WorldWideScience

Sample records for high frame-rate ultrasound

  1. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  2. Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    , a 7 MHz, 128-element, phased array transducer with lambda/2-spacing was used. Data is obtained using a single element as the transmitting aperture and all 128 elements as the receiving aperture. A full SA sequence consisting of 128 emissions was simulated by gliding the active transmitting element...... weights for each frequency sub-band. As opposed to the conventional, Delay and Sum (DS) beamformer, this approach is dependent on the specific data. The performance of the proposed MV beamformer is tested on simulated synthetic aperture (SA) ultrasound data, obtained using Field II. For the simulations...... across the array. Data for 13 point targets and a circular cyst with a radius of 5 mm were simulated. The performance of the MV beamformer is compared to DS using boxcar weights and Hanning weights, and is quantified by the Full Width at Half Maximum (FWHM) and the peak-side-lobe level (PSL). Single...

  3. Riding the Plane Wave: Considerations for In Vivo Study Designs Employing High Frame Rate Ultrasound

    Directory of Open Access Journals (Sweden)

    Jason S. Au

    2018-02-01

    Full Text Available Advancements in diagnostic ultrasound have allowed for a rapid expansion of the quantity and quality of non-invasive information that clinical researchers can acquire from cardiovascular physiology. The recent emergence of high frame rate ultrasound (HiFRUS is the next step in the quantification of complex blood flow behavior, offering angle-independent, high temporal resolution data in normal physiology and clinical cases. While there are various HiFRUS methods that have been tested and validated in simulations and in complex flow phantoms, there is a need to expand the field into more rigorous in vivo testing for clinical relevance. In this tutorial, we briefly outline the major advances in HiFRUS, and discuss practical considerations of participant preparation, experimental design, and human measurement, while also providing an example of how these frameworks can be immediately applied to in vivo research questions. The considerations put forward in this paper aim to set a realistic framework for research labs which use HiFRUS to commence the collection of human data for basic science, as well as for preliminary clinical research questions.

  4. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  5. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  6. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  7. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  8. High-frame-rate digital radiographic videography

    Science.gov (United States)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  9. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  10. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  11. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis vie...

  12. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  13. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  14. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate

    Directory of Open Access Journals (Sweden)

    Anne Schützenberger

    2016-01-01

    Full Text Available The current use of laryngeal high-speed videoendoscopy in clinic settings involves subjective visual assessment of vocal fold vibratory characteristics. However, objective quantification of vocal fold vibrations for evidence-based diagnosis and therapy is desired, and objective parameters assessing laryngeal dynamics have therefore been suggested. This study investigated the sensitivity of the objective parameters and their dependence on recording frame rate. A total of 300 endoscopic high-speed videos with recording frame rates between 1000 and 15 000 fps were analyzed for a vocally healthy female subject during sustained phonation. Twenty parameters, representing laryngeal dynamics, were computed. Four different parameter characteristics were found: parameters showing no change with increasing frame rate; parameters changing up to a certain frame rate, but then remaining constant; parameters remaining constant within a particular range of recording frame rates; and parameters changing with nearly every frame rate. The results suggest that (1 parameter values are influenced by recording frame rates and different parameters have varying sensitivities to recording frame rate; (2 normative values should be determined based on recording frame rates; and (3 the typically used recording frame rate of 4000 fps seems to be too low to distinguish accurately certain characteristics of the human phonation process in detail.

  15. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  16. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  17. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    up to a pulse train. The acoustically generated high time-bandwidth (TB) product waveforms can be compressed by using a filter bank of matched filters one for every beam direction. Matched filtering compresses the pulse train to a single pulse at the scatterer position plus a number of spike axial...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d...

  18. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1981-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance

  19. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1983-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance. (Auth.)

  20. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  1. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Coolen, Bram F.; Abdurrachim, Desiree; Castro, Rui M.; Prompers, Jeanine J.; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2013-01-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensi ng reconstruction. Key to our

  2. Demo : an embedded vision system for high frame rate visual servoing

    NARCIS (Netherlands)

    Ye, Z.; He, Y.; Pieters, R.S.; Mesman, B.; Corporaal, H.; Jonker, P.P.

    2011-01-01

    The frame rate of commercial off-the-shelf industrial cameras is breaking the threshold of 1000 frames-per-second, the sample rate required in high performance motion control systems. On the one hand, it enables computer vision as a cost-effective feedback source; On the other hand, it imposes

  3. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2008-01-01

    ) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...

  4. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  5. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution...... remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the −55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array...

  6. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  7. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  8. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tong-Ding, E-mail: snuohui@126.com; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-21

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  9. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  10. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  11. Application of high-frame-rate neutron radiography to fluid measurement

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi

    1997-01-01

    To apply Neutron radiography (NR) technique to multiphase flow research, high frame-rate NR was developed by assembling up-to-date technologies for neutron source, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and no need for triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at the recording speeds of 250, 500 and 1000 frames/s. The qualities of those consecutive images were good enough to observe the flow pattern and behavior. It was demonstrated also that some characteristics of two-phase flow could be measured from those images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, rising velocity of bubbles, and wave height and interfacial area in annular flow could be obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction could be performed. For this purpose, a quantification method, i.e. Σ-scaling method, was proposed based upon the consideration on the effect of scattered neutrons. This method was tested against known void profiles and compared with existing measurement methods and a correlation for void fraction. It was confirmed that this new technique has significant advantages both in visualizing and measuring high-speed fluid phenomena. (J.P.N.)

  12. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  13. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  14. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  15. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  16. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  17. A video event trigger for high frame rate, high resolution video technology

    Science.gov (United States)

    Williams, Glenn L.

    1991-12-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  18. Performance improvement of two-dimensional EUV spectroscopy based on high frame rate CCD and signal normalization method

    International Nuclear Information System (INIS)

    Zhang, H.M.; Morita, S.; Ohishi, T.; Goto, M.; Huang, X.L.

    2014-01-01

    In the Large Helical Device (LHD), the performance of two-dimensional (2-D) extreme ultraviolet (EUV) spectroscopy with wavelength range of 30-650A has been improved by installing a high frame rate CCD and applying a signal intensity normalization method. With upgraded 2-D space-resolved EUV spectrometer, measurement of 2-D impurity emission profiles with high horizontal resolution is possible in high-density NBI discharges. The variation in intensities of EUV emission among a few discharges is significantly reduced by normalizing the signal to the spectral intensity from EUV_—Long spectrometer which works as an impurity monitor with high-time resolution. As a result, high resolution 2-D intensity distribution has been obtained from CIV (384.176A), CV(2x40.27A), CVI(2x33.73A) and HeII(303.78A). (author)

  19. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  1. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  2. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  3. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Liu, Peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 µm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 µm×150 µm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-µm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e{sup −} rms after bump bonding and a threshold dispersion of 55 e{sup −} rms after calibration.

  4. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  5. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L., E-mail: liang.zhang@iphc.cnrs.fr [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, 250100 Jinan (China); Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France); Morel, F.; Hu-Guo, C.; Hu, Y. [Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS/IN2P3/UDS, 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2014-07-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm{sup 2}. The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors.

  6. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    International Nuclear Information System (INIS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Hu, Y.

    2014-01-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm 2 . The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/−0.28 LSB and 0.29/−0.20 LSB, respectively. - Highlights: • CMOS sensor integrated with column-level ADC is proposed for ILC VTX outer layers. • A low-power and small-area column-level ADC for high frame-rate CPS is presented. • The test results demonstrate the power and area efficiency. • The architecture is suitable for the outer layer CMOS sensors

  7. Next generation HgCdTe FPAs for high frame rate characterization of thermal protective systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical existing infrared (IR) focal plane arrays (FPAs) have high spatial resolution over large areas due to their high pixel counts, however they can only...

  8. Frame Rate and Human Vision

    Science.gov (United States)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  9. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.

    2012-01-01

    in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found...... in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...

  10. SU-G-BRB-10: New Generation of High Frame-Rate and High Spatial-Resolution EPID QA System for Full-Body MLC-Based Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Han, B; Xing, L; Wang, L

    2016-01-01

    Purpose: To systematically investigate an ultra-high spatial-resolution amorphous silicon flat-panel electronic portal imaging device (EPID) for MLC-based full-body robotic radiosurgery geometric and dosimetric quality assurance (QA). Methods: The high frame-rate and ultra-high spatial resolution EPID is an outstanding detector for measuring profiles, MLC-shaped radiosurgery field aperture verification, and small field dosimetry. A Monte Carlo based technique with a robotic linac specific response and calibration is developed to convert a raw EPID-measured image of a radiosurgery field into water-based dose distribution. The technique is applied to measure output factors and profiles for 6MV MLC-defined radiosurgery fields with various sizes ranging from 7.6mm×7.7mm to 100mm×100.1mm and the results are compared with the radiosurgery diode scan measurements in water tank. The EPID measured field sizes and the penumbra regions are analyzed to evaluate the MLC positioning accuracy. Results: For all MLC fields, the EPID measured output factors of MLC-shaped fields are in good agreement with the diode measurements. The mean output difference between the EPID and diode measurement is 0.05±0.87%. The max difference is −1.33% for 7.6mm×7.7mm field. The MLC field size derived from the EPID measurements are in good agreement comparing to the diode scan result. For crossline field sizes, the mean difference is −0.17mm±0.14mm with a maximum of −0.35mm for the 30.8mm×30.8mm field. For inline field sizes, the mean difference is +0.08mm±0.18mm with a maximum of +0.45mm for the 100mm×100.1mm field. The high resolution EPID is able to measure the whole radiation field, without the need to align the detector center perfectly at field center as diode or ion chamber measurement. The setup time is greatly reduced so that the whole process is possible for machine and patient-specific QA. Conclusion: The high spatial-resolution EPID is proved to be an accurate and efficient

  11. Joint variable frame rate and length analysis for speech recognition under adverse conditions

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Kraljevski, Ivan

    2014-01-01

    This paper presents a method that combines variable frame length and rate analysis for speech recognition in noisy environments, together with an investigation of the effect of different frame lengths on speech recognition performance. The method adopts frame selection using an a posteriori signal......-to-noise (SNR) ratio weighted energy distance and increases the length of the selected frames, according to the number of non-selected preceding frames. It assigns a higher frame rate and a normal frame length to a rapidly changing and high SNR region of a speech signal, and a lower frame rate and an increased...... frame length to a steady or low SNR region. The speech recognition results show that the proposed variable frame rate and length method outperforms fixed frame rate and length analysis, as well as standalone variable frame rate analysis in terms of noise-robustness....

  12. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  13. Trans-abdominal ultrasound evaluation of high-intensity focused ultrasound treatment of uterine leiomyoma

    International Nuclear Information System (INIS)

    Miao Wei; Huang Jin; Wang Junhua; Wang Yuling

    2010-01-01

    Objective: To determine the value of dynamic trans-abdominal ultrasound after high-intensity focused ultrasound (HIFU) treatment of uterine leiomyomas. Methods: The trans-abdominal ultrasound images of 63 patients before and after HIFU treatment of uterine leiomyomas were compared. Results: The volume and blood flow of leiomyomas were reduced after the HIFU treatment. Conclusion: Trans-abdominal ultrasound is a valuable method for evaluating the results of HIFU treatment of uterine leiomyomas. (authors)

  14. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  15. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    Science.gov (United States)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  16. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  17. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  18. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  19. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  20. MCP detector read out with a bare quad Timepix at kilohertz frame rates

    International Nuclear Information System (INIS)

    Vallerga, J; Tremsin, A; McPhate, J; Siegmund, O; Raffanti, R

    2011-01-01

    The existing Berkeley neutron sensitive MCP/Timepix hybrid detector has been very successful at demonstrating energy resolved spatial imaging with a single Timepix ASIC read out at a ∼ 30 Hz frame rate where each neutron's position and time (energy) is determined (X,Y,E). By increasing the detector format using a quad arrangement of Timepix readouts and increasing the frame rate to 1 kHz, we can increase our total event throughput by a factor of 120, thereby taking full advantage of the high fluxes of modern pulsed neutron sources (10 6 n cm -2 s -1 ). The key to this conversion is a new design for the ASIC readout, called the Berkeley Quad Timepix detector, consisting of 3 major subsystems. The first is a quad (2 x 2) bare Timepix ASIC board mounted directly behind the neutron sensitive MCPs in a hermetic vacuum enclosure with a sapphire window. The data from the Timepix ASICs flow to the second subsystem called the Interface board whose field programmable gate array (FPGA) rearranges and converts the digital bit stream to LVDS logic levels before sending downstream to the third subsystem, the Roach board. The Roach board is also FPGA based, and takes the data from all the ASICs and analyses the frames to extract information on the input events to pass on to the host PC. This paper describes in detail the hardware and firmware designs to accomplish this task.

  1. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  2. Objective assessment of the impact of frame rate on video quality

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Korhonen, Jari; Forchhammer, Søren

    2012-01-01

    In this paper, we present a novel objective quality metric that takes the impact of frame rate into account. The proposed metric uses PSNR, frame rate and a content dependent parameter that can easily be obtained from spatial and temporal activity indices. The results have been validated on data ...

  3. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  4. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  5. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  6. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  7. Multi-Frame Rate Based Multiple-Model Training for Robust Speaker Identification of Disguised Voice

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2013-01-01

    Speaker identification systems are prone to attack when voice disguise is adopted by the user. To address this issue,our paper studies the effect of using different frame rates on the accuracy of the speaker identification system for disguised voice.In addition, a multi-frame rate based multiple......-model training method is proposed. The experimental results show the superior performance of the proposed method compared to the commonly used single frame rate method for three types of disguised voice taken from the CHAINS corpus....

  8. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  9. The effects of frame rate and resolution on users playing first person shooter games

    Science.gov (United States)

    Claypool, Mark; Claypool, Kajal; Damaa, Feissal

    2006-01-01

    The rates and resolutions for frames rendered in a computer game directly impact the player performance, influencing both the overall game playability and the game's enjoyability. Insights into the effects of frame rates and resolutions can guide users in their choice for game settings and new hardware purchases, and inform system designers in their development of new hardware, especially for embedded devices that often must make tradeoffs between resolution and frame rate. While there have been studies detailing the effects of frame rate and resolution on streaming video and other multimedia applications, to the best of our knowledge, there have been no studies quantifying the effects of frame rate and resolution on user performance for computer games. This paper presents results of a carefully designed user study that measures the impact of frame rate and frame resolution on user performance in a first person shooter game. Contrary to previous results for streaming video, frame rate has a marked impact on both player performance and game enjoyment while resolution has little impact on performance and some impact on enjoyment.

  10. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  11. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  12. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  13. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  14. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  15. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    Science.gov (United States)

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  16. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  17. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  18. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  19. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  20. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  1. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  2. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  3. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  4. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  5. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  6. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  7. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  8. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  9. Extremely low-frame-rate digital fluoroscopy in catheter ablation of atrial fibrillation: A comparison of 2 versus 4 frame rate.

    Science.gov (United States)

    Lee, Ji Hyun; Kim, Jun; Kim, Minsu; Hwang, Jongmin; Hwang, You Mi; Kang, Joon-Won; Nam, Gi-Byoung; Choi, Kee-Joon; Kim, You-Ho

    2017-06-01

    Despite the technological advance in 3-dimensional (3D) mapping, radiation exposure during catheter ablation of atrial fibrillation (AF) continues to be a major concern in both patients and physicians. Previous studies reported substantial radiation exposure (7369-8690 cGy cm) during AF catheter ablation with fluoroscopic settings of 7.5 frames per second (FPS) under 3D mapping system guidance. We evaluated the efficacy and safety of a low-frame-rate fluoroscopy protocol for catheter ablation for AF.Retrospective analysis of data on 133 patients who underwent AF catheter ablation with 3-D electro-anatomic mapping at our institute from January 2014 to May 2015 was performed. Since January 2014, fluoroscopy frame rate of 4-FPS was implemented at our institute, which was further decreased to 2-FPS in September 2014. We compared the radiation exposure quantified as dose area product (DAP) and effective dose (ED) between the 4-FPS (n = 57) and 2-FPS (n = 76) groups.The 4-FPS group showed higher median DAP (599.9 cGy cm; interquartile range [IR], 371.4-1337.5 cGy cm vs. 392.0 cGy cm; IR, 289.7-591.4 cGy cm; P FPS group. No major procedure-related complications such as cardiac tamponade were observed in either group. Over follow-up durations of 331 ± 197 days, atrial tachyarrhythmia recurred in 20 patients (35.1%) in the 4-FPS group and in 27 patients (35.5%) in the 2-FPS group (P = .96). Kaplan-Meier survival analysis revealed no significant different between the 2 groups (log rank, P = .25).In conclusion, both the 4-FPS and 2-FPS settings were feasible and emitted a relatively low level of radiation compared with that historically reported for DAP in a conventional fluoroscopy setting.

  10. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound

    International Nuclear Information System (INIS)

    Teh, W.L.; Wilson, A.R.M; Evans, A.J.; Burrell, H.; Pinder, S.E.; Ellis, I.O.

    2000-01-01

    AIM: The pre-operative diagnosis of suspicious mammographic microcalcifications usually requires stereotactic needle biopsy. The aim of this study was to evaluate if high frequency 13 MHz ultrasound (HFUS) and power Doppler (PD) can aid visualization and biopsy of microcalcifications. MATERIALS AND METHODS: Forty-four consecutive patients presenting with microcalcifications without associated mammographic or palpable masses were examined with HFUS and PD. Ultrasound-guided core biopsy (USCB) was performed where possible. Stereotactic biopsy was carried out when US-guided biopsy was unsuccessful. Surgery was performed if a diagnosis of malignancy was made on core biopsy or if the repeat core biopsy was non-diagnostic. RESULTS: Forty-one patients (93%) had ultrasound abnormalities corresponding to mammographic calcification. USCB was performed on 37 patients. In 29/37, USCB obtained a definitive result (78.4%). USCB was non-diagnostic in 4/9 benign (44.4%) and 4/28 (14.3%) malignant lesions biopsied. The complete and absolute sensitivities for malignancy using USCB were 85.7% (24/28) and 81% (23/28), respectively. USCB correctly identified invasive disease in 12/23 (52.2%) cases. There was no significant difference in the presence of abnormal flow on PD between benign and malignant lesions. However, abnormal PD vascularity was present in 43.5% of invasive cancer and was useful in directing successful biopsy in eight cases. CONCLUSION: The combination of high frequency US with PD is useful in the detection and guidance of successful needle biopsy of microcalcifications particularly where there is an invasive focus within larger areas of DCIS. Teh, W.L. (2000)

  11. Low-Complexity Variable Frame Rate Analysis for Speech Recognition and Voice Activity Detection

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Lindberg, Børge

    2010-01-01

    present a low-complexity and effective frame selection approach based on a posteriori signal-to-noise ratio (SNR) weighted energy distance: The use of an energy distance, instead of e.g. a standard cepstral distance, makes the approach computationally efficient and enables fine granularity search......Frame based speech processing inherently assumes a stationary behavior of speech signals in a short period of time. Over a long time, the characteristics of the signals can change significantly and frames are not equally important, underscoring the need for frame selection. In this paper, we......, and the use of a posteriori SNR weighting emphasizes the reliable regions in noisy speech signals. It is experimentally found that the approach is able to assign a higher frame rate to fast changing events such as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even...

  12. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  13. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Wang Yang; Wang Wei; Wang Longxia; Wang Junyan; Tang Jie

    2011-01-01

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  14. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Wei, E-mail: wangyang301301@yahoo.com.cn [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Longxia; Wang Junyan; Tang Jie [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2011-07-15

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  15. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  16. Impact of ultrasound video transfer on the practice of ultrasound

    Science.gov (United States)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  17. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  18. Hyperecho in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Tanaka, Katsuaki; Ito, Ryu; Ohto, Masao; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang Zhibiao

    2011-01-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method that can cause complete coagulation necrosis without requiring the insertion of any instruments. The hyperechoic grayscale change (hyperechoic region) is used as a sign that the treated lesion has been completely coagulated. The purpose of this study was to evaluate the first hyperechoic region during treatment using HIFU ablation according to various conditions, such as the sonication power, the depth of the tumor from the surface of the skin, and the shield rate. HIFU treatment was performed in 20 patients. The HIFU system (Chongqing Haifu Tech, Chongqing, China) was used under ultrasound guidance. Complete coagulation was achieved in 17 cases. Hyperechoic region were detected after HIFU ablation in 17 patients. The size of the hyperechoic region at a depth of >50 mm was significantly smaller than that at a depth of ≤50 mm. The number and power of the sonications for areas at a depth of >50 mm were significantly larger than those for areas at a depth of ≤50 mm. The number and power in cases with a shield rate of 31–60% were significantly larger than those in cases with a shield rate of 0–30%. When the shield rate was 0%, a hyperechoic region occurred, even when a maximum sonication power was not used. In all three cases with tumors located at a depth of greater than 70 mm and a shield rate of larger than 60%, a hyperechoic region was not seen. In conclusion, hyperechoic regions are easy to visualize in cases with tumors located at a depth of ≤50 mm or shield rates of 0–30%.

  19. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  20. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  1. TEKNIK ESTIMASI GERAK PENCARIAN PENUH DENGAN AKURASI SETENGAH PIKSEL UNTUK FRAME RATE UP CONVERSION VIDEO

    Directory of Open Access Journals (Sweden)

    ary satya prabhawa

    2014-10-01

    Full Text Available ABSTRAK Saat ini Teknologi video digital banyak digunakan pada aplikasi hiburan, contohnya adalah TV Digital dengan format HD. Dengan frame rate tinggi, pengkodean video akan menghasil laju bit lebih tinggi yaitu sampai 15 – 30 fps. Permasalahannya adalah kapasitas saluran transmisi memiliki kapasitas terbatas. Solusinya adalah menurunkan laju bit dengan menurunkan jumlah frame video ke penerima. Skema ini dikenal dengan Frame Rate Up-Conversion (FRUC video, dimana frame yang di encoder akan direkonstruksi kembali di decoder dengan membangkitkan frame intermediate (FI. FI dibangkitkan dengan teknik Motion Compensation Interpolation (MCI. Terkait dengan metode FRUC, penelitian ini mengajukan skema MCI unidirectional dengan pencarian gerak akurasi setengah piksel. Pada skema ini, sebuah motion vector (MV kandidat akan dicari di frame referensi, proses estimasi gerak dilakukan dengan menambah piksel sisipan diantara piksel eksisting. Sasarannya adalah meningkatkan akurasi MV kandidat. Hasil simulasi menunjukkan bahwa metode yang diajukan lebih baik sampai sebesar masing – masing 3,21 dB dan 3,11 dB pada wilayah pencarian 7 dan 15 piksel dibandingkan dengan metode frame repetition untuk sekuen video foreman dan hall monitor.

  2. Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera

    Directory of Open Access Journals (Sweden)

    Przybyło Jaromir

    2016-12-01

    Full Text Available Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm for fluorescent light to 6.6 bpm for dim daylight.

  3. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  4. Perspectives of high power ultrasound in food preservation

    Science.gov (United States)

    Evelyn; Silva, F. V. M.

    2018-04-01

    High Power ultrasound can be used to alter physicochemical properties and improve the quality of foods during processing due to a number of mechanical, chemical, and biochemical effects arising from acoustic cavitation. Cavitation creates pressure waves that inactivate microbes and de-agglomerate bacterial clusters or release ascospores from fungal asci. Bacterial and heat resistant fungal spores’ inactivation is a great challenge in food preservation due to their ability to survive after conventional food processing, causing food-borne diseases or spoilage. In this work, a showcase of application of high power ultrasound combined with heat or thermosonication, to inactivate bacterial spores i.e. Bacillus cereus spores in beef slurry and fungal spores i.e. Neosartorya fischeri ascospores in apple juice was presented and compared with thermal processing. Faster inactivation was achieved at higher TS (24 KHz, 0.33 W/g or W/mL) temperatures. Around 2 log inactivation was obtained for B. cereus spores after1 min (70 °C) and N. fischeri ascospores after 30 min (75 °C). Thermal treatments caused <1 log in B. Cereus after 2 min (70 °C) and no inactivation in N. Fischeri ascospores after 30 min (80 °C). In conclusion, temperature plays a significant role for TS spore inactivation and TS was more effective than thermal treatment alone. The mould spores were more resistant than the bacterial spores.

  5. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  6. High frequency ultrasound imaging in pupillary block glaucoma.

    Science.gov (United States)

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  7. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  8. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  9. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  10. Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima; Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Yoneyama, Tatsuya; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan)

    2008-09-15

    Gated single-photon emission computed tomography (SPECT) imaging of myocardium by {sup 99m}Tc and {sup 201}Tl is used extensively to measure quantitative cardiac functional parameters. However, factors affecting normal values for myocardial functional parameters and population-specific standards have not yet been established. The aim of the study was to determine the effect of sex, radiotracer, rotation angles and frame rates on resting myocardial wall thickening (WT) and to develop a Japanese standard of normal values for WT. Data from a total of 202 patients with low possibility of having cardiac problems were collected from nine hospitals throughout Japan. Patients were divided into five groups according to study protocol, and WT was evaluated according to the 17-segment and four-region (basal, mid and apical regions and the apex) polar map distribution. WT was generally higher in women than in men irrespective of the use of radiotracers, rotation angles or frame rates, and the difference was highly significant in the mid and apical regions. In any protocol used, resting myocardial thickening in the apex was higher than in the mid and apical regions, and thickening was lowest in the basal region, suggesting heterogeneous regional myocardial thickening (%) in normal subjects. Different rotation angles showed no significant change on WT, but different frame rates and tracers showed significant WT change in both sexes. Percent thickening of the myocardium was significantly higher in imaging by {sup 99m}Tc-labelled tracers than in {sup 201}Tl. Sex, radiotracers and frame rates had a significant effect on myocardial thickening, and the importance of population-specific standards should be emphasized. A normal database can serve as a standard for gated SPECT evaluation of myocardial thickening in a Japanese population and might be applicable to Asian populations having a similar physique. (orig.)

  11. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    Science.gov (United States)

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  12. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  13. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    Science.gov (United States)

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  14. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor

    NARCIS (Netherlands)

    Gersbach, M.; Trimananda, R.; Maruyama, Y.; Fishburn, M.; Cahrbon, E. et al

    2010-01-01

    Imaging techniques based on time-correlated single photon counting (TCSPC), such as fluorescence lifetime imaging microscopy (FLIM), rely on fast single-photon detectors as well as timing electronics in the form of time-to-digital or time-to-analog converters. Conventional systems rely on

  16. In Vivo High Frame Rate Vector Flow Imaging Using Plane Waves and Directional Beamforming

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo

    2016-01-01

    angles) for both slow flow and B-mode. Parabolic flow with a peak velocity of 0.5 m/s is measured at beam-to-flow angles of60◦and 90◦. The DB method estimates the angle with a bias and standard deviation (STD) less than 2◦, and the STD of the velocity magnitude is 2.5 %. This is 7 - 8.5 % when using TO...

  17. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    Science.gov (United States)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  18. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    Energy Technology Data Exchange (ETDEWEB)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoronto.ca; Jones, Ryan M. [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Birman, Gabriel [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Hynynen, Kullervo [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada)

    2016-09-15

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  19. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    Science.gov (United States)

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  20. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. Noiseless imaging detector for adaptive optics with kHz frame rates

    CERN Document Server

    Vallerga, J V; Mikulec, Bettina; Tremsin, A; Clark, Allan G; Siegmund, O H W; CERN. Geneva

    2004-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN (â€ワMedipix2”) with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1 kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the...

  2. Identification of speech transients using variable frame rate analysis and wavelet packets.

    Science.gov (United States)

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  3. Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?

    Science.gov (United States)

    Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J

    1996-01-01

    AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271

  4. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  5. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    Science.gov (United States)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNRe., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  6. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  7. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  8. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  9. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  10. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are ...

  12. Ultrasound generation with high power and coil only EMAT concepts.

    Science.gov (United States)

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  14. Using a Graphics Turing Test to Evaluate the Effect of Frame Rate and Motion Blur on Telepresence of Animated Objects

    DEFF Research Database (Denmark)

    Borg, Mathias; Johansen, Stine Schmieg; Krog, Kim Srirat

    2013-01-01

    A limited Graphics Turing Test is used to determine the frame rate that is required to achieve telepresence of an animated object. For low object velocities of 2.25 and 4.5 degrees of visual angle per second at 60 frames per second a rotating object with no added motion blur is able to pass the t...

  15. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    Science.gov (United States)

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  16. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    International Nuclear Information System (INIS)

    Schafer, Mark E.; Gessert, James

    2009-01-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  17. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging : In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A.C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, A.F.W.; de Jong, N.; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially

  18. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A. C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, Antonius F. W.; de Jong, Nico; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available

  19. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    V. Daeichin (Verya); T. van Rooij (Tom); I. Skachkov (Ilya); B. Ergin (Bulent); P. Specht (Patricia); A.A.P. Lima (Alexandre ); C. Ince (Can); J.G. Bosch (Hans); A.F.W. van der Steen (Ton); N. de Jong (Nico); K. Kooiman (Klazina)

    2017-01-01

    textabstractAlthough high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited

  20. Ultrasound versus high field magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tan, York Kiat; Østergaard, Mikkel; Bird, Paul

    2014-01-01

    Over the past decade there have been significant advances in the field of musculoskeletal imaging, especially in the application of ultrasound (US) and magnetic resonance imaging (MRI) to the management of rheumatoid arthritis (RA). Both modalities offer significant advantages over the previous...

  1. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  2. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  3. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    Science.gov (United States)

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    Science.gov (United States)

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined. PMID:21116349

  5. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    OpenAIRE

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined.

  6. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  7. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  8. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  9. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  10. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  11. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue.

    Science.gov (United States)

    Buschmann, Johanna; Puippe, Gilbert; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Giovanoli, Pietro; Calcagni, Maurizio

    2014-04-01

    Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.

  12. ultrasound studies of superfluid 3He in high magnetic fields

    International Nuclear Information System (INIS)

    De Vegvar, P.G.N.

    1986-01-01

    Measurements of ultrasound propagation in superfluid helium-three in magnetic fields of up to 94 kG are reported. The experiments were performed on an adiabatic nuclear demagnetization cryostat using a sensitive radio frequency spectrometer. In addition to observing the expected collective mode splittings, an anomaly near the A-two transition was intensively investigated. The effect is interpreted in terms of a first order transformation in the superfluid I-texture driven by the second order bulk phase transition at the point. Numerical computations give fair agreement with the experimental data

  13. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  14. Carotid near-occlusion frequently has high peak systolic velocity on Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Khangure, Simon R.; Machnowska, Matylda; Fox, Allan J.; Hojjat, Seyed-Parsa; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Division of Neuroimaging, Toronto (Canada); Benhabib, Hadas [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); Groenlund, Christer [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Herod, Wendy [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); Maggisano, Robert [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); University of Toronto, Division of Vascular Surgery, Department of Surgery, Toronto (Canada); Sjoeberg, Anders [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Wester, Per [Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden); Karolinska Institutet Danderyds Hospital, Department of Clinical Sciences, Stockholm (Sweden); Hopyan, Julia [University of Toronto, Division of Neurology, Department of Medicine, Toronto (Canada); Johansson, Elias [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden)

    2018-01-15

    Carotid near-occlusion is a tight atherosclerotic stenosis of the internal carotid artery (ICA) resulting in decrease in diameter of the vessel lumen distal to the stenosis. Near-occlusions can be classified as with or without full collapse, and may have high peak systolic velocity (PSV) across the stenosis, mimicking conventional > 50% carotid artery stenosis. We aimed to determine how frequently near-occlusions have high PSV in the stenosis and determine how accurately carotid Doppler ultrasound can distinguish high-velocity near-occlusion from conventional stenosis. Included patients had near-occlusion or conventional stenosis with carotid ultrasound and CT angiogram (CTA) performed within 30 days of each other. CTA examinations were analyzed by two blinded expert readers. Velocities in the internal and common carotid arteries were recorded. Mean velocity, pulsatility index, and ratios were calculated, giving 12 Doppler parameters for analysis. Of 136 patients, 82 had conventional stenosis and 54 had near-occlusion on CTA. Of near-occlusions, 40 (74%) had high PSV (≥ 125 cm/s) across the stenosis. Ten Doppler parameters significantly differed between conventional stenosis and high-velocity near-occlusion groups. However, no parameter was highly sensitive and specific to separate the groups. Near-occlusions frequently have high PSV across the stenosis, particularly those without full collapse. Carotid Doppler ultrasound does not seem able to distinguish conventional stenosis from high-velocity near-occlusion. These findings question the use of ultrasound alone for preoperative imaging evaluation. (orig.)

  15. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  16. Development of microbubble contrast agents for high frequency ultrasound microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Se Jung; Kim, Eun A; Park, Sung Hoon; Lee, Hye Jin; Jun, Hong Young; Byun, Seung Jae; Yoon, Kwon Ha [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2007-05-15

    To develop optimal microbubble contrast agents (MBCAs) for performing ultrasound microscopy when examining small animals. We prepared three types of MBCAs. First, a mixture of three parts of 40% dextran and one part of 5% human serum albumin were sonicated with perfluorocarbon (PFC) (MB{sub 1}-D40A5P). Second, three parts of 40% dextran and one part of 1% human serum albumin were sonicated with PFC (MB{sub 2}-D40A1P). Third, all parts of 1% bovine serum albumin were sonicated with PFC (MB{sub 3}-A1P). We measured the microbubbles' sizes and concentrations with using image analysis software. The acoustic properties of the microbubbles were assessed both in vitro and in vivo. The majority of the MB{sub 1}-D40A5Ps had a diameter of 2-5 {mu} m, the mean diameter of the MB{sub 2}-D40A1Ps was 2.5 {mu} m, and the mean diameter of the MB{sub 3}-A1Ps was less than 2.0 {mu} m. Among the microbubbles, the MB{sub 1}-D40A5Ps and MB{sub 2}-D40A1Ps showed increased echogenicity in the abdominal vessels, but the duration of their contrast effect was less than 30 sec. On the contrary, the MB3-A1Ps exhibited strong enhancement in the vessels and their duration was greater than 120 sec. A microbubble contrast agent consisting of all parts of 1% serum albumin sonicated with PFC is an effective contrast agent for ultrasound microscopy.

  17. Advantages and disadvantages of high power ultrasound application in the dairy industry

    Directory of Open Access Journals (Sweden)

    Mislav Muža

    2009-12-01

    Full Text Available Preservation of food with thermal sterilisation is usually the most common way nowadays. Besides the positive aim of preservation regarding microorganisms’ reduction, elevated temperature in processing simultaneously causes serious changes in nutritive and organoleptical properties of food. Loss of food quality is related to structure and texture deformations, modification of macromolecules and creation of new compounds coming from reactions that are catalised with temperature. One of the new non-thermal processes that can in large scale improve different processes in food industry is ultrasound. In the last five years, new applications of high power ultrasound (HPU include inactivation of enzymes and microorganisms, assistance in membrane processes, improvement of dairy product texture, improvement of functional properties of proteins etc. High power ultrasound application is used in emulsification and milk homogenization, but in these processes the most important thing is to monitor possible negative effect like oxidation of fats, inactivation of valuable enzymes and denaturation of proteins. Controled and optimized application of ultrasound demands application of specific ultrasound frequency and optimal treatment time. Treatments should be performed at lower temperatures to avoid negative side effects on treated materials.

  18. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard at the National Measurement Institutes, e.g., NPL and PTB, can provide accurate calibration to a maximum frequency of 40MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application.

  19. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  20. Effect of High Intensity Ultrasound and Pasteurization on Anthocyanin Content in Strawberry Juice

    Directory of Open Access Journals (Sweden)

    Igor Dubrović

    2011-01-01

    Full Text Available The purpose of this investigation is to study the influence of high intensity ultrasound and pasteurization on the stability of anthocyanins and their content in strawberry juice. Different ultrasound process parameters for the treatment of juices are compared to the classical thermal treatments. For ultrasound treatments, three parameters were varied according to the statistical experimental design. Central composite design was used to optimize and design experimental parameters: temperature (25, 40 and 55 °C, amplitude (60, 90 and 120 μm and time (3, 6, and 9 min. It was found that the anthocyanin content after pasteurization (85 °C for 2 min was reduced by 5.3 to 5.8 % compared to untreated juices. After treatment with ultrasound (20 °C for 3, 6 or 9 min or thermosonication (40 °C for 3, 6 or 9 min and 60 °C for 3 or 6 min, the degradation of anthocyanins was generally less intensive and was 0.7–4.4 % compared to the untreated juices. Only in the case of ultrasonic treatment at a temperature of 55 °C and treatment time of 9 min the total content of anthocyanins, compared to untreated juice, was reduced by 5.8 to 7.1 %, and their degradation was greater than that of pasteurized juices. From the results it can be concluded that total anthocyanin content was greater in more than 85 % of the selected ultrasound treatments compared to pasteurized juices. Ultrasound treatment can replace pasteurization in terms of preserving total anthocyanin content. The modelling approaches using response surface methodology (RSM developed in this study exploit data in order to identify the optimal processing parameters for lowering degradation of anthocyanins in strawberry juice during ultrasound processing.

  1. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    Science.gov (United States)

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  5. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  6. Feasibility of ultrasound-guided high intensity focused ultrasound ablating uterine fibroids with hyperintense on T2-weighted MR imaging

    International Nuclear Information System (INIS)

    Zhao, Wen-Peng; Chen, Jin-Yun; Zhang, Lian; Li, Quan; Qin, Juan

    2013-01-01

    Purpose: To retrospectively investigate whether uterine fibroids with hyperintense on pretreatment T2-weighted magnetic resonance imaging (MRI) could be treated with ultrasound-guided high intensity focused ultrasound (USgHIFU). Materials and methods: 282 patients with 282 symptomatic uterine fibroids who underwent USgHIFU treatment were retrospectively analyzed. Based on the signal intensity of T2-weighted MRI, uterine fibroids were classified as hypointense, isointense and hyperintense. Hyperintense fibroids were subjectively further subdivided into heterogeneous hyperintense, slightly homogeneous hyperintense and markedly homogeneous hyperintense based on the signal intensity of fibroid relative to myometrium and endometrium on T2-weighted MRI. Enhanced MRI was performed within one month after HIFU treatment. Non-perfused volume (NPV, indicative of successful ablation) ratio, treatment time, treatment efficiency, energy effect ratio and adverse events were recorded. Results: The median volume of uterine fibroids was 70.3 cm 3 (interquartile range, 41.1–132.5 cm 3 ). The average NPV ratio, defined as non-perfused volume divided by the fibroid volume after HIFU treatment, was 76.8 ± 19.0% (range, 0–100%) in the 282 patients. It was 86.3 ± 11.9% (range, 40.9–100.0%) in the group with hypointense fibroids, 77.1 ± 16.5% (range, 32.2–100.0%) in isointense fibroids, and 67.6 ± 23.9% (range, 0–100.0%) in hyperintense fibroids. The lowest NPV ratio, lowest treatment efficiency, more treatment time, more sonication energy and pain scores were observed in the slightly homogeneous hyperintense fibroids, and the NPV ratio was 55.8 ± 26.7% (range, 0–83.9%) in this subgroup. Conclusion: Based on our results, the heterogeneous and markedly homogeneous hyperintense fibroids were suitable for USgHIFU, and only the slightly homogeneous hyperintense fibroids should be excluded

  7. From a formal training program in musculoskeletal ultrasound (MSUS) to a high reproducibility for Doppler ultrasound in rheumatoid arthritis.

    Science.gov (United States)

    Villota, Orlando; Diaz, Mario; Ceron, Carmen; Moller, Ingrid; Naredo, Esperanza; Saaibi, Diego Luis

    2017-07-28

    To assess the intra- and inter-observer reliability of ultrasound (US) in scoring B-mode, Doppler synovitis and combined B-mode and Doppler synovitis scores in different peripheral joints of rheumatoid arthritis (RA) patients. Four rheumatologists with a formal training in musculoskeletal US (MSKUS) particularly focus on definitions and scoring synovitis on B-mode and Doppler mode participated in a patient-based reliability exercise on 16 active RA patients. The four rheumatologists independently and consecutively performed a B-mode and power Doppler (PD) US assessment of 7 joints of each patient in two rounds in a blinded fashion. Each joint was semi quantitatively scored from 0 to 3 for B-mode synovitis (BS), Doppler synovitis (DS), and combined B-mode/Doppler synovitis (CS). Intraobserver reliability was assessed by Cohen's κ. Interobserver reliability was assessed by unweight Light's κ. The mean prevalence of synovitis on B-mode was 83% of joints; scores ranging from grade 1 in 18% of joints, to grade 3 in 33%. In 55% of joints synovial PD signal was detected and the distribution of scores range from 14% of joints for grade 3, to 26% for grade 2. After a total of 448 joints scanned with 896 adquired images our intraobserver and interobserver reliability was good to excellent for most of the joints. Formal, structured and continuous training in musculoskeletal ultrasound would bring a good to excellent reproducibility in rheumatological hands with a high reliability in real time acquisition BS, DS and CS modalities for scoring synovitis in patients with active rheumatoid arthritis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  9. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C.

    Science.gov (United States)

    Caraveo, Omaro; Alarcon-Rojo, Alma D; Renteria, Ana; Santellano, Eduardo; Paniwnyk, Larysa

    2015-09-01

    The application of high-intensity ultrasound causes changes in the physical and chemical properties of biological materials including meat. In this study the physicochemical and microbiological characteristics of beef after the application of high-intensity ultrasound for 60 and 90 min and subsequent storage at 4 °C for 0, 2, 4, 6, 8 and 10 days were evaluated. The ultrasound-treated meat showed higher (P 0.05) between sonication times. The redness of ultrasound-treated meat was initially lower than that of control meat, but no difference (P > 0.05) was observed after day 8 of storage. The 90 min ultrasound-treated meat had higher (P < 0.05) yellowness during the entire storage period. Ultrasound decreased (P < 0.05) coliform, mesophilic and psychrophilic bacteria in the meat throughout the storage period; however, the original microbial loads increased constantly during refrigeration. The 90 min ultrasound-treated meat showed the greatest reduction in microbial load during storage. Coliforms and psychrophilic bacteria were the most affected by ultrasound. The application of high-intensity ultrasound to beef semitendinosus muscle stored at 4 °C decreased bacterial growth without affecting the physicochemical quality of meat. © 2014 Society of Chemical Industry.

  10. Treatment of esophageal tumors using high intensity intraluminal ultrasound: first clinical results

    Directory of Open Access Journals (Sweden)

    Prat Frederic

    2008-06-01

    Full Text Available Abstract Background Esophageal tumors generally bear a poor prognosis. Radical surgery is generally the only curative method available but is not feasible in the majority of patients; palliative therapy with stent placement is generally performed. It has been demonstrated that High Intensity Ultrasound can induce rapid, complete and well-defined coagulation necrosis. Thus, for the treatment of esophageal tumors, we have designed an ultrasound applicator that uses an intraluminal approach to fill up this therapeutic gap. Methods Thermal ablation is performed with water-cooled ultrasound transducers operating at a frequency of 10 MHz. Single lesions extend from the transducer surface up to 10 mm in depth when applying an intensity of 14 W/cm2 for 10s. A lumen inside the therapy applicator provides path for an endoscopic ultrasound imaging probe operating at a frequency of 12 MHz. The mechanical rotation of the applicator around its axis enables treatment of sectorial or cylindrical volumes. This method is thus particularly suitable for esophageal tumors that may develop only on a portion of the esophageal circumference. Previous experiments were conducted from bench to in vivo studies on pig esophagi. Results Here we report clinical results obtained on four patients included in a pilot study. The treatment of esophageal tumors was performed under fluoroscopic guidance and ultrasound imaging. Objective tumor response was obtained in all cases and a complete necrosis of a tumor was obtained in one case. All patients recovered uneventfully and dysphagia improved significantly within 15 days, allowing for resuming a solid diet in three cases. Conclusion This clinical work demonstrated the efficacy of intraluminal high intensity ultrasound therapy for local tumor destruction in the esophagus.

  11. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  12. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  13. T1 ρ mapping for the evaluation of high intensity focused ultrasound tumor treatment

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    This study was aimed to assess the effects of High Intensity Focused Ultrasound (HIFU) thermal ablation on tumor T1ρ . In vivo T1ρ measurements of murine tumors at various spin-lock amplitudes (B1 = 0-2000 Hz) were performed before (n = 13), directly after (n = 13) and 3 days (n = 7) after HIFU

  14. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  15. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  16. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  17. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  18. The impact of high-resolution ultrasound in the differential diagnosis of non-hemolytic jaundice.

    Science.gov (United States)

    Rauh, Peter; Neye, Holger; Mönkemüller, Klaus; Malfertheiner, Peter; Rickes, Steffen

    2010-12-01

    Because jaundice is a common reason for hospital admission. A fast and correct differential diagnosis is very important to increase treatment efficacy. The aim of our study was to evaluate the impact of the high-resolution ultrasound in this kind of clinical setting. In a prospective study we included 30 patients and we divided them in patients with extrahepatic jaundice and patients with intrahepatic jaundice. We observed a high accuracy of the high-resolution sonography, with a sensitivity of 95% and a specificity of 100% for extrahepatic jaundice, and a sensitivity of 100% and a specificity of 95% for intrahepatic jaundice. We conclude that the high-resolution ultrasound should be used in the very beginning of the diagnostic algorithm for the evaluation of patients with unclear jaundice.

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  2. High amplitude ultrasound pulse generation using time-reversal through a multiple scattering medium

    OpenAIRE

    ARNAL , Bastien; Pernot , Mathieu; Fink , Mathias; Tanter , Mickaël

    2012-01-01

    International audience; In histotripsy, soft tissues can be fragmented using very high pressure ultrasound pulses. Using time-reversal cavity is a way to generate high pressure pulses with a limited number of acoustic sources. The principle was already demonstrated by Montaldo et al. using a solid metal cavity, but low transmission coefficient was obtained due to the strong impedance mismatch at the metal/water interface. We propose here to use a waveguide filled with water containing a 2D mu...

  3. Application of high intensity ultrasound treatment on Enterobacteriae count in milk

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-06-01

    Full Text Available Ultrasonication is a non-thermal method of food preservation that has the advantage of inactivating microbes in food without causing the common side-effects associated with conventional heat treatments, such as nutrient and flavour loss. In this work high intensity ultrasound was used to investigate inactivation Enterobacteriae count in raw milk. Raw milk with 4% of milk fat was treated with ultrasonic probe that was 12 mm in diameter and with 20 kHz frequency immerged in milk directly. For ultrasounds treatment, three parameters varied according to the statistical experimental design. Centre composite design was used to optimize and design experimental parameters: temperature (20, 40 and 60 °C, amplitude (120, 90 and 60 μm and time (6, 9 and 12 minutes. All analyses were performed immediately after sonication and after 3 and 5 days of storage in refrigeration at 4 °C. The facts that substantially affect the inactivation of microorganisms using ultrasound are the amplitude of the ultrasonic waves, the exposure/contact time with the microorganisms, and the temperatureof treatment. The achieved results indicate significant inactivation of microorganisms under longer period of treatments with ultrasonic probe particularly in combination with higher temperature andamplitude. Output optimal value of Enterobacteriae count has been defined by Statgraphics where lowest Enterobacteriae count (1.06151 log CFU mL-1 was as follows for specific ultrasound parameters: amplitude of 120 μm, treatment time for 12 min and temperature of 60 °C.

  4. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  5. Feasibility of recanalization of human coronary arteries using high-intensity ultrasound.

    Science.gov (United States)

    Ernst, A; Schenk, E A; Woodlock, T J; Alliger, H; Gottlieb, S; Child, S Z; Meltzer, R S

    1994-01-15

    To investigate the feasibility of ultrasonic recanalization of obstructed human coronary arteries in vitro, high-intensity ultrasound was applied to 16 coronary arteries obtained at autopsy, using a prototype instrument enabling insonification through a catheter tip. It was a 119 cm long, 0.95 mm thick wire in an 8Fr catheter connected to an external ultrasonic transformer and power generator. A 5 MHz phased-array 2-dimensional echocardiography instrument was used to determine minimal luminal diameter and percent diameter narrowing before and after ultrasound application. The ultrasonic energy was delivered at 21.5 kHz and with a 52 +/- 19 micrometer average amplitude of tip displacement. The mean percent luminal diameter narrowing, flow rate and mean pressure gradient before ultrasound exposure were 74 +/- 11%, 97 +/- 61 ml/min, and 92 +/- 18 mm Hg, respectively. After recanalization, the mean percent luminal diameter narrowing decreased to 45 +/- 17% (p ultrasound application. Mechanical fracture of the wire occurred in 8 cases (50%). No signs of thermal injury were found on histology. Thus, ultrasonic recanalization of human coronary arteries in vitro is feasible. It may reduce obstruction and improve blood flow. Debris sizes are sufficiently small to minimize the hazard of peripheral embolization.

  6. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    Science.gov (United States)

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  7. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  9. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  11. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is at high risk for cancer. In this case, a biopsy is performed and an ultrasound probe ... will share the results with you. In some cases, the radiologist may discuss results with you at ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  20. Alteration of left ventricular endocardial function by intracavitary high-power ultrasound interacts with volume, inotropic state, and alpha 1-adrenergic stimulation

    NARCIS (Netherlands)

    de Hert, S. G.; Gillebert, T. C.; Brutsaert, D. L.

    1993-01-01

    BACKGROUND: High-power intracavitary ultrasound abbreviates left ventricular (LV) ejection duration, thereby decreasing mechanical LV performance, presumably by selective impairment of endocardial endothelial function. METHODS AND RESULTS: Effects of ultrasound were evaluated in the ejecting LV of

  1. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    Science.gov (United States)

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  2. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  3. High-intensity focused ultrasound in the treatment of breast tumours.

    Science.gov (United States)

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  4. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    International Nuclear Information System (INIS)

    Cheng, Vincent Y. T.

    2017-01-01

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition

  5. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Vincent Y. T. [Dept. of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong (China)

    2017-04-15

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition.

  6. High-intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients

    DEFF Research Database (Denmark)

    Kovatcheva, Roussanka D; Vlahov, Jordan D; Shinkov, Alexander D

    2010-01-01

    Many patients with primary hyperparathyroidism either decline or are not candidates for surgical parathyroidectomy. There are drawbacks to medical therapy as well as percutaneous ethanol injection as alternative therapies for primary hyperparathyroidism. Therefore, in this pilot study, our aim...... was to test the feasibility, safety, and efficacy of a newly developed noninvasive high-intensity focused ultrasound (HIFU) technique for the nonsurgical management of primary hyperparathyroidism....

  7. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    OpenAIRE

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potentia...

  8. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  9. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-01-01

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17±2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11±14% and the volume overlap was 70±12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and

  10. In-situ identification of marine organisms using high frequency, wideband ultrasound

    DEFF Research Database (Denmark)

    Pham, An Hoai

    methods. Conventional acoustical methods use frequencies in the range of 10 to 500 kHz and give reasonable estimations of size distribution, if the species is known, but can only significantly support the determination of the actual species, if there are only a few known species available. It is expected...... that higher frequencies and broader bandwidths than used until now will give more information useful for fish species identification. The objective of this Ph.D. study has been to develop a method to investigate the possibility of in-situ identification of fish with high-frequency, wideband ultrasound...... and the fish bodies. The frequencies are 2, 3.5, and 6 MHz. The angles are -30°, -15°, 0°, 15°, and 30°. The results show that even though there are variations, a scan of the ultrasound backscatter along a fish of a specific species contains patterns that are characteristic for that species. This is true...

  11. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases

    International Nuclear Information System (INIS)

    Orgera, Gianluigi; Krokidis, Miltiadis; Monfardini, Lorenzo; Bonomo, Guido; Della Vigna, Paolo; Fazio, Nicola; Orsi, Franco

    2011-01-01

    We describe the use of ultrasound-guided high-intensity focused ultrasound (HIFU) for ablation of two pancreatic neuroendocrine tumours (NETs; insulinomas) in two inoperable young female patients. Both suffered from episodes of severe nightly hypoglycemia that was not efficiently controlled by medical treatment. After HIFU ablation, local disease control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 9-month follow-up. The lesions appeared to be decreased in volume, and there was decreased enhancing pattern in the multidetector computed tomography control (MDCT). HIFU is likely to be a valid alternative for symptoms control in patients with pancreatic NETs. However, currently the procedure should be reserved for inoperable patients for whom symptoms cannot be controlled by medical therapy.

  12. Reduced clot debris size using standing waves formed via high intensity focused ultrasound

    Science.gov (United States)

    Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi

    2017-09-01

    The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  14. A new coding concept for fast ultrasound imaging using pulse trains

    DEFF Research Database (Denmark)

    Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can he increased by simultaneous transmission of multiple beams using coded waveforms. However, the achievable degree of orthogonality among coded waveforms is limited in ultrasound, and the image quality degrades unacceptably due to interbeam interference....... In this paper, an alternative combined time-space coding approach is undertaken. In the new method all transducer elements are excited with short pulses and the high time-bandwidth (TB) product waveforms are generated acoustically. Each element transmits a short pulse spherical wave with a constant transmit...... delay from element to element, long enough to assure no pulse overlapping for all depths in the image. Frequency shift keying is used for "per element" coding. The received signals from a point scatterer are staggered pulse trains which are beamformed for all beam directions and further processed...

  15. Microbiological properties of poultry breast meat treated with high-intensity ultrasound.

    Science.gov (United States)

    Piñon, M I; Alarcon-Rojo, A D; Renteria, A L; Carrillo-Lopez, L M

    2018-01-03

    Lactic acid, psychrophilic, and mesophilic bacteria, Escherichia coli, Salmonella spp. and Staphylococcus aureus were enumerated on chicken breasts after treatment with different high intensity ultrasound (frequency 40 kHz, intensity 9.6 W/cm -2 ) application times (0, 30, and 50 min) and packaging atmospheres (aerobic and vacuum) after a 7-day storage. The experiment was performed in commercial 7-week-old chicken breasts. Counts were performed prior to and immediately after ultrasonication, and on the 7th day of chill-storage. After sonication and storage, mesophiles, psychrophiles, LAB and S. aureus increased statistically. Psychrophiles decreased significantly under anaerobic packaging. There were no differences among ultrasonication times in terms of mesophiles, psychrophiles, LAB, E. coli and Salmonella spp. S. aureus numbers had a significant reduction after 50 min sonication. Under these experimental conditions, high-intensity ultrasound for 50 min is a control method of S. aureus and the anaerobic packaging reduces numbers of psychrophiles in chicken breast. The effect of ultrasound is only significant after the storage time. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Plunging ranulas: high-resolution ultrasound for diagnosis and surgical management

    International Nuclear Information System (INIS)

    Jain, Prabha; Jain, Ravi; Morton, Randall P.; Ahmad, Zahoor

    2010-01-01

    We see a high incidence of plunging ranulas, particularly in Maori and Polynesian populations. We have investigated the usefulness of ultrasound in the diagnosis and management of plunging ranulas and present our findings. Thirty-three new cases were examined over 4 years (June 2004 to October 2008). High-resolution ultrasound was very successful in determining the extent of the plunging ranula, confirming the cystic nature of the lesion, assessing the status of the mylohyoid muscle (a defect demonstrated in 100% of our cases) and evaluating the sublingual gland for rupture or herniation. Correlation with surgical findings was available for 30 cases. There was excellent ultrasonographic and surgical correlation, particularly with respect to submandibular space cystic collection (29 of 30 cases, 96.7%) and mylohyoid defects (27 of 30 cases, 90%). With the considerations of cost, accessibility and the fact that many of our patients are young (median of 20 years), ultrasound is recommended as the preferred examination for plunging ranula. (orig.)

  17. Plunging ranulas: high-resolution ultrasound for diagnosis and surgical management

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prabha [Middlemore Hospital, Counties Manakau, Department of Radiology, P.O. Box 93311, Otahuhu, Auckland (New Zealand); Jain, Ravi [Waikato Hospital, Department of Plastic Surgery, Hamilton (New Zealand); Morton, Randall P.; Ahmad, Zahoor [Middlemore Hospital, Counties Manakau, Department of ENT Surgery, P.O. Box 93311, Otahuhu, Auckland (New Zealand)

    2010-06-15

    We see a high incidence of plunging ranulas, particularly in Maori and Polynesian populations. We have investigated the usefulness of ultrasound in the diagnosis and management of plunging ranulas and present our findings. Thirty-three new cases were examined over 4 years (June 2004 to October 2008). High-resolution ultrasound was very successful in determining the extent of the plunging ranula, confirming the cystic nature of the lesion, assessing the status of the mylohyoid muscle (a defect demonstrated in 100% of our cases) and evaluating the sublingual gland for rupture or herniation. Correlation with surgical findings was available for 30 cases. There was excellent ultrasonographic and surgical correlation, particularly with respect to submandibular space cystic collection (29 of 30 cases, 96.7%) and mylohyoid defects (27 of 30 cases, 90%). With the considerations of cost, accessibility and the fact that many of our patients are young (median of 20 years), ultrasound is recommended as the preferred examination for plunging ranula. (orig.)

  18. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z.; Alzimami, Khalid S.; Sulieman, Abdelmoneim; Fagiri, Maram A.

    2015-01-01

    High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period

  19. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    International Nuclear Information System (INIS)

    Haar, Gail ter

    2008-01-01

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients

  20. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Science.gov (United States)

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  2. Effect of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system.

    Science.gov (United States)

    Ojha, Kumari Shikha; Kerry, Joseph P; Alvarez, Carlos; Walsh, Des; Tiwari, Brijesh K

    2016-07-01

    The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0-68.5 W) and sonication time (0-9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24h. The L. sakei growth data showed a good fit with the Gompertz model (R(2)>0.90; SEfunctional food products can be tailored by selection of ultrasound processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Terry O. Matsunaga, Paul S. Sheeran, Samantha Luois, Jason E. Streeter, Lee B. Mullin, Bhaskar Banerjee, Paul A. Dayton

    2012-01-01

    Full Text Available Recent efforts using perfluorocarbon (PFC nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C and octafluoropropane (OFP, bp =-37 °C for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs.

  4. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  6. High-resolution ultrasound biomicroscopy for monitoring ovarian structures in mice

    Directory of Open Access Journals (Sweden)

    Singh Jaswant

    2009-07-01

    Full Text Available Abstract Background Until recently, the limit of spatial resolution of ultrasound systems has prevented characterization of structures Methods Experiment 1 was a pilot study to develop methods of immobilization (physical restraint vs. general anesthesia and determine technical factors affecting ovarian images using ultrasound bio-microscopy in rats vs. mice. The hair coat was removed over the thoraco-lumber area using depilation cream, and a highly viscous acoustic gel was applied while the animals were maintained in sternal recumbency. In Experiment 2, changes in ovarian structures during the estrous cycle were monitored by twice daily ultrasonography in 10 mice for 2 estrous cycles. Results Ovarian images were not distinct in rats due to attenuation of ultrasound waves. Physical restraint, without general anesthesia, was insufficient for immobilization in mice. By placing the transducer face over the dorsal flank, the kidney was visualized initially as a point of reference. A routine of moving the transducer a few millimetres caudo-laterally from the kidney was established to quickly and consistently localize the ovaries; the total time to scan both ovaries in a mouse was about 10 minutes. By comparing vaginal cytology with non-anesthetized controls, repeated exposure to anesthesia did not affect the estrous cycle. Temporal changes in the number of follicles in 3 different size categories support the hypothesis that follicles ≥ 20 microns develop in a wave-like fashion. Conclusion The mouse is a suitable model for the study of ovarian dynamics using transcutaneous ultrasound bio-microscopy. Repeated general anesthesia for examination had no apparent effect on the estrous cycle, and preliminary results revealed a wave-like pattern of ovarian follicle development in mice.

  7. High-intensity focused ultrasound treatment of placenta accreta after vaginal delivery: a preliminary study.

    Science.gov (United States)

    Bai, Y; Luo, X; Li, Q; Yin, N; Fu, X; Zhang, H; Qi, H

    2016-04-01

    To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  8. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  9. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  11. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  13. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath; Sainsbury, Toby; Treeby, Bradley E.; Cox, Ben T.

    2017-01-01

    amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer

  14. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study

    International Nuclear Information System (INIS)

    Mahmoud, Mustafa Z.; Alkhorayef, Mohammed; Alzimami, Khalid S.; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids

  15. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  16. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  17. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  18. Anomalous effect of high-frequency ultrasound on radiation diffraction in deformed single crystals

    International Nuclear Information System (INIS)

    Iolin, E.M.; Rajtman, Eh.A.; Kuvaldin, B.V.; Zolotoyabko, Eh.V.

    1988-01-01

    Results are presented of a theoretical and experimental study of neutron and X-ray diffraction in defromed single crystals on high-frequency ultrasonic excitation. It is demonstrated theoretically that at a frequency exceeding a certain threshold value the ultrasound violates the adiabatic conditions for the excitation point motion on the dispersion surface branches. This leads to an anomalous (compared to diffraction for a perfect crystal) dependence of the diffraction intensity on the ultrasonic wave amplitude. The experimental data for Si crystals are in good agreement with the theoretical predictions

  19. High-frequency ultrasound in carpal tunnel syndrome: assessment of patient eligibility for surgical treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2015-09-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leaves because of work-related hand overload. That is why an early diagnosis and adequate treatment (conservative or surgical are essential for optimal patient management. Aim: The aim of the study is to assess the usefulness of high-frequency ultrasound in CTS for the assessment of patient eligibility for surgical treatment. Material and methods: The study involved 62 patients (50 women and 12 men, aged 28–70, mean age 55.2 with scheduled surgeries of CTS on the basis of clinical symptoms, physical examination performed by a neurosurgeon and a positive result of EMG testing. The ultrasound examinations of the wrist were performed in all these patients. On the basis of the collected data, the author has performed multiple analyses to confi rm the usefulness of ultrasound imaging in assessing patient eligibility for surgical treatment of CTS. Results: US examinations showed evidence of median nerve compression at the level of the carpal tunnel in all of the examined patients. This was further confi rmed during surgical procedures. The mean value of the cross-sectional area at the proximal part of the pisiform bone was 17.45 mm2 (min. 12 mm2 , max. 31 mm2 . Nerve hypoechogenicity proximal to the nerve compression site was visible in all 62 patients (100%. Increased nerve vascularity on the transverse section was present in 50 patients (80.65%. Conclusions: Ultrasonography with the use of high-frequency transducers is a valuable diagnostic tool both for assessing patient eligibility for surgical treatment of CTS, and in postoperative assessment of the treatment efficacy.

  20. The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound.

    Science.gov (United States)

    Mlosek, R K; Woźniak, W; Malinowska, S; Lewandowski, M; Nowicki, A

    2012-06-01

      Cellulite affects nearly 85% of the female population. Given the size of the phenomenon, we are continuously looking for effective ways to reduce cellulite. Reliable monitoring of anticellulite treatment remains a problem.   The main aim of the study was to evaluate the effectiveness of anticellulite treatment carried out using radiofrequency (RF), which was monitored by classical and high-frequency ultrasound.   Twenty-eight women underwent anticellulite treatment using RF, 17 women were in the placebo group. The therapy was monitored by classical and high-frequency ultrasound. The examinations evaluated the thickness of the epidermal echo, dermis thickness, dermis echogenicity, the length of the subcutaneous tissue bands growing into the dermis, the presence or absence of oedema, the thickness of subcutaneous tissue as well as thigh circumference and the stage of cellulite (according to the Nürnberger-Müller scale).   Cellulite was reduced in 89.286% of the women who underwent RF treatment. After the therapy, the following observations were made: a decrease in the thickness of the dermis and subcutaneous tissue, an increase in echogenicity reflecting on the increase in the number of collagen fibres, decreased subcutaneous tissue growing into bands in the dermis, and the reduction of oedema. In the placebo group, no statistically significant changes of the above parameters were observed.   Radiofrequency enables cellulite reduction. A crucial aspect is proper monitoring of the progress of such therapy, which ultrasound allows. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  1. Non- invasive in vivo analysis of a murine aortic graft using high resolution ultrasound microimaging

    International Nuclear Information System (INIS)

    Rowinska, Zuzanna; Zander, Simone; Zernecke, Alma; Jacobs, Michael; Langer, Stephan; Weber, Christian; Merx, Marc W.; Koeppel, Thomas A.

    2012-01-01

    Introduction: As yet, murine aortic grafts have merely been monitored histopathologically. The aim of our study was to examine how these grafts can be monitored in vivo and non-invasively by using high-resolution ultrasound microimaging to evaluate function and morphology. A further aim was to prove if this in vivo monitoring can be correlated to immunohistological data that indicates graft integrity. Methods: Murine infrarenal aortic isografts were orthotopically transplanted into 14 female mice (C57BL/6-Background) whereas a group of sham-operated animals (n = 10) served as controls. To assess the graft morphology and hemodynamics, we examined the mice over a post-operative period of 8 weeks with a sophisticated ultrasound system (Vevo 770, Visual Sonics). Results: The non-invasive graft monitoring was feasible in all transplanted mice. We could demonstrate a regular post-transplant graft function and morphology, such as anterior/posterior wall displacement and wall thickness. Mild alterations of anterior wall motion dynamics could only be observed at the site of distal graft anastomosis (8 weeks after grafting (transplant vs. sham mice: 0.02 mm ± 0.01 vs. 0.03 mm ± 0.01, p < 0.05). However, the integrity of the entire graft wall could be confirmed by histopathological evaluation of the grafts. Conclusions: With regard to graft patency, function and morphology, high resolution ultrasound microimaging has proven to be a valuable tool for longitudinal, non-invasive, in vivo graft monitoring in this murine aortic transplantation model. Consequently, this experimental animal model provides an excellent basis for molecular and pharmacological studies using genetically engineered mice.

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  5. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  6. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  7. High correlation between quantitative ultrasound and DXA during 7 years of follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Trimpou, Penelope [Section for Endocrinology, Department of Internal Medicine, Sahlgrenska University Hospital at Sahlgrenska Academy, University of Gothenburg, SE-41345 Goeteborg (Sweden)], E-mail: pinelopi.trimpou@vgregion.se; Bosaeus, Ingvar [Department for Clinical Nutrition, Sahlgrenska University Hospital, Goeteborg (Sweden)], E-mail: ingvar.bosaeus@nutrition.gu.se; Bengtsson, Bengt-Ake [Section for Endocrinology, Department of Internal Medicine, Sahlgrenska University Hospital at Sahlgrenska Academy, University of Gothenburg, SE-41345 Goeteborg (Sweden)], E-mail: bengt-ake.bengtsson@medic.gu.se; Landin-Wilhelmsen, Kerstin [Section for Endocrinology, Department of Internal Medicine, Sahlgrenska University Hospital at Sahlgrenska Academy, University of Gothenburg, SE-41345 Goeteborg (Sweden)], E-mail: kerstin.landin@sahlgrenska.se

    2010-02-15

    Ultrasound is a quick, cheap and non-radiating device for assessing bone quality. We wanted to validate the method for clinical and epidemiological use. Eighty women, aged 53-73 years, with osteoporosis and/or fractures were followed repeatedly during 7 years. Quantitative ultrasound (QUS) measurements (LUNAR Achilles) were compared with bone mineral density (BMD) and bone mineral content (BMC) estimated by DXA (LUNAR) in regions of interest. Changes in the speed of sound, broadband ultrasound attenuation and stiffness were positively correlated with changes in BMD and BMC in all regions measured with DXA (r = 0.20-0.53; p = 0.09 to <0.0001). The QUS t-score at the left heel was positively correlated with the t-score at the right heel (r = 0.90, p < 0.0001). The DXA t-score of the left vs. the right femur was also positively correlated (r = 0.72-0.86; p < 0.0001). A t-score < -2.5 S.D. was found in 70% and 56% at baseline, and 74% and 65% at follow-up measured with QUS and DXA, respectively. The mean sensitivity of QUS vs. DXA was 79% and the mean specificity 45% over a 7-year period. A QUS t-score of <-3.65 S.D. was consistent with a DXA t-score of <-2.5 S.D. In conclusion, QUS was well correlated with DXA in all regions over the 7-year period. QUS can be used in settings without access to DXA and in epidemiological studies. The sensitivity was high but the specificity was low, implicating that DXA, if available, is recommended before treatment for osteoporosis. However, treatment can be started without DXA at a QUS t-score < -3.65 S.D., and especially in the presence of fractures.

  8. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of General Ultrasound Imaging? Ultrasound waves are ...

  10. An ex vivo feasibility experimental study on targeted cell surgery by high intensity focused ultrasound

    Science.gov (United States)

    Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo

    2012-10-01

    High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50 μm and 250 μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3 × 104 W/cm2) generated by a 1.6 MHz HIFU transducer of 12 cm diameter and 11 cm geometric focal length (f-number = 0.92). The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable.

  11. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Partanen, A [Philips Healthcare, Andover, Massachusetts (United States); Ghoshal, G; Burdette, E [Acoustic MedSystems Inc., Savoy, IL (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360° of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al

  12. The use of high-frequency ultrasound in the study of skin and psoriatic nail

    International Nuclear Information System (INIS)

    Gutierrez, Marwin; Restrepo, Juan Pablo; Filippucci, Emilio; Grassi, Walter

    2009-01-01

    Over the last few years, continuous advances have been made in the field of ultrasonography, developing equipment providing high-quality grey scale imaging with an axial resolution power less than 0.1 mm and very sensitive power Doppler technique. This fact has opened the way to detailed imaging of the superficial tissues, including the skin. This pictorial essay shows the main sonographic findings obtainable with last generation high-frequency transducers and power Doppler technique in patients with psoriatic disease. Sonographic images shown were selected from an image database collected in 20 patients with definite diagnosis of psoriasis and in 10 healthy subjects. The present report provides pictorial evidence that high resolution grey scale ultrasound and power Doppler technique allow for a detailed morpho structural assessment and a sensitive blood flow evaluation at both skin and nail level in patients with psoriatic disease.

  13. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar.

    Science.gov (United States)

    Režek Jambrak, Anet; Šimunek, Marina; Evačić, Silva; Markov, Ksenija; Smoljanić, Goran; Frece, Jadranka

    2018-02-01

    The purpose of this study was to investigate the effect of non-thermal technology, high power ultrasound (HPU) on inactivation of Aspergillus ochraceus 318, Penicillium expansum 565, Rhodotorula sp. 74, Saccharomyces cerevisiae 5 and Alicyclobacillus acidoterrestris DSM 3922 in clear juices and nectars from apple, blueberry and cranberry juice concentrate. Inoculated juice and nectars were treated by high power ultrasound (20kHz) according to procedure set by central composite design (CCD). Three operational parameters, amplitude (60, 90 and 120μm), temperature (20, 40 and 60°C), and treatment time (3, 6 or 9min) were varied in order to observe the influence of ultrasound and combination of ultrasound and slight heating (thermosonication) on growth and inactivation of selected microorganisms. Number of vegetative cells of A. acidoterrestris DSM 3922 were not significantly reduced by high power ultrasound (p>0.05), except in apple juice, where statistical significant (pultrasound treatments at 60°C and the duration of the 3, 6 and 9min ranged from 3.556 to 5.934 log units, depending on the initial number of selected yeasts and moulds before treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  15. Efficacy of intradermal mesotherapy in cellulite reduction - Conventional and high-frequency ultrasound monitoring results.

    Science.gov (United States)

    Sylwia, Malinowska; Krzysztof, Mlosek Robert

    2017-10-01

    Cellulite affects the majority of women and is an unacceptable cosmetic defect. Therefore, effective methods for cellulite reduction are being sought. Intradermal mesotherapy is one of such methods. The aim of the study was to assess the efficacy of intradermal mesotherapy in cellulite reduction, using conventional and high-frequency ultrasound. Twenty-one women with cellulite underwent a series of intradermal mesotherapy procedures. The following parameters were assessed: thickness of epidermis, dermis and hypodermis, echogenicity of dermis and the surface area of serrated hypodermis-dermis junction. Furthermore, the thigh circumference was measured; body mass index and cellulite severity were assessed based on photographs using Nürnberger-Müller's scale. Intradermal mesotherapy reduced severity of cellulite. The surface area of serrated hypodermis-dermis junction and hypodermis thickness decreased significantly as compared to baseline. Cellulite reduction was also confirmed by palpation, decreased thigh circumference and the Nürnberger-Müller's grade. There were no statistically significant changes in epidermis or dermis thickness, body weight and the BMI. Intradermal mesotherapy offers effective cellulite reduction. It is a simple and safe treatment, which makes it popular. Further research in mesotherapy is essential due to a limited number of published studies. Ultrasound is a useful method to monitor intradermal mesotherapy and assess its efficacy.

  16. Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs

    Science.gov (United States)

    Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.

    2018-02-01

    High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.

  17. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    Science.gov (United States)

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  18. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chih-Chung, E-mail: cchuang@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Wei-Tsen [Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2014-01-15

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals.

  19. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    International Nuclear Information System (INIS)

    Huang, Chih-Chung; Chen, Wei-Tsen

    2014-01-01

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals

  20. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang-Ying; Ding, Hong-Yu [Shandong University, Department of Ultrasonography, Qianfoshan Hospital, Jinan (China); Zheng, Lei; Sun, Bai-Sheng [Chinese People' s Armed Police Force, Department of Radiology, Shandong Provincial Corps Hospital, Jinan (China); Li, En-Miao [Jinan Third People' s Hospital, Department of Ultrasonography, Jinan (China); Shi, Hao [Shandong University, Department of Radiology, Qianfoshan Hospital, Jinan (China)

    2015-01-15

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  1. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    International Nuclear Information System (INIS)

    Zhang, Guang-Ying; Ding, Hong-Yu; Zheng, Lei; Sun, Bai-Sheng; Li, En-Miao; Shi, Hao

    2015-01-01

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  2. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  3. A derating method for therapeutic applications of high intensity focused ultrasound

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-05-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

  4. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  5. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  6. Feasibility of MRI-guided high intensity focused ultrasound treatment for adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tien-Ying [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Zhang, Lian; Chen, Wenzhi [Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China); Liu, Yinjiang; He, Min; Huang, Xiu [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Orsi, Franco [Interventional Radiology Unit, European Institute of Oncology, 435 Via Ripamonti, 20141 Milan (Italy); Wang, Zhibiao, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We tested the feasibility of MRIgHIFU ablation for adenomyosis. Black-Right-Pointing-Pointer Patients were treated with MRIgHIFU under conscious sedation. Black-Right-Pointing-Pointer Patient symptoms were assessed using SSS and UFS-QOL. Black-Right-Pointing-Pointer The mean SSS and UFS-QOL showed significant improvements at follow up. Black-Right-Pointing-Pointer No serious complications were observed 62.5 {+-} 21.6. -- Abstract: Purpose: To test the feasibility of MRI-guided high intensity focused ultrasound ablation for adenomyosis. Materials and methods: Patients with symptomatic adenomyosis were treated with MRI-guided high intensity focused ultrasound (MRIgHIFU). Under conscious sedation, MRIgHIFU was performed by a clinical MRI-compatible focused ultrasound tumour therapeutic system (JM15100, Haifu{sup Registered-Sign} Technology Co. Ltd., Chongqing, China) which is combined with a 1.5 T MRI system (Magnetom Symphony, Siemens Healthcare, Erlangen, Germany). MRI was used to calculate the volume of the uterus and lesion. Non-perfused volume of the targeted lesions was evaluated immediately after MRIgHIFU. Patient symptoms were assessed using symptom severity score (SSS) and uterine fibroids symptoms and quality of life questionnaire (UFS-QOL). Results: Ten patients with mean age of 40.3 {+-} 4 years with an average lesion size of 56.9 {+-} 12.7 mm in diameter were treated. Non-perfused volume and the percentage of non-perfused volume obtained from contrast-enhanced T1 Magnetic resonance images immediately post-treatment were 66.6 {+-} 49.4 cm{sup 3} and 62.5 {+-} 21.6%, respectively. The mean SSS and UFS-QOL showed significant improvements of 25%, 16% and 25% at 3, 6 and 12 months follow up, respectively, to pre-treatment scores. No serious complications were observed. Conclusion: Based on the results from this study, MRIgHIFU treatment appears to be a safe and feasible modality to ablate adenomyosis lesion and

  7. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  8. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.

    Science.gov (United States)

    Ong, Olivia X H; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2015-09-01

    Application of high intensity ultrasound has shown potential in the production of Maillard reaction odor-active flavor compounds in model systems. The impact of initial pH, sonication duration, and ultrasound intensity on the production of Maillard reaction products (MRPs) by ultrasound processing in a cysteine-xylose model system were evaluated using Response Surface Methodology (RSM) with a modified mathematical model. Generation of selected MRPs, 2-methylthiophene and tetramethyl pyrazine, was optimal at an initial pH of 6.00, accompanied with 78.1 min of processing at an ultrasound intensity of 19.8 W cm(-2). However, identification of volatiles using gas chromatography-mass spectrometry (GC/MS) revealed that ultrasound-assisted Maillard reactions generated fewer sulfur-containing volatile flavor compounds as compared to conventional heat treatment of the model system. Likely reasons for this difference in flavor profile include the expulsion of H2S due to ultrasonic degassing and inefficient transmission of ultrasonic energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  10. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    Science.gov (United States)

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  11. Clinical evaluation of high-intensity focused ultrasound in treating uterus myomas

    International Nuclear Information System (INIS)

    Peng Jingjing; Tan Yan; Wei Dong; Li Yan; Zhao Zhengguo; Gao hui; Zhang Tao

    2010-01-01

    Objective: To explore the safety and efficacy of high-intensity focused ultrasound (HIFU) for the treatment of uterus myomas. Methods: HIFU was performed in 47 patients with symptomatic hysteromyoma, who had a childbearing history and were 26-59 years old. Postoperative follow-up was carried out. Clinical symptoms and the tumor's size were observed before and after the HIFU treatment. The results were compared with each other. Results: After HIFU treatment, the symptoms such as dysmenorrhea and hypermenorrhea were markedly improved. Some patients developed hematuria or lower limb pain, which was relieved after symptomatic management. The average volume of myoma before the treatment was (47.6 ± 24.1) cm 3 and it was reduced to (17.7 ± 13.1) cm 3 at 6 months after the treatment, the difference was statistically significant (P < 0.05). Conclusion: HIFU is a safe and effective treatment for uterus myomas. (authors)

  12. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    Science.gov (United States)

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Rectourethral Fistula due to Transrectal High-Intensity Focused Ultrasound Treatment: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Valeria Fiaschetti

    2012-01-01

    Full Text Available Colovesical fistula (CVF is an abnormal connection between the enteric and the urinary systems. The rectourethral fistula (RUF is a possible but extremely rare complication of treatment of prostate cancer with “transrectal High-Intensity Focused Ultrasound (HIFU treatment.” We present a case of CVF due to HIFU treatment of recurrent prostate cancer. The case was assessed with cystography completed with a pelvic CT scan—with MPR, MIP, and VR reconstruction—before emptying the bladder. Since the CT scan confirmed that the fistula involved solely the urethra and excluded even a minimal involvement of the bladder, it was possible to employ a conservative treatment by positioning a Foley catheter of monthly duration, in order to allow the urethra to rest. Still today, after 6 months, the patient is in a good clinical condition and has not shown yet signs of a recurrence of the fistula.

  14. Evaluation of diagnosis of small breast cancer with high frequency and color doppler ultrasound

    International Nuclear Information System (INIS)

    Xia Guobing; Hu Chunhong; Jing Qiulong

    2008-01-01

    Objective: To probe the features of high frequency ultrasonography (HFU) and color Doppler ultrasound (CDU) in the case of small breast cancers in order to evaluate the diagnostic value for small breast cancer with CDU. Methods: The features of HFU and CDU were respective analyzed in 67 small breast masses, the biggest diameter of which was under 2cm identified with pathology. Results Partially characteristic changes of small breast cancers were displayed, and micro-calcification within the mass was an important characteristic, in addition, the Resistant Index (RI) ≥ 0.70 on Pulsed Doppler (PD) and the grade of blood flow on Color Doppler Flow Imaging (CDFI)≥T2 implied much more positive malignancy prediction. Conclusion: HFU integrated with CDU can be used for the early and accurate diagnosis of the small breast cancer. (authors)

  15. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  16. Lesions in Porcine Liver Tissues Created by Continuous High Intensity Ultrasound Exposures in Vitro

    International Nuclear Information System (INIS)

    Zhang Zhe; Chen Tao; Zhang Dong

    2013-01-01

    Lesions in porcine liver tissues created by continuous high intensity focused ultrasound (HIFU) exposures in vitro are theoretically and experimentally investigated, with the transmitter moving along a linear path at a fixed speed. Numerical simulations of the lesion formation are performed based on the Khokhlov—Zabolotskaya—Kuznetov equation and the bio-heat equation. In order to verify the theoretical predictions, experiments are performed in the one-dimensional scanning mode to measure the cross-sectional area of lesions created in the in vitro porcine liver exposed to 1.01-MHz HIFU pulses with the acoustic power of 70 W. The results indicate that, compared to the traditional discrete treatment protocol, the application of a continuous scanning model can create more uniform lesions in tissues and significantly reduces the total treatment time from 47s to 30s

  17. High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids.

    Science.gov (United States)

    Wagh, Ashwini; Birkin, Peter; Martini, Silvana

    2016-01-01

    High-intensity ultrasound (HIU) has been used in recent years to change the crystallization behavior of edible lipids. This technique can be used in combination with other processing technologies to tailor lipids' functional properties and broaden their application for various food products. In general, sonication induces crystallization, increases crystallization rate, and generates a harder and more elastic crystalline network characterized by smaller crystals with a sharper melting profile. An important application of HIU is to improve the hardness and elasticity of shortenings that have a low content of saturated fatty acids and are free of trans-fats. This review summarizes recent research that used HIU to change the physical and functional properties of edible lipids and focuses on the importance of controlling processing variables such as sonication power level and duration and crystallization temperature.

  18. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  19. Combined ultrasound and fluoroscopy guided port catheter implantation-High success and low complication rate

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; El-Sheik, Michael; Vogt, Michael; Wagner, Hans-Joachim

    2009-01-01

    Purpose: To evaluate peri-procedural, early and late complications as well as patients' acceptance of combined ultrasound and fluoroscopy guided radiological port catheter implantation. Materials and methods: In a retrospective analysis, all consecutive radiological port catheter implantations (n = 299) between August 2002 and December 2004 were analyzed. All implantations were performed in an angio suite under analgosedation and antibiotic prophylaxis. Port insertion was guided by ultrasonographic puncture of the jugular (n = 298) or subclavian (n = 1) vein and fluoroscopic guidance of catheter placement. All data of the port implantation had been prospectively entered into a database for interventional radiological procedures. To assess long-term results, patients, relatives or primary physicians were interviewed by telephone; additional data were generated from the hospital information system. Patients and/or the relatives were asked about their satisfaction with the port implantion procedure and long-term results. Results: The technical success rate was 99% (298/299). There were no major complications according to the grading system of SIR. A total of 23 (0.33 per 1000 catheter days) complications (early (n = 4), late (n = 19)) were recorded in the follow-period of a total of 72,727 indwelling catheter days. Infectious complications accounted for 0.15, thrombotic for 0.07 and migration for 0.04 complications per 1000 catheter days. Most complications were successfully treated by interventional measures. Twelve port catheters had to be explanted due to complications, mainly because of infection (n = 9). Patients' and relatives' satisfaction with the port catheter system was very high, even if complications occurred. Conclusion: Combined ultrasound and fluoroscopy guided port catheter implantation is a very safe and reliable procedure with low peri-procedural, early and late complication rate. The intervention achieves very high acceptance by the patients and

  20. Highly directional transurethral ultrasound applicators with rotational control for MRI-guided prostatic thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Anthony B [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Diederich, Chris J [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Nau, William H [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Gill, Harcharan [Department of Urology, Stanford University, Stanford, CA (United States); Bouley, Donna M [Department of Comparative Medicine, Stanford University, Stanford, CA (United States); Daniel, Bruce [Department of Radiology, Stanford University, Stanford, CA (United States); Rieke, Viola [Department of Radiology, Stanford University, Stanford, CA (United States); Butts, R Kim [Department of Radiology, Stanford University, Stanford, CA (United States); Sommer, Graham [Department of Radiology, Stanford University, Stanford, CA (United States)

    2004-01-21

    Transurethral ultrasound applicators with highly directional energy deposition and rotational control were investigated for precise treatment of benign prostatic hyperplasia (BPH) and adenocarcinoma of the prostate (CaP). Two types of catheter-based applicators were fabricated, using either sectored tubular (3.5 mm OD x 10 mm) or planar transducers (3.5 mm x 10 mm). They were constructed to be MRI compatible, minimally invasive and allow for manual rotation of the transducer array within a 10 mm cooling balloon. In vivo evaluations of the applicators were performed in canine prostates (n 3) using MRI guidance (0.5 T interventional magnet). MR temperature imaging (MRTI) utilizing the proton resonance frequency shift method was used to acquire multiple-slice temperature overlays in real time for monitoring and guiding the thermal treatments. Post-treatment T1-weighted contrast-enhanced imaging and triphenyl tetrazolium chloride stained tissue sections were used to define regions of tissue coagulation. Single sonications with the tubular applicator ) produced coagulated zones covering a wedge of the prostate extending from 1-2 mm outside the urethra to the outer boundary of the gland (16 mm radial coagulation). Single sonications with the planar applicator (15-20 W, 10 min, {approx}8 MHz) generated thermal lesions of {approx}30 extending to the prostate boundary. Multiple sequential sonications (sweeping) of a planar applicator (12 W with eight rotations of 30 each) demonstrated controllable coagulation of a 270 contiguous section of the prostate extending to the capsule boundary. The feasibility of using highly directional transurethral ultrasound applicators with rotational capabilities to selectively coagulate regions of the prostate while monitoring and controlling the treatments with MRTI was demonstrated in this study.

  1. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  2. Management of mediastinal syndromes in pediatrics: a new challenge of ultrasound guidance to avoid high-risk general anesthesia.

    Science.gov (United States)

    Sola, Chrystelle; Choquet, Olivier; Prodhomme, Olivier; Capdevila, Xavier; Dadure, Christophe

    2014-05-01

    Adverse events associated with anesthetic management of anterior mediastinal masses in pediatrics are common. To avoid an extremely hazardous general anesthesia, the use of real-time ultrasonography offers an effective alternative in high-risk cases. We report the anesthetic management including a light sedation and ultrasound guidance for regional anesthesia, surgical node biopsy, and placement of a central venous line in two children with an anterior symptomatic mediastinal mass. For pediatric patients with clinical and/or radiologic signs of airway compression, ultrasound guidance provides safety technical assistance to avoid general anesthesia and should be performed for the initial diagnostic and therapeutic procedures. © 2013 John Wiley & Sons Ltd.

  3. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  4. Inactivation of human enteric virus surrogates by high-intensity ultrasound.

    Science.gov (United States)

    Su, Xiaowei; Zivanovic, Svetlana; D'Souza, Doris H

    2010-09-01

    Foodborne viruses, especially human noroviruses, are recognized as leading causes of nonbacterial gastroenteritis worldwide. Development of effective inactivation methods is of great importance to control their spread. In this study, the effect of high-intensity ultrasound (HIUS) on the infectivity of three foodborne virus surrogates was investigated. The three surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), and MS2 bacteriophage, were diluted in phosphate-buffered saline (PBS) or orange juice to a titer of approximately 6 log(10) PFU/mL or approximately 4 log(10) PFU/mL. The ultrasound treatment was performed in duplicate by immersing the HIUS probe in virus-containing solution that was cooled in ice-water and sonicated at 20 kHz for 2, 5, 10, 15, 20, and 30 min with 30 sec on and 30 sec off. The infectivity of the recovered viruses after each ultrasound treatment was evaluated in duplicate using standardized plaque assays and compared to untreated controls. The results show that HIUS effectiveness depended on the virus type, the initial titer of the viruses, and the virus suspension solution. At titers of approximately 4 log(10) PFU/mL in PBS, feline calicivirus (FCV)-F9, MS2, and murine norovirus (MNV)-1 required 5-, 10-, and 30-min treatment, respectively, for complete inactivation. At initial titers of approximately 4 log(10) PFU/mL in orange juice, FCV-F9 required a 15-min treatment for complete inactivation and only a 1.55 log(10) PFU/mL reduction was achieved for MNV-1 in orange juice after 30-min treatment. Thus, inactivation by HIUS in orange juice was much lower than in PBS. Experiments using titers of approximately 6 log(10) PFU/mL showed decreased effects compared to those using titers of approximately 4 log(10) PFU/mL. These results indicate that HIUS alone is not sufficient to inactivate virus in food. Hurdle technologies that combine HIUS with antimicrobials, heat, or pressure should be explored for viral inactivation.

  5. Novel power MOSFET-based expander for high frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  7. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  8. A framework for continuous target tracking during MR-guided high intensity focused ultrasound thermal ablations in the abdomen

    NARCIS (Netherlands)

    Zachiu, Cornel; Denis de Senneville, Baudouin; Dmitriev, Ivan D.; Moonen, Chrit T.W.; Ries, Mario

    2017-01-01

    Background: During lengthy magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU) thermal ablations in abdominal organs, the therapeutic work-flow is frequently hampered by various types of physiological motion occurring at different time-scales. If left un-addressed this can lead to

  9. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  10. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  11. Influence of CO2 on ultrasound-induced polymerizations in high-pressure fluids

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Jacobs, L.J.M.; Kemmere, M.F.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. Ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA, as well as in bulk MMA. For this

  12. Ultrasound guided percutaneous cholecystostomy in high-risk patients for surgical intervention.

    Science.gov (United States)

    Bakkaloglu, Huseyin; Yanar, Hakan; Guloglu, Recep; Taviloglu, Korhan; Tunca, Fatih; Aksoy, Murat; Ertekin, Cemalettin; Poyanli, Arzu

    2006-11-28

    To assess the efficacy and safety of ultrasound guided percutaneous cholecystostomy (PC) in the treatment of acute cholecystitis in a well-defined high risk patients under general anesthesia. The data of 27 consecutive patients who underwent percutaneous transhepatic cholecystostomy for the management of acute cholecystitis from January 1999 to June 2003 was retrospectively evaluated. All of the patients had both clinical and sonographic signs of acute cholecystitis and had comorbid diseases. Ultrasound revealed gallbladder stones in 25 patients and acalculous cholecystitis in two patients. Cholecystostomy catheters were removed 14-32 d (mean 23 d) after the procedure in cases where complete regression of all symptoms was achieved. There were statistically significant reductions in leukocytosis, (13.7 x 10(3)+/-1.3 x 10(3) microg/L vs 13 x 10(3)+/-1 x 10(3) microg/L, P extraction was performed successfully with endoscopic retrograde cholangio-pancreatography (ERCP) in three patients. After cholecystostomy, 5 (18%) patients underwent delayed cholecystectomy without any complications. Three out of 22 patients were admitted with recurrent acute cholecystitis during the follow-up and recovered with medical treatment. Catheter dislodgement occurred in three patients spontaneously, and two of them were managed by reinsertion of the catheter. As an alternative to surgery, percutaneous cholecystostomy seems to be a safe method in critically ill patients with acute cholecystitis and can be performed with low mortality and morbidity. Delayed cholecystectomy and ERCP, if needed, can be performed after the acute period has been resolved by percutaneous cholecystostomy.

  13. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  14. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  15. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  16. Obstetrical ultrasound

    International Nuclear Information System (INIS)

    Bundy, A.L.

    1988-01-01

    The use of diagnostic ultrasound in obstetrics may provide fuel for legal action. While most legal implications of this relatively new imaging modality are purely speculative, some have already given rise to legal action. Several situations will likely provide a basis for the courts to find against the physician. The failure to perform a sonogram when clinically indicated will most likely be the strongest plaintiff argument. Other major concerns include the use and availability of state-of-the-art equipment, as well as interpretation of the scans by a trained physician. Obstetrical ultrasound is usually performed by a radiologist or obstetrician. However, many physicians performing these examinations have had little or no formal training in the field. While this is now being remedied by the respective board examines who require a certain amount of training, it may not be enough. When ultrasound-related cases reach the courts, the involved physicians will most likely be regarded as experts in the field and, therefore, will be held to a very high standard of care. This would be difficult to achieve without formal training. At the present time, the American Board of Radiology requires more training time in ultrasound than the American Board of Obstetrics and Gynecology

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  1. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    Science.gov (United States)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  2. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound

    International Nuclear Information System (INIS)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-01-01

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, γ, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at γ = 1.55 and 1:3.5 at γ = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at γ = 1, to 0.162 MPa, at γ 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s -1 , at γ = 1, to 36 m s -1 , at γ = 1.55. For γ < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound

  3. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac.

    Science.gov (United States)

    Wang, Chih-Yu; Yang, Chih-Hui; Lin, Yung-Sheng; Chen, Chih-Hsin; Huang, Keng-Shiang

    2012-02-01

    A pulsatile ultrasound controlled drug release platform with diclofenac-loaded alginate microcapsules (fabricated with a home-made electrostatic device, 75% embedded rate) was established to evaluate anti-inflammation efficiency. Better anti-inflammation efficiency was found using the ultrasound system and the drug delivery can be adjusted based on the programmed ultrasound cycle. The results of the in vitro study show that an approx. 30% higher drug release rate was obtained by using continuous ultrasound irradiation (9-Watt, 180 min), and an approx. 16% higher drug release rate was obtained by using pulsatile ultrasound irradiation (9-Watt, 60 min) compared to without ultrasound activation. For the in vivo study, the anti-inflammatory test with carrageenan-induced rat's paw edema shows that diclofenac-loaded microcapsules followed by ultrasound irradiation (9-Watt, 60 min) contributed to an 81% inhibition rate, which was significantly higher than diclofenac only (approx. 60% higher). In addition, because of their heat conducting properties, gold nanoparticles encapsulated in the diclofenac-loaded microcapsules resulted in better drug release efficiency, but tended to depress the anti-inflammation effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Electropolymerization of pyrrole on oxidizable metal under high frequency ultrasound irradiation. Application of focused beam to a selective masking technique

    Energy Technology Data Exchange (ETDEWEB)

    Et Taouil, A. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Lallemand, F., E-mail: fabrice.lallemand@univ-fcomte.f [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Hallez, L.; Hihn, J-Y. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France)

    2010-12-01

    A novel masking technique against polymer deposition based on High Intensity Focused Ultrasound (HIFU) irradiation was developed for the first time. With this in mind, a variety of background salts were tested. Sodium salicylate was found to be the most effective electrolytic medium for pyrrole sonoelectropolymerization on copper as it leads to a very efficient passivating oxide layer preventing copper dissolution while enabling polymer formation independently from sonication. In such a medium, high frequency ultrasound greatly refines surface structure, and a slight increase in doping level is observed. Finally, it was proved that focused ultrasound increases copper dissolution in sodium oxalate electrolyte while preventing polypyrrole deposition. A selected zone on the copper substrate was thus irradiated by the focused ultrasound beam to protect it from polymerization. In a second stage, a self-assembled monolayer was deposited on this polymer-free area to create a surface biphased substrate. This type of masking technique can be proposed as an interesting alternative to lithography as it is easier to carry out and allows chemical waste reduction.

  5. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  7. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  8. Posterior fossa abnormalities in high-risk term infants: comparison of ultrasound and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Steggerda, S.J.; Smits-Wintjens, V.E.H.J.; Verbon, P.; Walther, F.J. [Leiden University Medical Centre, Department of Neonatology, Leiden (Netherlands); Bruine, F.T. de [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Wezel-Meijler, G. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2015-09-15

    We aimed to assess the characteristics of posterior fossa (PF) abnormalities in a cohort of high-risk term neonates, as well as the diagnostic performance of cranial ultrasound (CUS) with additional mastoid fontanelle (MF) views for the detection of these abnormalities, with magnetic resonance imaging (MRI) being the reference standard. In this retrospective study, 113 term neonates with CUS and subsequent MRI were included. Sensitivity, specificity, and predictive values of routine CUS and CUS with MF views were calculated. Posterior fossa abnormalities were diagnosed on CUS in 46 of 113 infants. MRI confirmed these findings in 43 and showed additional abnormalities in 32 infants. The sensitivity and specificity of anterior fontanelle views for major PF abnormalities as seen on MRI were 16 % and 99 %. Adding MF views increased the sensitivity of US to 82 %. The sensitivity and specificity of MF views for the detection of any (major or minor) PF abnormality were 57 % and 95 %. Especially acute hypoxic-ischemic injury and small subdural and punctate cerebellar haemorrhage remained undetected by CUS. PF abnormalities are frequent in high-risk term infants. MF-CUS enables early diagnosis of major PF abnormalities. We therefore advocate to perform MF-CUS in high-risk term neonates. (orig.)

  9. Positioning device for MRI-guided high intensity focused ultrasound system

    Energy Technology Data Exchange (ETDEWEB)

    Damianou, Christakis [Frederick Institute of Technology (FIT), Limassol (Cyprus); MEDSONIC, LTD, Limassol (Cyprus); Ioannides, Kleanthis [Polikliniki Igia, Limassol (Cyprus); Milonas, Nicos [Frederick Institute of Technology (FIT), Limassol (Cyprus)

    2008-04-15

    A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions. The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results. (orig.)

  10. Posterior fossa abnormalities in high-risk term infants: comparison of ultrasound and MRI

    International Nuclear Information System (INIS)

    Steggerda, S.J.; Smits-Wintjens, V.E.H.J.; Verbon, P.; Walther, F.J.; Bruine, F.T. de; Wezel-Meijler, G. van

    2015-01-01

    We aimed to assess the characteristics of posterior fossa (PF) abnormalities in a cohort of high-risk term neonates, as well as the diagnostic performance of cranial ultrasound (CUS) with additional mastoid fontanelle (MF) views for the detection of these abnormalities, with magnetic resonance imaging (MRI) being the reference standard. In this retrospective study, 113 term neonates with CUS and subsequent MRI were included. Sensitivity, specificity, and predictive values of routine CUS and CUS with MF views were calculated. Posterior fossa abnormalities were diagnosed on CUS in 46 of 113 infants. MRI confirmed these findings in 43 and showed additional abnormalities in 32 infants. The sensitivity and specificity of anterior fontanelle views for major PF abnormalities as seen on MRI were 16 % and 99 %. Adding MF views increased the sensitivity of US to 82 %. The sensitivity and specificity of MF views for the detection of any (major or minor) PF abnormality were 57 % and 95 %. Especially acute hypoxic-ischemic injury and small subdural and punctate cerebellar haemorrhage remained undetected by CUS. PF abnormalities are frequent in high-risk term infants. MF-CUS enables early diagnosis of major PF abnormalities. We therefore advocate to perform MF-CUS in high-risk term neonates. (orig.)

  11. Wound healing treatment by high frequency ultrasound, microcurrent, and combined therapy modifies the immune response in rats

    Directory of Open Access Journals (Sweden)

    Raciele I. G. Korelo

    2016-01-01

    Full Text Available BACKGROUND: Therapeutic high-frequency ultrasound, microcurrent, and a combination of the two have been used as potential interventions in the soft tissue healing process, but little is known about their effect on the immune system. OBJECTIVE: To evaluate the effects of therapeutic high frequency ultrasound, microcurrent, and the combined therapy of the two on the size of the wound area, peritoneal macrophage function, CD4+ and CD8+, T lymphocyte populations, and plasma concentration of interleukins (ILs. METHOD: Sixty-five Wistar rats were randomized into five groups, as follows: uninjured control (C, group 1, lesion and no treatment (L, group 2, lesion treated with ultrasound (LU, group 3, lesion treated with microcurrent (LM, group 4, and lesion treated with combined therapy (LUM, group 5. For groups 3, 4 and 5, treatment was initiated 24 hours after surgery under anesthesia and each group was allocated into three different subgroups (n=5 to allow for the use of the different therapy resources at on days 3, 7 and 14 Photoplanimetry was performed daily. After euthanasia, blood was collected for immune analysis. RESULTS: Ultrasound increased the phagocytic capacity and the production of nitric oxide by macrophages and induced the reduction of CD4+ cells, the CD4+/CD8+ ratio, and the plasma concentration of IL-1β. Microcurrent and combined therapy decreased the production of superoxide anion, nitric oxide, CD4+-positive cells, the CD4+/CD8+ ratio, and IL-1β concentration. CONCLUSIONS: Therapeutic high-frequency ultrasound, microcurrent, and combined therapy changed the activity of the innate and adaptive immune system during healing process but did not accelerate the closure of the wound.

  12. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  13. Preliminary studies on premature rickets of infants by high-frequency probe ultrasound

    International Nuclear Information System (INIS)

    Yu Ming'an; Xu Zushan; Tang Zhongjuan; Song Jing; Liu Jie; Li Qiang; Gong Huafang; Bi Haijing

    2002-01-01

    Objective: To observe the ultrasound appearance of premature rickets in infants, and to assess the diagnostic value of high-frequency probe in the disease. Methods:Ultrasonography was performed in R-No 4 rib and distal radioulnar metaphysis in 123 rickets infants diagnosed by clinical examination (the diagnosis standard adopted the rickets diagnose standard revised by the rickets research, prevention and cure group of China in 1999)and in 30 normal infants diagnosed by clinical examination as the control group. Results: The high-frequency probe could clearly visualize the modification of every part in ribs and distal radioulnar metaphysis. Compared with that of the normal control group, ultrasound showed individually the signs and symptoms such as separation, bone bark elongation, and bone bark warp in the engagement of periosteum and perichondrium in rickets group. The incidences of bone bark elongation were separately 18.7% (23 cases) in ulna, 10.6% (13 cases) in radius, and 41.5% (51 cases) in rib; The incidences of bone bark warp were separately 4.9% (6 cases) in ulna, 2.4% (3 cases) in radius, and 18.7% (23 cases) in rib. The results of chi-square test showed that both the incidences of bone bark elongation and bone bark warp between the rib and the ulna and radius had significant difference (P < 0.01). The incidences of incomplete calcification in the edge of the provisional calcification zone were 96.75% (119 cases) in ulna and 69.29% (84 cases) in radius, respectively (Ridit test, P < 0.01). The incidences of incomplete calcification inside the provisional calcification zone were 42.28% (52 cases) in ulna and 60.16% (74 cases) in radius, respectively (Radit test, P < 0.01). Conclusion: Study on every modification of premature rickets by high-frequency probe will help to determine the status and degree of calciprivia at earlier stages, and thereby to increase the specificity and sensitivity of ultrasonography

  14. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  15. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath; Sainsbury, Toby; Treeby, Bradley; Cox, Ben

    2017-01-01

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard

  16. Self-Assembled BN and BCN Quantum Dots Obtained from High Intensity Ultrasound Exfoliated Nanosheets

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Kormunda, M.

    2014-01-01

    Roč. 6, č. 6 (2014), s. 1106-1116 ISSN 1947-2935 Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * BN * BCN * Quantum Dots Subject RIV: CA - Inorganic Chemistry Impact factor: 2.598, year: 2014

  17. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    International Nuclear Information System (INIS)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Uchida, T.; Usui, Y.; Terachi, T.

    2010-01-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate registered 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  19. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  20. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  1. Volume measurement variability in three-dimensional high-frequency ultrasound images of murine liver metastases

    International Nuclear Information System (INIS)

    Wirtzfeld, L A; Graham, K C; Groom, A C; MacDonald, I C; Chambers, A F; Fenster, A; Lacefield, J C

    2006-01-01

    The identification and quantification of tumour volume measurement variability is imperative for proper study design of longitudinal non-invasive imaging of pre-clinical mouse models of cancer. Measurement variability will dictate the minimum detectable volume change, which in turn influences the scheduling of imaging sessions and the interpretation of observed changes in tumour volume. In this paper, variability is quantified for tumour volume measurements from 3D high-frequency ultrasound images of murine liver metastases. Experimental B16F1 liver metastases were analysed in different size ranges including less than 1 mm 3 , 1-4 mm 3 , 4-8 mm 3 and 8-70 mm 3 . The intra- and inter-observer repeatability was high over a large range of tumour volumes, but the coefficients of variation (COV) varied over the volume ranges. The minimum and maximum intra-observer COV were 4% and 14% for the 1-4 mm 3 and 3 tumours, respectively. For tumour volumes measured by segmenting parallel planes, the maximum inter-slice distance that maintained acceptable measurement variability increased from 100 to 600 μm as tumour volume increased. Comparison of free breathing versus ventilated animals demonstrated that respiratory motion did not significantly change the measured volume. These results enable design of more efficient imaging studies by using the measured variability to estimate the time required to observe a significant change in tumour volume

  2. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  3. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study

    International Nuclear Information System (INIS)

    Doyle, Timothy E; Neumayer, Leigh A; Factor, Rachel E; Ellefson, Christina L; Sorensen, Kristina M; Ambrose, Brady J; Goodrich, Jeffrey B; Hart, Vern P; Jensen, Scott C; Patel, Hemang

    2011-01-01

    In addition to breast imaging, ultrasound offers the potential for characterizing and distinguishing between benign and malignant breast tissues due to their different microstructures and material properties. The aim of this study was to determine if high-frequency ultrasound (20-80 MHz) can provide pathology sensitive measurements for the ex vivo detection of cancer in margins during breast conservation surgery. Ultrasonic tests were performed on resected margins and other tissues obtained from 17 patients, resulting in 34 specimens that were classified into 15 pathology categories. Pulse-echo and through-transmission measurements were acquired from a total of 57 sites on the specimens using two single-element 50-MHz transducers. Ultrasonic attenuation and sound speed were obtained from time-domain waveforms. The waveforms were further processed with fast Fourier transforms to provide ultrasonic spectra and cepstra. The ultrasonic measurements and pathology types were analyzed for correlations. The specimens were additionally re-classified into five pathology types to determine specificity and sensitivity values. The density of peaks in the ultrasonic spectra, a measure of spectral structure, showed significantly higher values for carcinomas and precancerous pathologies such as atypical ductal hyperplasia than for normal tissue. The slopes of the cepstra for non-malignant pathologies displayed significantly greater values that differentiated them from the normal and malignant tissues. The attenuation coefficients were sensitive to fat necrosis, fibroadenoma, and invasive lobular carcinoma. Specificities and sensitivities for differentiating pathologies from normal tissue were 100% and 86% for lobular carcinomas, 100% and 74% for ductal carcinomas, 80% and 82% for benign pathologies, and 80% and 100% for fat necrosis and adenomas. Specificities and sensitivities were also determined for differentiating each pathology type from the other four using a multivariate

  4. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study

    Directory of Open Access Journals (Sweden)

    Hart Vern P

    2011-10-01

    Full Text Available Abstract Background In addition to breast imaging, ultrasound offers the potential for characterizing and distinguishing between benign and malignant breast tissues due to their different microstructures and material properties. The aim of this study was to determine if high-frequency ultrasound (20-80 MHz can provide pathology sensitive measurements for the ex vivo detection of cancer in margins during breast conservation surgery. Methods Ultrasonic tests were performed on resected margins and other tissues obtained from 17 patients, resulting in 34 specimens that were classified into 15 pathology categories. Pulse-echo and through-transmission measurements were acquired from a total of 57 sites on the specimens using two single-element 50-MHz transducers. Ultrasonic attenuation and sound speed were obtained from time-domain waveforms. The waveforms were further processed with fast Fourier transforms to provide ultrasonic spectra and cepstra. The ultrasonic measurements and pathology types were analyzed for correlations. The specimens were additionally re-classified into five pathology types to determine specificity and sensitivity values. Results The density of peaks in the ultrasonic spectra, a measure of spectral structure, showed significantly higher values for carcinomas and precancerous pathologies such as atypical ductal hyperplasia than for normal tissue. The slopes of the cepstra for non-malignant pathologies displayed significantly greater values that differentiated them from the normal and malignant tissues. The attenuation coefficients were sensitive to fat necrosis, fibroadenoma, and invasive lobular carcinoma. Specificities and sensitivities for differentiating pathologies from normal tissue were 100% and 86% for lobular carcinomas, 100% and 74% for ductal carcinomas, 80% and 82% for benign pathologies, and 80% and 100% for fat necrosis and adenomas. Specificities and sensitivities were also determined for differentiating each

  5. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  6. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  7. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    Science.gov (United States)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  8. Test characteristics of high-resolution ultrasound in the preoperative assessment of margins of basal cell and squamous cell carcinoma in patients undergoing Mohs micrographic surgery.

    Science.gov (United States)

    Jambusaria-Pahlajani, Anokhi; Schmults, Chrysalyne D; Miller, Christopher J; Shin, Daniel; Williams, Jennifer; Kurd, Shanu K; Gelfand, Joel M

    2009-01-01

    Noninvasive techniques to assess subclinical spread of nonmelanoma skin cancer (NMSC) may improve surgical precision. High-resolution ultrasound has shown promise in evaluating the extent of NMSC. To determine the accuracy of high-resolution ultrasound to assess the margins of basal cell (BCC) and squamous cell carcinomas (SCC) before Mohs micrographic surgery (MMS). We enrolled 100 patients with invasive SCC or BCC. Before the first stage of MMS, a Mohs surgeon delineated the intended surgical margin. Subsequently, a trained ultrasound technologist independently evaluated disease extent using the EPISCAN I-200 to evaluate tumor extent beyond this margin. The accuracy of high-resolution ultrasound was subsequently tested by comparison with pathology from frozen sections. The test characteristics of the high-resolution ultrasound were sensitivity=32%, specificity=88%, positive predictive value=47%, and negative predictive value=79%. Subgroup analyses demonstrated better test characteristics for tumors larger than the median (area>1.74 cm(2)). Qualitative analyses showed that high-resolution ultrasound was less likely to identify extension from tumors with subtle areas of extension, such as small foci of dermal invasion from infiltrative SCC and micronodular BCC. High-resolution ultrasound requires additional refinements to improve the preoperative determination of tumor extent before surgical treatment of NMSC.

  9. Ultrasound guided percutaneous cholecystostomy in high-risk patients for surgical intervention

    Science.gov (United States)

    Bakkaloglu, Huseyin; Yanar, Hakan; Guloglu, Recep; Taviloglu, Korhan; Tunca, Fatih; Aksoy, Murat; Ertekin, Cemalettin; Poyanli, Arzu

    2006-01-01

    AIM: To assess the efficacy and safety of ultrasound guided percutaneous cholecystostomy (PC) in the treatment of acute cholecystitis in a well-defined high risk patients under general anesthesia. METHODS: The data of 27 consecutive patients who underwent percutaneous transhepatic cholecystostomy for the management of acute cholecystitis from January 1999 to June 2003 was retrospectively evaluated. All of the patients had both clinical and sonographic signs of acute cholecystitis and had comorbid diseases. RESULTS: Ultrasound revealed gallbladder stones in 25 patients and acalculous cholecystitis in two patients. Cholecystostomy catheters were removed 14-32 d (mean 23 d) after the procedure in cases where complete regression of all symptoms was achieved. There were statistically significant reductions in leukocytosis, (13.7 × 103 ± 1.3 × 103 μg/L vs 13 × 103 ± 1 × 103 μg/L, P < 0.05 for 24 h after PC; 13.7 × 103 ± 1.3 × 103 μg/L vs 8.3 × 103 ± 1.2 × 103 μg/L, P < 0.0001 for 72 h after PC), C -reactive protein (51.2 ± 18.5 mg/L vs 27.3 ± 10.4 mg/L, P < 0.05 for 24 h after PC; 51.2 ± 18.5 mg/L vs 5.4 ± 1.5 mg/L, P < 0.0001 for 72 h after PC), and fever (38 ± 0.35°C vs 37.3 ± 0.32°C, P < 0.05 for 24 h after PC; 38 ± 0.35°C vs 36.9 ± 0.15°C, P < 0.0001 for 72 h after PC). Sphincterotomy and stone extraction was performed successfully with endoscopic retrograde cholangio-pancreatography (ERCP) in three patients. After cholecystostomy, 5 (18%) patients underwent delayed cholecystectomy without any complications. Three out of 22 patients were admitted with recurrent acute cholecystitis during the follow-up and recovered with medical treatment. Catheter dislodgement occurred in three patients spontaneously, and two of them were managed by reinsertion of the catheter. CONCLUSION: As an alternative to surgery, percutan-eous cholecystostomy seems to be a safe method in critically ill patients with acute cholecystitis and can be performed with low

  10. A retrospective comparison of microwave ablation and high intensity focused ultrasound for treating symptomatic uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wen-Peng, E-mail: zwp215@163.com; Han, Zhi-Yu, E-mail: hanzhiyu301@hotmail.com; Zhang, Jing, E-mail: zjbch@sina.com; Liang, Ping, E-mail: liangping301@hotmail.com

    2015-03-15

    Highlights: •Both HIFU and PMWA are thermal ablation techniques and they all provide safe and reliable alternative treatment methods for uterine fibroids. •However, whether there are obvious difference between these two kinds of approaches in improving symptom, treatment time, ablation rate, regression rate and adverse events, until now, there are no clinical trials which have been performed to compare the therapeutic effects of HIFU and PMWA. •In this research, we retrospectively compare the results of these two treatment methods. •To our knowledge, our study is the first directly comparing long-term outcome after PMWA and HIFU in patients with uterine fibroids. -- Abstract: Objectives: To retrospectively compare the effectiveness and safety of percutaneous microwave ablation (PMWA) and ultrasound-guided high-intensity focused ultrasound (USgHIFU) for treating symptomatic uterine fibroids. Methods: Seventy-three women with symptomatic uterine fibroids who met the inclusion criteria were enrolled in our study from September 2012 to December 2013. Thirty-one patients with forty uterine fibroids underwent PMWA, and forty-two patients with fifty-one uterine fibroids underwent USgHIFU. A contrast-enhanced MRI was performed before and after treatment, and all patients were followed up for 6 months. Assessment endpoints included symptom severity scores (SSS), treatment time, ablation rate, fibroid regression rate and adverse events. Results: The mean age of the patients in our study was 35.4 ± 6.2 years (range, 21–49 years), and the median volume of uterine fibroids was 95.7 cm{sup 3} (60.3–131.5 cm{sup 3}). The ablation rate of uterine fibroids was 79.8 ± 18.2% and 77.1 ± 14.9% in the PMWA group and the USgHIFU group, respectively, and showed no significant difference between the groups. Changes in SSS after PMWA were similar in the PMWA group (47.7 pre-treatment vs. 29.9 post-treatment) and USgHIFU group (42.1 pre-treatment vs. 24.6 post-treatment). The

  11. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy

    Science.gov (United States)

    McLaughlan, J. R.; Cowell, D. M. J.; Freear, S.

    2018-01-01

    High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19  ±  0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71  ±  0.01 MPa at a fluence of 3.4 mJ cm-2 . Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of 1.5 × 103 a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as

  12. The comparison of manual lymph drainage and ultrasound therapy on the leg swelling caused by wearing high heels.

    Science.gov (United States)

    Lee, Dong-Yeop; Han, Ji-Su; Jang, Eun-Ji; Seo, Dong-Kwon; Hong, Ji-Heon; Lee, Sang-Sook; Lee, Dong-Geol; Yu Lee, Jae-Ho

    2014-01-01

    One of the major symptoms when women are wearing high heels for a long time is leg swelling. The purpose of this study was to compare the effect of manual lymph drainage with ultrasound therapy. The forty-five healthy women of twenties were participated in this study and divided randomly into three groups; manual lymph drainage group (n=15), ultrasound therapy group (n=15) and control group (n=15). Swelling was measured before wearing the high heels (10 cm-height), after one-hour of wearing the high heels, wearing the high heels of one-hour after the intervention of 15 minutes. Also swelling was calculated by using a tape measure, volumeter and body composition analyzer. Statistical analysis of the comparison between the three groups was performed by one-way ANOVA. Also comparison to the mean value in swelling according to the time was performed by repeated measure ANOVA. As the result of this study, a significant changes have emerged within each of manual lymph drainage, ultrasound therapy and control group (p 0.05). But the mean value of manual lymph drainage group showed the tendency of fast recovering before causing swelling. Therefore, we consider that the clinical treatment of manual lymph drainage and ongoing studies will be made since manual lymph drainage is very effective in releasing the leg swelling caused by wearing high heels and standing for a long time at work.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  15. Catheter-based high-intensity ultrasound for epicardial ablation of the left ventricle: device design and in vivo feasiblity

    Science.gov (United States)

    Salgaonkar, Vasant A.; Nazer, Babak; Jones, Peter D.; Tanaka, Yasuaki; Martin, Alastair; Ng, Bennett; Duggirala, Srikant; Diederich, Chris J.; Gerstenfeld, Edward P.

    2015-03-01

    The development and in vivo testing of a high-intensity ultrasound thermal ablation catheter for epicardial ablation of the left ventricle (LV) is presented. Scar tissue can occur in the mid-myocardial and epicardial space in patients with nonischemic cardiomyopathy and lead to ventricular tachycardia. Current ablation technology uses radiofrequency energy, which is limited epicardially by the presence of coronary vessels, phrenic nerves, and fat. Ultrasound energy can be precisely directed to deliver targeted deep epicardial ablation while sparing intervening epicardial nerve and vessels. The proof-of-concept ultrasound applicators were designed for sub-xyphoid access to the pericardial space through a steerable 14-Fr sheath. The catheter consists of two rectangular planar transducers, for therapy (6.4 MHz) and imaging (5 MHz), mounted at the tip of a 3.5-mm flexible nylon catheter coupled and encapsulated within a custom-shaped balloon for cooling. Thermal lesions were created in the LV in a swine (n = 10) model in vivo. The ultrasound applicator was positioned fluoroscopically. Its orientation and contact with the LV were verified using A-mode imaging and a radio-opaque marker. Ablations employed 60-s exposures at 15 - 30 W (electrical power). Histology indicated thermal coagulation and ablative lesions penetrating 8 - 12 mm into the left ventricle on lateral and anterior walls and along the left anterior descending artery. The transducer design enabled successful sparing from the epicardial surface to 2 - 4 mm of intervening ventricle tissue and epicardial fat. The feasibility of targeted epicardial ablation with catheter-based ultrasound was demonstrated.

  16. Efficacy and safety of ultrasound-guided high intensity focused ultrasound ablation of symptomatic uterine fibroids in Black women: a preliminary study.

    Science.gov (United States)

    Zhang, C; Jacobson, H; Ngobese, Z E; Setzen, R

    2017-08-01

    To evaluate the therapeutic effect and safety of ultrasound-guided high-intensity focused ultrasound (USgHIFU) treatment on symptomatic uterine fibroids in Black women. A feasibility study. Gynaecological department in a teaching hospital in South Africa. Premenopausal women with uterus fibroids. Twenty-six patients with 53 fibroids who underwent USgHIFU treatment were enrolled. The USgHIFU treatment information was recorded, including treatment time, sonication time and total energy. Adverse events were also observed and recorded during and after treatment. Safety and efficacy of USgHIFU for the treatment of uterine fibroids in Black women. The median volume of fibroids was 52.7 (interquartile range, 18.6-177.4) cm 3 . According to USgHIFU treatment plan, total energy of 298.6 ± 169.3 kJ (range, 76.0-889.2) within treatment time of 90.3 ± 43.3 minutes (range, 14.0-208.0), in which sonication time of 774.0 ± 432.9 seconds (range, 190.0-2224.0) was used to ablate fibroids. The average ablation rate was 80.6 ± 9.7% (range, 46.5-94.5%). During the procedure, 69.2% of the patients reported lower abdominal pain, 57.7% sciatic/buttock pain, 38.5% burning skin, and 34.6% transient leg pain. No severe complications were observed. USgHIFU is feasible and safe to use to treat symptomatic uterine fibroids in Black women. Multiple uterine fibroids are more frequently detected in Black women. USgHIFU is feasible and safe for the treatment of uterine fibroids in Black women. © 2017 Royal College of Obstetricians and Gynaecologists.

  17. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    Science.gov (United States)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  18. A random phased array device for delivery of high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Hand, J W; Shaw, A; Sadhoo, N; Rajagopal, S; Dickinson, R J; Gavrilov, L R

    2009-01-01

    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least ±15 mm off axis and axially to more than ±15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci ±10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm 3 in volume can be produced using the patterns of multiple foci.

  19. Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions.

    Science.gov (United States)

    Hao, X; Bruce, C J; Pislaru, C; Greenleaf, J F

    2001-12-01

    Segmenting abnormal from normal myocardium using high-frequency intracardiac echocardiography (ICE) images presents new challenges for image processing. Gray-level intensity and texture features of ICE images of myocardium with the same structural/perfusion properties differ. This significant limitation conflicts with the fundamental assumption on which existing segmentation techniques are based. This paper describes a new seeded region growing method to overcome the limitations of the existing segmentation techniques. Three criteria are used for region growing control: 1) Each pixel is merged into the globally closest region in the multifeature space. 2) "Geographic similarity" is introduced to overcome the problem that myocardial tissue, despite having the same property (i.e., perfusion status), may be segmented into several different regions using existing segmentation methods. 3) "Equal opportunity competence" criterion is employed making results independent of processing order. This novel segmentation method is applied to in vivo intracardiac ultrasound images using pathology as the reference method for the ground truth. The corresponding results demonstrate that this method is reliable and effective.

  20. Keratorefractive Effect of High Intensity Focused Ultrasound Keratoplasty on Rabbit Eyes

    Directory of Open Access Journals (Sweden)

    Zhiyu Du

    2016-01-01

    Full Text Available Purpose. To evaluate high intensity focused ultrasound (HIFU as an innovation and noninvasive technique to correct presbyopia by altering corneal curvature in the rabbit eye. Methods. Eighteen enucleated rabbit eyes were treated with a prototype HIFU keratoplasty. According to the therapy power, these eyes were divided three groups: group 1 (1 W, group 2 (2 W, and group 3 (3 W. The change in corneal power was quantified by a Sirius Scheimpflug camera. Light microscopy (LM and transmission electron microscopy (TEM were performed to determine the effect on the corneal stroma. Results. In the treated eyes, the corneal curvature increases from 49.42 ± 0.30 diopters (D and 48.00 ± 1.95 D before procedure to 51.37 ± 1.11 D and 57.00 ± 1.84 D after HIFU keratoplasty application in groups 1 and 3, respectively. The major axis and minor axis of the focal region got longer when the powers of the HIFU got increased; the difference was statistically significant (p<0.05. LM and TEM showed HIFU-induced shrinkage of corneal stromal collagen with little disturbance to the underlying epithelium. Conclusions. We have preliminarily exploited HIFU to establish a new technique for correcting presbyopia. HIFU keratoplasty will be a good application prospect for treating presbyopia.

  1. Analysis of apple beverages treated with high-power ultrasound: a quality function deployment approach.

    Science.gov (United States)

    Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija

    2018-04-01

    The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Effect of High Intensity Ultrasound Treatment on the Growth of Food Spoilage Bacteria

    Directory of Open Access Journals (Sweden)

    Ksenija Markov

    2013-01-01

    Full Text Available The aim of this study is to determine the effect of high intensity ultrasound (amplitude, temperature and treatment time on the inactivation of food spoilage bacteria Escherichia coli 3014, Staphylococcus aureus 3048, Salmonella sp. 3064, Listeria monocytogenes ATCC 23074 and Bacillus cereus 30. The model suspensions of bacteria were treated with 12.7-mm ultrasonic probe operated at 600 W nominal power (ultrasonic treatment implemented at 20 kHz and at amplitudes of 60, 90 and 120 µm. Also, treatment time of 3, 6 and 9 min and temperature of 20, 40 and 60 °C were used. The results were statistically processed with STATGRAPHICS Centurion computer program and response surface methodology. All three parameters studied seem to substantially affect the inactivation of bacteria in pure culture. The results also indicate increased inactivation of microorganisms under longer period of treatments, particularly in combination with higher temperature and/or amplitude. After ultrasonic treatment at 60 °C, 9 min and 120 μm, the viability of cells was not confirmed for Escherichia coli 3014, Staphylococcus aureus 3048, Salmonella sp. 3064 and Listeria monocytogenes ATCC 23074. Under the mentioned conditions the highest inactivation (3.48 log CFU/mL of Bacillus cereus 30 was obtained.

  3. A random phased array device for delivery of high intensity focused ultrasound.

    Science.gov (United States)

    Hand, J W; Shaw, A; Sadhoo, N; Rajagopal, S; Dickinson, R J; Gavrilov, L R

    2009-10-07

    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least +/-15 mm off axis and axially to more than +/-15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci +/-10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm(3) in volume can be produced using the patterns of multiple foci.

  4. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica

    2012-07-01

    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  5. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  6. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  7. In vivo hyperthermia effect induced by high-intensity pulsed ultrasound

    International Nuclear Information System (INIS)

    Cui Wei-Cheng; Tu Juan; Li Qian; Fan Ting-Bo; Zhang Dong; Chen Wei-Zhong; Joo-Ha Hwang; Chen Jing-Hai

    2012-01-01

    Hyperthermia effects (39–44 °C) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor. However, previous studies also reported that the cell death occurs when cells are maintained at 43 °C for more than 20 minutes. The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz, 5300 W/cm 2 , with relatively low-duty ratios (0.2%–4.3%). The results show that: (1) with constant pulse repetition frequency (PRF) (e.g., 1 Hz), the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 °C can be identified at the duty ratio of 4.3%; (3) with constant duty ratios, the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%, the presence of microbubbles will not significantly enhance the thermal responses in the vessel, but will facilitate HIFU-induced inertial cavitation events. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.

    Science.gov (United States)

    Suh, Dong Hye; Choi, Jeong Hwee; Lee, Sang Jun; Jeong, Ki-Heon; Song, Kye Yong; Shin, Min Kyung

    2015-01-01

    High-intensity focused ultrasound (HIFU) and radiofrequency (RF) are used for non-invasive skin tightening. Neocollagenesis and neoelastogenesis have been reported to have a mechanism of controlled thermal injury. To compare neocollagenesis and neoelastogenesis in each layer of the dermis after each session of HIFU and monopolar RF. We analyzed the area fraction of collagen and elastic fibers using the Masson's Trichrome and Victoria blue special stains, respectively, before and after 2 months of treatments. Histometric analyses were performed in each layer of the dermis, including the papillary dermis, and upper, mid, and deep reticular dermis. Monopolar RF led to neocollagenesis in the papillary dermis, and upper, mid, and deep reticular dermis, and neoelastogenesis in the papillary dermis, and upper and mid reticular dermis. HIFU led to neocollagenesis in the mid and deep reticular dermis and neoelastogenesis in the deep reticular dermis. Among these treatment methods, HIFU showed the highest level of neocollagenesis and neoelastogenesis in the deep reticular dermis. HIFU affects deep tissues and impacts focal regions. Monopolar RF also affects deep tissues, but impacts diffuse regions. We believe these data provide further insight into effective skin tightening.

  9. High solids emulsions produced by ultrasound as a function of energy density.

    Science.gov (United States)

    Consoli, Larissa; de Figueiredo Furtado, Guilherme; da Cunha, Rosiane Lopes; Hubinger, Míriam Dupas

    2017-09-01

    The use of emulsifying methods is frequently required before spray drying food ingredients, where using high concentration of solids increases the drying process yield. In this work, we used ultrasound to obtain kinetically stable palm oil-in-water emulsions with 30g solids/100g of emulsion. Sodium caseinate, maltodextrin and dried glucose syrup were used as stabilizing agents. Sonication time of 3, 7 and 11min were evaluated at power of 72, 105 and 148W (which represents 50%, 75% and 100% of power amplitude in relation to the nominal power of the equipment). Energy density required for each assay was calculated. Emulsions were characterized for droplets mean diameter and size distribution, optical microscopy, confocal microscopy, ζ-potential, creaming index (CI) and rheological behavior. Emulsions presented bimodal size distribution, with D [3,2] ranging from 0.7 to 1.4μm and CI between 5% and 12%, being these parameters inversely proportional to sonication time and power, but with a visual kinetically stabilization after the treatment at 148W at 7min sonication. D [3,2] showed to depend of energy density as a power function. Sonication presented as an effective method to be integrated to spray drying when emulsification is needed before the drying process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Measurement and numerical simulation of high intensity focused ultrasound field in water

    Science.gov (United States)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  11. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound.

    Science.gov (United States)

    Devarakonda, Surendra Balaji; Myers, Matthew R; Giridhar, Dushyanth; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak Kumar

    2017-01-01

    Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.

  12. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  14. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  15. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    Science.gov (United States)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  16. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  17. The effect of high power ultrasound on phenolic composition, chromatic characteristics, and aroma compounds of red wines

    Directory of Open Access Journals (Sweden)

    Natka Ćurko

    2017-01-01

    Full Text Available High power ultrasound (HPU is a novel, non-thermal technology the application of which has been primarily evaluated in managing food quality. The application of high power ultrasound in wine technology is therefore directed at modulating microbial activity during fermentation, extraction of phenolic and aroma compounds from grapes to must, as well as at accelerating aging reactions in wine. The main aim of this article was to evaluate the effect of different HPU process parameters on sustaining the phenolic and aroma composition of red wine and its colour characteristics. Three different red wines, including Cabernet Sauvignon, Merlot, and Plavac mali, were treated with high power ultrasound (20kHz, considering the variations in ultrasound probe diameter size (12.7 and 19 mm, amplitude level (20, 30, and 40 %, and processing time (2, 4, and 6 minutes. Total polyphenol content, total anthocyanin concentration, and chromatic characteristics were analyzed by spectrophotometry, free anthocyanins were analysed by high performance liquid chromatography, and wine aroma compounds were analyzed by gas chromatography combined with solid-phase microextraction. The obtained results show that ultrasonic irradiation induces chemical changes in phenolic composition, chromatic characteristics, and aroma compounds concentration, and accelerates chemical reactions responsible for wine aging. The intensity of the mentioned chemical changes depends on the selected processing parameters and on the treated variety. Among three different parameters, the selection of the probe diameter was showed to be most significant factor influencing chemical composition, followed by the amplitude level and processing time. The smaller diameter probe size (12.7 mm, lowest amplitude (20%, and a shorter processing time (2 minutes showed a more favourable and lighter effect on the chemical composition of the treated red wines.

  18. High-Intensity Focused Ultrasound for the Treatment of Wrinkles and Skin Laxity in Seven Different Facial Areas

    OpenAIRE

    Park, Hyunchul; Kim, Eunjin; Kim, Jeongeun; Ro, Youngsuck; Ko, Jooyeon

    2015-01-01

    Background High-intensity focused ultrasound (HIFU) treatment has recently emerged in response to the increasing demand for noninvasive procedures for skin lifting and tightening. Objective This study was aimed at evaluating the clinical efficacy of and patient satisfaction with HIFU treatment for wrinkles and laxity in seven different areas of the face in Asian skin. Methods Twenty Korean patients with facial wrinkle and laxity were analyzed after a single session of HIFU treatment. Two inde...

  19. Influence of ultrasonic frequency on the regeneration of silica gel by applying high-intensity ultrasound

    International Nuclear Information System (INIS)

    Zhang Weijiang; Yao Ye; Wang Rongshun

    2010-01-01

    Ultrasonic frequency is the key parameter considered in ultrasonic applications. In order to provide a basic knowledge about the influence of ultrasonic frequency on the regeneration of silica gel assisted by power ultrasound, the experiments about silica gel regeneration under the radiation of constant-power (60 W) ultrasound with different frequencies (i.e., 23, 27, and 38 kHz) and that without ultrasound were carried out at different regeneration temperatures (i.e., 35, 45, 55, and 65 deg. C). The experimental results showed that the lower frequency was beneficial for the application of power ultrasound in the regeneration of silica gel. The fact was theoretically explained by the ultrasonic power attenuation model which indicates that the ultrasound of lower frequency will lead to more uniform energy distribution and hence achieve higher efficiency of utilization. Meanwhile, the effect of ultrasonic frequency on silica gel regeneration would be influenced by the regeneration temperature and the moisture ratio in silica gel. As investigated in this study, the effect of ultrasonic frequency on the regeneration would be more significant at the lower regeneration temperature or at the higher moisture ratio in silica gel. In addition, the mean regeneration speed model of silica gel dependent of the regeneration temperature and the ultrasonic frequency was established according to the experimental data.

  20. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  1. Imaging of posterior tibial tendon dysfunction—Comparison of high-resolution ultrasound and 3 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Arnoldner, Michael A., E-mail: michael.arnoldner@meduniwien.ac.at [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria); Gruber, Michael [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria); Syré, Stefanie [Medical University of Vienna, Vienna General Hospital, Department of Trauma-Surgery, Währinger Gürtel 18-20, 1090 Vienna (Austria); Kristen, Karl-Heinz [Foot & Ankle Centre Vienna, Alser Straße 43/8, 1080 Vienna (Austria); Trnka, Hans-Jörg [Foot & Ankle Centre Vienna, Alser Straße 43/8, 1080 Vienna (Austria); Orthopaedic Hospital Vienna, Speisinger Straße 109, 1130 Vienna (Austria); Kainberger, Franz; Bodner, Gerd [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria)

    2015-09-15

    Highlights: • 18 MHz high-resolution ultrasound appears to be slightly more accurate than 3 T MRI in the diagnosis of PTTD. • High-resolution ultrasound is recommended as an initial diagnostic tool. • Long-lasting PTT discomfort may require MRI. • Other pathologies can mimic PTTD. - Abstract: Purpose: Posterior tibial tendon dysfunction is the most common cause of acquired asymmetric flatfoot deformity. The purpose of this study was to determine and compare the diagnostic value of MRI and high-resolution ultrasound (HR-US) in posterior tibial tendon dysfunction (PTTD), and assess their correlation with intraoperative findings. Materials and methods: We reviewed 23 posterior tibial tendons in 23 patients with clinical findings of PTTD (13 females, 10 males; mean age, 50 years) with 18 MHz HR-US and 3 T MRI. Surgical intervention was performed in nine patients. Results: HR-US findings included 2 complete tears, 6 partial tears, 10 tendons with tendinosis, and 5 unremarkable tendons. MRI demonstrated 2 complete tears, 7 partial tears, 10 tendons with tendinosis, and 4 unremarkable tendons. HR-US and MRI were concordant in 20/23 cases (87%). Image findings for HR-US were confirmed in six of nine patients (66.7%) by intraoperative inspection, whereas imaging findings for MRI were concordant with five of nine cases (55.6%). Conclusion: Our results indicate that HR-US can be considered slightly more accurate than MRI in the detection of PTTD.

  2. Therapeutic effects of microbubble added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Lee, Jae Young; Kim, Bo Ram; Park, Eun Joo; Kim, Hoe Suk; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hae Ri [Dept. of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung (Korea, Republic of); Choi, Byung Ihn [Dept. of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2016-09-15

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  3. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Lee, Jae Young [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Kim, Hae Ri [Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457 (Korea, Republic of); Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Choi, Byung Ihn [Department of Radiology, Chung-Ang University Hospital, Seoul 06973 (Korea, Republic of)

    2016-11-01

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  4. Films of chitin, chitosan and cellulose obtained from aqueous suspension treated by irradiation of high intensity ultrasound

    International Nuclear Information System (INIS)

    Almeida, Erika V.R.; Mariano, Mario S.; Campana-Filho, Sergio P.

    2011-01-01

    Films of chitin, chitin/chitosan and chitin/sisal cellulose were obtained by casting their aqueous suspensions previously treated with irradiation of high intensity ultrasound. The films were characterized for surface morphology by scanning electron microscopy and it is possible notice that the films containing chitosan are much more homogeneous. The thermal behavior of the films was evaluated by dynamic mechanical thermal analysis, differential scanning calorimetry, and thermogravimetric analysis and revealing similarity in comparison with the thermal behavior of polysaccharide isolated. The tensile strength was determined and the film containing chitosan showed the best result when compared to other films. The crystallinity index of the films analyzed by X-ray diffraction showed that the films are amorphous material. The analysis by infrared spectroscopy showed that treatment of aqueous suspensions of polysaccharides with irradiation of high intensity ultrasound did not change the chemical structure of polymers. The crystallinity index was determined by X-ray diffraction, revealing that the films are amorphous materials. The results of this study indicate the possibility of processing of chitin, chitosan and cellulose, polysaccharides whose solubilities are limited to a few solvent systems, by treating their aqueous suspensions with high intensity ultrasound. (author)

  5. High frequency P(VDF-TrFE) copolymer broadband annular array ultrasound transducers using high density flexible circuit interconnect

    Science.gov (United States)

    Gottlieb, Emanuel J.; Cannata, Jonathan M.; Hu, Chang Hong; Shung, K. K.

    2005-04-01

    A kerfless eight element high frequency ultrasound annular array transducer using 9 μm P(VDF-TrFE) bonded to a high density flexible interconnect was fabricated. The flexible circuit composed of Kapton polyimide film with gold electrode pattern of equal area annuli apertures on the top side of a 50 μm thick Kapton polyimide film. Each element had several 30 μm diameter electroplated vias that connected to electrode traces on the bottom side of the Kapton polyimide film. There was a 30 μm spacing between elements. The total aperture of the array was 3.12 mm. The transducer's performance has been modeled by implementing the Redwood version of the Mason model into PSpice and using the Krimholtz, Leedom and Matthaei (KLM) model utilized in the commercial software PiezoCAD. The transducer"s performance was evaluated by measuring the electrical impedance with a HP 4194 impedance analyzer, pulse echo response using a Panametrics 5900 pulser/receiver and crosstalk measurement for each element in the array. The measured electrical impedance for each element was 540 Ω and -84° phase. In order to improve device sensitivity an inductor was attached in series with each element to reduce the insertion loss to 33 dB. The measured average center frequency and bandwidth of each element was 55 MHz and 50% respectively. The measured crosstalk at the center frequency was -45 dB in water.

  6. Focusing of high intensity ultrasound through the rib cage using a therapeutic random phased array

    Science.gov (United States)

    Bobkova, Svetlana; Gavrilov, Leonid; Khokhlova, Vera; Shaw, Adam; Hand, Jeffrey; #, ||

    2010-01-01

    A method for focusing high intensity ultrasound through a rib cage that aims to minimize heating of the ribs whilst maintaining high intensities at the focus (or foci) is proposed and tested theoretically and experimentally. Two approaches, one based on geometric acoustics and the other accounting for diffraction effects associated with propagation through the rib cage, are investigated theoretically for idealized source conditions. It is shown that for an idealized radiator the diffraction approach provides a 23% gain in peak intensity and results in significantly less power losses on the ribs (1% versus 7.5% of the irradiated power) compared with the geometric one. A 2D 1-MHz phased array with 254 randomly distributed elements, tissue mimicking phantoms, and samples of porcine rib cages are used in experiments; the geometric approach is used to configure how the array is driven. Intensity distributions are measured in the plane of the ribs and in the focal plane using an infra-red camera. Theoretical and experimental results show that it is possible to provide adequate focusing through the ribs without overheating them for a single focus and several foci, including steering at ± 10–15 mm off and ± 20 mm along the array axis. Focus splitting due to the periodic spatial structure of ribs is demonstrated both in simulations and experiments; the parameters of splitting are quantified. The ability to produce thermal lesions with a split focal pattern in ex vivo porcine tissue placed beyond the rib phantom is also demonstrated. The results suggest that the method is potentially useful for clinical applications of HIFU for which the rib cage lies between the transducer(s) and the targeted tissue. PMID:20510186

  7. MRI screening-detected breast lesions in high-risk young women: the value of targeted second-look ultrasound and imaging-guided biopsy.

    Science.gov (United States)

    Peter, P; Dhillon, R; Bose, S; Bourke, A

    2016-10-01

    To analyse the value of targeted second-look ultrasound and imaging-guided biopsy in high-risk young women eligible for screening magnetic resonance imaging (MRI) in a tertiary referral centre in Perth, Western Australia. A retrospective analysis of eligible high-risk young women who underwent screening breast MRI and targeted second-look ultrasound between June 2012 and June 2014 was performed with review of data. Over a 2-year period, 139 women underwent high-risk screening MRI. Of these, 30 women (with a total of 45 lesions) were recalled for targeted second-look ultrasound. Thirty-four MRI-detected lesions were identified on targeted ultrasound with 19 of them proceeding to ultrasound-guided biopsy, while the remaining 15 lesions were considered benign on ultrasound, were not biopsied, and were stable on follow-up imaging 12 months later. One lesion proceeded to an MRI-guided biopsy to confirm a benign result. Of the 11 lesions not seen on ultrasound, nine underwent MRI biopsy, one proceeded directly to hook wire localisation and excision, and one did not return for biopsy and was lost to follow-up. The overall biopsy rate was 14.4%. The cancer detection rate was 1.4%. The results of this study indicate that targeted second-look ultrasound and ultrasound-guided biopsy is a cost-effective and time-efficient approach for MRI-detected lesions in young women at high risk of developing breast cancer. MRI-guided biopsy should be considered for ultrasonographically occult suspicious lesions as there is a low, but definite, risk of cancer. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency

    International Nuclear Information System (INIS)

    Williams, Ross; Cherin, Emmanuel; Lam, Toby Y J; Tavakkoli, Jahangir; Zemp, Roger J; Foster, F Stuart

    2006-01-01

    Nonlinear propagation has been demonstrated to have a significant impact on ultrasound imaging. An efficient computational algorithm is presented to simulate nonlinear ultrasound propagation through layered liquid and tissue-equivalent media. Results are compared with hydrophone measurements. This study was undertaken to investigate the role of nonlinear propagation in high frequency ultrasound micro-imaging. The acoustic field of a focused transducer (20 MHz centre frequency, f-number 2.5) was simulated for layered media consisting of water and tissue-mimicking phantom, for several wide-bandwidth source pulses. The simulation model accounted for the effects of diffraction, attenuation and nonlinearity, with transmission and refraction at layer boundaries. The parameter of nonlinearity, B/A, of the water and tissue-mimicking phantom were assumed to be 5.2 and 7.4, respectively. The experimentally measured phantom B/A value found using a finite-amplitude insert-substitution method was shown to be 7.4 ± 0.6. Relative amounts of measured second and third harmonic pressures as a function of the fundamental pressures at the focus were in good agreement with simulations. Agreement within 3% was found between measurements and simulations of the beam widths of the fundamental and second harmonic signals following propagation through the tissue phantom. The results demonstrate significant nonlinear propagation effects for high frequency imaging beams

  10. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    International Nuclear Information System (INIS)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-01-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  11. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.

    2015-06-01

    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  12. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    Science.gov (United States)

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound

    International Nuclear Information System (INIS)

    Yeh, Chia-Lun; Li, Pai-Chi; Kuo, Po-Ling; Shih, Wen-Pin; Huang, Pei-Shin

    2013-01-01

    Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm −2 for I SPPA and 72.3 W cm −2 for I SPTA . B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders. (paper)

  14. Effects of oxytocin on high intensity focused ultrasound (HIFU) ablation of adenomysis: A prospective study

    International Nuclear Information System (INIS)

    Zhang, Xin; Zou, Min; Zhang, Cai; He, Jia; Mao, Shihua; Wu, Qingrong; He, Min; Wang, Jian; Zhang, Ruitao; Zhang, Lian

    2014-01-01

    Objective: To investigate the effects of oxytocin on high-intensity focused ultrasound (HIFU) ablation for the treatment of adenomyosis. Materials and methods: Eighty-six patients with adenomyosis from three hospitals were randomly assigned to the oxytocin group or control group for HIFU treatment. During HIFU treatment, 80 units of oxytocin was added in 500 ml of 0.9% normal saline running at the rate of 2 ml/min (0.32 U/min) in the oxytocin group, while 0.9% normal saline was used in the control group. Both patients and HIFU operators were blinded to oxytocin or saline application. Treatment results, adverse effects were compared. Results: When using oxytocin, the non-perfused volume (NPV) ratio was 80.7 ± 11.6%, the energy-efficiency factor (EEF) was 8.1 ± 9.9 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 30.0 ± 36.0 s/cm 3 . When not using oxytocin, the non-perfused volume ratio was 70.8 ± 16.7%, the EEF was 15.8 ± 19.6 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 58.2 ± 72.7 S/cm 3 . Significant difference in the NPV ratio, EEF, and the sonication time required to ablate 1 cm 3 between the two groups was observed. No oxytocin related adverse effects occurred. Conclusion: Oxytocin could significantly decrease the energy for ablating adenomyosis with HIFU, safely enhance the treatment efficiency

  15. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging.

    Science.gov (United States)

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping; Yang, Jun

    2017-05-01

    The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI prospectively. A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T 2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. The treatment time and sonication time of the combination group were 102.0 min (55.8-152.2 min) and 25.4 min (12.2-34.1 min); however, they were 149.0 min (87.0-210.0 min) and 38.9 min (14.0-46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm 3  s -1 (28.5-95.8 mm 3  s -1 ), 69.2 ± 29.8% (35.5-97.4%) and 9.9 KJ mm -3 (4.5-15.7 KJ mm -3 ) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm 3  s -1 (8.9-32.9 mm 3  s -1 ), 50.2 ± 27.3% (0-78.6%) and 23.8 KJ mm -3 (12.4-46.2 KJ mm -3 ), respectively. Pain scores in the combination group were 3.0 ± 0.5 points (2-4 points

  17. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon.

    Science.gov (United States)

    Sun, Zhehao; Liu, Cheng; Cao, Zhen; Chen, Wei

    2018-06-01

    High frequency ultrasonic radiation technology was developed as a novel and efficient means of regenerating spent biological activated carbon (BAC) used in drinking water treatment plants (DWTPs). The results of this study indicated that high frequency ultrasonic treatment could recover the spent BAC, to some extent, with the following optimal conditions: a frequency of 400 kHz, sonication power of 60 W, water temperature of 30 °C, and sonication time of 6 min. Under the above conditions, the iodine value increased from 300 mg/g to 409 mg/g, the volume of total pores and micropores increased from 0.2600 cm 3 /g and 0.1779 cm 3 /g to 0.3560 cm 3 /g and 0.2662 cm 3 /g, respectively; the specific surface area of micropores and the mean pore diameter expanded from 361.15 m 2 /g and 2.0975 nm to 449.92 m 2 /g and 2.1268 nm, respectively. The biological activity increased from 0.0297 mgO 2 /gC·h to 0.0521 mgO 2 /gC·h, while the biomass decreased from 203 nmolP/gC to 180 nmolP/gC. The results of high throughput 16S rRNA gene amplicon sequencing showed that microorganisms such as Clostridia and Nitrospira were markedly decreased due to high frequency ultrasound. The method used in this study caused the inhibition of certain carbon-attached microbials resulting in a negative effect on the removal rate of ammonia-N during the initial stage of the long-term reuse operation. The removal of UV254 and atrazine were restored from 8.1% and 55% to 21% and 76%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Developing an emergency ultrasound app

    DEFF Research Database (Denmark)

    Foss, Kim Thestrup; Subhi, Yousif; Aagaard, Rasmus

    2015-01-01

    Focused emergency ultrasound is rapidly evolving as a clinical skill for bedside examination by physicians at all levels of education. Ultrasound is highly operator-dependent and relevant training is essential to ensure appropriate use. When supplementing hands-on focused ultrasound courses, e-le...

  19. An analysis of radiation dose reduction in paediatric interventional cardiology by altering frame rate and use of the anti-scatter grid

    International Nuclear Information System (INIS)

    McFadden, S L; Hughes, C M; Winder, Robert J; Mooney, R B

    2013-01-01

    The purpose of this work is to investigate removal of the anti-scatter grid and alteration of the frame rate in paediatric interventional cardiology (IC) and assess the impact on radiation dose and image quality. Phantom based experimental studies were performed in a dedicated cardiac catheterisation suite to investigate variations in radiation dose and image quality, with various changes in imaging parameters. Phantom based experimental studies employing these variations in technique identified that radiation dose reductions of 28%–49% can be made to the patient with minimal loss of image quality in smaller sized patients. At present, there is no standard technique for carrying out paediatric IC in the UK or Ireland, resulting in the potential for a wide variation in radiation dose. Dose reductions to patients can be achieved with slight alterations to the imaging equipment with minimal compromise to the image quality. These simple modifications can be easily implemented in clinical practice in IC centres. (paper)

  20. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Pilot study: safety and effectiveness of simple ultrasound-guided high-intensity focused ultrasound ablating uterine leiomyoma with a diameter greater than 10 cm.

    Science.gov (United States)

    Hou, Ruijie; Wang, Liwei; Li, Shaoping; Rong, Fengmin; Wang, Yuanyuan; Qin, Xuena; Wang, Shijin

    2018-02-01

    The study aimed to prospectively investigate whether uterine leiomyoma greater than 10 cm in diameter could be treated with simple ultrasound-guided high-intensity focused ultrasound (USgHIFU) in one-time treatment. A total of 36 patients with 36 symptomatic uterine leiomyoma greater than 10 cm in diameter who underwent simple USgHIFU treatment alone were analysed. Enhanced MRI was performed before and after HIFU treatment, and all patients had follow-up for 6 months after treatment. Symptom severity scores, treatment time, treatment speed, ablation rate, energy effect ratio, uterine leiomyoma regression rate, adverse events, liver and kidney functions, coagulation function and routine blood count were included in the study endpoints. The mean diameter of uterine leiomyoma was 11.2 ± 1.3 cm (10.0-14.3 cm). The median treatment time and treatment speed were 104.0 min (90.0-140.0 min) and 118.8 cm 3  h -1  (86.2-247.1 cm 3  h -1 ), respectively. The ablation rate of uterine leiomyoma was 71.9 ± 20.4% (32.1-100.0%), and the regression rate of uterine leiomyoma was 40.8 ± 7.5% (25.6-59.9%) at 6 months after treatment. The mean symptom severity scores decreased by an average of approximately 8.6 ± 2.3 (5-14) points. There were no significant changes in haemogram and blood chemical indexes of patients, except for the transient elevation of aspartate aminotransferase, total bilirubin and white blood cells after treatment. No serious adverse reactions occurred. According to our preliminary results, simple USgHIFU is a safe and effective single-treatment method of treating uterine leiomyoma greater than 10 cm in diameter and is an almost innocuous alternative therapeutic strategy. Advances in knowledge: The conclusions indicate simple USgHIFU is safe and effective as one-time treatment of uterine leiomyoma greater than 10 cm in diameter, it could be a promising therapeutic strategy.

  2. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    Science.gov (United States)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  3. Implementation of a Low Frame-Rate Protocol and Noise-Reduction Technology to Minimize Radiation Dose in Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Maccagni, Davide; Candilio, Luciano; Latib, Azeem; Godino, Cosmo; Chieffo, Alaide; Montorfano, Matteo; Colombo, Antonio; Azzalini, Lorenzo

    2018-05-01

    Limiting radiation exposure is necessary in radiological procedures. This study evaluates the impact of a radiological low frame-rate protocol in a standard angiographic system and the implementation of a noise-reduction technology (NRT) on patient radiation exposure during transcatheter aortic valve replacement (TAVR). Transfemoral TAVR procedures performed between February 2016 and February 2017 were analyzed according to two angiographic systems, Standard and NRT, and further divided in four subgroups: (1) Standard 15 frames per second (fps) with 15 fps for both fluoroscopy and cine acquisitions; (2) Standard 7.5 fps with 7.5 fps for both fluoroscopy and cine acquisitions; (3) NRT 15 fps with 15 fps for both fluoroscopy and cine acquisitions; and (4) NRT 7.5 fps with 15 fps for fluoroscopy and 7.5 fps for cine acquisitions. Study endpoints were kerma area product (KAP) and cumulative air kerma at interventional reference point (AK at IRP). Significant differences were found in KAP (153 Gy·cm² [IQR, 95-234 Gy·cm²] vs 78.3 Gy·cm² [IQR, 54.4-103.5 Gy·cm²]; Pfps and Standard 7.5 fps groups (184 Gy·cm² [IQR, 128-262 Gy·cm²] vs 106.8 Gy·cm² [IQR, 76.87-181 Gy·cm²] [P<.01] and 0.973 Gy [IQR, 0.642-1.786 Gy] vs 0.64 Gy [IQR, 0.489-0.933 Gy] [P<.01], respectively). The present study suggests that the low frame-rate protocol in Standard system and NRT implementation allows a marked reduction of patient radiation exposure in TAVR procedures.

  4. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  5. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ... pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... pictures of a man’s prostate gland and to help diagnose symptoms such as difficulty urinating or an ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... There are three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams ... are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure? In women, a pelvic ultrasound is most often performed to evaluate the: uterus cervix ovaries ... page How is the procedure performed? Transabdominal: For most ultrasound exams, you will be positioned lying face- ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is used to evaluate the: bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ultrasound transducer into ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... questions or for a referral to a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view the endometrium (the lining of the uterus) and the ovaries. Transvaginal ultrasound also evaluates the myometrium (muscular walls ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends the sound waves into ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is no ... structure and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ... sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... help to distract the child and make the time pass quickly. The ultrasound exam room may have ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ... bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the prostate gland because ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ... page Additional Information and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Because ultrasound provides real-time images, it also can be used to guide procedures such as needle ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Ultrasound exams in which the transducer ... in the sperm or urine following the procedure. After an ultrasound examination, you should be able to ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound ... from the probe through the gel into the body. The transducer collects the sounds that bounce back ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound ... from the probe through the gel into the body. The transducer collects the sounds that bounce back ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  14. Obstetrical Ultrasound

    Science.gov (United States)

    ... heartbeat can be seen as an ongoing ultrasound movie. Ultrasound devices also use Doppler, a special application ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... menstrual problems Ultrasound exams also help identify: palpable masses such as ovarian cysts and uterine fibroids ovarian ... In children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... region of the prostate. A biopsy will add time to the procedure. If a Doppler ultrasound study ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  2. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  3. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    International Nuclear Information System (INIS)

    Yoon, Sangpil; Emelianov, Stanislav; Aglyamov, Salavat; Karpiouk, Andrei

    2012-01-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. (paper)

  4. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  5. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  6. High-Temperature Elasticity of Topaz: A Resonant Ultrasound Spectroscopic study

    Science.gov (United States)

    Tennakoon, S.; Peng, Y.; Andreu, L.; Rivera, F.; Mookherjee, M.; Manthilake, G.; Speziale, S.

    2017-12-01

    Topaz (Al2SiO4(F,OH)2) is a hydrous aluminosilicate mineral stable in the hydrated sediments in subduction zone settings and could transport water into the Earth's interior. To constrain the amount of water subducted, it is important to have a better understanding of the elastic constants of hydrous phases and compare them with the geophysical observations. In this study, we explored the full elastic moduli tensor for a single crystal topaz using Resonant Ultrasound Spectroscopy. We determined the full elastic moduli tensor at ambient conditions (1 bar and 297 K), with the principal components- C11, C22, and C33 are 279, 352 and 288 GPa respectively, the off-diagonal components- C­12, C13, and C23 are 124, 72, and 82 GPa respectively, and the shear components- C44, C55, and C66 are 111, 134, and 130 GPa respectively. The compressional (AVP) and shear (AVS) anisotropy for topaz are 13 and 14 % respectively. The aggregate bulk (K) and shear (G) moduli are 162 and 117 GPa respectively. We determined the elasticity of topaz up to 1000 K. The components of the full elastic moduli tensor show softening at high temperature. Temperature derivatives of sound velocity of topaz, dVP/dT = -3.5 ×10-4 km/s/K and dVS/dT = -2.2 ×10-4 km/s/K are smaller than those for corundum [1], α-quartz [2], and olivine [3]. In contrast, the temperature derivatives of primary and shear sound velocity for topaz is greater than that of pyrope garnet [4]. The elasticity and sound velocity of topaz also vary as a function of chemistry i.e., OH-F contents. Our study demonstrates that the effect of composition (xOH) on the velocity is more pronounced than that of temperature.Acknowledgement: This study is supported by US NSF awards EAR-1634422. Reference: [1] Goto, T. et al.,1989, J. Geophys. Res., 94, 7588; [2] Ohno, I. et al., 2006, Phys. Chem. Miner., 33, 1-9; [3] Isaak, D. G., 1992, J. Geophys. Res. Solid Earth, 97, 1871-1885; [4] Sinogeikin, S. V., Bass, J. D., 2002, Earth Planet. Sci. Lett

  7. Ultra-high frequency ultrasound biomicroscopy and high throughput cardiovascular phenotyping in a large scale mouse mutagenesis screen

    Science.gov (United States)

    Liu, Xiaoqin; Francis, Richard; Tobita, Kimimasa; Kim, Andy; Leatherbury, Linda; Lo, Cecilia W.

    2013-02-01

    Ultrasound biomicroscopy (UBM) is ideally suited for phenotyping fetal mice for congenital heart disease (CHD), as imaging can be carried out noninvasively to provide both hemodynamic and structural information essential for CHD diagnosis. Using the UBM (Vevo 2100; 40Hz) in conjunction with the clinical ultrasound system (Acuson Sequioa C512; 15Hz), we developed a two-step screening protocol to scan thousands fetuses derived from ENU mutagenized pedigrees. A wide spectrum of CHD was detected by the UBM, which were subsequently confirmed with follow-up necropsy and histopathology examination with episcopic fluorescence image capture. CHD observed included outflow anomalies, left/right heart obstructive lesions, septal/valvular defects and cardiac situs anomalies. Meanwhile, various extracardiac defects were found, such as polydactyly, craniofacial defects, exencephaly, omphalocele-cleft palate, most of which were associated with cardiac defects. Our analyses showed the UBM was better at assessing cardiac structure and blood flow profiles, while conventional ultrasound allowed higher throughput low-resolution screening. Our study showed the integration of conventional clinical ultrasound imaging with the UBM for fetal mouse cardiovascular phenotyping can maximize the detection and recovery of CHD mutants.

  8. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles.

    Science.gov (United States)

    Xiong, Fangyuan; Nirupama, Sabnis; Sirsi, Shashank R; Lacko, Andras; Hoyt, Kenneth

    2017-01-01

    The abnormal tumor vasculature and the resulting abnormal microenvironment are major barriers to optimal chemotherapeutic drug delivery. It is well known that ultrasound (US) can increase the permeability of the tumor vessel walls and enhance the accumulation of anticancer agents. Reconstituted high-density lipoproteins (rHDL) nanoparticles (NPs) allow selective delivery of anticancer agents to tumor cells via their overexpressed scavenger receptor type B1 (SR-B1) receptor. The goal of this study is to investigate the potential of noninvasive US therapy to further improve delivery and tumor uptake of the payload from rHDL NPs, preloaded with an infrared dye (IR-780), aimed to establish a surrogate chemotherapeutic model with optical localization. Athymic nude mice were implanted orthotopically with one million breast cancer cells (MDA-MB-231/Luc). Three weeks later, animals were divided into seven groups with comparable mean tumor size: control, low, moderate, and high concentration of rHDL NPs alone groups, as well as these three levels of rHDL NPs plus US therapy groups ( N = 7 to 12 animals per group), where low, moderate and high denote 5, 10, and 50 µg of the IR-780 dye payload per rHDL NP injection, respectively. The US therapy system included a single element focused transducer connected in series with a function generator and power amplifier. A custom 3D printed cone with an acoustically transparent aperture and filled with degassed water allowed delivery of focused US energy to the tumor tissue. US exposure involved a pulsed sequence applied for a duration of 5 min. Each animal in the US therapy groups received a slow bolus co-injection of MB contrast agent and rHDL NPs. Animals were imaged using a whole-body optical system to quantify intratumoral rHDL NP accumulation at baseline and again at 1 min, 30 min, 24 h, and 48 h. At 48 h, all animals were euthanized and tumors were excised for ex vivo analysis. We investigated a noninvasive optical imaging

  9. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    Science.gov (United States)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  10. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging.

    Science.gov (United States)

    Declèves, Anne-Emilie; Rychak, Joshua J; Smith, Dan J; Sharma, Kumar

    2013-11-01

    Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.

  11. Characteristic Uptake Pattern of Bone Scintigraphy in Patients with Hepatocellular Carcinoma Following Treatment with High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Waihan; Ho, Waiyin; Lai, Andrew S. H.; Wong, Kwongkuen; Law, Martin [Queen Mary Hospital, Pokfulam (Hong Kong)

    2013-12-15

    This study retrospectively reviews the characteristic bone scintigraphic findings in 18 patients with hepatocellular carcinoma (HCC) following treatment with high-intensity focused ultrasound (HIFU). A potential complication of HIFU is damage to the tissues along the path of the ultrasound beam and structures superficial to the lesion of interest. Patients with hepatocellular carcinoma who underwent a bone scan between 1st December 2005 and 31st December 2011 were considered for this study. Among these patients, only those who had bone scans after the HIFU treatment were included. The time between HIFU treatment and bone scans, HIFU energy, HCC sites, tumour sizes and related radiological findings were evaluated. In total, 20 bone scans of 18 patients were reviewed. Of these scans, two patients were normal; three patients showed decreased uptake, four patients showed increased uptake and nine patients showed mixed uptakes of the bony tracer in their rib cages. The defects were located in the anterior, lateral, anterolateral or posterolateral aspects of the rib cage. The majority of those cold defects were in the right anterior rib cages. SPECT/CT was used to localise the decreased uptake in ribs. The magnetic resonance imaging in individual patients invariably showed ill-defined rim enhancement along the right chest wall, signifying chest wall injury. The results showed that tissue ablation using HIFU caused tissue injury along the pathway of high-intensity ultrasound beams. The harm to tissues is presented as photopenic area on the rib cages due to necrosis or hot spots due to rib fractures in the bone scan. Since these cold defects are subtle, they are easily overlooked or mistaken as aggressive bony metastasis.

  12. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    Science.gov (United States)

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  13. SU-F-I-77: Radiation Dose in Cardiac Catheterization Procedures: Impact of a Systematic Reduction in Pulsed Fluoroscopy Frame Rate

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, C; Dixon, S [Beaumont Hospital, Royal Oak, MI (United States)

    2016-06-15

    Purpose: To evaluate whether one small systematic reduction in fluoroscopy frame rate has a significant effect on the total air kerma and/or dose area product for diagnostic and interventional cardiac catheterization procedures. Methods: The default fluoroscopy frame rate (FFR) was lowered from 15 to 10 fps in 5 Siemens™ Axiom Artis cardiac catheterization labs (CCL) on July 1, 2013. A total of 7212 consecutive diagnostic and interventional CCL procedures were divided into two study groups: 3602 procedures from 10/1/12 –6/30/13 with FFR of 15 fps; and 3610 procedures 7/1/13 – 3/31/14 at 10 fps. For each procedure, total air kerma (TAK), fluoroscopy skin dose (FSD), total/fluoroscopy dose area products (TAD, FAD), and total fluoroscopy time (FT) were recorded. Patient specific data collected for each procedure included: BSA, sex, height, weight, interventional versus diagnostic; and elective versus emergent. Results: For pre to post change in FFR, each categorical variable was compared using Pearson’s Chi-square test, Odds ratios and 95% confidence intervals. No statistically significant difference in BSA, height, weight, number of interventional versus diagnostic, elective versus emergent procedures was found between the two study groups. Decreasing the default FFR from 15 fps to 10 fps in the two study groups significantly reduced TAK from 1305 to 1061 mGy (p<0.0001), FSD from 627 to 454 mGy (p<0.0001), TAD from 8681 to 6991 uGy × m{sup 2}(p<0.0001), and FAD from 4493 to 3297 uGy × m{sup 2}(p<0.0001). No statistically significant difference in FT was noted. Clinical image quality was not analyzed, and reports of noticeable effects were minimal. From July 1, 2013 to date, the default FFR has remained 10 fps. Conclusion: Reducing the FFR from 15 to 10 fps significantly reduced total air kerma and dose area product which may decrease risk for potential radiation-induced skin injuries and improve patient outcomes.

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  17. Abdominal ultrasound (image)

    Science.gov (United States)

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  18. Characterisation of carotid plaques with ultrasound elastography: feasibility and correlation with high-resolution magnetic resonance imaging

    International Nuclear Information System (INIS)

    Naim, Cyrille; Cloutier, Guy; Mercure, Elizabeth; Destrempes, Francois; Qin, Zhao; El-Abyad, Walid; Lanthier, Sylvain; Giroux, Marie-France; Soulez, Gilles

    2013-01-01

    To evaluate the ability of ultrasound non-invasive vascular elastography (NIVE) strain analysis to characterise carotid plaque composition and vulnerability as determined by high-resolution magnetic resonance imaging (MRI). Thirty-one subjects with 50 % or greater carotid stenosis underwent NIVE and high-resolution MRI of internal carotid arteries. Time-varying strain images (elastograms) of segmented plaques were generated from ultrasonic raw radiofrequency sequences. On MRI, corresponding plaques and components were segmented and quantified. Associations between strain parameters, plaque composition and symptomatology were estimated with curve-fitting regressions and Mann-Whitney tests. Mean stenosis and age were 72.7 % and 69.3 years, respectively. Of 31 plaques, 9 were symptomatic, 17 contained lipid and 7 were vulnerable on MRI. Strains were significantly lower in plaques containing a lipid core compared with those without lipid, with 77-100 % sensitivity and 57-79 % specificity (P < 0.032). A statistically significant quadratic fit was found between strain and lipid content (P < 0.03). Strains did not discriminate symptomatic patients or vulnerable plaques. Ultrasound NIVE is feasible in patients with significant carotid stenosis and can detect the presence of a lipid core with high sensitivity and moderate specificity. Studies of plaque progression with NIVE are required to identify vulnerable plaques. (orig.)

  19. Determination of the luminal diameter of the radial artery in man by high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1990-01-01

    measurements. By comparing the diameter of the reference object either filled with water or blood at 37 degrees C, the ultrasound velocity in human blood at 37 degrees C was calculated to be 1605 m/s. The intraobserver repeatability coefficients of in-vivo measurements of the radial artery in man were...... in the same range, whether measurements were repeated after 30 min (14%) or from day to day (12%). The interobserver repeatability coefficient was acceptable (15%) when the site of measurements was marked, whereas measurements without a mark resulted in a repeatability coefficient of 24%. The intravenous...

  20. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  1. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Directory of Open Access Journals (Sweden)

    Marcello Mancini

    Full Text Available To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1 the petrosquamous sinus, draining into the posterior facial vein, 2 the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3 the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins.

  2. Therapeutic response assessment of high intensity focused ultrasound therapy for uterine fibroid: Utility of contrast-enhanced ultrasonography

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Ren Xiaolong; Zhang Jun; He Guangbin; Zheng Minjuan; Tian Xue; Li Li; Zhu Ting; Zhang Min; Wang Lei; Luo Wen

    2007-01-01

    Purpose: To assess the utility of contrast-enhanced ultrasonography (ceUS) in the assessment of the therapeutic response to high intensity focused ultrasound (HIFU) ablation in patients with uterine fibroid. Materials and methods: Sixty-four patients with a total of 64 uterine fibroids (mean: 5.3 ± 1.2 cm; range: 3.2-8.9 cm) treated with HIFU ablation under the ultrasound guidance were evaluated with ceUS after receiving an intravenous bolus injection of a microbubble contrast agent (SonoVue) within 1 week after intervention. We obtained serial ceUS images during the time period from beginning to 5 min after the initiation of the bolus contrast injection. All of the patients underwent a contrast enhanced MRI (ceMRI) and ultrasound guided needle puncture biopsy within 1 week after HIFU ablation. And as a follow-up, all of the patients underwent US at 1, 3, 6 and 12 months after HIFU treatment. The volume change was observed and compared to pre- and post-HIFU ablation. The results of the ceUS were compared with those of the ceMRI in terms of the presence or absence of residual unablated tumor and pathologic change in the treated lesions. Results: On ceUS, diagnostic accuracy was 100%, while residual unablated tumors were found in three uterine fibroids (4.7%) and failed treatment was found in eight uterine fibroids (12.5%). All the 11 fibroids were subjected to additional HIFU ablation. Of the 58 ablated fibroids without residual tumors on both the ceUS and ceMRI after the HIFU ablation, the volumes of all the fibroids decreased in different degrees during the 1 year follow-up USs. And histologic examinations confirmed findings of necrotic and viable tumor tissue, respectively. Conclusion: CEUS is potentially useful for evaluating the early therapeutic effect of percutaneous HIFU ablation for uterine fibroids

  3. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  4. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    Science.gov (United States)

    Odéen, Henrik; Todd, Nick; Diakite, Mahamadou; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-01-01

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes

  5. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  6. Catheter-based high-frequency intraluminal ultrasound imaging is a powerful tool to study esophageal dysmotility patients.

    Science.gov (United States)

    Santander, Cecilio; Perea, Elena; Caldas, María; Clave, Pere

    2017-05-01

    High-resolution manometry (HRM) is currently the most important diagnostic test for esophageal motility disorders, providing information on the contraction pattern of the circular muscle layer, which helps classify these esophageal motor diseases. However, with the increasing development of ultrasound, other techniques, such as high-frequency intraluminal ultrasound (HFIUS), have gained importance. This technique uses a flexible shaft with a central wire integrated into a standard endoscope, which facilitates real-time sonography. Its main utility is to provide anatomical information on the structure of the esophageal wall, including both the circular and longitudinal layers that constitute the esophageal muscularis propria. Increasing knowledge about these motility disorders has led to the hypothesis that, in addition to an abnormal contraction pattern of the circular muscle, an overall increased muscle thickness and an abnormal longitudinal muscle contraction could be added as pathophysiological factors. The increase in muscle thickness could be an important indicator of the severity of diseases, such as achalasia, distal esophageal spasm, or hypercontractile esophagus. More studies are required before definitive conclusions can be reached, but HFIUS employed simultaneously with HRM could provide a more complete and precise evaluation of these esophageal motor disorders. © 2017 New York Academy of Sciences.

  7. Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors

    Science.gov (United States)

    Massich, Joan; Lemaître, Guillaume; Martí, Joan; Mériaudeau, Fabrice

    2015-04-01

    Breast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level descriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art.

  8. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  9. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model.

    Science.gov (United States)

    Dupré, Aurélien; Melodelima, David; Pflieger, Hannah; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Langonnet, Stéphan; Rivoire, Michel

    2017-02-01

    New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.

  10. Piezoelectric Composite Micromachined Multifrequency Transducers for High-Resolution, High-Contrast Ultrasound Imaging for Improved Prostate Cancer Assessment

    Science.gov (United States)

    2016-10-01

    imaging system ( Verasonics Vantage , Kirkland, WA) was used to drive the array and acquire echoes. For this work, 19 TX elements were fired as a group...imaging was conducted with the Verasonics programmable ultrasound system ( Verasonics Vantage , Redmond, WA). The Verasonics sampling frequency...multi-channel research imaging system ( Verasonics Vantage , Kirkland, WA) was used to drive the array and acquire echoes. For this work, 19 TX elements

  11. Neck ultrasound in staging squamous oesophageal carcinoma - a high yield technique

    International Nuclear Information System (INIS)

    Griffith, J.F.; Chan, A.C.W.; Ahuja, A.T.; Leung, S.F.; Chow, L.T.C.; Chung, S.C.S.; Metreweli, C.

    2000-01-01

    AIM: This study evaluates the use of neck ultrasound in staging squamous oesophageal carcinoma. MATERIALS AND METHODS: A prospective analysis of the clinical, neck ultrasound (US) and thoraco-abdominal computed tomography (CT) findings in 121 patients with squamous oesophageal carcinoma at presentation was performed. The relationship between malignant neck nodes, mediastinal and abdominal adenopathy, location and size of the primary tumour was analysed. RESULTS: Ten of 121 patients (8%) had clinically palpable neck nodes which were deemed malignant in six (5%) following US and fine-needle aspiration for cytology. Of those 111 patients with no palpable neck nodes, 31 (28%) had malignant nodes shown on US. The more cephalad the location of the primary tumour, the higher the frequency of malignant neck nodes which were found in 80%, 52%, 29% and 9% of cervical, upper thoracic, mid-thoracic and lower thoracic oesophageal tumours, respectively. Eleven (29%) of the 38 patients with malignant neck nodes shown on US had no CT evidence of additional adenopathy in the mediastinum or upper abdomen. Neck US altered TNM staging in 22/121 (18%) patients at presentation. CONCLUSION: Neck US frequently detects clinically impalpable metastatic nodes leading to altered TNM staging in patients with squamous oesophageal carcinoma. We advocate its routine use when staging squamous oesophageal carcinoma. Griffith, J.F. 2000

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  13. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    Science.gov (United States)

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  14. High-frequency ultrasound imaging of tattoo reactions with histopathology as a comparative method. Introduction of preoperative ultrasound diagnostics as a guide to therapeutic intervention.

    Science.gov (United States)

    Carlsen, K Hutton; Tolstrup, J; Serup, J

    2014-08-01

    Tattoo adverse reactions requiring diagnostic evaluation and treatment are becoming more common. The aim of this study was to assess tattoo reactions by 20-MHz ultrasonography referenced to histopathology as a comparative method. A total of 73 individuals with clinical adverse reactions in their tattoos were studied. Punch biopsies for reference histology were available from 58 patients. The Dermascan C(®) of Cortex Technology, Denmark, was employed. Total skin thickness and echo density of the echolucent band in the outer dermis were measured. Biopsy served for diagnosis and for determination of the level of cellular infiltration in the dermis. In every tattoo reaction studied, the skin affected was found thicker compared with regional control of the same individual (mean difference 0.73 mm). A prominent echolucent band of mean thickness 0.89 mm was demonstrated, primarily located in the very outer dermis but propagating to deeper dermal layers parallel to increasing severity of reactions. The thickness of the echolucent band correlated with the thickness of cellular infiltration determined by microscopic examination, R = 0.6412 (P tattoo reactions showed no distinct characteristics by ultrasound, but mainly displayed themselves by their advanced inflammatory component. It is demonstrated for the first time that ultrasound, with histopathology as the comparative method, can quantify the severity of tattoo reactions and non-invasively diagnose the depth of the inflammatory process in the dermis elicited by the microparticulate tattoo pigment, which itself is too minute to be imaged by ultrasound. Preoperative 20-MHz ultrasound scanning is introduced as a potentially useful method to guide therapeutic interventions by surgery and lasers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Experimental study on ablation of leiomyoma by combination high-intensity focused ultrasound and iodized oil in vitro.

    Science.gov (United States)

    Liang, Zhi-Gang; Gao, Yi; Ren, Xiao-Yan; Sun, Cui; Gu, Heng-Fang; Mou, Meng; Xiao, Yan-Bing

    2017-10-01

    The aim of the current study was to investigate whether iodized oil (IO) enhances high-intensity focused ultrasound (HIFU) ablation of uterine leiomyoma and to determine the features of hyperechoic changes in the target region. Forty samples of uterine leiomyoma were randomly divided into an experimental group and a control group. In the experimental group, the leiomyoma was ablated by HIFU 30 min after 1 mL of iodized oil had been injected into the center of the myoma. The hyperechoic values and areas in the target region were observed by B-modal ultrasound after HIFU ablation. The samples were cut successively into slices and stained by triphenyltetrazolium chloride (TTC) solution within 1 h after HIFU ablation. The diameters of TTC-non-stained areas were measured and tissues in the borderline of the TTC-stained and -non-stained areas were observed pathologically. All procedures in the control group were the same as those in the experimental group except IO was replaced by physiological saline. The hyperechoic value in the target region in the experimental group was higher than that in the control group 4 min after HIFU ablation (P leiomyoma occurred in the target region in both groups. IO causes coagulation necrosis, enlarges tissue damage, and postpones the attenuation of hyperechoic changes in the target region when HIFU ablation is carried out for leiomyoma in vitro. © 2017 Japan Society of Obstetrics and Gynecology.

  16. Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound

    Directory of Open Access Journals (Sweden)

    Tiago Carregari Polachini

    Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.

  17. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    International Nuclear Information System (INIS)

    Merckel, Laura G.; Bartels, Lambertus W.; Köhler, Max O.; Bongard, H. J. G. Desirée van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A.; Bosch, Maurice A. A. J. van den

    2013-01-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  18. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    Science.gov (United States)

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  19. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound.

    Science.gov (United States)

    Gai, Meiyu; Frueh, Johannes; Tao, Tianyi; Petrov, Arseniy V; Petrov, Vladimir V; Shesterikov, Evgeniy V; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-06-01

    Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 μm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm 2 . Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a ... Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview Images related to General Ultrasound Videos ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  2. The changes seen on high-resolution ultrasound in ochitis pictorial review

    International Nuclear Information System (INIS)

    Cook, John L.; Dewbury, Keith

    2000-01-01

    Orchitis and epididymitis are increasingly common lesions encountered in general practice. The clinical diagnosis of inflammation of the testis can be difficult as 10% of neoplasms present acutely with features of inflammation or torsion. The radiological diagnosis is also difficult as the changes seen on ultrasound, whether diffuse or focal, acute or chronic, have to be differentiated from the changes seen with tumours of the testis. The purpose of this review is to describe and illustrate the evolving changes seen in orchitis with reference to the anatomy and pathophysiology of testicular inflammation. We hope that recognition of this pattern may lead to a more confident diagnosis and appropriate management decisions. Cook, J.L., Dewbury, K. (2000)

  3. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    International Nuclear Information System (INIS)

    Daniels, Matthew J; Varghese, Tomy

    2010-01-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  4. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Directory of Open Access Journals (Sweden)

    Shiran M. B.

    2017-06-01

    Full Text Available Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130 filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130 filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05, while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules in the hemodialysis process.

  5. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Science.gov (United States)

    Shiran, M.B.; Barzegar Marvasti, M.; Shakeri-Zadeh, A.; Shahidi, M.; Tabkhi, N.; Farkhondeh, F.; Kalantar, E.; Asadinejad, A.

    2017-01-01

    Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130) filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130) filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05), while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules) in the hemodialysis process. PMID:28580332

  6. Wall-motion tracking in fetal echocardiography-Influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking.

    Science.gov (United States)

    Enzensberger, Christian; Achterberg, Friederike; Graupner, Oliver; Wolter, Aline; Herrmann, Johannes; Axt-Fliedner, Roland

    2017-06-01

    Frame rates (FR) used for strain analysis assessed by speckle tracking in fetal echocardiography show a considerable variation. The aim of this study was to investigate the influence of the FR on strain analysis in 2D speckle tracking. Fetal echocardiography was performed prospectively on a Toshiba Aplio 500 system and a Toshiba Artida system, respectively. Based on an apical or basal four-chamber view of the fetal heart, cine loops were stored with a FR of 30 fps (Aplio 500) and 60 fps (Artida/Aplio 500). For both groups (30fps and 60fps), global and segmental longitudinal peak systolic strain (LPSS) values of both, left (LV) and right ventricle (RV), were assessed by 2D wall-motion tracking. A total of 101 fetuses, distributed to three study groups, were included. The mean gestational age was 25.2±5.0 weeks. Mean global LPSS values for RV in the 30 fps group and in the 60 fps group were -16.07% and -16.47%, respectively. Mean global LPSS values for LV in the 30 fps group and in the 60 fps group were -17.54% and -17.06%, respectively. Comparing global and segmental LPSS values of both, the RV and LV, did not show any statistically significant differences within the two groups. Performance of myocardial 2D strain analysis by wall-motion tracking was feasible with 30 and 60 fps. Obtained global and segmental LPSS values of both ventricles were relatively independent from acquisition rate. © 2017, Wiley Periodicals, Inc.

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  8. Prostate Ultrasound

    Science.gov (United States)

    ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to ...

  10. Interventional ultrasound

    International Nuclear Information System (INIS)

    VanSonnenberg, E.

    1987-01-01

    This book contains 12 chapters and several case studies. Some of the chapter titles are: The Interplay of Ultrasound and Computed Tomography in the Planning and Execution of Interventional Procedures: Ulltrasound Guided Biopsy; Interventioal Genitourinary Sonography; Diagnosis and Treatment of Pericardial Effusion Using Ultrasonic Guidance; and New Ultrasound-Guided Interventional Procedures--Cholecystostomy, Pancreatography, Gastrostomy

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of ...

  13. Ultrasound stethoscopy

    NARCIS (Netherlands)

    E.C. Vourvouri (Eleni)

    2002-01-01

    textabstractIn this thesis we repmi the many evaluation studies with the hand-held ultrasound device in the assessment of different cardiac pathologies and in different clinical settings. The reason for using the tetm "ultrasound stethoscopy" is that these devices are augmenting our

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not use any ionizing radiation. Ultrasound scanning gives a clear picture of soft tissues that do not show up well on ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the best way to see if treatment is working or if a finding is stable or changed over time. top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use and less expensive than other imaging methods. Ultrasound imaging uses ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  17. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  18. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  19. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal and transcranial therapy.

    Science.gov (United States)

    Pernot, M; Aubry, J -F; Tanter, M; Marquet, F; Montaldo, G; Boch, A -L; Kujas, M; Seilhean, D; Fink, M

    2007-01-01

    Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound became during the last decade a noninvasive option for treating cancer from breast to prostate or uterine fibroid. However, many challenges remain to be addressed. First, the corrections of distortions induced on the ultrasonic therapy beam during its propagation through defocusing obstacles like skull bone or ribs remain today a technological performance that still need to be validated clinically. Secondly, the problem of motion artifacts particularly important for the treatment of abdominal parts becomes today an important research topic. Finally, the problem of the treatment monitoring is a wide subject of interest in the growing HIFU community. For all these issues, the potential of new ultrasonic therapy devices able to work both in Transmit and Receive modes will be emphasized. A review of the work under achievement at L.O.A. using this new generation of HIFU prototypes on the monitoring, motion correction and aberrations corrections will be presented.

  20. MR-guided high intensity focused ultrasound thermoablation under temperature mapping monitoring for the treatment of uterine fibroids

    International Nuclear Information System (INIS)

    Xu Yonghua; Fu Zhongxiang; Yang Lixia; Chen Wenzhi; Liu Yingjiang; Ye Fangwei; Wang Zhibiao

    2010-01-01

    Objective: To assess the feasibility and effectiveness of MR-guided high intensity focused ultrasound (MRgHIFU) thermoablation under temperature mapping monitoring for the treatment of uterine fibroids. Methods: MRgHIFU was carried out in 52 patients with a total of 61 uterine fibroids. The mean age was (39.6 ± 7.3) years (ranged between 23-56 years), and the average diameter of the fibroids was(6.1 ± 2.1) cm (ranged between 1.2-10.7 cm). This procedure was accomplished by a JM-HIFU system (Mode JM15100, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Avanto TIM, Siemens, Germany), which provided real-time guidance and temperature mapping. Contrast-enhanced MR imaging was performed both immediately and three months after MRgHIFU treatment in order to evaluate the efficacy of thermal ablation. The treatment time and adverse events were recorded. The percentage of ablation volume was calculated after the procedure. The changes in the size of the uterine fibroid and in the clinical symptoms three months after the procedure were evaluated. Results: The mean fibroid volume for each case before and three months after MRgHIFU treatment was (113.3 ± 87.7) cm 3 and (58.1 ± 45.0) cm 3 respectively(P 3 (ranged between 7.7-282.9 cm 3 ) of fibroid volume was (19.8 ± 8.8) minutes. The mean energy of focused ultrasound delivered into the ablated fibroid tissue was (7.1 ± 6.7) J/mm 3 (ranged between 0.9-32.1 J/mm 3 ). The symptoms were relieved, the mean overall points decreased from (24.7 ± 4.8) to (16.7 ± 3.2) after therapy (P < 0.05). One patient experienced mild skin burn (small blisters), which subsided within two days. No other adverse events and complications were observed. Two patients got pregnant at three months after the treatment. Conclusion: MR-guided high intensity focused ultrasound treatment is a safe, effective and non-invasive technique for ablating uterine fibroids. A single thermoablation procedure is enough to

  1. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  2. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    Science.gov (United States)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  3. Stress predicts the trajectory of wound healing in living kidney donors as measured by high-resolution ultrasound.

    Science.gov (United States)

    Maple, Hannah; Chilcot, Joseph; Lee, Vanessa; Simmonds, Shanique; Weinman, John; Mamode, Nizam

    2015-01-01

    Psychological stress has been shown to be an influential factor on the rate of wound healing; however these findings have been demonstrated predominantly on artificially created wounds. Due to the absence of major co-morbidities, living kidney donors are a unique group in which to study this relationship. This study investigated the effect of preoperative stress and personality on surgical wound healing through the use of high-resolution ultrasound. Living kidney donors due to undergo a hand-assisted laparoscopic donor nephrectomy were asked to complete the Perceived Stress Scale, the Life Orientation Test-Revised and the Ten Item Personality Inventory prior to surgery. High-resolution ultrasound scans of surgical wounds were performed on the first three post-operative days and once following discharge (mean=15.3 days; s.d. 2.8). Two measurements from each image were obtained: wound width (size of wound) and median intensity (a marker of tissue fluid). Latent Growth Curve Models (LGCMs) were used to evaluate wound healing. 52 living kidney donors participated. Higher pre-operative life stress, lower optimism and lower conscientiousness were associated with delayed wound healing in living kidney donors for both outcomes. Increased emotional stability was associated with faster wound healing as demonstrated by a change in median intensity. Possible confounding factors, such as age, BMI, smoking status, local anaesthetic use and wound drain placement were not influential. This study, which measured wound healing in a novel patient sample using a novel technique, has demonstrated a negative association between stress and wound healing and the positive influence of optimism, conscientiousness and emotional stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  5. High-resolution, low-delay, and error-resilient medical ultrasound video communication using H.264/AVC over mobile WiMAX networks.

    Science.gov (United States)

    Panayides, Andreas; Antoniou, Zinonas C; Mylonas, Yiannos; Pattichis, Marios S; Pitsillides, Andreas; Pattichis, Constantinos S

    2013-05-01

    In this study, we describe an effective video communication framework for the wireless transmission of H.264/AVC medical ultrasound video over mobile WiMAX networks. Medical ultrasound video is encoded using diagnostically-driven, error resilient encoding, where quantization levels are varied as a function of the diagnostic significance of each image region. We demonstrate how our proposed system allows for the transmission of high-resolution clinical video that is encoded at the clinical acquisition resolution and can then be decoded with low-delay. To validate performance, we perform OPNET simulations of mobile WiMAX Medium Access Control (MAC) and Physical (PHY) layers characteristics that include service prioritization classes, different modulation and coding schemes, fading channels conditions, and mobility. We encode the medical ultrasound videos at the 4CIF (704 × 576) resolution that can accommodate clinical acquisition that is typically performed at lower resolutions. Video quality assessment is based on both clinical (subjective) and objective evaluations.

  6. Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery

    Science.gov (United States)

    Ameri, Golafsoun; Son, Jungik; Liang, Jingwei; Foster, F. Stuart; Ganapathy, Sugantha; Peters, Terry M.

    2017-03-01

    Epidural anesthesia is one of the most commonly used and yet challenging techniques employed for pain management and anesthesia delivery. The major complications of this procedure are due to accidental dural puncture, with an incidence of 1-3%, which could lead to both temporary and irreversible permanent neurological complications. Needle placement under ultrasound (US) guidance has received increasing interest for improving needle placement accuracy. However, poor needle visibility in US, difficulties in displaying relevant anatomical structure such as dura mater due to attenuation and bone shadowing, and image interpretation variability among users pose significant hurdles for any US guidance system. As a result, US guidance for epidural injections has not been widely adopted for everyday use for the performance of neuraxial blocks. The difficulties in localizing the ligamentum flavum and dura with respect to the needle tip can be addressed by integrating A-mode US, provided by a single-element transducer at the needle tip, into the B-mode US guidance system. We have taken the first steps towards providing such a guidance system. Our goal is to improve the safety of this procedure with minimal changes to the clinical workflow. This work presents the design and development of a 20 MHz single-element US transducer housed at the tip of a 19 G needle hypodermic tube, which can fit inside an epidural introducer needle. In addition, the results from initial transducer characterization tests and performance evaluation of the transducer in a euthanized porcine model are provided.

  7. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    Science.gov (United States)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  8. Mesotherapy with an Intradermal Hyaluronic Acid Formulation for Skin Rejuvenation: An Intrapatient, Placebo-Controlled, Long-Term Trial Using High-Frequency Ultrasound.

    Science.gov (United States)

    Tedeschi, Aurora; Lacarrubba, Francesco; Micali, Giuseppe

    2015-02-01

    Mesotherapy with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. High-frequency ultrasound (20-100 MHz) is a non-invasive technique that has been used to evaluate age-related dermal changes. The presence and the degree of a typical subepidermal low-echogenic band (SLEB) are photoaging related: the lower the SLEB echogenicity, the higher the photoaging. The aim of this trial was to evaluate, through ultrasound imaging, the long-term effects of microinjections of HA on SLEB echogenicity. Twenty-two women with clinical and ultrasound signs of moderate photoaging were enrolled in the study. Treatment consisted of multiple microinjections of HA salts of biotechnological origin on the dorsum of one hand, once weekly for 4 weeks and, successively, once monthly for 4 months (group A) or 9 months (group B). The dorsum of the other hand of each subject was injected with saline solution and used as a control. In all subjects, high-frequency ultrasound (22 MHz) was performed to evaluate SLEB echogenicity changes during treatment. Eighteen out of 22 patients completed the study. At the end of 4 weeks, an ultrasound increase of dermal echogenicity was observed in 13 subjects (seven of group A and six of group B), which we considered as "responders". In these patients, the Student's t-test showed a significant increase from baseline of SLEB pixel numbers of +24 % (P mesotherapy with HA may effectively improve skin aging and photoaging, as supported by quantifiable ultrasound data showing significant changes in SLEB density over time.

  9. Effects of ultrasound therapy with taping PNF training and PNF training with taping in treatment and rehabilitation of sports injuries of high ankle sprain

    Directory of Open Access Journals (Sweden)

    D L Charly Daniel

    2017-01-01

    Conclusions: It was concluded that combining ultrasound with taping and PNF training with taping were found to be more beneficial in the treatment and rehabilitation of high ankle sprain injury. The combined effect of UT, PNF training, and taping may be explored by future researchers.

  10. Cluster analysis of DCE-MRI data identifies regional tracer-kinetic changes after tumor treatment with high intensity focused ultrasound

    NARCIS (Netherlands)

    Jacobs, Igor; Hectors, Stefanie J. C. G.; Schabel, Matthias C.; Grüll, Holger; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    Evaluation of high intensity focused ultrasound (HIFU) treatment with MRI is generally based on assessment of the non-perfused volume from contrast-enhanced T1-weighted images. However, the vascular status of tissue surrounding the non-perfused volume has not been extensively investigated with MRI.

  11. Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases

    NARCIS (Netherlands)

    Lam, Mie K; Huisman, Merel; Nijenhuis, Robbert J; van den Bosch, Maurice; Viergever, Max A; Moonen, Chrit Tw; Bartels, LW

    2015-01-01

    BACKGROUND: Magnetic resonance (MR)-guided high-intensity focused ultrasound has emerged as a clinical option for palliative treatment of painful bone metastases, with MR thermometry (MRT) used for treatment monitoring. In this study, the general image quality of the MRT was assessed in terms of

  12. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids : Proof-of-Concept Study

    NARCIS (Netherlands)

    Ikink, Marlijne E; van Breugel, Johanna M M; Schubert, Gerald; Nijenhuis, Robbert J; Bartels, LW; Moonen, Chrit T W; van den Bosch, Maurice A A J

    2015-01-01

    Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation with direct skin cooling (DISC) during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were

  13. [Ultrasound findings in rhabdomyolysis].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Osteoid osteoma: Magnetic resonance guided high intensity focused ultrasound for entirely non-invasive treatment. A prospective developmental study

    Science.gov (United States)

    Napoli, A.; de Soccio, V.; Cartocci, G.; Boni, F.; Anzidei, M.; Catalano, C.

    2017-03-01

    To determine the effect of acoustic energy delivered during MR guided Focused Ultrasound (MRgFUS) treatment of symptomatic osteoid osteomas. This prospective, IRB approved study involved 15 consecutive patients (11 m; 4f; mean age, 21) with clinical and imaging diagnosis of Osteoid Osteoma; all patients underwent MRgFUS ablation (ExAblate, InSightec; Discovery 750 MR unit, GE). Lesions located in the vertebral body were excluded, while lesions in proximity to joints or neurovascular bundles were included. Treatment success was determined at clinical and imaging follow-up at 1, 6 and 12 months post-treatment. A visual Analog Pain Score (VAS) was used to assess changes in symptoms. Bone changes at nidus site were evaluated on the basis of CT and dynamic ce-MR imaging (Gd-Bopta; Bracco) pre- and post-treatment. Treatment was carried out using a variable number of sonications (mean 4±1.8) with a mean energy deposition of 866±211 J. There were no treatment- or anesthesia-related complications. A statistically significant (p=0.001) difference was noted between the overall pre- and post-treatment mean VAS scores (8.3±1.6 and 0.6±1.5, respectively). Two treatments were conducted in patients with prior CTgRFA failure and needed two different session for achieving complete clinical successful. At imaging, edema and hyperemia associated with typical osteoid osteoma, gradually disappeared in all lesions. No apparent relationship between nidus vascular extinction and successful outcome was found. Variable reabsorption degree of sclerotic reaction was observed with nidus disappearance in 4 cases (27%). Treatment of osteoid osteoma using MR guided Focused Ultrasound can be performed safely with a high rate of success and without treatment related morbidity; our results indicated also a positive trend to bone rearrangement after treatment.

  15. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    Science.gov (United States)

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. The effect of high-power ultrasound and gas phase plasma treatment on Aspergillus spp. and Penicillium spp. count in pure culture.

    Science.gov (United States)

    Herceg, Z; Režek Jambrak, A; Vukušić, T; Stulić, V; Stanzer, D; Milošević, S

    2015-01-01

    The aim of this study was to investigate and compare two nonthermal techniques in the inactivation of moulds. High power ultrasound (20 kHz) and nonthermal gas phase plasma treatments were studied in the inactivation of selected moulds. Aspergillus spp. and Penicillium spp. were chosen as the most common mould present in or on food. Experimental design was introduced to establish and optimize working variables. For high power ultrasound, the greatest reduction of moulds (indicated by the total removal of viable cells) was obtained after ultrasound treatments at 60°C (thermosonication) for 6 and 9 min (power applied, 20-39 W). For plasma treatment, the greatest inactivation of moulds was observed for the longest treatment time (5 min) and lowest sample volume (2 ml), (AP12, AP13, PP12 and PP13). The great amount of applied energy required for achieving a partial log reduction in viable cells is the limiting factor for using high-power ultrasound. However, both treatment methods could be combined in the future to produce beneficial outcomes. This study deals with nonthermal food processing techniques and the results and findings present in this study are the root for further prospective studies. The food industry is looking for nonthermal methods that will enable food preservation, reduce deterioration of food compounds and structure and prolong food shelf life. © 2014 The Society for Applied Microbiology.

  17. Fetal Ultrasound

    Science.gov (United States)

    ... isn't recommended simply to determine a baby's sex. Similarly, fetal ultrasound isn't recommended solely for the purpose of producing keepsake videos or pictures. If your health care provider doesn' ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... nodule felt by a physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...