a high-speed (80 Gb/s) ring, capable of finely controlling all transmit (TX) and receive (RX) signals. High flexibility and processing power (equivalent to 2500 GFLOP) are guaranteed by the possibility of individually programming multiple digital signal processors and field programmable gate arrays. Eighty GB of on-board memory are available for the storage of prebeamforming, postbeamforming, and baseband data. The use of latest generation devices allowed to integrate all needed electronics in a small size ( 34 cm ×30 cm ×26 cm). The system implements a multiline beamformer that allows obtaining images of 96 lines by 2048 depths at a frame rate of 720 Hz (expandable to 3000 Hz). The multiline beamforming capability is also exploited to implement a real-time vector Doppler scheme in which a single TX and two independent RX apertures are simultaneously used to maintain the analysis over a full pulse repetition frequency range.

  9. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  10. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  12. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Vincent Y. T. [Dept. of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong (China)

    2017-04-15

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition.

  13. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    International Nuclear Information System (INIS)

    Cheng, Vincent Y. T.

    2017-01-01

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition

  14. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    Science.gov (United States)

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  15. Perspectives of high power ultrasound in food preservation

    Science.gov (United States)

    Evelyn; Silva, F. V. M.

    2018-04-01

    High Power ultrasound can be used to alter physicochemical properties and improve the quality of foods during processing due to a number of mechanical, chemical, and biochemical effects arising from acoustic cavitation. Cavitation creates pressure waves that inactivate microbes and de-agglomerate bacterial clusters or release ascospores from fungal asci. Bacterial and heat resistant fungal spores’ inactivation is a great challenge in food preservation due to their ability to survive after conventional food processing, causing food-borne diseases or spoilage. In this work, a showcase of application of high power ultrasound combined with heat or thermosonication, to inactivate bacterial spores i.e. Bacillus cereus spores in beef slurry and fungal spores i.e. Neosartorya fischeri ascospores in apple juice was presented and compared with thermal processing. Faster inactivation was achieved at higher TS (24 KHz, 0.33 W/g or W/mL) temperatures. Around 2 log inactivation was obtained for B. cereus spores after1 min (70 °C) and N. fischeri ascospores after 30 min (75 °C). Thermal treatments caused <1 log in B. Cereus after 2 min (70 °C) and no inactivation in N. Fischeri ascospores after 30 min (80 °C). In conclusion, temperature plays a significant role for TS spore inactivation and TS was more effective than thermal treatment alone. The mould spores were more resistant than the bacterial spores.

  16. Assessment of the feasibility of using transrectal ultrasound for postimplant dosimetry in low-dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane; Barber, Jim; Tanguay, Jacob; Button, Michael; Cochlin, Dennis; Smith, Christian; Lester, Jason Francis

    2016-01-01

    A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there was no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.

  17. WE-B-210-03: Closing

    International Nuclear Information System (INIS)

    Holland, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  18. WE-B-210-01: Introduction

    International Nuclear Information System (INIS)

    Holland, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  19. WE-B-210-00: Carson/Zagzebski Distinguished Lectureship

    International Nuclear Information System (INIS)

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  20. WE-B-210-00: Carson/Zagzebski Distinguished Lectureship

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  1. WE-B-210-01: Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M. [Indiana University-School of Medicine (United States)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  2. WE-B-210-03: Closing

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M. [Indiana University-School of Medicine (United States)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  3. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.

    Science.gov (United States)

    Ong, Olivia X H; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2015-09-01

    Application of high intensity ultrasound has shown potential in the production of Maillard reaction odor-active flavor compounds in model systems. The impact of initial pH, sonication duration, and ultrasound intensity on the production of Maillard reaction products (MRPs) by ultrasound processing in a cysteine-xylose model system were evaluated using Response Surface Methodology (RSM) with a modified mathematical model. Generation of selected MRPs, 2-methylthiophene and tetramethyl pyrazine, was optimal at an initial pH of 6.00, accompanied with 78.1 min of processing at an ultrasound intensity of 19.8 W cm(-2). However, identification of volatiles using gas chromatography-mass spectrometry (GC/MS) revealed that ultrasound-assisted Maillard reactions generated fewer sulfur-containing volatile flavor compounds as compared to conventional heat treatment of the model system. Likely reasons for this difference in flavor profile include the expulsion of H2S due to ultrasonic degassing and inefficient transmission of ultrasonic energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  5. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  6. Medical students benefit from the use of ultrasound when learning peripheral IV techniques.

    Science.gov (United States)

    Osborn, Scott R; Borhart, Joelle; Antonis, Michael S

    2012-03-06

    Recent studies support high success rates after a short learning period of ultrasound IV technique, and increased patient and provider satisfaction when using ultrasound as an adjunct to peripheral IV placement. No study to date has addressed the efficacy for instructing ultrasound-naive providers. We studied the introduction of ultrasound to the teaching technique of peripheral IV insertion on first- and second-year medical students. This was a prospective, randomized, and controlled trial. A total of 69 medical students were randomly assigned to the control group with a classic, landmark-based approach (n = 36) or the real-time ultrasound-guided group (n = 33). Both groups observed a 20-min tutorial on IV placement using both techniques and then attempted vein cannulation. Students were given a survey to report their results and observations by a 10-cm visual analog scale. The survey response rate was 100%. In the two groups, 73.9% stated that they attempted an IV previously, and 63.7% of students had used an ultrasound machine prior to the study. None had used ultrasound for IV access prior to our session. The average number of attempts at cannulation was 1.42 in either group. There was no difference between the control and ultrasound groups in terms of number of attempts (p = 0.31). In both groups, 66.7% of learners were able to cannulate in one attempt, 21.7% in two attempts, and 11.6% in three attempts. The study group commented that they felt they gained more knowledge from the experience (p students feel they learn more when using ultrasound after a 20-min tutorial to place IVs and cannulation of the vein feels easier. Success rates are comparable between the traditional and ultrasound teaching approaches.

  7. Obstetric ultrasound aids prompt referral of gestational trophoblastic disease in marginalized populations on the Thailand-Myanmar border.

    Science.gov (United States)

    McGregor, Kathryn; Myat Min, Aung; Karunkonkowit, Noaeni; Keereechareon, Suporn; Tyrosvoutis, Mary Ellen; Tun, Nay Win; Rijken, Marcus J; Hoogenboom, Gabie; Boel, Machteld; Chotivanich, Kesinee; Nosten, François; McGready, Rose

    2017-01-01

    The use of obstetric ultrasound in the diagnosis of gestational trophoblastic disease (GTD) in high-income settings is well established, leading to prompt management and high survival rates. Evidence from low-income settings suggests ultrasound is essential in identifying complicated pregnancies, but with limited studies reviewing specific conditions including GTD. The aim of this study is to review the role of ultrasound in diagnosis and management of GTD in a marginalized population on the Thailand-Myanmar border. Antenatal ultrasound became available in this rural setting in 2001 and care for women with GTD has been provided by Thailand public hospitals for 20 years. Retrospective record review. The incidence of GTD was 103 of 57,004 pregnancies in Karen and Burmese women on the Thailand-Myanmar border from 1993-2013. This equates to a rate of 1.8 (95% CI 1.5-2.2) per 1000 or 1 in 553 pregnancies. Of the 102 women with known outcomes, one (1.0%) died of haemorrhage at home. The median number of days between first antenatal clinic attendance and referral to hospital was reduced from 20 (IQR 5-35; range 1-155) to 2 (IQR 2-6; range 1-179) days (p = 0.002) after the introduction of ultrasound. The proportion of severe outcomes (death and total abdominal hysterectomy) was 25% (3/12) before ultrasound compared to 8.9% (8/90) with ultrasound (p = 0.119). A recurrence rate of 2.5% (2/80) was observed in the assessable population. The presence of malaria parasites in maternal blood was not associated with GTD. The rate of GTD in pregnancy in this population is comparable to rates previously reported within South-East Asia. Referral time for uterine evacuation was significantly shorter for those women who had an ultrasound. Ultrasound is an effective method to improve diagnosis of GTD in low-income settings and an effort to increase availability in marginalized populations is required.

  8. WE-E-9A-01: Ultrasound Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  9. WE-E-9A-01: Ultrasound Elasticity

    International Nuclear Information System (INIS)

    Emelianov, S; Hall, T; Bouchard, R

    2014-01-01

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  10. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    International Nuclear Information System (INIS)

    Haar, Gail ter

    2008-01-01

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients

  11. SU-G-BRB-10: New Generation of High Frame-Rate and High Spatial-Resolution EPID QA System for Full-Body MLC-Based Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Han, B; Xing, L; Wang, L

    2016-01-01

    Purpose: To systematically investigate an ultra-high spatial-resolution amorphous silicon flat-panel electronic portal imaging device (EPID) for MLC-based full-body robotic radiosurgery geometric and dosimetric quality assurance (QA). Methods: The high frame-rate and ultra-high spatial resolution EPID is an outstanding detector for measuring profiles, MLC-shaped radiosurgery field aperture verification, and small field dosimetry. A Monte Carlo based technique with a robotic linac specific response and calibration is developed to convert a raw EPID-measured image of a radiosurgery field into water-based dose distribution. The technique is applied to measure output factors and profiles for 6MV MLC-defined radiosurgery fields with various sizes ranging from 7.6mm×7.7mm to 100mm×100.1mm and the results are compared with the radiosurgery diode scan measurements in water tank. The EPID measured field sizes and the penumbra regions are analyzed to evaluate the MLC positioning accuracy. Results: For all MLC fields, the EPID measured output factors of MLC-shaped fields are in good agreement with the diode measurements. The mean output difference between the EPID and diode measurement is 0.05±0.87%. The max difference is −1.33% for 7.6mm×7.7mm field. The MLC field size derived from the EPID measurements are in good agreement comparing to the diode scan result. For crossline field sizes, the mean difference is −0.17mm±0.14mm with a maximum of −0.35mm for the 30.8mm×30.8mm field. For inline field sizes, the mean difference is +0.08mm±0.18mm with a maximum of +0.45mm for the 100mm×100.1mm field. The high resolution EPID is able to measure the whole radiation field, without the need to align the detector center perfectly at field center as diode or ion chamber measurement. The setup time is greatly reduced so that the whole process is possible for machine and patient-specific QA. Conclusion: The high spatial-resolution EPID is proved to be an accurate and efficient

  12. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  13. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    Science.gov (United States)

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined. PMID:21116349

  14. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    OpenAIRE

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined.

  15. The Application of Advanced Technique of Fan Frame Unit on High Bypass Ratio Aero Engine

    Directory of Open Access Journals (Sweden)

    Hou Peng

    2017-01-01

    Full Text Available High bypass ratio aero-engine was widely used on military and civil aviation domain, as the power of larger aircraft. Fan frame unit was the main bearing frame of high bypass ratio aero-engine, which composed of strut, HUB MID BOX and external bypass parts. Resin/composite was used on external bypass parts(acoustic liner, containment ring, fan outlet guide vane and fan case skin fillets, which not only reduced the weight and manufacturing cost, but also improved the noise absorption, containment and anti-fatigue ability of engine. The design of composite was becoming a key technique for high bypass ratio aero-engine. In special test of the core engine, nitrogen cooling system was designed to cool the cavity of spool. The nitrogen pipeline passed through the inner cavity of fan frame, then inserted into NO. 3 bearing seal, so nitrogen gas was sent into the cavity of core engine spool. On high bypass ratio aero-engine, the external bypass and fan frame inner cavity were the design platform for advanced technique, such as composite and pipeline system, and also provided guarantee for reliable operation of engine.

  16. Effect of High Intensity Ultrasound and Pasteurization on Anthocyanin Content in Strawberry Juice

    Directory of Open Access Journals (Sweden)

    Igor Dubrović

    2011-01-01

    Full Text Available The purpose of this investigation is to study the influence of high intensity ultrasound and pasteurization on the stability of anthocyanins and their content in strawberry juice. Different ultrasound process parameters for the treatment of juices are compared to the classical thermal treatments. For ultrasound treatments, three parameters were varied according to the statistical experimental design. Central composite design was used to optimize and design experimental parameters: temperature (25, 40 and 55 °C, amplitude (60, 90 and 120 μm and time (3, 6, and 9 min. It was found that the anthocyanin content after pasteurization (85 °C for 2 min was reduced by 5.3 to 5.8 % compared to untreated juices. After treatment with ultrasound (20 °C for 3, 6 or 9 min or thermosonication (40 °C for 3, 6 or 9 min and 60 °C for 3 or 6 min, the degradation of anthocyanins was generally less intensive and was 0.7–4.4 % compared to the untreated juices. Only in the case of ultrasonic treatment at a temperature of 55 °C and treatment time of 9 min the total content of anthocyanins, compared to untreated juice, was reduced by 5.8 to 7.1 %, and their degradation was greater than that of pasteurized juices. From the results it can be concluded that total anthocyanin content was greater in more than 85 % of the selected ultrasound treatments compared to pasteurized juices. Ultrasound treatment can replace pasteurization in terms of preserving total anthocyanin content. The modelling approaches using response surface methodology (RSM developed in this study exploit data in order to identify the optimal processing parameters for lowering degradation of anthocyanins in strawberry juice during ultrasound processing.

  17. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  18. [Assessment of the sonographer's knowledge on the second trimester ultrasound recommendations of the National Technical Committee of Ultrasound].

    Science.gov (United States)

    Matar, M; Picone, O; Dalmon, C; Ayoubi, J-M

    2013-09-01

    To evaluate the sonographers' knowledge of the National Technical Committee of Ultrasound's recommendations concerning second trimester ultrasound. Anonymous questionnaire was sent by e-mails containing 25 questions about demographic elements, the practice of second trimester ultrasound and the recommendations of the National Technical Committee of Ultrasound about second trimester ultrasound. Six hundred and eighty-four responses were obtained. Six hundred and fifty-three upon 684 (95%) of respondents practice second trimester ultrasound and 635 upon 653 (97%) know about the existence of the report of the National Technical Committee of Ultrasound. The rates of correct answers concerning recommended biometrical images vary between 97% for the biparietal diameter and head circumference, 98% for abdominal circumference and 100% for the femur length. While for morphological images, rates vary between 52% and 100%. A subgroup analysis (whether the respondents have already read the recommendations or not) showed that those who had read the recommendations have significantly better results than those who did not. Those who have already read the recommendations have better knowledge and global knowledge can be improved. National recommendations serve to promote a policy of quality assurance of ultrasound and may be used in medicolegal issues. The societies that make recommendations should more diffuse their work and practitioners should make effort to pursue the continuing medical education and to implement the recommendations. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  20. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  1. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  2. Message framing and perinatal decisions.

    Science.gov (United States)

    Haward, Marlyse F; Murphy, Ryan O; Lorenz, John M

    2008-07-01

    The purpose of this study was to explore the effect of information framing on parental decisions about resuscitation of extremely premature infants. Secondary outcomes focused on elucidating the impact of other variables on treatment choices and determining whether those effects would take precedence over any framing effects. This confidential survey study was administered to adult volunteers via the Internet. The surveys depicted a hypothetical vignette of a threatened delivery at gestational age of 23 weeks, with prognostic outcome information framed as either survival with lack of disability (positive frame) or chance of dying and likelihood of disability among survivors (negative frame). Participants were randomly assigned to receive either the positively or negatively framed vignette. They were then asked to choose whether they would prefer resuscitation or comfort care. After completing the survey vignette, participants were directed to a questionnaire designed to test the secondary hypothesis and to explore possible factors associated with treatment decisions. A total of 146 subjects received prognostic information framed as survival data and 146 subjects received prognostic information framed as mortality data. Overall, 24% of the sample population chose comfort care and 76% chose resuscitation. A strong trend was detected toward a framing effect on treatment preference; respondents for whom prognosis was framed as survival data were more likely to elect resuscitation. This framing effect was significant in a multivariate analysis controlling for religiousness, parental status, and beliefs regarding the sanctity of life. Of these covariates, only religiousness modified susceptibility to framing; participants who were not highly religious were significantly more likely to be influenced to opt for resuscitation by the positive frame than were participants who were highly religious. Framing bias may compromise efforts to approach prenatal counseling in a

  3. The diagnosis value of color doppler ultrasound in evaluating small renal carcinoma

    International Nuclear Information System (INIS)

    Chen Gaiyi

    2009-01-01

    Objective: To characterize the ultrasound and color doppler imaging of small renal carcinoma. Methods: Ultrasound and color doppler images by convex-probe and high frequency-probe of 24 patients with renal carcinoma confirmed by surgery and histology were analyzed retrospectively. Tumor echo, halo, internal blood flow and peripheral tumor blood flow were observed. Results: Tumor echo in 9 lesions was hyper-echo, in 4 was iso-echoic, in 10 was hypo-echo, and in 1 was echoless. Halo was detected in 9 tumors, and small cyst was detected in 5 tumors. By using the convex-probe, peripheral and internal blood flow signal in 24 tumors were observed. Spot blood follow was detected in 6 tumors, half-circularity blood follow in 18 tumors and no circularity blood follow. Detection rate of internal blood flow was 20.83%. By using the high frequency-probe in 21 tumors, spot blood was detected in 1 tumor, half-circularity blood follow in 14 tumors, circularity blood follow in 6 tumors. Detection rate of internal blood flow was 90.48%. It was not satisfied for high frequency-probe in 3 patients because of obesity. Accordance of the diagnosis by high frequency-probe ultrasound was 90.48% and 91.67% by CT (P > 0.05). Conclusion: Detection of renal carcinoma is sensitive by ultrasound. The high frequency-probe is significant sensitive to detect blood follow in renal carcinoma and is helpful to correct diagnosis of renal carcinoma. (authors)

  4. The impact of high-resolution ultrasound in the differential diagnosis of non-hemolytic jaundice.

    Science.gov (United States)

    Rauh, Peter; Neye, Holger; Mönkemüller, Klaus; Malfertheiner, Peter; Rickes, Steffen

    2010-12-01

    Because jaundice is a common reason for hospital admission. A fast and correct differential diagnosis is very important to increase treatment efficacy. The aim of our study was to evaluate the impact of the high-resolution ultrasound in this kind of clinical setting. In a prospective study we included 30 patients and we divided them in patients with extrahepatic jaundice and patients with intrahepatic jaundice. We observed a high accuracy of the high-resolution sonography, with a sensitivity of 95% and a specificity of 100% for extrahepatic jaundice, and a sensitivity of 100% and a specificity of 95% for intrahepatic jaundice. We conclude that the high-resolution ultrasound should be used in the very beginning of the diagnostic algorithm for the evaluation of patients with unclear jaundice.

  5. High-resolution ultrasound biomicroscopy for monitoring ovarian structures in mice

    Directory of Open Access Journals (Sweden)

    Singh Jaswant

    2009-07-01

    Full Text Available Abstract Background Until recently, the limit of spatial resolution of ultrasound systems has prevented characterization of structures Methods Experiment 1 was a pilot study to develop methods of immobilization (physical restraint vs. general anesthesia and determine technical factors affecting ovarian images using ultrasound bio-microscopy in rats vs. mice. The hair coat was removed over the thoraco-lumber area using depilation cream, and a highly viscous acoustic gel was applied while the animals were maintained in sternal recumbency. In Experiment 2, changes in ovarian structures during the estrous cycle were monitored by twice daily ultrasonography in 10 mice for 2 estrous cycles. Results Ovarian images were not distinct in rats due to attenuation of ultrasound waves. Physical restraint, without general anesthesia, was insufficient for immobilization in mice. By placing the transducer face over the dorsal flank, the kidney was visualized initially as a point of reference. A routine of moving the transducer a few millimetres caudo-laterally from the kidney was established to quickly and consistently localize the ovaries; the total time to scan both ovaries in a mouse was about 10 minutes. By comparing vaginal cytology with non-anesthetized controls, repeated exposure to anesthesia did not affect the estrous cycle. Temporal changes in the number of follicles in 3 different size categories support the hypothesis that follicles ≥ 20 microns develop in a wave-like fashion. Conclusion The mouse is a suitable model for the study of ovarian dynamics using transcutaneous ultrasound bio-microscopy. Repeated general anesthesia for examination had no apparent effect on the estrous cycle, and preliminary results revealed a wave-like pattern of ovarian follicle development in mice.

  6. The future perspectives in transrectal prostate ultrasound guided biopsy

    Directory of Open Access Journals (Sweden)

    Sung Il Hwang

    2014-12-01

    Full Text Available Prostate cancer is one of the most common neoplasms in men. Transrectal ultrasound (TRUS-guided systematic biopsy has a crucial role in the diagnosis of prostate cancer. However, it shows limited value with gray-scale ultrasound alone because only a small number of malignancies are visible on TRUS. Recently, new emerging technologies in TRUS-guided prostate biopsy were introduced and showed high potential in the diagnosis of prostate cancer. High echogenicity of ultrasound contrast agent reflect the increased status of angiogenesis in tumor. Molecular imaging for targeting specific biomarker can be also used using ultrasound contrast agent for detecting angiogenesis or surface biomarker of prostate cancer. The combination of TRUS-guided prostate biopsy and ultrasound contrast agents can increase the accuracy of prostate cancer diagnosis. Elastography is an emerging ultrasound technique that can provide the information regarding tissue elasticity and stiffness. Tumors are usually stiffer than the surrounding soft tissue. In two types of elastography techniques, shearwave elastography has many potential in that it can provide quantitative information on tissue elasticity. Multiparametric magnetic resonance imaging (MRI from high resolution morphologic and functional magnetic resonance (MR technique enables to detect more prostate cancers. The combination of functional techniques including apparent diffusion coefficient map from diffusion weighted imaging, dynamic contrast enhanced MR and MR spectroscopy are helpful in the localization of the prostate cancer. MR-ultrasound (US fusion image can enhance the advantages of both two modalities. With MR-US fusion image, targeted biopsy of suspicious areas on MRI is possible and fusion image guided biopsy can provide improved detection rate. In conclusion, with recent advances in multiparametric-MRI, and introduction of new US techniques such as contrast-enhanced US and elastography, TRUS-guided biopsy

  7. Application of high intensity ultrasound treatment on Enterobacteriae count in milk

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-06-01

    Full Text Available Ultrasonication is a non-thermal method of food preservation that has the advantage of inactivating microbes in food without causing the common side-effects associated with conventional heat treatments, such as nutrient and flavour loss. In this work high intensity ultrasound was used to investigate inactivation Enterobacteriae count in raw milk. Raw milk with 4% of milk fat was treated with ultrasonic probe that was 12 mm in diameter and with 20 kHz frequency immerged in milk directly. For ultrasounds treatment, three parameters varied according to the statistical experimental design. Centre composite design was used to optimize and design experimental parameters: temperature (20, 40 and 60 °C, amplitude (120, 90 and 60 μm and time (6, 9 and 12 minutes. All analyses were performed immediately after sonication and after 3 and 5 days of storage in refrigeration at 4 °C. The facts that substantially affect the inactivation of microorganisms using ultrasound are the amplitude of the ultrasonic waves, the exposure/contact time with the microorganisms, and the temperatureof treatment. The achieved results indicate significant inactivation of microorganisms under longer period of treatments with ultrasonic probe particularly in combination with higher temperature andamplitude. Output optimal value of Enterobacteriae count has been defined by Statgraphics where lowest Enterobacteriae count (1.06151 log CFU mL-1 was as follows for specific ultrasound parameters: amplitude of 120 μm, treatment time for 12 min and temperature of 60 °C.

  8. Bifurcation of ensemble oscillations and acoustic emissions from early stage cavitation clouds in focused ultrasound

    International Nuclear Information System (INIS)

    Gerold, Bjoern; Prentice, Paul; Rachmilevitch, Itay

    2013-01-01

    The acoustic emissions from single cavitation clouds at an early stage of development in 0.521 MHz focused ultrasound of varying intensity, are detected and directly correlated to high-speed microscopic observations, recorded at 1 × 10 6 frames per second. At lower intensities, a stable regime of cloud response is identified whereby bubble-ensembles exhibit oscillations at half the driving frequency, which is also detected in the acoustic emission spectra. Higher intensities generate clouds that develop more rapidly, with increased nonlinearity evidenced by a bifurcation in the frequency of ensemble response, and in the acoustic emissions. A single bubble oscillation model is subject to equivalent ultrasound conditions and fitted to features in the hydrophone and high-speed spectral data, allowing an effective quiescent radius to be inferred for the clouds that evolve at each intensity. The approach indicates that the acoustic emissions originate from the ensemble dynamics and that the cloud acts as a single bubble of equivalent radius in terms of the scattered field. Jetting from component cavities on the periphery of clouds is regularly observed at higher intensities. The results may be of relevance for monitoring and controlling cavitation in therapeutic applications of focused ultrasound, where the phenomenon has the potential to mediate drug delivery from vasculature. (paper)

  9. Developing an emergency ultrasound app

    DEFF Research Database (Denmark)

    Foss, Kim Thestrup; Subhi, Yousif; Aagaard, Rasmus

    2015-01-01

    Focused emergency ultrasound is rapidly evolving as a clinical skill for bedside examination by physicians at all levels of education. Ultrasound is highly operator-dependent and relevant training is essential to ensure appropriate use. When supplementing hands-on focused ultrasound courses, e-le...

  10. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    Science.gov (United States)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  11. Tele-ultrasound using ATM over a T-1 satellite connection

    Science.gov (United States)

    Williamson, Morgan P.; Suitor, Charles T.; de Treville, Robert E.; Freckleton, Michael W.; Kinsey, Van; Goeringer, Fred; Lyche, David K.; Hunter, Bruce; Jennings, Neal E.; Shelton, Philip D.; Marcy, Jon; Poore, Tom; North, Jack

    1996-04-01

    In September 1995 the United States military conducted a demonstration project to provide live ultrasound video and diagnostic DICOM still images using GTE's asynchronous transfer mode (ATM) technologies over an Orion T-1 satellite link. Still images were frame-grabbed from a Diasonics ultrasound and sent to the ALI Wide Area Network system. A group of diagnostic images was then sent in DICOM 3.0 format over a virtual ethernet satellite link from Chantilly, Virginia to Dayton, Ohio. These images came across a DICOM gateway into the Medical Diagnostic Imaging Support (MDIS) System. Live video from the ultrasound was also routed through a CLI Radiance VTC over the satellite to a VTC in Ohio. The video bandwidth was progressively narrowed with two radiologists determining the minimal acceptable bandwidth for detecting test objects in a phantom. The radiologists accepted live video ultrasound at bandwidths as low as 384 kbps from the hands of an experienced ultrasonographer located hundreds of miles away. DICOM still images were sent uncompressed and were of acceptable image quality when viewed on the MDIS system. The technology demonstrated holds great promise for both deployed U.S. Military Forces and civil uses of remote radiology. Detailed network drawings and videotapes of the ultrasound examinations at the remote site are provided.

  12. Framing (implicitly) matters

    DEFF Research Database (Denmark)

    Anderson, Joel; Antalikova, Radka

    2014-01-01

    Denmark is currently experiencing the highest immigration rate in its modern history. Population surveys indicate that negative public attitudes toward immigrants actually stem from attitudes toward their (perceived) Islamic affiliation. We used a framing paradigm to investigate the explicit...... and implicit attitudes of Christian and Atheist Danes toward targets framed as Muslims or as immigrants. The results showed that explicit and implicit attitudes were more negative when the target was framed as a Muslim, rather than as an immigrant. Interestingly, implicit attitudes were qualified...... by the participants’ religion. Specifically, analyses revealed that Christians demonstrated more negative implicit attitudes toward immigrants than Muslims. Conversely, Atheists demonstrated more negative implicit attitudes toward Muslims than Atheists. These results suggest a complex relationship between religion...

  13. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  14. Low-intensity pulsed ultrasound: Nonunions

    Directory of Open Access Journals (Sweden)

    Dijkman Bernadette

    2009-01-01

    Full Text Available Nonunions occur in 5-10% of fractures and are characterized by the failure to heal without further intervention. Low intensity pulsed ultrasound therapy has been developed as an alternative to surgery in the treatment of nonunions. We describe a systematic review on trials of low-intensity pulsed ultrasound therapy for healing of nonunions. We searched the electronic databases Medline and the Cochrane library for articles on ultrasound and healing of nonunions published up to 2008. Trials selected for the review met the following criteria: treatment of at least one intervention group with low intensity pulsed ultrasound; inclusion of patients (humans with one or more nonunions (defined as "established" or as a failure to heal for a minimum of eight months after initial injury; and assessment of healing and time to healing, as determined radiographically. The following data were abstracted from the included studies: sample size, ultrasound treatment characteristics, nonunion location, healing rate, time to fracture healing, fracture age, and demographic information. We found 79 potentially eligible publications, of which 14 met our inclusion criteria. Of these, eight studies were used for data abstraction. Healing rates averaged 87%, (range 65.6%-100% among eight trials. Mean time to healing was 146.5 days, (range 56-219 days. There is evidence from trials that low-intensity pulsed ultrasound may be an effective treatment for healing of nonunions. More homogeneous and larger controlled series are needed to further investigate its efficacy.

  15. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  16. Ultrasound assisted biogas production from landfill leachate

    International Nuclear Information System (INIS)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-01-01

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  17. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  18. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  19. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults

    DEFF Research Database (Denmark)

    Risum, Niels; Ali, Sophia; Olsen, Niels T

    2012-01-01

    Evaluation of myocardial deformation by two-dimensional speckle-tracking is useful for clinical and research purposes. However, differences may exist among different ultrasound machines, software packages, frame rates, and observers.......Evaluation of myocardial deformation by two-dimensional speckle-tracking is useful for clinical and research purposes. However, differences may exist among different ultrasound machines, software packages, frame rates, and observers....

  20. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    up to a pulse train. The acoustically generated high time-bandwidth (TB) product waveforms can be compressed by using a filter bank of matched filters one for every beam direction. Matched filtering compresses the pulse train to a single pulse at the scatterer position plus a number of spike axial...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d...

  1. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  2. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  3. Effect of 2 MHz ultrasound irradiation on Pisum sativum roots

    International Nuclear Information System (INIS)

    Miller, M.W.; Voorhees, S.M.; Carstensen, E.L.; Kaufman, G.E.

    1976-01-01

    The effect of 2 MHz ultrasound at intensity levels from 2.5 to 22 W/cm 2 on the growth rate and mitotic index of Pisum sativum roots was studied. The ultrasound produced an immediate reduction in the growth rate on the first postexposure day, followed by a gradual recovery to the control value. Ultrasound reduced the root meristem mitotic index. Intensity- and time-dependent relations were found for the growth rate and mitotic index reductions

  4. Pilot study: safety and effectiveness of simple ultrasound-guided high-intensity focused ultrasound ablating uterine leiomyoma with a diameter greater than 10 cm.

    Science.gov (United States)

    Hou, Ruijie; Wang, Liwei; Li, Shaoping; Rong, Fengmin; Wang, Yuanyuan; Qin, Xuena; Wang, Shijin

    2018-02-01

    The study aimed to prospectively investigate whether uterine leiomyoma greater than 10 cm in diameter could be treated with simple ultrasound-guided high-intensity focused ultrasound (USgHIFU) in one-time treatment. A total of 36 patients with 36 symptomatic uterine leiomyoma greater than 10 cm in diameter who underwent simple USgHIFU treatment alone were analysed. Enhanced MRI was performed before and after HIFU treatment, and all patients had follow-up for 6 months after treatment. Symptom severity scores, treatment time, treatment speed, ablation rate, energy effect ratio, uterine leiomyoma regression rate, adverse events, liver and kidney functions, coagulation function and routine blood count were included in the study endpoints. The mean diameter of uterine leiomyoma was 11.2 ± 1.3 cm (10.0-14.3 cm). The median treatment time and treatment speed were 104.0 min (90.0-140.0 min) and 118.8 cm 3  h -1  (86.2-247.1 cm 3  h -1 ), respectively. The ablation rate of uterine leiomyoma was 71.9 ± 20.4% (32.1-100.0%), and the regression rate of uterine leiomyoma was 40.8 ± 7.5% (25.6-59.9%) at 6 months after treatment. The mean symptom severity scores decreased by an average of approximately 8.6 ± 2.3 (5-14) points. There were no significant changes in haemogram and blood chemical indexes of patients, except for the transient elevation of aspartate aminotransferase, total bilirubin and white blood cells after treatment. No serious adverse reactions occurred. According to our preliminary results, simple USgHIFU is a safe and effective single-treatment method of treating uterine leiomyoma greater than 10 cm in diameter and is an almost innocuous alternative therapeutic strategy. Advances in knowledge: The conclusions indicate simple USgHIFU is safe and effective as one-time treatment of uterine leiomyoma greater than 10 cm in diameter, it could be a promising therapeutic strategy.

  5. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  6. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4

    International Nuclear Information System (INIS)

    Kim, Young-Hoo; Park, Saerom; Kim, Min Hoo; Choi, Yong-Keun; Yang, Yung-Hun; Kim, Hyung Joo; Kim, Hyungsup; Kim, Han-Soo; Song, Kyung-Guen; Lee, Sang Hyun

    2013-01-01

    Lipids from Chlorella vulgaris were successfully extracted using an ionic liquid, [Bmim][MeSO 4 ]. [Bmim][MeSO 4 ] dissolved C. vulgaris, leaving the lipids insoluble. The undissolved lipids could easily be recovered due to the lower density of the lipid phase. Furthermore, ultrasound irradiation highly enhanced the extraction rate and yield with [Bmim][MeSO 4 ]. The total amounts of lipid extracted from C. vulgaris by the Soxhlet method and the Bligh and Dyer's method were 21 and 29 mg/g dry cell weight (DCW), respectively, whereas it was 47 mg/g DCW with [Bmim][MeSO 4 ]. Additionally, the amount of lipid extracted using [Bmim][MeSO 4 ] was 1.6 times greater with ultrasound irradiation. The rate of extraction of lipids from C. vulgaris with [Bmim][MeSO 4 ] was also 2.7 times greater with ultrasound irradiation. The fatty acid profiles of the lipids extracted using [Bmim][MeSO 4 ] were very similar to those of the lipids obtained by Bligh and Dyer's method. -- Highlights: •[Bmim][MeSO 4 ] efficiently extracted lipids from algae without pretreatment. •Ultrasound irradiation highly enhanced the extraction rate and yield of the extraction system using IL. •Fatty acid profiles of lipids extracted using [Bmim][MeSO 4 ] were similar to those of the lipids obtained by conventional methods

  7. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    Science.gov (United States)

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  8. Standardized ultrasound templates for diagnosing appendicitis reduce annual imaging costs.

    Science.gov (United States)

    Nordin, Andrew B; Sales, Stephen; Nielsen, Jason W; Adler, Brent; Bates, David Gregory; Kenney, Brian

    2018-01-01

    Ultrasound is preferred over computed tomography (CT) for diagnosing appendicitis in children to avoid undue radiation exposure. We previously reported our experience in instituting a standardized appendicitis ultrasound template, which decreased CT rates by 67.3%. In this analysis, we demonstrate the ongoing cost savings associated with using this template. Retrospective chart review for the time period preceding template implementation (June 2012-September 2012) was combined with prospective review through December 2015 for all patients in the emergency department receiving diagnostic imaging for appendicitis. The type of imaging was recorded, and imaging rates and ultrasound test statistics were calculated. Estimated annual imaging costs based on pretemplate ultrasound and CT utilization rates were compared with post-template annual costs to calculate annual and cumulative savings. In the pretemplate period, ultrasound and CT rates were 80.2% and 44.3%, respectively, resulting in a combined annual cost of $300,527.70. Similar calculations were performed for each succeeding year, accounting for changes in patient volume. Using pretemplate rates, our projected 2015 imaging cost was $371,402.86; however, our ultrasound rate had increased to 98.3%, whereas the CT rate declined to 9.6%, yielding an annual estimated cost of $224,853.00 and a savings of $146,549.86. Since implementation, annual savings have steadily increased for a cumulative cost savings of $336,683.83. Standardizing ultrasound reports for appendicitis not only reduces the use of CT scans and the associated radiation exposure but also decreases annual imaging costs despite increased numbers of imaging studies. Continued cost reduction may be possible by using diagnostic algorithms. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ultrasound call detection in capybara

    Directory of Open Access Journals (Sweden)

    Selene S.C. Nogueira

    2012-07-01

    Full Text Available The vocal repertoire of some animal species has been considered a non-invasive tool to predict distress reactivity. In rats ultrasound emissions were reported as distress indicator. Capybaras[ vocal repertoire was reported recently and seems to have ultrasound calls, but this has not yet been confirmed. Thus, in order to check if a poor state of welfare was linked to ultrasound calls in the capybara vocal repertoire, the aim of this study was to track the presence of ultrasound emissions in 11 animals under three conditions: 1 unrestrained; 2 intermediately restrained, and 3 highly restrained. The ultrasound track identified frequencies in the range of 31.8±3.5 kHz in adults and 33.2±8.5 kHz in juveniles. These ultrasound frequencies occurred only when animals were highly restrained, physically restrained or injured during handling. We concluded that these calls with ultrasound components are related to pain and restraint because they did not occur when animals were free of restraint. Thus we suggest that this vocalization may be used as an additional tool to assess capybaras[ welfare.

  10. Measuring the quality of a quantum reference frame: The relative entropy of frameness

    International Nuclear Information System (INIS)

    Gour, Gilad; Marvian, Iman; Spekkens, Robert W.

    2009-01-01

    In the absence of a reference frame for transformations associated with group G, any quantum state that is noninvariant under the action of G may serve as a token of the missing reference frame. We here present a measure of the quality of such a token: the relative entropy of frameness. This is defined as the relative entropy distance between the state of interest and the nearest G-invariant state. Unlike the relative entropy of entanglement, this quantity is straightforward to calculate, and we find it to be precisely equal to the G-asymmetry, a measure of frameness introduced by Vaccaro et al. It is shown to provide an upper bound on the mutual information between the group element encoded into the token and the group element that may be extracted from it by measurement. In this sense, it quantifies the extent to which the token successfully simulates a full reference frame. We also show that despite a suggestive analogy from entanglement theory, the regularized relative entropy of frameness is zero and therefore does not quantify the rate of interconversion between the token and some standard form of quantum reference frame. Finally, we show how these investigations yield an approach to bounding the relative entropy of entanglement.

  11. Framing the frame

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-08-01

    Full Text Available We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the typical findings was observed whereas when the goal was to maintain, no framing effect was found. When we examined the decisions of the entire population, we did not observe a framing effect. In Study 2, we provided participants with a similar decision task except in this situation the goal was ambiguous, allowing us to observe participants' self-imposed goals and how they influenced choice preferences. The findings from Study 2 demonstrated individual variability in imposed goal and provided a conceptual replication of Study 1. %need keywords

  12. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  13. Impact of Music in Reducing Patient Anxiety During Pediatric Ultrasound.

    Science.gov (United States)

    Kesselman, Andrew; Bergen, Michael; Stefanov, Dimitre; Goldfisher, Rachelle; Amodio, John

    2016-03-31

    The use of noninvasive ultrasound examinations can potentially result in significant anxiety in the pediatric population. The purpose of this study was to assess the influence of music during pediatric ultrasound examinations to reduce anxiety measured by heart rate. A total of 44 patients were recruited; 21 controls and 23 experimental. Each participant was randomized to either music or no music (control) after parental consent was obtained. Pulse oximeters were used to monitor heart rate at 15 second intervals for a total of 1 minute, with mean values calculated prior to entering the procedure room, during the middle of the procedure, and after the procedure was completed. The total scan time was determined from the initial image acquisition until the last image recorded by the ultrasound technologist. At the completion of each procedure, the ultrasound technologist scored the ease of performance for the scan on a subjective scale of 1-10 based on prior experience. When utilizing music during pediatric ultrasounds examinations, our study demonstrated significantly decreased heart rate variability from pre-procedural to post-procedural periods. There was no statistical significant difference in total scan time or ultrasound technologist scoring between the two groups. This study demonstrates that music is an inexpensive and effective means of reducing anxiety during pediatric ultrasound as indicated by heart rate.

  14. Impact of music in reducing patient anxiety during pediatric ultrasound

    Directory of Open Access Journals (Sweden)

    Andrew Kesselman

    2016-03-01

    Full Text Available The use of noninvasive ultrasound examinations can potentially result in significant anxiety in the pediatric population. The purpose of this study was to assess the influence of music during pediatric ultrasound examinations to reduce anxiety measured by heart rate. A total of 44 patients were recruited; 21 controls and 23 experimental. Each participant was randomized to either music or no music (control after parental consent was obtained. Pulse oximeters were used to monitor heart rate at 15 second intervals for a total of 1 minute, with mean values calculated prior to entering the procedure room, during the middle of the procedure, and after the procedure was completed. The total scan time was determined from the initial image acquisition until the last image recorded by the ultrasound technologist. At the completion of each procedure, the ultrasound technologist scored the ease of performance for the scan on a subjective scale of 1-10 based on prior experience. When utilizing music during pediatric ultrasounds examinations, our study demonstrated significantly decreased heart rate variability from pre-procedural to post-procedural periods. There was no statistical significant difference in total scan time or ultrasound technologist scoring between the two groups. This study demonstrates that music is an inexpensive and effective means of reducing anxiety during pediatric ultrasound as indicated by heart rate.

  15. Framing the frame

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  16. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.

    Science.gov (United States)

    Lin, Hangyu; Chen, Junfang; Chen, Chuanpin

    2016-09-01

    Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

  17. Career Compromises: Framings and Their Implications.

    Science.gov (United States)

    Gati, Itamar; Houminer, Daphna; Aviram, Tamar

    1998-01-01

    Career compromise was investigated in three framings (alternatives, aspect importance, within-aspect preference). Young adults and school counselors rated hypothetical stories. Results of four studies with different designs (Average N=106) supported the hypothesis. The alternatives framing was associated with greater compromise and decision…

  18. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.

    Science.gov (United States)

    Baumgartner, Christian F; Kamnitsas, Konstantinos; Matthew, Jacqueline; Fletcher, Tara P; Smith, Sandra; Koch, Lisa M; Kainz, Bernhard; Rueckert, Daniel

    2017-11-01

    Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

  19. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  20. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  1. Toward a 3D transrectal ultrasound system for verification of needle placement during high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron

    2017-05-01

    Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical

  2. Economic analysis of ultrasound-assisted oxidative desulfurization

    OpenAIRE

    Anderson, K.; Atkins, M.P.; Borges, P; Chan, Z.P.; Rafeen, M.S.; Sebran, N.H.; van der Pool, E; Vleeming, J.H.

    2017-01-01

    Oxidative desulfurization is a method of removing sulfur from diesel fuel that has the potential to compete with conventional hydrodesulfurization processes in refineries. Ultrasound has been shown to greatly increase peroxide oxidation rates of sulfur compounds and can thereby enhance the technology. Through the use of conceptual design modeling, this article critically assesses a range of novel process options. Calculations show that the rate enhancement achieved by ultrasound can translate...

  3. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  4. Effect of ultrasound on flotation kinetics in the reactor-separator

    International Nuclear Information System (INIS)

    Filippov, L O; Matinin, A S; Samiguin, V D; Filippova, I V

    2013-01-01

    Effect of the ultrasound on flotation kinetics in reactor-separator has been studied for chalcopyrite/quartz mix mineral system. Under ultrasound treatment, recovery of chalcopyrite into bulk concentrate is higher than that at reagent-only treatment. It can be explained by increased of flotation rate for slow fraction as defined by Kelsall model. The slow fraction flotation rate increase multiplied by 6 vs. ultrasound treatment. Additional effect of the ultrasound treatment has been noticed under conditions when gangue minerals detachment from bubbles can be controlled. Reactor-separator has advantages over other types of flotation cells for this purpose providing a special zone for the ultrasound treatment that can be easily designed in this impeller less machine. The ultrasound influence on particles collision probability is able to explain of chalcopyrite recovery increase in the concentrate and activation chalcopyrite particles flotation.

  5. Effect of ultrasound on flotation kinetics in the reactor-separator

    Science.gov (United States)

    Filippov, L. O.; Matinin, A. S.; Samiguin, V. D.; Filippova, I. V.

    2013-03-01

    Effect of the ultrasound on flotation kinetics in reactor-separator has been studied for chalcopyrite/quartz mix mineral system. Under ultrasound treatment, recovery of chalcopyrite into bulk concentrate is higher than that at reagent-only treatment. It can be explained by increased of flotation rate for slow fraction as defined by Kelsall model. The slow fraction flotation rate increase multiplied by 6 vs. ultrasound treatment. Additional effect of the ultrasound treatment has been noticed under conditions when gangue minerals detachment from bubbles can be controlled. Reactor-separator has advantages over other types of flotation cells for this purpose providing a special zone for the ultrasound treatment that can be easily designed in this impeller less machine. The ultrasound influence on particles collision probability is able to explain of chalcopyrite recovery increase in the concentrate and activation chalcopyrite particles flotation.

  6. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    Science.gov (United States)

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  7. [Ultrasound findings in rhabdomyolysis].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  9. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  10. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  11. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  12. Focused ultrasound for treatment of uterine myoma: From experimental model to clinical practice

    Directory of Open Access Journals (Sweden)

    Terzić Milan

    2008-01-01

    Full Text Available It is well known that focused ultrasound has a biologic effect on tissue. High intensity focused ultrasound (HIFU on a small target area raises the temperature of the tissue enough to denaturate proteins and cause irreversible cell damage. The tight focus of the ultrasound energy allows delivery of the intended dose to a very precise location. The resulting coagulation necrosis is relatively painless. The application of this method in the human clinical setting has required pilot studies on an animal model. Although the treatment had a high success rate, there was a significant percentage of complications, mainly attributed to the technical drawbacks of the procedure. Therefore, this method has been modified for use in humans, and the HIFU is now guided, monitored and controlled by magnetic resonance imaging (MRI. In October 2004, Food and Drug Adiministration (FDA approved MRI guided focused ultrasound treatment of uterine fibroids in humans. Since then, successful treatment of uterine myomas by HIFU has been performed in thousands of women.

  13. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field.

    Science.gov (United States)

    Wang, S; Kang, J; Zhang, X; Guo, Z

    2018-02-01

    The fragmentation of the dendrites of succinonitrile (SCN)-2-wt.% acetone organic transparent alloy caused by ultrasound-induced cavitation bubbles was studied by using ultra-high-speed digital camera with a rate of 40,000fps. Real-time imaging reveals that the vibrating cavitation bubbles can fragment not only secondary arms but also the primary ones under high ultrasound power. The secondary arms always broke at their roots as a result of stress concentration induced by oscillated cavitation bubble and then ripped off from their primary arms. Generally the fragment process takes tens of milliseconds from bending to breaking, while the break always occurs immediately in less than 25μs. Copyright © 2017. Published by Elsevier B.V.

  14. Ultrasound guided double injection of blood into cisterna magna: a rabbit model for treatment of cerebral vasospasm.

    Science.gov (United States)

    Chen, Yongchao; Zhu, Youzhi; Zhang, Yu; Zhang, Zixuan; Lian, Juan; Luo, Fucheng; Deng, Xuefei; Wong, Kelvin K L

    2016-02-06

    Double injection of blood into cisterna magna using a rabbit model results in cerebral vasospasm. An unacceptably high mortality rate tends to limit the application of model. Ultrasound guided puncture can provide real-time imaging guidance for operation. The aim of this paper is to establish a safe and effective rabbit model of cerebral vasospasm after subarachnoid hemorrhage with the assistance of ultrasound medical imaging. A total of 160 New Zealand white rabbits were randomly divided into four groups of 40 each: (1) manual control group, (2) manual model group, (3) ultrasound guided control group, and (4) ultrasound guided model group. The subarachnoid hemorrhage was intentionally caused by double injection of blood into their cisterna magna. Then, basilar artery diameters were measured using magnetic resonance angiography before modeling and 5 days after modeling. The depth of needle entering into cisterna magna was determined during the process of ultrasound guided puncture. The mortality rates in manual control group and model group were 15 and 23 %, respectively. No rabbits were sacrificed in those two ultrasound guided groups. We found that the mortality rate in ultrasound guided groups decreased significantly compared to manual groups. Compared with diameters before modeling, the basilar artery diameters after modeling were significantly lower in manual and ultrasound guided model groups. The vasospasm aggravated and the proportion of severe vasospasms was greater in ultrasound guided model group than that of manual group. In manual model group, no vasospasm was found in 8 % of rabbits. The ultrasound guided double injection of blood into cisterna magna is a safe and effective rabbit model for treatment of cerebral vasospasm.

  15. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  16. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  17. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  18. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    Science.gov (United States)

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  19. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  20. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  1. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    Herlambang, N.; Matsumiya, K.; Masamune, K.; Dohi, T.; Liao, H.; Tsukihara, H.; Takamoto, S.

    2007-01-01

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  2. The Effect of Comparatively-Framed versus Similarity-Framed E-Cigarette and Snus Print Ads on Young Adults' Ad and Product Perceptions.

    Science.gov (United States)

    Banerjee, Smita C; Greene, Kathryn; Li, Yuelin; Ostroff, Jamie S

    2016-07-01

    This study examined the effects of comparative-framing [C-F; ads highlighting differences between the advertised product and conventional cigarettes and/or smokeless tobacco products] versus similarity-framing (S-F; ads highlighting congruence with conventional cigarettes and/or smokeless tobacco products) in e-cigarette and snus ads on young adult smokers' and non-smokers' ad- and product-related perceptions. One thousand fifty one (1,051) young adults (18-24 years; 76% women; 50% smokers) from existing consumer panels were recruited in a within-subjects quasi-experiment. Each participant viewed 4 online advertisements, varied by tobacco product type (e-cigarette or snus) and ad framing (C-F or S-F). The dependent measures for this study were ad-related (ad perceptions, ad credibility) and product-related perceptions (absolute and comparative risk perceptions, product appeal, and product use intentions). Former and current smokers rated C-F ads as more persuasive than S-F ads, as evidenced by favorable ad perceptions and high product use intentions. Former and current smokers also rated e-cigarette ads with more favorable ad perceptions, low absolute and comparative risk perceptions, high product appeal, and high product use intentions as compared to snus ads. However, the effect sizes of the significant differences are less than.2, indicating small magnitude of difference between the study variables. Unless FDA regulates e-cig and snus advertising, there is a potential of decreasing risk perceptions and increasing use of e-cigs among young adults. Further research on implicit/explicit comparative claims in e-cigarettes and snus advertisements that encourage risk misperceptions is recommended.

  3. Effect of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system.

    Science.gov (United States)

    Ojha, Kumari Shikha; Kerry, Joseph P; Alvarez, Carlos; Walsh, Des; Tiwari, Brijesh K

    2016-07-01

    The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0-68.5 W) and sonication time (0-9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24h. The L. sakei growth data showed a good fit with the Gompertz model (R(2)>0.90; SEfunctional food products can be tailored by selection of ultrasound processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Two-stage continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound

    International Nuclear Information System (INIS)

    Somnuk, Krit; Smithmaitrie, Pruittikorn; Prateepchaikul, Gumpon

    2013-01-01

    Highlights: • Mixed crude palm oil was used in the two-step continuous process. • Two-step continuous process was performed using static mixer coupled with ultrasound. • The maximum obtained yield was 92.5 vol.% after the purification process. • The residence time less than 20 s was achieved in ultrasonic reactors. - Abstract: The two-stage continuous process of methyl ester from high free fatty acid (FFA) mixed crude palm oil (MCPO) was performed by using static mixer coupled with high-intensity of ultrasound. The 2 × 1000 W ultrasonic homogenizers were operated at 18 kHz frequency in the 2 × 100 mL continuous reactors. For the first-step, acid-catalyzed esterification was employed with 18 vol.% of methanol, 2.7 vol.% of sulfuric acid, 60 °C of temperature, and 20 L h −1 of MCPO flow rate, for reducing the acid value from 28 mg KOH g −1 to less than 2 mg KOH g −1 . For the second-step, base-catalyzed transesterification was carried out under 18 vol.% of methanol, 8 g KOH L −1 of oil, and 20 L h −1 of esterified oil flow rate at 30 °C. The high yields of esterified oil and crude biodiesel were attained within the residence time of less than 20 s in the ultrasonic reactors. The yields of each stage process were: 103.3 vol.% of esterified oil, 105.4 vol.% of crude biodiesel, and 92.5 vol.% of biodiesel when compared with 100 vol.% MCPO. The quality of the biodiesel meets the specification of biodiesel standard in Thailand

  5. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  6. Image-Guided Stereotactic Radiosurgery Using a Specially Designed High-Dose-Rate Linac

    International Nuclear Information System (INIS)

    Bayouth, John E.; Kaiser, Heather S.; Smith, Mark C.; Pennington, Edward C.; Anderson, Kathleen M. C.; Ryken, Timothy C.; Buatti, John M.

    2007-01-01

    Stereotactic radiosurgery and image-guided radiotherapy (IGRT) place enhanced demands on treatment delivery machines. In this study, we describe a high-dose-rate output accelerator as a part of our stereotactic IGRT delivery system. The linac is a Siemens Oncor without a flattening filter, and enables dose rates to reach 1000 monitor units (MUs) per minute. Even at this high-dose-rate, the linac dosimetry system remains robust; constancy, linearity, and beam energy remain within 1% for 3 to 1000 MU. Dose profiles for larger field sizes are not flat, but they are radially symmetric and, as such, able to be modeled by a treatment planning system. Target localization is performed via optical guidance utilizing a 3-dimensional (3D) ultrasound probe coupled to an array of 4 infrared light-emitting diodes. These diodes are identified by a fixed infrared camera system that determines diode position and, by extension, all objects imaged in the room coordinate system. This system provides sub-millimeter localization accuracy for cranial applications and better than 1.5 mm for extracranial applications. Because stereotactic IGRT can require significantly longer times for treatment delivery, the advantages of the high-dose-rate design and its direct impact on IGRT are discussed

  7. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  8. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar.

    Science.gov (United States)

    Režek Jambrak, Anet; Šimunek, Marina; Evačić, Silva; Markov, Ksenija; Smoljanić, Goran; Frece, Jadranka

    2018-02-01

    The purpose of this study was to investigate the effect of non-thermal technology, high power ultrasound (HPU) on inactivation of Aspergillus ochraceus 318, Penicillium expansum 565, Rhodotorula sp. 74, Saccharomyces cerevisiae 5 and Alicyclobacillus acidoterrestris DSM 3922 in clear juices and nectars from apple, blueberry and cranberry juice concentrate. Inoculated juice and nectars were treated by high power ultrasound (20kHz) according to procedure set by central composite design (CCD). Three operational parameters, amplitude (60, 90 and 120μm), temperature (20, 40 and 60°C), and treatment time (3, 6 or 9min) were varied in order to observe the influence of ultrasound and combination of ultrasound and slight heating (thermosonication) on growth and inactivation of selected microorganisms. Number of vegetative cells of A. acidoterrestris DSM 3922 were not significantly reduced by high power ultrasound (p>0.05), except in apple juice, where statistical significant (pultrasound treatments at 60°C and the duration of the 3, 6 and 9min ranged from 3.556 to 5.934 log units, depending on the initial number of selected yeasts and moulds before treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  10. Ultrasound generation with high power and coil only EMAT concepts.

    Science.gov (United States)

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. JPEG2000 vs. full frame wavelet packet compression for smart card medical records.

    Science.gov (United States)

    Leehan, Joaquín Azpirox; Lerallut, Jean-Francois

    2006-01-01

    This paper describes a comparison among different compression methods to be used in the context of electronic health records in the newer version of "smart cards". The JPEG2000 standard is compared to a full-frame wavelet packet compression method at high (33:1 and 50:1) compression rates. Results show that the full-frame method outperforms the JPEG2K standard qualitatively and quantitatively.

  12. GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training

    Science.gov (United States)

    Keelan, Robert; Shimada, Kenji

    2016-01-01

    This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze–thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface. PMID:26818026

  13. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  14. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  15. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  17. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  18. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  19. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system

    Science.gov (United States)

    Kashapova, R. M.; Kashapov, R. N.; Kashapova, R. S.

    2017-09-01

    The possibility of using the built-in ultrasound physiotherapy system of the hand orthosis is explored in the work. The individual mesh orthosis from nylon 12 was manufactured by the 3D prototyping method on the installation of selective laser sintering SLS SPro 60HD. The applied technology of three-dimensional scanning made it possible to obtain a model of the patient’s hand and on the basis of it to build a virtual model of the mesh frame. In the course of the research, the developed system of ultrasound exposure was installed on the orthosis and its tests were carried out. As a result, the acceleration of the healing process and the reduction in the time of wearing orthosis were found.

  20. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  2. First Trimester Fetal Gender Assignment by Ultrasound

    Directory of Open Access Journals (Sweden)

    Sabahattin Altunyurt

    2010-03-01

    Full Text Available Objective: To investigate the efficiency of genital tubercule angle on detecting fetal gender in first trimester by ultrasonography. Material-Method: Fetal sex assignment by ultrasound was carried out in 172 pregnancies at 11-13+6 weeks between 2007 June and 2007 December. Gestational age was determined by the measurement of crown-rump length (CRL. The ultrasound predictions were compared with actual sex at birth. Mid-sagittal planes of a section of the fetal genital tubercle were performed to identify the gender. Results: 155 of 172 patients’ data were achieved. The overall success rate was 92.3 % in sonographic assignment of fetal sex. The correct assignment rate in female fetuses was significantly higher than males (95.9 % - 88.8 % [p=0,001]. The correct identification of fetal sex improved with advancing gestational age from 89.3 % between 11-11+6 weeks, 92.5 % between 12-12+6 weeks and 93.4 % between 13-13+6 weeks (p=0,96. Conclusion: The fetal sex assignment by ultrasonography between 11-13+6 weeks had high success rate. The sensitivity of fetal sex assignment was not affected with fetus position and gestational age.

  3. Test characteristics of high-resolution ultrasound in the preoperative assessment of margins of basal cell and squamous cell carcinoma in patients undergoing Mohs micrographic surgery.

    Science.gov (United States)

    Jambusaria-Pahlajani, Anokhi; Schmults, Chrysalyne D; Miller, Christopher J; Shin, Daniel; Williams, Jennifer; Kurd, Shanu K; Gelfand, Joel M

    2009-01-01

    Noninvasive techniques to assess subclinical spread of nonmelanoma skin cancer (NMSC) may improve surgical precision. High-resolution ultrasound has shown promise in evaluating the extent of NMSC. To determine the accuracy of high-resolution ultrasound to assess the margins of basal cell (BCC) and squamous cell carcinomas (SCC) before Mohs micrographic surgery (MMS). We enrolled 100 patients with invasive SCC or BCC. Before the first stage of MMS, a Mohs surgeon delineated the intended surgical margin. Subsequently, a trained ultrasound technologist independently evaluated disease extent using the EPISCAN I-200 to evaluate tumor extent beyond this margin. The accuracy of high-resolution ultrasound was subsequently tested by comparison with pathology from frozen sections. The test characteristics of the high-resolution ultrasound were sensitivity=32%, specificity=88%, positive predictive value=47%, and negative predictive value=79%. Subgroup analyses demonstrated better test characteristics for tumors larger than the median (area>1.74 cm(2)). Qualitative analyses showed that high-resolution ultrasound was less likely to identify extension from tumors with subtle areas of extension, such as small foci of dermal invasion from infiltrative SCC and micronodular BCC. High-resolution ultrasound requires additional refinements to improve the preoperative determination of tumor extent before surgical treatment of NMSC.

  4. Efficacy and safety of ultrasound-guided high intensity focused ultrasound ablation of symptomatic uterine fibroids in Black women: a preliminary study.

    Science.gov (United States)

    Zhang, C; Jacobson, H; Ngobese, Z E; Setzen, R

    2017-08-01

    To evaluate the therapeutic effect and safety of ultrasound-guided high-intensity focused ultrasound (USgHIFU) treatment on symptomatic uterine fibroids in Black women. A feasibility study. Gynaecological department in a teaching hospital in South Africa. Premenopausal women with uterus fibroids. Twenty-six patients with 53 fibroids who underwent USgHIFU treatment were enrolled. The USgHIFU treatment information was recorded, including treatment time, sonication time and total energy. Adverse events were also observed and recorded during and after treatment. Safety and efficacy of USgHIFU for the treatment of uterine fibroids in Black women. The median volume of fibroids was 52.7 (interquartile range, 18.6-177.4) cm 3 . According to USgHIFU treatment plan, total energy of 298.6 ± 169.3 kJ (range, 76.0-889.2) within treatment time of 90.3 ± 43.3 minutes (range, 14.0-208.0), in which sonication time of 774.0 ± 432.9 seconds (range, 190.0-2224.0) was used to ablate fibroids. The average ablation rate was 80.6 ± 9.7% (range, 46.5-94.5%). During the procedure, 69.2% of the patients reported lower abdominal pain, 57.7% sciatic/buttock pain, 38.5% burning skin, and 34.6% transient leg pain. No severe complications were observed. USgHIFU is feasible and safe to use to treat symptomatic uterine fibroids in Black women. Multiple uterine fibroids are more frequently detected in Black women. USgHIFU is feasible and safe for the treatment of uterine fibroids in Black women. © 2017 Royal College of Obstetricians and Gynaecologists.

  5. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath; Sainsbury, Toby; Treeby, Bradley E.; Cox, Ben T.

    2017-01-01

    amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer

  6. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  7. Another frame, another game? : Explaining framing effects in economic games

    NARCIS (Netherlands)

    Gerlach, Philipp; Jaeger, B.; Hopfensitz, A.; Lori, E.

    2016-01-01

    Small changes in the framing of games (i.e., the way in which the game situation is described to participants) can have large effects on players' choices. For example, referring to a prisoner's dilemma game as the "Community Game" as opposed to the "Wall Street Game" can double the cooperation rate

  8. Some relationship between G-frames and frames

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2015-06-01

    Full Text Available In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K$-module $B(H,K$. This is an extension of [A. Askarizadeh,M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual frame, dual g-frame and exact frame and exact g-frame are presented too.

  9. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  11. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Evidence for an absence of deleterious effects of ultrasound on human oocytes.

    Science.gov (United States)

    Mahadevan, M; Chalder, K; Wiseman, D; Leader, A; Taylor, P J

    1987-10-01

    Animal and human data would suggest that ultrasound causes deleterious effects to oocytes during meiosis. We directly compared the fertilization rate and embryonic development following in vitro fertilization and embryo transfer of those oocytes exposed to ultrasound and those not exposed in the same patient. In 39 unscreened patients a combination of laparoscopy and ultrasound was used for oocyte recovery. Laparoscopy was performed first on the most accessible ovary (usually the right) and at least one oocyte was obtained. Ultrasound-guided oocyte recovery was successful in the other inaccessible ovary. To assess how oocytes obtained by ultrasound or laparoscopy related to the pregnancy rate, two groups of patients were evaluated in whom the embryos transferred either had been exposed to ultrasound or had not been. The fertilization and the embryo cleavage rates were not significantly different between the ultrasound-exposed and the unexposed groups. The pregnancy rate was also not significantly different [9 of 49 (18.4%) for ultrasound exposed versus 14 of 74 (18.9%) for unexposed]. There was one early spontaneous abortion in each group. Further analysis of a group of 40 patients, in whom the oocytes were exposed to ultrasound in situ, after the endogenous luteinizing hormone (LH) surge had begun 1-27 hr earlier, revealed that 6 became pregnant (15%). This preliminary study suggests that exposure of human oocytes to ultrasonic waves, either during the different phases of meiosis or after the completion of meiosis, did not significantly influence the developmental potential of the in vitro fertilized embryos.

  13. Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Terry O. Matsunaga, Paul S. Sheeran, Samantha Luois, Jason E. Streeter, Lee B. Mullin, Bhaskar Banerjee, Paul A. Dayton

    2012-01-01

    Full Text Available Recent efforts using perfluorocarbon (PFC nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C and octafluoropropane (OFP, bp =-37 °C for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs.

  14. Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Murray, Bryan C.; Forster, Kenneth; Timmerman, Robert

    2007-01-01

    Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates

  15. Single High Intensity Focused Ultrasound Session as a Whole Gland Primary Treatment for Clinically Localized Prostate Cancer: 10-Year Outcomes

    Directory of Open Access Journals (Sweden)

    Ksenija Limani

    2014-01-01

    Full Text Available Objectives. To assess the treatment outcomes of a single session of whole gland high intensity focused ultrasound (HIFU for patients with localized prostate cancer (PCa. Methods. Response rates were defined using the Stuttgart and Phoenix criteria. Complications were graded according to the Clavien score. Results. At a median follow-up of 94months, 48 (44.4% and 50 (46.3% patients experienced biochemical recurrence for Phoenix and Stuttgart definition, respectively. The 5- and 10-year actuarial biochemical recurrence free survival rates were 57% and 40%, respectively. The 10-year overall survival rate, cancer specific survival rate, and metastasis free survival rate were 72%, 90%, and 70%, respectively. Preoperative high risk category, Gleason score, preoperative PSA, and postoperative nadir PSA were independent predictors of oncological failure. 24.5% of patients had self-resolving LUTS, 18.2% had urinary tract infection, and 18.2% had acute urinary retention. A grade 3b complication occurred in 27 patients. Pad-free continence rate was 87.9% and the erectile dysfunction rate was 30.8%. Conclusion. Single session HIFU can be alternative therapy for patients with low risk PCa. Patients with intermediate risk should be informed about the need of multiple sessions of HIFU and/or adjuvant treatments and HIFU performed very poorly in high risk patients.

  16. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    International Nuclear Information System (INIS)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Uchida, T.; Usui, Y.; Terachi, T.

    2010-01-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate registered 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  17. Acceptance rate and reasons for rejection of manuscripts submitted to Veterinary Radiology & Ultrasound during 2012.

    Science.gov (United States)

    Lamb, Christopher R; Mai, Wilfried

    2015-01-01

    Better understanding of the reasons why manuscripts are rejected, and recognition of the most frequent manuscript flaws identified by reviewers, should help submitting authors to avoid these pitfalls. Of 219 manuscripts submitted to Veterinary Radiology & Ultrasound in 2012, none (0%) was accepted without revision, four (2%) were withdrawn by the authors, 99 (45%) were accepted after revision, and 116 (53%) were rejected. All manuscripts for which minor revision was requested, and 73/86 (85%) manuscripts for which major revision was requested, were ultimately accepted. Acceptance rate was greater for retrospective studies and for manuscripts submitted from countries in which English was the primary language. The prevalences of flaws in manuscripts were poor writing (62%), deficiencies in data (60%), logical or methodological errors (28%), content not suitable for Veterinary Radiology & Ultrasound (26%), and lack of new or useful knowledge (25%). Likelihood of manuscript rejection was greater for lack of new or useful knowledge and content not suitable than for other manuscript flaws. The lower acceptance rate for manuscripts from countries in which English was not the primary language was associated with content not suitable and not poor writing. Submitting authors are encouraged to do more to recognize and address manuscript flaws before submission, for example by internal review. Specifically, submitting authors should express clearly the potential added value of their study in the introduction section of their manuscript, describe completely their methods and results, and consult the Editor-in-Chief if they are uncertain whether their subject matter would be suitable for the journal. © 2014 American College of Veterinary Radiology.

  18. Wound healing treatment by high frequency ultrasound, microcurrent, and combined therapy modifies the immune response in rats

    Directory of Open Access Journals (Sweden)

    Raciele I. G. Korelo

    2016-01-01

    Full Text Available BACKGROUND: Therapeutic high-frequency ultrasound, microcurrent, and a combination of the two have been used as potential interventions in the soft tissue healing process, but little is known about their effect on the immune system. OBJECTIVE: To evaluate the effects of therapeutic high frequency ultrasound, microcurrent, and the combined therapy of the two on the size of the wound area, peritoneal macrophage function, CD4+ and CD8+, T lymphocyte populations, and plasma concentration of interleukins (ILs. METHOD: Sixty-five Wistar rats were randomized into five groups, as follows: uninjured control (C, group 1, lesion and no treatment (L, group 2, lesion treated with ultrasound (LU, group 3, lesion treated with microcurrent (LM, group 4, and lesion treated with combined therapy (LUM, group 5. For groups 3, 4 and 5, treatment was initiated 24 hours after surgery under anesthesia and each group was allocated into three different subgroups (n=5 to allow for the use of the different therapy resources at on days 3, 7 and 14 Photoplanimetry was performed daily. After euthanasia, blood was collected for immune analysis. RESULTS: Ultrasound increased the phagocytic capacity and the production of nitric oxide by macrophages and induced the reduction of CD4+ cells, the CD4+/CD8+ ratio, and the plasma concentration of IL-1β. Microcurrent and combined therapy decreased the production of superoxide anion, nitric oxide, CD4+-positive cells, the CD4+/CD8+ ratio, and IL-1β concentration. CONCLUSIONS: Therapeutic high-frequency ultrasound, microcurrent, and combined therapy changed the activity of the innate and adaptive immune system during healing process but did not accelerate the closure of the wound.

  19. Key Frame Extraction in the Summary Space.

    Science.gov (United States)

    Li, Xuelong; Zhao, Bin; Lu, Xiaoqiang; Xuelong Li; Bin Zhao; Xiaoqiang Lu; Lu, Xiaoqiang; Li, Xuelong; Zhao, Bin

    2018-06-01

    Key frame extraction is an efficient way to create the video summary which helps users obtain a quick comprehension of the video content. Generally, the key frames should be representative of the video content, meanwhile, diverse to reduce the redundancy. Based on the assumption that the video data are near a subspace of a high-dimensional space, a new approach, named as key frame extraction in the summary space, is proposed for key frame extraction in this paper. The proposed approach aims to find the representative frames of the video and filter out similar frames from the representative frame set. First of all, the video data are mapped to a high-dimensional space, named as summary space. Then, a new representation is learned for each frame by analyzing the intrinsic structure of the summary space. Specifically, the learned representation can reflect the representativeness of the frame, and is utilized to select representative frames. Next, the perceptual hash algorithm is employed to measure the similarity of representative frames. As a result, the key frame set is obtained after filtering out similar frames from the representative frame set. Finally, the video summary is constructed by assigning the key frames in temporal order. Additionally, the ground truth, created by filtering out similar frames from human-created summaries, is utilized to evaluate the quality of the video summary. Compared with several traditional approaches, the experimental results on 80 videos from two datasets indicate the superior performance of our approach.

  20. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  2. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study

    International Nuclear Information System (INIS)

    Mahmoud, Mustafa Z.; Alkhorayef, Mohammed; Alzimami, Khalid S.; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids

  3. In-situ identification of marine organisms using high frequency, wideband ultrasound

    DEFF Research Database (Denmark)

    Pham, An Hoai

    methods. Conventional acoustical methods use frequencies in the range of 10 to 500 kHz and give reasonable estimations of size distribution, if the species is known, but can only significantly support the determination of the actual species, if there are only a few known species available. It is expected...... that higher frequencies and broader bandwidths than used until now will give more information useful for fish species identification. The objective of this Ph.D. study has been to develop a method to investigate the possibility of in-situ identification of fish with high-frequency, wideband ultrasound...... and the fish bodies. The frequencies are 2, 3.5, and 6 MHz. The angles are -30°, -15°, 0°, 15°, and 30°. The results show that even though there are variations, a scan of the ultrasound backscatter along a fish of a specific species contains patterns that are characteristic for that species. This is true...

  4. Ultrasound guidance for internal jugular vein cannulation: Continuing Professional Development.

    Science.gov (United States)

    Ayoub, Christian; Lavallée, Catherine; Denault, André

    2010-05-01

    The objective of this continuing professional development module is to describe the role of ultrasound for central venous catheterization and to specify its benefits and limitations. Although ultrasound techniques are useful for all central venous access sites, the focus of this module is on the internal jugular vein approach. In recent years, several studies were published on the benefits of ultrasound use for central venous catheterization. This technique has evolved rapidly due to improvements in the equipment and technology available. Ultrasound helps to detect the anatomical variants of the internal jugular vein. The typical anterolateral position of the internal jugular vein with respect to the carotid is found in only 9-92% of cases. Ultrasound guidance reduces the rate of mechanical, infectious, and thrombotic complications by 57%, and it also reduces the failure rate by 86%. Cost-benefit analyses show that the cost of ultrasound equipment is compensated by the decrease in the expenses associated with the treatment of complications. In this article, we will review the history of ultrasound guidance as well as the reasons that account for its superiority over the classical anatomical landmark technique. We will describe the equipment needed for central venous catheterization as well as the various methods to visualize with ultrasound. To improve patient safety, we recommend the use of ultrasound for central venous catheterization using the internal jugular approach.

  5. Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same

    Science.gov (United States)

    Schmitt, Edwin W.; Norman, Timothy J.

    2013-01-08

    Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  7. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  8. Health numeracy in Japan: measures of basic numeracy account for framing bias in a highly numerate population

    Directory of Open Access Journals (Sweden)

    Okamoto Masako

    2012-09-01

    Full Text Available Abstract Background Health numeracy is an important factor in how well people make decisions based on medical risk information. However, in many countries, including Japan, numeracy studies have been limited. Methods To fill this gap, we evaluated health numeracy levels in a sample of Japanese adults by translating two well-known scales that objectively measure basic understanding of math and probability: the 3-item numeracy scale developed by Schwartz and colleagues (the Schwartz scale and its expanded version, the 11-item numeracy scale developed by Lipkus and colleagues (the Lipkus scale. Results Participants’ performances (n = 300 on the scales were much higher than in original studies conducted in the United States (80% average item-wise correct response rate for Schwartz-J, and 87% for Lipkus-J. This high performance resulted in a ceiling effect on the distributions of both scores, which made it difficult to apply parametric statistical analysis, and limited the interpretation of statistical results. Nevertheless, the data provided some evidence for the reliability and validity of these scales: The reliability of the Japanese versions (Schwartz-J and Lipkus-J was comparable to the original in terms of their internal consistency (Cronbach’s α = 0.53 for Schwartz-J and 0.72 for Lipkus-J. Convergent validity was suggested by positive correlations with an existing Japanese health literacy measure (the Test for Ability to Interpret Medical Information developed by Takahashi and colleagues that contains some items relevant to numeracy. Furthermore, as shown in the previous studies, health numeracy was still associated with framing bias with individuals whose Lipkus-J performance was below the median being significantly influenced by how probability was framed when they rated surgical risks. A significant association was also found using Schwartz-J, which consisted of only three items. Conclusions Despite relatively high levels of

  9. The Effect of Comparatively-Framed versus Similarity-Framed E-Cigarette and Snus Print Ads on Young Adults’ Ad and Product Perceptions

    Science.gov (United States)

    Banerjee, Smita C.; Greene, Kathryn; Li, Yuelin; Ostroff, Jamie S.

    2016-01-01

    Objectives This study examined the effects of comparative-framing [C-F; ads highlighting differences between the advertised product and conventional cigarettes and/or smokeless tobacco products] versus similarity-framing (S-F; ads highlighting congruence with conventional cigarettes and/or smokeless tobacco products) in e-cigarette and snus ads on young adult smokers’ and non-smokers’ ad- and product-related perceptions. Methods One thousand fifty one (1,051) young adults (18–24 years; 76% women; 50% smokers) from existing consumer panels were recruited in a within-subjects quasi-experiment. Each participant viewed 4 online advertisements, varied by tobacco product type (e-cigarette or snus) and ad framing (C-F or S-F). The dependent measures for this study were ad-related (ad perceptions, ad credibility) and product-related perceptions (absolute and comparative risk perceptions, product appeal, and product use intentions). Results Former and current smokers rated C-F ads as more persuasive than S-F ads, as evidenced by favorable ad perceptions and high product use intentions. Former and current smokers also rated e-cigarette ads with more favorable ad perceptions, low absolute and comparative risk perceptions, high product appeal, and high product use intentions as compared to snus ads. However, the effect sizes of the significant differences are less than.2, indicating small magnitude of difference between the study variables. Conclusions Unless FDA regulates e-cig and snus advertising, there is a potential of decreasing risk perceptions and increasing use of e-cigs among young adults. Further research on implicit/explicit comparative claims in e-cigarettes and snus advertisements that encourage risk misperceptions is recommended. PMID:28042597

  10. Bedside Ultrasound for the Diagnosis of Peritonsillar Abscess

    Directory of Open Access Journals (Sweden)

    Harshal Bhakta

    2017-09-01

    Full Text Available History of present illness: A 34-year-old male presented to the Emergency Department with fever, sore throat, and difficulty swallowing. On exam, the patient had trismus, a deviated uvula, and swelling of his left peritonsillar space. An intraoral point of care ultrasound (POCUS was performed, which revealed a fluid collection in the patient’s left peritonsillar space. The patient was diagnosed with a peritonsillar abscess (PTA and needle aspiration was performed under direct ultrasound guidance. The patient tolerated the procedure well and was sent home with a course of antibiotics. Significant findings: The first video is an intraoral ultrasound using the high frequency endocavitary probe demonstrating an anechoic fluid collection adjacent to the patient’s enlarged left tonsil. The second video shows real-time ultrasound-guided successful drainage of the PTA. Discussion: Peritonsillar abscesses are the most common deep space infection of the head and neck1, most commonly affecting children and young adults.2 The ability of physicians to accurately differentiate PTA from peritonsillar cellulitis (PTC by physical exam alone is limited. Traditionally, PTA has been treated using landmark-based needle aspiration.3 If unsuccessful, computed tomography (CT imaging and otolaryngology (ENT consultation is usually required.3 Although diagnosis of PTA using intraoral ultrasound has a sensitivity and specificity of between 89%-95% and 79%-100% respectively, it is still underutilized in comparison to these traditional methods.4 Studies have shown the use of ultrasound for diagnosis and treatment of PTA leads to significantly better outcomes and higher success rates of drainage (when compared to landmark-based needle aspiration, less need for CT imaging, and less need for ENT consultation.3 Utilizing intraoral point-of-care ultrasound is an efficient, safe, and cost-effective way of diagnosing and treating PTA.

  11. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Contrast enhanced ultrasound of sentinel lymph nodes

    Directory of Open Access Journals (Sweden)

    XinWu Cui

    2013-03-01

    Full Text Available Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient’s prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  14. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    Science.gov (United States)

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  15. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases

    International Nuclear Information System (INIS)

    Orgera, Gianluigi; Krokidis, Miltiadis; Monfardini, Lorenzo; Bonomo, Guido; Della Vigna, Paolo; Fazio, Nicola; Orsi, Franco

    2011-01-01

    We describe the use of ultrasound-guided high-intensity focused ultrasound (HIFU) for ablation of two pancreatic neuroendocrine tumours (NETs; insulinomas) in two inoperable young female patients. Both suffered from episodes of severe nightly hypoglycemia that was not efficiently controlled by medical treatment. After HIFU ablation, local disease control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 9-month follow-up. The lesions appeared to be decreased in volume, and there was decreased enhancing pattern in the multidetector computed tomography control (MDCT). HIFU is likely to be a valid alternative for symptoms control in patients with pancreatic NETs. However, currently the procedure should be reserved for inoperable patients for whom symptoms cannot be controlled by medical therapy.

  16. A tele-operated mobile ultrasound scanner using a light-weight robot.

    Science.gov (United States)

    Delgorge, Cécile; Courrèges, Fabien; Al Bassit, Lama; Novales, Cyril; Rosenberger, Christophe; Smith-Guerin, Natalie; Brù, Concepció; Gilabert, Rosa; Vannoni, Maurizio; Poisson, Gérard; Vieyres, Pierre

    2005-03-01

    This paper presents a new tele-operated robotic chain for real-time ultrasound image acquisition and medical diagnosis. This system has been developed in the frame of the Mobile Tele-Echography Using an Ultralight Robot European Project. A light-weight six degrees-of-freedom serial robot, with a remote center of motion, has been specially designed for this application. It holds and moves a real probe on a distant patient according to the expert gesture and permits an image acquisition using a standard ultrasound device. The combination of mechanical structure choice for the robot and dedicated control law, particularly nearby the singular configuration allows a good path following and a robotized gesture accuracy. The choice of compression techniques for image transmission enables a compromise between flow and quality. These combined approaches, for robotics and image processing, enable the medical specialist to better control the remote ultrasound probe holder system and to receive stable and good quality ultrasound images to make a diagnosis via any type of communication link from terrestrial to satellite. Clinical tests have been performed since April 2003. They used both satellite or Integrated Services Digital Network lines with a theoretical bandwidth of 384 Kb/s. They showed the tele-echography system helped to identify 66% of lesions and 83% of symptomatic pathologies.

  17. Noiseless imaging detector for adaptive optics with kHz frame rates

    CERN Document Server

    Vallerga, J V; Mikulec, Bettina; Tremsin, A; Clark, Allan G; Siegmund, O H W; CERN. Geneva

    2004-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN (â€ワMedipix2”) with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1 kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the...

  18. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Directory of Open Access Journals (Sweden)

    Marco Campo dell'Orto

    2013-01-01

    Full Text Available Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient’s safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n=67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS. Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians.

  19. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Science.gov (United States)

    Campo dell'Orto, Marco; Hempel, Dorothea; Starzetz, Agnieszka; Seibel, Armin; Hannemann, Ulf; Walcher, Felix; Breitkreutz, Raoul

    2013-01-01

    Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient's safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n = 67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS). Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians. PMID:24288616

  20. Ultrasound-guided hydrostatic reduction of intestinal intussusception: description of three cases

    Directory of Open Access Journals (Sweden)

    Martha Hanemann Kim

    2008-09-01

    Full Text Available With the objective of reporting the technique of ultrasound-guided hydrostatic reduction of intestinal intussusception, three cases with confirmed diagnosis of the disease submitted to reduction with this technique are described. All cases had successful reductions with no complications. One patient experienced a recurrence of the invagination eight days after treatment, which was surgically corrected. The technique of hydrostatic reversal of intestinal intussusception guided by ultrasound may be used in place of the conventional barium enema, since it is a minimally invasive and safe method, with high rates of success and few complications.

  1. FRAMING EFFECTS ON PHYSICIANS' JUDGMENT AND DECISION MAKING.

    Science.gov (United States)

    Bui, Thanh C; Krieger, Heather A; Blumenthal-Barby, Jennifer S

    2015-10-01

    This study aimed to assess physicians' susceptibility to framing effects in clinical judgment and decision making. A survey was administered online to 159 general internists in the United States. Participants were randomized into two groups, in which clinical scenarios varied in their framings: frequency vs percentage, with cost information vs without, female patient vs male patient, and mortality vs survival. Results showed that physicians' recommendations for patients in hypothetical scenarios were significantly different when the predicted probability of the outcomes was presented in frequency versus percentage form and when it was presented in mortality rate vs survival rate of the same magnitude. Physicians' recommendations were not different for other framing effects.

  2. Ultrasound-Guided Percutaneous Dilational Tracheostomy: A Systematic Review of Randomized Controlled Trials and Meta-Analysis.

    Science.gov (United States)

    Gobatto, André L N; Besen, Bruno A M P; Cestari, Mino; Pelosi, Paolo; Malbouisson, Luiz M S

    2018-01-01

    Percutaneous dilational tracheostomy (PDT) is a common and increasingly used procedure in the intensive care unit (ICU). It is usually performed with bronchoscopy guidance. Ultrasound has emerged as a useful tool in order to assist PDT, potentially improving its success rate and reducing procedural-related complications. To investigate whether the ultrasound-guided PDT is equivalent or superior to the bronchoscopy-guided or anatomical landmarks-guided PDT with regard to procedural-related and clinical complications. A systematic review of randomized clinical trials was conducted comparing an ultrasound-guided PDT to the control groups (either a bronchoscopy-guided PDT or an anatomical landmark-guided PDT) in patients undergoing a PDT in the ICU. The primary outcome was the incidence of major procedural-related and clinical complication rates. The secondary outcome was the incidence of minor complication rates. Random-effect meta-analyzes were used to pool the results. Four studies fulfilled the inclusion criteria and they were analyzed. The studies included 588 participants. There were no differences in the major complication rates between the patients who were assigned to the ultrasound-guided PDT when compared to the control groups (pooled risk ratio [RR]: 0.48; 95% confidence interval [CI]: 0.13-1.71, I 2 = 0%). The minor complication rates were not different between the groups, but they had a high heterogeneity (pooled RR: 0.49; 95% CI 0.16-1.50; I 2 = 85%). The sensitivity analyzes that only included the randomized controlled trials that used a landmark-guided PDT as the control group showed lower rates of minor complications in the ultrasound-guided PDT group (pooled RR: 0.55; 95% CI: 0.31-0.98, I 2 = 0%). The ultrasound-guided PDT seems to be safe and it is comparable to the bronchoscopy-guided PDT regarding the major and minor procedural-related or clinical complications. It also seems to reduce the minor complications when compared to the anatomical

  3. Ultrasound-assisted lipase-catalyzed synthesis of D-isoascorbyl palmitate: process optimization and Kinetic evaluation.

    Science.gov (United States)

    Cui, Feng-Jie; Zhao, Hong-Xia; Sun, Wen-Jing; Wei, Zhuan; Yu, Si-Lian; Zhou, Qiang; Dong, Ying

    2013-12-09

    D-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP). High solubility in water (about 150 g/L at 25°C) reduces its effectiveness in stabilizing fats and oils. Our research group had successfully synthesized D-isoascorbyl palmitate using immobilized lipase Novozym 435 as a biocatalyst. Low production efficiency of D-isoascorbyl palmitate is still a problem for industrial production due to the long reaction time of over 24 h. In the present work, ultrasonic treatment was applied for accelerating the reaction process. The operation parameters were optimized to obtain the maximum D-isoascorbyl palmitate conversion rate by using a 5-level-4-factor Central Composite Design (CCD) and Response Surface Methdology (RSM). The reaction apparent kinetic parameters under the ultrasound treatment and mechanical shaking conditions were also determined and compared. Results showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency. A systematic study on ultrasound-assisted enzymatic esterification for D-isoascorbyl palmitate production is reported. The results show a promising perspective of the ultrasound technique to reduce the reaction time and improve the production efficiency. The commercial D-isoascorbyl palmitate synthesis will be potentially

  4. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  5. MRI-controlled interstitial ultrasound brain therapy: An initial in-vivo study

    Science.gov (United States)

    N'Djin, W. Apoutou; Burtnyk, Mathieu; Lipsman, Nir; Bronskill, Michael; Schwartz, Michael; Kucharczyk, Walter; Chopra, Rajiv

    2012-11-01

    The recent emergence at the clinical level of minimally-invasive focal therapy such as laser-induced thermal therapy (LITT) has demonstrated promise in the management of brain metastasis [1], although control over the spatial pattern of heating is limited. Delivery of HIFU from minimally-invasive applicators enables high spatial control of the heat deposition in biological tissues, large treatment volumes and high treatment rate in well chosen conditions [2,3]. In this study, the feasibility of MRI-guided interstitial ultrasound therapy in brain was studies in-vivo in a porcine model. A prototype system originally developed for transurethral ultrasound therapy [4,5,6] was used in this study. Two burr holes of 12 mm in diameter were created in the animal's skull to allow the insertion of the therapeutic ultrasound applicator (probe) into the brain at two locations (right and left frontal lobe). A 4-element linear ultrasound transducer (f = 8 MHz) was mounted at the tip of a 25-cm linear probe (6 mm in diameter). The target boundary was traced to cover in 2D a surface compatible with the treatment of a 2 cm brain tumor. Acoustic power of each element and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary [2,4,5]. Two MRT-controlled ultrasound brain treatments per animal have been performed using a maximal surface acoustic power of 10W.cm-2. In all cases, it was possible to increase accurately the temperature of the brain tissues in the targeted region over the 55°C threshold necessary for the creation of irreversible thermal lesion. Tissue changes were visible on T1w contrast-enhanced images immediately after treatment. These changes were also evident on T2w FSE images taken 2 hours after the 1st treatment and correlated well with the temperature image. On average, the targeted volume was 4.7 ± 2.3 cm3 and the 55°C treated volume was 6.7 ± 4.4 cm3. The volumetric

  6. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Ultrasound-guided percutaneous core needle biopsy of splenic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Park, SangIk; Shin, Yong Moon; Won, Hyung Jin; Kim, Pyo Nyun; Lee, Moon Gyu [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-05-15

    To evaluate the safety and efficacy of ultrasound-guided percutaneous core needle biopsy of splenic lesions. This retrospective study included 30 patients who underwent percutaneous core needle biopsy of their splenic lesions using 18- or 20-gauge needles between January 2001 and July 2016 in a single tertiary care center. The characteristics of the splenic lesions were determined by reviewing the ultrasound and computed tomography examinations. Acquisition rate and diagnostic accuracy were calculated, using pathologic results of the splenectomy specimen, clinical course and/or imaging follow-up as a reference standard. Post-procedure complications were identified from electronic medical records, laboratory findings and computed tomography images. Seventy-three specimens were obtained from the 30 patients and splenectomy was performed in 2 patients. Twenty-nine of the 30 patients had focal splenic lesions, while the remaining patient had homogeneous splenomegaly. Acquisition rate and diagnostic accuracy were 80.0% (24/30) and 76.7% (23/30), respectively. Perisplenic hemorrhage without hemodynamic instability developed in one patient. Ultrasound-guided percutaneous core needle biopsy of splenic lesions is a safe method for achieving a histopathologic diagnosis and can be considered as an alternative to splenectomy in patients with a high risk of splenectomy-related complications.

  8. Ultrasound-guided percutaneous core needle biopsy of splenic lesions

    International Nuclear Information System (INIS)

    Park, SangIk; Shin, Yong Moon; Won, Hyung Jin; Kim, Pyo Nyun; Lee, Moon Gyu

    2017-01-01

    To evaluate the safety and efficacy of ultrasound-guided percutaneous core needle biopsy of splenic lesions. This retrospective study included 30 patients who underwent percutaneous core needle biopsy of their splenic lesions using 18- or 20-gauge needles between January 2001 and July 2016 in a single tertiary care center. The characteristics of the splenic lesions were determined by reviewing the ultrasound and computed tomography examinations. Acquisition rate and diagnostic accuracy were calculated, using pathologic results of the splenectomy specimen, clinical course and/or imaging follow-up as a reference standard. Post-procedure complications were identified from electronic medical records, laboratory findings and computed tomography images. Seventy-three specimens were obtained from the 30 patients and splenectomy was performed in 2 patients. Twenty-nine of the 30 patients had focal splenic lesions, while the remaining patient had homogeneous splenomegaly. Acquisition rate and diagnostic accuracy were 80.0% (24/30) and 76.7% (23/30), respectively. Perisplenic hemorrhage without hemodynamic instability developed in one patient. Ultrasound-guided percutaneous core needle biopsy of splenic lesions is a safe method for achieving a histopathologic diagnosis and can be considered as an alternative to splenectomy in patients with a high risk of splenectomy-related complications

  9. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  10. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    Science.gov (United States)

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Framing effects and risk-sensitive decision making.

    Science.gov (United States)

    Mishra, Sandeep; Gregson, Margaux; Lalumière, Martin L

    2012-02-01

    Prospect theory suggests that people are risk-averse when facing gains, but risk-prone when facing losses, a pattern known as the framing effect. Although framing effects have been widely demonstrated, few studies have investigated framing effects under conditions of need. Risk-sensitivity theory predicts that decision makers should prefer high-risk options in situations of high need, when lower risk options are unlikely to meet those needs. In two experiments, we examined (1) whether framing effects occurred in behavioural tasks involving risky decision making from description and decision making from experience, (2) whether participants' risky decision making conformed to the predictions of risk-sensitivity theory, and (3) whether decision framing interacted with conditions of need to influence decision making under risk. The results suggest that under all circumstances, risky decision making conformed to the predictions of risk-sensitivity theory. Framing effects were at least partially demonstrable under all experimental conditions. Finally, negative frames interacted with situations of high need to produce particularly elevated levels of risky choice. Together, the results suggest that risk-sensitivity theory can augment prospect theory to explain choice under conditions of need. ©2011 The British Psychological Society.

  12. Alteration of left ventricular endocardial function by intracavitary high-power ultrasound interacts with volume, inotropic state, and alpha 1-adrenergic stimulation

    NARCIS (Netherlands)

    de Hert, S. G.; Gillebert, T. C.; Brutsaert, D. L.

    1993-01-01

    BACKGROUND: High-power intracavitary ultrasound abbreviates left ventricular (LV) ejection duration, thereby decreasing mechanical LV performance, presumably by selective impairment of endocardial endothelial function. METHODS AND RESULTS: Effects of ultrasound were evaluated in the ejecting LV of

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  15. Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading

    Science.gov (United States)

    Baoxin, Qi; Yan, Shi; Bi, Jialiang

    2018-03-01

    Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  17. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  18. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations.

    Science.gov (United States)

    Ghodbane, Houria; Hamdaoui, Oualid

    2009-06-01

    In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700kHz) for an acoustic power of 14W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H(2)O(2) were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H(2)O(2) and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.

  19. Ultrasound guided reduction of childhood intussusception

    International Nuclear Information System (INIS)

    Yoon, Chong Hyun; Kim, Han Suk

    1986-01-01

    Following on from diagnosis using ultrasound, hydrostatic reduction using saline enema under ultrasound guidance was tried in 20 cases of childhood intussusception. The conclusions were as follows: 1. Success rates of saline enema under ultrasound guidance during a first-8 month period (P1) and a second-10 month period (P2) were 55.6% (5/9) and 54.5% (6/11) respectively. Average success rate was 55% (11/20). 2. During the periods of P1 and P2, no case was reduced by barium enema in 6 cases of failed reduction with saline enema. 3. During the period of P2, 5 cases of successful reduction with saline enema were confirmed by clinical follow-up without barium enema. 4. During the periods of P1 and P2, 9 cases of failed reduction with saline enema were operated, resulting in 6 cases of segmental resection and 3 cases of manual reduction. 5. The obvious advantages of this method are: 1. No radiation hazard. 2. No fear of barium peritonitis. 3. Detection of leading point. 6. With above results, this method could completely replace barium enema. And ultrasonography should be the initial study in the evaluation of intussusception in children and then if necessary, saline enema under ultrasound guidance should be done.

  20. Framing the conversation: use of PRECIS-2 ratings to advance understanding of pragmatic trial design domains.

    Science.gov (United States)

    Lipman, Paula Darby; Loudon, Kirsty; Dluzak, Leanora; Moloney, Rachael; Messner, Donna; Stoney, Catherine M

    2017-11-10

    There continues to be debate about what constitutes a pragmatic trial and how it is distinguished from more traditional explanatory trials. The NIH Pragmatic Trials Collaborative Project, which includes five trials and a coordinating unit, has adopted the Pragmatic-Explanatory Continuum Indicator Summary (PRECIS-2) instrument. The purpose of the study was to collect PRECIS-2 ratings at two points in time to assess whether the tool was sensitive to change in trial design, and to explore with investigators the rationale for rating shifts. A mixed-methods design included sequential collection and analysis of quantitative data (PRECIS-2 ratings) and qualitative data. Ratings were collected at two annual, in-person project meetings, and subsequent interviews conducted with investigators were recorded, transcribed, and coded using NVivo 11 Pro for Windows. Rating shifts were coded as either (1) actual change (reflects a change in procedure or protocol), (2) primarily a rating shift reflecting rater variability, or (3) themes that reflect important concepts about the tool and/or pragmatic trial design. Based on PRECIS-2 ratings, each trial was highly pragmatic at the planning phase and remained so 1 year later in the early phases of trial implementation. Over half of the 45 paired ratings for the nine PRECIS-2 domains indicated a rating change from Time 1 to Time 2 (N = 24, 53%). Of the 24 rating changes, only three represented a true change in the design of the trial. Analysis of rationales for rating shifts identified critical themes associated with the tool or pragmatic trial design more generally. Each trial contributed one or more relevant comments, with Eligibility, Flexibility of Adherence, and Follow-up each accounting for more than one. PRECIS-2 has proved useful for "framing the conversation" about trial design among members of the Pragmatic Trials Collaborative Project. Our findings suggest that design elements assessed by the PRECIS-2 tool may represent

  1. Ultrasound imaging in children with acute abdominal pain - can it help to decrease the rate of negative appendectomies?

    International Nuclear Information System (INIS)

    Niedzielski, J.; Miodek, M.; Kucharski, P.; Sokal, J.

    2010-01-01

    Background: The purpose of this study was to evaluate the accuracy of high-resolution ultrasound (US) with graded compression in the diagnosis of pediatric appendicitis.Material/Methods: The medical records of 664 consecutive children with acute abdominal pain treated between 2007 and 2009 were reviewed retrospectively and analyzed; 408 children (61.4 %) underwent appendectomy and 256 patients were treated conservatively (38.6 %). High-resolution US was performed in 570 out of 664 patients (85.8 %). The US data were verified by intraoperative findings or by clinical follow-up. Results: Out of 664 children, 408 underwent appendectomy and 256 were treated conservatively. US was performed in 570 out of 664 children (85.8 %); in 327/408 children (80.1 %) with AA and in 243/256 children (94.9 %) with negative diagnosis. The sensitivity and specificity for US was 66.6% and 77.4%, respectively. If histopathological diagnosis of catarrhal appendicitis was considered a negative (unnecessary) appendectomy, the sensitivity was 68.6 % (p=0.87), and specificity was 67 % (p=0.29). Positive and negative predictive values of US were 79.9 % and 63.1 %, respectively. After recalculating results, positive predictive value decreased to 59.8% (p=0.036) and negative predictive value increased to 74.8 % (p=0.2). The rate of false negative results was 13.1 % (75/572) and the rate of false positives was 19.2 % (110/572). The negative appendectomy rate was 27.4 % (112/408). Conclusions: High-resolution ultrasonography provides an accurate and specific test for acute appendicitis and is recommended by the authors as an examination of choice in children with acute abdominal pain. (authors)

  2. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    Science.gov (United States)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  4. Physics of Non-Inertial Reference Frames

    International Nuclear Information System (INIS)

    Kamalov, Timur F.

    2010-01-01

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  5. Effective or ineffective: attribute framing and the human papillomavirus (HPV) vaccine.

    Science.gov (United States)

    Bigman, Cabral A; Cappella, Joseph N; Hornik, Robert C

    2010-12-01

    To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine-related intentions and policy opinions. A survey-based experiment (N=334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. These framing effects should be considered when designing messages. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Effective or ineffective: Attribute framing and the human papillomavirus (HPV) vaccine

    Science.gov (United States)

    Bigman, Cabral A.; Cappella, Joseph N.; Hornik, Robert C.

    2010-01-01

    Objectives To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine related intentions and policy opinions. Method A survey-based experiment (N= 334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. Results On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. Conclusions The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. Practice implications These framing effects should be considered when designing messages. PMID:20851560

  7. Robot-assisted automatic ultrasound calibration.

    Science.gov (United States)

    Aalamifar, Fereshteh; Cheng, Alexis; Kim, Younsu; Hu, Xiao; Zhang, Haichong K; Guo, Xiaoyu; Boctor, Emad M

    2016-10-01

    Ultrasound (US) calibration is the process of determining the unknown transformation from a coordinate frame such as the robot's tooltip to the US image frame and is a necessary task for any robotic or tracked US system. US calibration requires submillimeter-range accuracy for most applications, but it is a time-consuming and repetitive task. We provide a new framework for automatic US calibration with robot assistance and without the need for temporal calibration. US calibration based on active echo (AE) phantom was previously proposed, and its superiority over conventional cross-wire phantom-based calibration was shown. In this work, we use AE to guide the robotic arm motion through the process of data collection; we combine the capability of the AE point to localize itself in the frame of the US image with the automatic motion of the robotic arm to provide a framework for calibrating the arm to the US image automatically. We demonstrated the efficacy of the automated method compared to the manual method through experiments. To highlight the necessity of frequent ultrasound calibration, it is demonstrated that the calibration precision changed from 1.67 to 3.20 mm if the data collection is not repeated after a dismounting/mounting of the probe holder. In a large data set experiment, similar reconstruction precision of automatic and manual data collection was observed, while the time was reduced by 58 %. In addition, we compared ten automatic calibrations with ten manual ones, each performed in 15 min, and showed that all the automatic ones could converge in the case of setting the initial matrix as identity, while this was not achieved by manual data sets. Given the same initial matrix, the repeatability of the automatic was [0.46, 0.34, 0.80, 0.47] versus [0.42, 0.51, 0.98, 1.15] mm in the manual case for the US image four corners. The submillimeter accuracy requirement of US calibration makes frequent data collections unavoidable. We proposed an automated

  8. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    Science.gov (United States)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  9. Contrast-enhanced ultrasound-guided radiofrequency ablation in inconspicuous hepatocellular carcinoma on B-mode ultrasound.

    Science.gov (United States)

    Kim, Eui Joo; Kim, Yun Soo; Shin, Seung Kak; Kwon, Oh Sang; Choi, Duck Joo; Kim, Ju Hyun

    2017-11-01

    B-mode ultrasound (US) has difficulty targeting small hepatocellular carcinomas (HCCs) with poor conspicuity during radiofrequency ablation (RFA). Contrast-enhanced ultrasound (CEUS) can improve visualization of small or inconspicuous HCCs. This study was conducted to evaluate the effectiveness of CEUS-guided RFA electrode insertion during the arterial phase in inconspicuous HCCs. Ninety-three treatment-naïve HCCs from 80 patients treated with RFA from August 2012 to December 2014 were retrospectively reviewed. Seventy-five HCCs from 65 patients underwent B-mode US-guided RFA, and 15 HCCs from 14 patients that were inconspicuous on B-mode US underwent CEUS-guided RFA during the arterial phase after injection of sulfur hexafluoride microbubbles (SonoVue®). Technical success was assessed by contrast-enhanced computed tomography within 1 week and 3 months after the procedure. The mean size of HCCs treated with CEUS-guided RFA was smaller than that of HCCs treated with B-mode US-guided RFA (1.17±0.36 vs. 1.63±0.55 cm, p=0.003). Technical success rates of CEUS-guided RFA within 1 week and 3 months were 100% (15/15) and 93.3% (14/15), respectively. Technical success rates of B-mode US-guided RFA were 97.3% (73/75) and 94.5% (69/73), respectively. CEUS-guided RFA is highly efficacious for ablation of very small and inconspicuous HCCs.

  10. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  11. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    Science.gov (United States)

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Obstetrical ultrasound

    International Nuclear Information System (INIS)

    Bundy, A.L.

    1988-01-01

    The use of diagnostic ultrasound in obstetrics may provide fuel for legal action. While most legal implications of this relatively new imaging modality are purely speculative, some have already given rise to legal action. Several situations will likely provide a basis for the courts to find against the physician. The failure to perform a sonogram when clinically indicated will most likely be the strongest plaintiff argument. Other major concerns include the use and availability of state-of-the-art equipment, as well as interpretation of the scans by a trained physician. Obstetrical ultrasound is usually performed by a radiologist or obstetrician. However, many physicians performing these examinations have had little or no formal training in the field. While this is now being remedied by the respective board examines who require a certain amount of training, it may not be enough. When ultrasound-related cases reach the courts, the involved physicians will most likely be regarded as experts in the field and, therefore, will be held to a very high standard of care. This would be difficult to achieve without formal training. At the present time, the American Board of Radiology requires more training time in ultrasound than the American Board of Obstetrics and Gynecology

  13. [The framing effect: medical implications].

    Science.gov (United States)

    Mazzocco, Ketti; Cherubini, Paolo; Rumiati, Rino

    2005-01-01

    Over the last 20 years, many studies explored how the way information is presented modifies choices. This sort of effect, referred to as "framing effects", typically consists of the inversion of choices when presenting structurally identical decision problems in different ways. It is a common assumption that physicians are unaffected (or less affected) by the surface description of a decision problem, because they are formally trained in medical decision making. However, several studies showed that framing effects occur even in the medical field. The complexity and variability of these effects are remarkable, making it necessary to distinguish among different framing effects, depending on whether the effect is obtained by modifying adjectives (attribute framing), goals of a behavior (goal framing), or the probability of an outcome (risky choice framing). A further reason for the high variability of the framing effects seems to be the domain of the decision problem, with different effects occurring in prevention decisions, disease-detection decisions, and treatment decisions. The present work reviews the studies on framing effects, in order to summarize them and clarify their possible role in medical decision making.

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  16. Ultrasound and MR imaging of diabetic mastopathy

    International Nuclear Information System (INIS)

    Wong, K.T.; Tse, G.M.K.; Yang, W.T.

    2002-01-01

    AIM: To review the imaging findings of diabetic mastopathy, and document the colour flow ultrasound and MR imaging features in this benign condition. MATERIALS AND METHODS: Diabetic mastopathy was clinically and histologically diagnosed in eight lesions in six women. All six women underwent conventional mammography and high frequency grey-scale ultrasound. Colour flow ultrasound was performed additionally in six lesions in four women and MR imaging in four lesions in three women before biopsy. The imaging findings were reviewed and correlated with final histological diagnosis. RESULTS: Mammography showed regional asymmetric increased opacity with ill-defined margins in all lesions. A heterogeneously hypoechoic mass with ill-defined margins was identified on high frequency grey-scale ultrasound in all lesions. Marked posterior acoustic shadowing was present in seven of eight (88%) lesions. Six lesions interrogated with colour flow ultrasound showed absence of Doppler signal. MR imaging in three women revealed non-specific stromal enhancement. CONCLUSION: Diabetic mastopathy shows absence of Doppler signal on colour flow ultrasound and non-specific stromal enhancement on MR imaging. Wong K.T. et al. (2002)

  17. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    Science.gov (United States)

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart

  18. Simple Design Tool for Development of Well Insulated Window Frames and Optimization of the Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2012-01-01

    in order to approach an optimal solution. The program was also used to conduct an optimization process of the frame geometry. A large number of various window frame designs were created and evaluated, based on their insulation properties. The paper presents the investigation process and some of the best......This paper describes a design tool created with the purpose of designing highly insulated window frames. The design tool is based on a parametric model of the frame geometry, where various parameters describing the frame can be easily changed by the user. Based on this input, geometry of the frame...... is generated by the program and is used by the finite element simulator to calculate the thermal performance of the frame (the U value). After the initial design is evaluated, the user can quickly modify chosen parameters and generate a new design. This process can then be repeated in multiple iterations...

  19. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound

    International Nuclear Information System (INIS)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P.

    2011-01-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  20. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.