WorldWideScience

Sample records for high flux heat

  1. High heat flux single phase heat exchanger

    Science.gov (United States)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  2. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  3. Baseline high heat flux and plasma facing materials for fusion

    Science.gov (United States)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  4. Hybrid Heat Pipes for High Heat Flux Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal transport requirements for future spacecraft missions continue to increase, approaching several kilowatts. At the same time the heat acquisition areas...

  5. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  6. O+ and H+ ion heat fluxes at high altitudes and high latitudes

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2014-08-01

    Full Text Available Higher order moments, e.g., perpendicular and parallel heat fluxes, are related to non-Maxwellian plasma distributions. Such distributions are common when the plasma environment is not collision dominated. In the polar wind and auroral regions, the ion outflow is collisionless at altitudes above about 1.2 RE geocentric. In these regions wave–particle interaction is the primary acceleration mechanism of outflowing ionospheric origin ions. We present the altitude profiles of actual and "thermalized" heat fluxes for major ion species in the collisionless region by using the Barghouthi model. By comparing the actual and "thermalized" heat fluxes, we can see whether the heat flux corresponds to a small perturbation of an approximately bi-Maxwellian distribution (actual heat flux is small compared to "thermalized" heat flux, or whether it represents a significant deviation (actual heat flux equal or larger than "thermalized" heat flux. The model takes into account ion heating due to wave–particle interactions as well as the effects of gravity, ambipolar electric field, and divergence of geomagnetic field lines. In the discussion of the ion heat fluxes, we find that (1 the role of the ions located in the energetic tail of the ion velocity distribution function is very significant and has to be taken into consideration when modeling the ion heat flux at high altitudes and high latitudes; (2 at times the parallel and perpendicular heat fluxes have different signs at the same altitude. This indicates that the parallel and perpendicular parts of the ion energy are being transported in opposite directions. This behavior is the result of many competing processes; (3 we identify altitude regions where the actual heat flux is small as compared to the "thermalized" heat flux. In such regions we expect transport equation solutions based on perturbations of bi-Maxwellian distributions to be applicable. This is true for large altitude intervals for protons

  7. High-heat-flux sensor calibration using calorimetry

    Science.gov (United States)

    Ballestrín, J.; Estrada, C. A.; Rodríguez-Alonso, M.; Pérez-Rábago, C.; Langley, L. W.; Barnes, A.

    2004-08-01

    This paper demonstrates a calorimetric procedure for calibrating high-heat-flux sensors. The results are in agreement with calibrations obtained using black-body radiation. However, the proposed method has the potential of being more accurate than traditional approaches. This new procedure calibrates sensors to measure correctly under conditions of concentrated solar radiation. At present, the thermal balance calibration technique in the laboratory is limited to solar irradiances of approximately 100 kW m-2. The next step is to demonstrate this methodology to higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at Plataforma Solar de Almería.

  8. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  9. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  10. One-dimensional Simulation of Heat Structure Melting and Evaporation Under High Heat Flux Condition Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In order to establish the successful application for high heat flux condition, it is necessary to analyze material damage including possible phase change such as melting and evaporation due to high heat flux. In addition, in terms of coolant, water which is widely used for coolant has serious concern in that critical heat flux (CHF) occurrence can degrade the cooling capability and aggravate the integrity of cooling components. However, MARS code cannot simulate the melting and evaporation of materials under high heat flux or heat generation condition by itself due to the absence of those models. In the present study, therefore, one dimensional heat conduction calculation module for heat structure melting and evaporation was developed and coupled with MARS to overcome the limitation of material phase change simulation capability in MARS code. As clarifying the high heat flux problem, plasma facing component of Korean demonstration fusion reactor, K-DEMO, was selected. The one-dimensional simulation of melting and evaporation of high heat flux component was performed using MARS and newly developed phase change simulation module. The target component and high heat flux condition were referred to geometry of plasma facing component in Korean fusion demonstration plant and fusion reactor's plasma disruption event. In order to simulate melting and evaporation, effective heat capacity method and evaporation model were applied to phase change simulation module. The simulation results showed several phenomena such as melting, evaporation and CHF occurrence in coolant channel.

  11. Forced bulk boiling at high heat fluxes; Erzwungenes Blasensieden bei hohen Waermestromdichten

    Energy Technology Data Exchange (ETDEWEB)

    Knipping, Tobias; Humpfer, Frank; Arnemann, Michael [Hochschule Karlsruhe - Technik und Wirtschaft (HsKA) (Germany). Fakultaet fuer Maschinenbau und Mechatronik fuer Kaelte-, Klima- und Umwelttechnik (IKKU)

    2013-05-15

    The influence of very high heat flux densities (10{sup 5} to 10{sup 7} W/m{sup 2}) on the boiling behavior of R404A is investigated. By using a new evaporator design it is possible to change the evaporating effects even at these high heat flux densities to bulk boiling. This paper focuses on the experimental analysis of the new evaporator by varying the parameters geometry, mass flux, subcooling and fluid velocity. The results show that fluid velocity, mass flux and geometry have a high influence on the transferred heat-flow, while the subcooling of the liquid phase only has a small effect. (orig.)

  12. Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices

    Science.gov (United States)

    1993-06-01

    presented previously in Eq. (8). Bjorge , et al. (Ref. 170) and Stephan and Auracher (Ref. 171) later presented variations of the superposition approach...ofHeat Transfer, Vol. 90, May 1968, pp. 239-247. 170. Bjorge , R. W., Hall, G. R., and Rohsenow, W. M. "Correlation of Forced Convection Boiling Heat... Communications on Heat Mass Transfer, Vol. 18, No.5, September-October 1991, pp. 659-667. 383. Boyd, R. D., Sr. "Critical Heat Flux and Heat Transfer

  13. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  14. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  15. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    Directory of Open Access Journals (Sweden)

    Pezo Milada L.

    2016-01-01

    Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014

  16. A High Heat Flux Facility Design for Testing of Advanced Hydrocarbon Fuel Thermal Stability

    National Research Council Canada - National Science Library

    Maas, E; Irvine, S; Bates, R; Auyeung, T

    2004-01-01

    .... Of the existing thermal stability test rigs, none have the ability to accurately simulate the high heat flux conditions that will exist in the cooling channels of these new high-pressure hydrocarbon engines...

  17. Global anthropogenic heat flux database with high spatial resolution

    Science.gov (United States)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  18. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Ronald D. [Prairie View A& M Univ., TX (United States)

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  19. The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2015-11-01

    Full Text Available A thermoelectric generator (TEG device which uses solar energy as heat source would achieve higher efficiency if there is a higher temperature difference between the hot-cold ends. However, higher temperature or higher heat flux being imposed upon the hot end will cause strong thermal stress, which will have a negative influence on the life cycle of the thermoelectric module. Meanwhile, in order to get high heat flux, a Fresnel lens is required to concentrate solar energy, which will cause non-uniformity of heat flux on the hot end of the TEG and further influence the thermal stress of the device. This phenomenon is very common in solar TEG devices but seldom research work has been reported. In this paper, numerical analysis on the heat transfer and thermal stress performance of a TEG module has been performed considering the variation on the power of the heat flux being imposed upon the hot-end; the influence of non-uniform high heat flux on thermal stress has also been analyzed. It is found that non-uniformity of high heat flux being imposed upon the hot end has a significant effect on the thermal stress of TEG and life expectation of the device. Taking the uniformity of 100% as standard, when the heating uniformity is 70%, 50%, 30%, and 10%, respectively, the maximum thermal stress of TEG module increased by 3%, 6%, 12%, and 22% respectively. If we increase the heat flux on the hot end, the influence of non-uniformity on the thermal stress will be more remarkable.

  20. Radiant heat transfer network in the simulated protective clothing ; System under high heat flux

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Penders-van Elk, N.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A radiant network model was developed for design of the protective clothing system against solar and infrared radiative heat flux. A one-dimensional model was employed in the present study, because the aim of this study was to obtain precise temperature distribution through the system with use of a

  1. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  2. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  3. Development of a silicone ablator for high-heat-flux and high-shear-rate condition

    Science.gov (United States)

    Campbell, R. A.; Ramseyer, J. A.; Huntress, A.

    1972-01-01

    A silicone material was developed which gives suitable ablative protection in the high heat flux, high shear environments encountered in severe reentry applications, such as nose cones for ballistic vehicles and protection of leading edges or other critical areas of a vehicle. In addition, the ease of handling, low application cost, and room temperature cure make such a silicon material suitable nozzles for the large rockets necessary for vehicle launching. The development of this product is traced from the selection of suitable polymers through the choice of fillers and the finalization of filler loadings.

  4. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  5. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  6. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Greuner, H. [Max Planck Institute for Plasma Physics, Garching (Germany); Ehrke, G. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Böswirth, B.; Wang, Z. [Max Planck Institute for Plasma Physics, Garching (Germany); Clark, E. [University of Tennessee, Knoxville (United States); Lumsdaine, A. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Tretter, J. [Max Planck Institute for Plasma Physics, Garching (Germany); McGinnis, D.; Lore, J. [Oak Ridge National Laboratory, USA National Laboratory, Oak Ridge, Tennessee (United States); Ekici, K. [University of Tennessee, Knoxville (United States)

    2016-11-01

    Highlights: • Aim of scraper element: reduction of heat loads on high heat flux divertor ends. • Design: actively water-cooled for 20 MW/m{sup 2} local heat loads. • Technology: CFC NB31 monoblocks bonded by HIP to CuCrZr cooling tube. • Successful high heat flux testing up to 20 MW/m{sup 2}. - Abstract: The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equipped with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m{sup 2}. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. The prototypes are presently under fabrication.

  7. High speed infrared camera diagnostic for heat flux measurement in NSTX.

    Science.gov (United States)

    Ahn, J-W; Maingi, R; Mastrovito, D; Roquemore, A L

    2010-02-01

    A new high speed infrared camera has been successfully implemented and produced first set of heat flux measurements on the lower divertor tiles in the NSTX tokamak. High spatial and temporal resolutions, 6.4 mm and 1.6-6.3 kHz, respectively, enable us to investigate detailed structure of heat flux deposition pattern caused by transient events such as edge localized modes. A comparison of the data with a slow infrared camera viewing the same region of interest shows good agreement between the two independent measurements. Data analysis for various plasma conditions is in progress.

  8. High Heat Flux Testing of Tungsten PFCs for the Fusion Reactor Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Tungsten divertor plasma facing components (PFCs) were fabricated by using hot isostatic-pressing (HIP) bonding and vacuum plasma spray method (VPS) for the fusion reactor development. Tungsten mockups were designed for the high heat flux test with the Korean high heat flux test facility - electron beam (KoHLT-EB), which was constructed for the performance qualification of various PFCs. KoHLT-EB was used to qualify the PFCs performances of each fusion research. The high heat load conditions were simulated by using a thermo-hydraulic analysis tool with the ANSYS-CFX code. A high heat flux testing was performed up to the thermal life-time of each mockup with the evaluated conditions in 1 ⁓ 5 MW/m{sup 2}. HIP-bonded testing mockups consisted of 2 mm pure tungsten PFCs and ferritic-martensitic steel (FMS) as structural materials, and VPS mockups are comprised with 1 ⁓ 2 mm coated tungsten layer and FMS. These tungsten mockups are the candidate for the blanket and divertor in DEMO or a fusion power reactor. For the thermal fatigue test, two types of tungsten mock-ups were fabricated by using HIP bonding and VPS method for the fusion reactor development. The verification of the cooling performance was tested under the operation condition of ITER and fusion reactor. After the completion of the preliminary mockup test and facility qualification, the high heat flux test facility assess the performance test for two type of plasma facing components.

  9. INNOVATIVE HEAT FLUX SENSOR

    Directory of Open Access Journals (Sweden)

    G. N. Lukyanov

    2017-02-01

    Full Text Available Subject of Study.We present a method for heat flux measuring with the use of polarization properties of ferroelectric ceramics. Heat flux innovative sensor is developed on the basis of the proposed method. Its experimental verification is carried out. Method. The measurements are based on maintaining a balance between the processes caused by thermal energy and the energy of the electric field in the ferroelectric ceramics. Main Results. The testing of the proposed heat flux sensor has been organized in two stages. At the first stage the primary calibration has been performed by calibrated sensors ITP MG4.03/x(y “Potok”. At the second stage the testing of heat flux sensor has been carried out for calculating the quantity of heat. The comparison of the results to the readings of serial heat meters VKT-7 and STK-15 has been performed. Experiments have shown that the polarization properties of the ferroelectric ceramics can be used to measure the heat flow. Practical Relevance. The proposed sensor can be recommended as an apartment-level heat meter. The calibration of the proposed heat flux sensor with more accurate measurement tools gives the possibility to include it on the State Register of Measuring Instruments.

  10. High heat flux test of tungsten brazed mock-ups developed for KSTAR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, K.M., E-mail: kyungmin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Hong, S.H.; Kim, H.T.; Park, S.H.; Park, H.K.; Ahn, H.J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, S.K.; Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    The tungsten (W) brazed flat type mock-up which consists of W, OFHC-Cu (oxygen-free high conductive copper) and CuCrZr alloy has been designed for KSTAR divertor in preparation for KSTAR upgrade with 17 MW heating power. For verification of the W brazed mock-up, the high heat flux test is performed at KoHLT-EB (Korea High Heat Load Test Facility-Electron Beam) in KAERI (Korea Atomic Energy Research Institute). Three mock-ups are tested for several thousand thermal cycles with absorbed heat flux up to 5 MW/m{sup 2} for 20 s duration. There is no evidence of the failure at the bonding joints of all mock-ups after HHF test. Finite element analysis (FEA) is performed to interpret the result of the test. As a result, it is considered that the local area in the water is in the subcooled boiling regime.

  11. A unique high heat flux facility for testing hypersonic engine components

    Science.gov (United States)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  12. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  13. Activity of the European high heat flux test facility: FE200

    Energy Technology Data Exchange (ETDEWEB)

    Bobin-Vastra, I. [AREVA Centre Technique de Framatome, FE200, Porte Magenta BP181, 71200 Le Creusot Cedex (France) and EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: isabelle.bobinvastra@framatome-anp.com; Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul lez Durance (France)]. E-mail: escourbi@drfc.cad.cea.fr; Merola, M. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: mario.merola@tech.efda.org; Lorenzetto, P. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: lorenzp@tech.efda.org

    2005-11-15

    FE200 is an electron beam (EB) 200 kW test facility resulting since 1991 from partnership between Framatome Technical Centre in Le Creusot (France) and Tore Supra team in CEA Cadarache (France). It is dedicated to high heat flux testing of small and medium-sized plasma facing components. The performed tests are thermal fatigue tests (100,000 since 1992), critical heat fluxes, disruptions, glancing incidence tests on materials such as Cu-Al25 and CuCrZr alloys, carbon fibre composite (CFC) or tungsten (W). The thermal fatigue behaviour of some primary first wall (PFW), hypervapotron and divertor components is described.

  14. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  15. Experimental and Numerical Investigations of RP-2 Under High Heat Fluxes

    National Research Council Canada - National Science Library

    Billingsley, M. C; Lyu, H. Y; Bates, R. W

    2007-01-01

    ... such as RP-2, an advanced grade of ultra-low sulfur rocket kerosene. This paper reports recent experiments and numerical simulations of RP-2 cooled thermal stability tests conducted in the AFRL High Heat Flux Facility located at Edwards AFB, CA...

  16. High heat flux test on the thermocouple embedded ITER neutral beam duct liner mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.K., E-mail: ckpark@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, H.S., E-mail: hskim@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, G.H.; Ahn, H.J. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, S.K.; Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Urbani, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St. Paul Lez Durance, Cedex (France)

    2016-11-01

    Highlights: • Twenty thermocouples have been installed on the NB duct liner full scale mock-up. • High heat flux test has been performed. • Four thermocouple fixation schemes had been verified by high heat flux test. • Temperature behavior of the NB duct liner has been successfully simulated. - Abstract: The ITER neutral beam duct liner is located within the tokamak VV port extension and is mounted on the VV port extension flange. The duct liner is made from CuCrZr copper alloy and is actively cooled through deep-drilled channels. A number of thermocouples should be installed on the neutral beam duct liner in order to provide the ability to detect temperature excursions on the surface of the duct liner. Twenty thermocouples have been installed on the neutral beam duct liner full scale mock-up, and a high heat flux test has been performed at the KoHLT-EB test facility, in order to simulate temperature detection in the neutral beam duct liner during ITER operation. For each thermocouple, the fixation method has been verified by high heat flux test with uniform electron beam profile, and the temperature behavior of the neutral beam duct liner has been successfully simulated by Gaussian electron beam profile.

  17. Evaluation of High Temperature Composites Thermal Properties under Different Heat Flux Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Bahramian

    2014-06-01

    Full Text Available The thermal protection of structures in vehicles, at instantaneous high thermal shocks, would be more effective and economically feasible among other thermal protection methods using the passive heat shields especially charring the ablative composites. The most important limitations reported are lack of compiled knowledge on designing heat shield with optimal thickness under real conditions and high surface erosion rate and low mechanical strength of char layer of a composite created by ablation process. In this paper SiAlON ceramic composites, reinforced with short carbon fiber, are identified as high performance heat shields for challenging these limitations. Ablation rate and effective thermal diffusivity at different external heat fluxes are determined and calculated using oxyacetylene flame test and modeling of temperature distributions in ablation process for evaluation of thermal protection performance and effective thermal diffusivity of this composite, as a thermal protection system. The results of this work have indicated that the carbon fiber reinforced SiAlON ceramic composite can be considered as a high ablation heat shield. Under the same condition of ablation test, SiAlON ceramic composites reinforced by carbon fiber show higher ablation performance relative to other commercial carbon fiber reinforced composite heat shields. At 8500 and 5000 kWm-2 external heat flux the ablation rates of this composite are 0.075 and 0.026 mms-1, respectively. Also, at 2500 kWm-2 external heat flux and test duration time of less than 25 s, this composite displays an adequate thermal shock protection with maximum flexural strength loss of about 23.4 %.

  18. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  19. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  20. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  1. Hypersonic engine component experiments in high heat flux, supersonic flow environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1993-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  2. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  3. An experimental study of critical heat flux of flow boiling in minichannels at high reduced pressure

    Science.gov (United States)

    Belyaev, A. V.; Dedov, A. V.; Varava, A. N.; Komov, A. T.

    2017-10-01

    This paper presents an experimental setup and experimental data for critical heat flux. The hydraulic loop of the experimental setup allows it to maintain stable flow parameters at the inlet of the test section at pressures up to 2.7 MPa and temperatures up to 200 °C. Experiments of hydrodynamics and heat transfer were performed for R113 and RC318 in two vertical channels with diameters of 1.36 and 0.95 mm and lengths of 200 and 100 mm, respectively. The inlet pressure-to-critical pressure ratio (reduced pressure) was pr = p/pcr = 0.15 ÷ 0.9, the mass flux ranges were between 700 and 4800 kg/(m2s), and inlet temperature varied from 30 to 180 °C. The primary regimes were obtained for conditions that varied from highly subcooled flows to saturated flows. For each regime with fixed parameters, the maximum possible heating power value was applied, with the maximum limited by the maximum output of the power supply, the onset of dryout, or wall temperatures exceeding 350 °C. The influence of flow conditions (i.e., mass flow rate, pressure, inlet temperature, and the channel diameter) on the critical heat flux is presented.

  4. Augmentation of Critical Heat Flux of High Velocity Liquid Jet Flow utilizing Flat-Narrow Rectangular Channel

    Science.gov (United States)

    Sakurai, Hisashi; Koizumi, Yasuo; Ohtake, Hiroyasu

    Sub-cooled flow boiling heat transfer experiments were performed for narrow-flat flow passages of 2 mm wide and 0.2 mm high. A heat transfer surface of 2 mm × 2 mm was placed at the just downstream of the flow channel outlet. A fast wall plane-jet was formed on the heat transfer surface and space for vapor generated on the heat transfer surface to leave freely form the plane jet was provided The experiments covered the flow rate from 5 m⁄s through 20 m⁄s and the inlet sub-cooling from 30 K through 70 K. Critical heat fluxes were greatly augmented about twice compared with those in the previous experiments where the heat transfer surface was located at the outlet end of the same flow channel as that in the present experiments. This has indicated that the present idea of the flow system is effective to enhance the critical heat flux. When the flow velocity was slower than 10 m⁄s, a large secondary bubble that was formed as a result of coalescence of many primary bubbles on the heat transfer surface covered the heat transfer surface. The large-coalesced bubble triggered the occurrence of the critical heat flux. When the flow velocity became faster than 10 m⁄s, the heat transfer surface was covered with many tiny-primary bubbles even at the critical heat flux condition. The critical heat fluxes in the present experiments were much larger than predictions of correlations. The triggering mechanism of the critical heat flux condition was proposed based on the observation mentioned above. It has two parts; for low flow velocity and for high flow velocity. The boundary is 10 m⁄s. In both cases, disappearance of a liquid film under the bubble due to evaporation is related to the appearance of the critical heat flux condition. The predicted critical heat fluxes were larger than that measured, however, qualitatively agreed well.

  5. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.

    2012-02-01

    A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.

  6. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    Science.gov (United States)

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m-2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  7. Reliable MOSFET operation using two-phase microfluidics in the presence of high heat flux transients

    Science.gov (United States)

    Govind Singh, Shiv; Agrawal, Amit; Duttagupta, Siddhartha P.

    2011-10-01

    Randomly generated heat flux transients affect the reliability of advanced integrated circuits and can induce severe nonlinearity in the device response, resulting in the degradation of a gate dielectric in metal oxide field effect transistors (MOSFETs). The effect of high heat flux transients on MOSFET operation and mitigation, using single-phase and two-phase on-chip microfluidics, is reported in this paper. A prototype comprising monolithically integrated MOSFETs, resistance temperature detector (RTD) arrays, simulated transient source (microheaters) and microfluidic networks was developed. The application of a 10 s transient (153 W cm-2) led to the degradation of subthreshold swing (S) from 120 to 240 mV/decade. However, in the presence of water flow, effective mitigation of S (up to 75%) is observed. The rate of mitigation is higher at lower flow rates because of the higher heat-transfer efficiency for two-phase flow. Thus, an appropriate selection of flow parameters can lead to optimized cooling. Additionally, we propose a strategy to localize the transient heat sources based on the temperature profiles generated using an on-chip, distributed RTD sensor array. The proposed methodology can be applied in practical integrated circuits for localization and characterization of heat sources leading to modifications in the circuit design or process integration steps.

  8. High heat flux testing of mock-ups for a full tungsten ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Constans, S.; Jouvelot, J.L.; Vastra, I. Bobin [AREVA NP, Centre Technique, Fusion, 71200, Le Creusot (France); Missirlian, M.; Richou, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2011-10-15

    In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, the EU-DA launched an extensive R and D program. It consisted in its initial phase in the high heat flux (HHF) testing of W mock-ups and medium scale prototypes up to 20 MW/m{sup 2} in the AREVA FE 200 facility (F). Critical heat flux (CHF) experiments were carried out on the items which survived the above thermal fatigue testing. After 1000 cycles at 10 MW/m{sup 2}, the full W Plasma Facing Components (PFCs) mock-ups successfully sustained either 1000 cycles at 15 MW/m{sup 2} or 500 cycles at 20 MW/m{sup 2}. However, some significant surface melting, as well as the complete melting of a few monoblocks, occurred during the HHF thermal fatigue testing program representative of the present ITER requirements for the strike point region, namely 1000 cycles at 10 MW/m{sup 2} followed by 1000 cycles at 20 MW/m{sup 2}. The results of the CHF experiments were also rather encouraging, since the tested items sustained heat fluxes in the range of 30 MW/m{sup 2} in steady-state conditions.

  9. Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser Testing using Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high heat fluxes, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired heat flux. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the heat flux in combination with forced air backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) heat flux as well as furnace cycling at 1163C for comparison. The lower heat flux showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high heat flux conditions. The higher heat flux results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and

  10. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream

    DEFF Research Database (Denmark)

    Rysgaard, Soren; Bendtsen, Jorgen; Mortensen, John

    2018-01-01

    or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature...... and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 +/- 21 mW m(-2) which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain...

  11. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  12. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  13. Assessment of the W7-X high heat flux divertor with thermo-mechanical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei,Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Peng, Xuebing, E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Fellinger, Joris [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Boscary, Jean [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bykov, Victor [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Wang, Zhongwei [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Ye, Minyou; Song, Yuntao [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei,Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China)

    2016-11-01

    Highlights: • Thermo-mechanical analysis of HHF divertor module, TM2H. • Temperature of all parts is acceptable for long pulse operation. • Stress in different parts is mainly caused by different load. • Radial displacement need to be improved based on FE calculations. - Abstract: The Wendelstein 7-X is an experimental device designed with a stellarator magnetic confinement for stationary plasma operation (up to 30 min). At the first stage, it is scheduled to start with an inertially cooled test divertor unit and a shorter plasma pulse operation up to 10 s. After the completion of this stage, a water-cooled high heat flux (HHF) divertor will be installed for the steady-state operation phase. The divertor consists of individual target modules, which are sets of target elements armored with CFC tiles supported by a stainless steel structure and fed in parallel with manifolds. Detailed thermo-mechanical analysis of the target modules using the finite element method has been performed to validate and/or improve the elected design of the HHF divertor under operation. Different operating conditions have been studied and the effect of the variation of the convective heat flux pattern with localized heating loads as high as 10 MW/m{sup 2} onto the target elements has been computed. The analysis of the thermal response, stress distribution and deformation allowed a better understanding of the behavior of the divertor modules under operation and confirmed the suitability of the design.

  14. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  15. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m{sup 2}, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m{sup 2}. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing

  16. A Review of Boiling Heat Transfer Processes at High Heat Flux

    Science.gov (United States)

    1991-04-01

    Bjorge , et al. (Ref. 168) and Stephan and Auracher (Ref. 169) later presented variations of the superposition approach. For additional approaches... Bjorge , R. W., Hall, G. R., and Rohsenow, W. M., "Correlation of Forced Convection Boiling Heat Transfer Data," Int. J. Heat Mass Trans., Vol. 25, No

  17. Hybrid Heat Pipes for High Heat Flux Spacecraft Thermal Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Grooved aluminum/ammonia Constant Conductance Heat Pipes (CCHPs) are the standard for thermal control in zero-gravity. Unfortunately, they are limited in terms of...

  18. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    Energy Technology Data Exchange (ETDEWEB)

    Gotovsky, M.A. [Polzunov Institute, Saint Petersburg (Russian Federation)

    2001-07-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  19. A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cheng-Hung; Lo, Hung-Chi [Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 701, (Taiwan)

    2006-10-15

    The time-dependent heat flux generated in rotor and stator for the high speed electric motor is determined in this three-dimensional inverse heat conduction problem. The inverse algorithm utilizing the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4 is applied successfully in the present study in accordance with the simulated measured temperature distributions on some proper exterior surfaces. No cooling systems can be designed before the heat fluxes are estimated and identified. Two different functional forms for heat fluxes with different temperature measurement errors are used in the numerical experiments to illustrate the validity of the inverse algorithm. Results of the numerical simulation show that due to the structure of the cooling passages for motor housing, the estimated heat flux lying under the cooling passages is not accurate. However, when the concept of effective heat flux is applied, a reliable time-dependent heat flux can be obtained by using the present inverse algorithm. (author)

  20. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2010-02-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  1. Calibration of high-heat-flux sensors in a solar furnace

    Science.gov (United States)

    Ballestrín, J.; Rodríguez-Alonso, M.; Rodríguez, J.; Cañadas, I.; Barbero, F. J.; Langley, L. W.; Barnes, A.

    2006-12-01

    The most common sensors used for the measurement of high solar irradiance are the Gardon gauges, which are usually calibrated using a black body at a certain temperature as the radiant source. This calibration procedure is assumed to produce a systematic error when solar irradiance measurements are taken using these sensors. This paper demonstrates a calorimetric method for calibrating these high-heat-flux gauges in a solar furnace. This procedure has enabled these sensors to be calibrated under concentrated solar radiation at higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at the Plataforma Solar de Almería. Working at higher irradiances has allowed the uncertainty in the calibration constant of these sensors to be reduced. This work experimentally confirms the predicted systematic errors committed when measuring high solar irradiances using Gardon sensors calibrated with a black body.

  2. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  3. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  4. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Meunier, L. [Fusion for Energy, 08019 Barcelona (Spain); Kuznetsov, V. [Efremov Institute, FSUE NIIEFA, St. Petersburg, 196641 (Russian Federation); Beaumont, B.; Lamalle, P. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance (France); Conchon, D. [ATMOSTAT Co, F-94815 Villejuif (France); Languille, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2016-11-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  5. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  6. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; A. Hassanein

    2002-01-28

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices.

  7. Heat Flux Distribution of Antarctica Unveiled

    Science.gov (United States)

    Martos, Yasmina M.; Catalán, Manuel; Jordan, Tom A.; Golynsky, Alexander; Golynsky, Dmitry; Eagles, Graeme; Vaughan, David G.

    2017-11-01

    Antarctica is the largest reservoir of ice on Earth. Understanding its ice sheet dynamics is crucial to unraveling past global climate change and making robust climatic and sea level predictions. Of the basic parameters that shape and control ice flow, the most poorly known is geothermal heat flux. Direct observations of heat flux are difficult to obtain in Antarctica, and until now continent-wide heat flux maps have only been derived from low-resolution satellite magnetic and seismological data. We present a high-resolution heat flux map and associated uncertainty derived from spectral analysis of the most advanced continental compilation of airborne magnetic data. Small-scale spatial variability and features consistent with known geology are better reproduced than in previous models, between 36% and 50%. Our high-resolution heat flux map and its uncertainty distribution provide an important new boundary condition to be used in studies on future subglacial hydrology, ice sheet dynamics, and sea level change.

  8. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    Science.gov (United States)

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  9. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2017-10-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  10. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    Science.gov (United States)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  11. Design and performance of vacuum system for high heat flux test facility

    Science.gov (United States)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  12. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  13. Local structure of cobalt nanoparticles synthesized by high heat flux plasma process

    Science.gov (United States)

    Orpe, P. B.; Paris, E.; Balasubramanian, C.; Joseph, B.; Mukherjee, S.; Di Gioacchino, D.; Marcelli, A.; Saini, N. L.

    2017-08-01

    We have used high heat flux plasma synthesis process to grow Co those for the morphology, stoichiometry and the local structure as a function of plasma current. We find that the nanoparticles produced by the thermal plasma method have different shapes and size distribution with the plasma current being a key parameter in controlling the formation of composition, morphology and crystalline structure. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at Co K-edge have revealed formation of metal and metal oxide nanoparticles with the composition mainly depending on the arc current. While low plasma current appears to produce nanoparticles solely of CoO with a small amount of Co metal, the high plasma current tends to produce nanoparticles of CoO and Co3O4 oxides with increased amount of Co metal. The results are consistent with the morphological and structural analysis, showing nanoparticles of different shapes and size depending on the arc current.

  14. Heat flux viscosity in collisional magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C., E-mail: cliu@pppl.gov [Princeton University, Princeton, New Jersey 08544 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bhattacharjee, A. [Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  15. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    Directory of Open Access Journals (Sweden)

    Sun-Kyu Lee

    2010-07-01

    Full Text Available A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state.

  16. Design and characterization of a high resolution microfluidic heat flux sensor with thermal modulation.

    Science.gov (United States)

    Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state.

  17. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    OpenAIRE

    Sun-Kyu Lee; Sung-Cheon Cho; Jung-Kyun Kim; Sung-Ki Nam

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-freque...

  18. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  19. Monitoring Delamination of Thermal Barrier Coating During Interrupted High-Heat Flux Laser Testing Using Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    Upconversion luminescence imaging of thermal barrier coatings (TBCs) has been shown to successfully monitor TBC delamination progression during interrupted furnace cycling. However, furnace cycling does not adequately model engine conditions where TBC-coated components are subjected to significant heat fluxes that produce through-thickness temperature gradients that may alter both the rate and path of delamination progression. Therefore, new measurements are presented based on luminescence imaging of TBC-coated specimens subjected to interrupted high-heat-flux laser cycling exposures that much better simulate the thermal gradients present in engine conditions. The TBCs tested were deposited by electron-beam physical vapor deposition (EB-PVD) and were composed of 7wt% yttria-stabilized zirconia (7YSZ) with an integrated delamination sensing layer composed of 7YSZ co-doped with erbium and ytterbium (7YSZ:Er,Yb). The high-heat-flux exposures that produce the desired through-thickness thermal gradients were performed using a high power CO2 laser operating at a wavelength of 10.6 microns. Upconversion luminescence images revealed the debond progression produced by the cyclic high-heat-flux exposures and these results were compared to that observed for furnace cycling.

  20. Turbulent fluxes of momentum and heat over land in the High-Arctic summer: the influence of observation techniques

    Directory of Open Access Journals (Sweden)

    Anna Sjöblom

    2014-06-01

    Full Text Available Different observation techniques for atmospheric turbulent fluxes of momentum and sensible heat were tested in a High-Arctic valley in Svalbard during two consecutive summers (June–August in 2010 and 2011. The gradient method (GM and the bulk method (BM have been compared to the more direct eddy covariance method (ECM in order to evaluate if relatively robust and cheap instrumentation with low power consumption can be used as a means to increase the number of observations, especially at remote locations where instruments need to be left unattended for extended periods. Such campaigns increase knowledge about the snow-free surface exchange processes, an area which is relatively little investigated compared to snow-covered ground. The GM agreed closely to the ECM, especially for momentum flux where the two methods agree within 5%. For sensible heat flux, the GM produces, on average, approximately 40% lower values for unstable stratification and 67% lower for stable stratification. However, this corresponds to only 20 and 12 W m−2, respectively. The BM, however, shows a greater scatter and larger differences for both parameters. In addition to testing these methods, radiation properties were measured and the surface albedo was found to increase through the summer, from approximately 0.1 to 0.2. The surface energy budget shows that the sensible heat flux is usually directed upwards for the whole summer, while the latent heat flux is upwards in June, but becomes downward in July and August.

  1. Design of Phosphor Thermometry System for Transient High Heat Flux Surface Thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Frankel, Jay I [ORNL; Beshears, David L [EMCO

    2012-01-01

    basis for resolving such problems, it is intended for near-term application using the UTK s high-heat flux laser facility which is presently under development

  2. Preliminary Heat Transfer Characteristics of RP-2 Fuel as Tested in the High Heat Flux Facility (PREPRINT)

    National Research Council Canada - National Science Library

    Irvine, S. A; Burns, R. M

    2005-01-01

    ...., high aspect ratio cooling channels, various fuel thermal stability issues, material compatibility, heat transfer capability, effects related to dissolved oxygen or specific sulfur species contained...

  3. Results of high heat flux qualification tests of W monoblock components for WEST

    Science.gov (United States)

    Greuner, H.; Böswirth, B.; Lipa, M.; Missirlian, M.; Richou, M.

    2017-12-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m-2. These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected.

  4. Particulate generation during disruption simulation on the SIRENS high heat flux facility

    Science.gov (United States)

    Sharpe, John Phillip

    2000-12-01

    Successful implementation of advanced electrical power generation technology into the global marketplace requires at least two fundamental ideals: cost effectiveness and the guarantee of public safety. One general area of concern for fusion devices is the production of particulate, often referred to as dust or aerosol, from material exposed to high energy density fusion plasma. This dust may be radiologically activated and/or chemically toxic, and, if released to the environment, could become a hazard to the public. The goal of this investigation was to provide insight into the production and transport of particulate generated during the event of extreme heat loads to surfaces directly exposed to high energy density plasma. A step towards achieving this goal was an experiment campaign carried out with the S&barbelow;urface I&barbelow;nteṞaction E&barbelow;xperiment at Ṉorth Carolina S&barbelow;tate (SIRENS), a facility used for high heat flux experiments. These experiments involved exposing various materials, including copper, stainless steel 316, tungsten, aluminum, graphite (carbon), and mixtures of carbon and metals, to the high energy density plasma of the SIRENS source section. Comparison of simulation results with experiment observations provides an understanding of the physical mechanisms forming the particulate and indicates if mechanisms other than those in the model were present in the experiment. Key results from this comparison were: the predicted amount of mass mobilized from the source section was generally much lower than that measured, the calculated and measured particle count median diameters were similar at various locations in the expansion chamber, and the measured standard deviations were larger than those predicted by the model. These results implicate that other mechanisms (e.g., mobilization of melted material) in addition to ablation were responsible for mass removal in the source section, a large number of the measured particles were

  5. Options for a high heat flux enabled helium cooled first wall for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: f.arbe@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der

    2017-06-15

    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  6. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  7. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. proposes to develop a hybrid cooling loop technology for space thermal control. The proposed technology combines the high heat...

  8. High heat flux testing of mm thick tungsten coatings on carbon-fiber composites for the JT-60SA tokamak

    Science.gov (United States)

    Fukumoto, M.; Greuner, H.; Böswirth, B.; Elgeti, S.; Maier, H.; Neu, R.; Nakano, T.; Kuroki, N.; Noumi, K.; Takabatake, T.; Yoshida, N.

    2017-12-01

    High heat flux tests have been performed on 0.4 mm thick W coatings produced by vacuum plasma spraying on carbon-fiber composites (CFCs) for the future actively cooled W-coated CFC divertor target in JT-60SA. The surface temperature of the W coating increased up to 2000 °C at 15 MW m‑2 for 5 s. No severe morphological changes, for example, melting, cracking and delamination were observed although recrystallization and grain growth were found in the W coating. Cyclic loading at 15 MW m‑2 for 3 s with 50 cycles and additional 50 cycles with longer pulse length of 4 s produced again no severe morphological changes. Heat transfer analysis of the W-coated CFC sample during the high heat flux test showed that thermal resistance between W coatings and CFCs was negligibly low. This analysis also showed that the surface temperature of the 1 mm thick W coating on the actively cooled CFC monoblock divertor target in JT-60SA will be higher than the recrystallization temperature, 1200 °C, at the steady state heat flux of 15 MW m‑2. Therefore, a reduction of armor thickness of the future actively cooled W-coated CFC monoblock divertor target in JT-60SA could be necessary to decrease the surface temperature to less than the recrystallization temperature.

  9. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  10. Testing of actively cooled mock-ups in several high heat flux facilities-An International Round Robin Test

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany)]. E-mail: m.roedig@fz-juelich.de; Bobin-Vastra, I. [AREVA Centre Technique de Framatome, Porte Magenta, BP181, 71205 Le Creusot Cedex (France); Cox, S. [JET, UKAEA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Escourbiac, F. [CEA-DRFC, Cadarache, 13115 St. Paul lez Durance (France); Gervash, A. [Efremov Institute, St. Petersburg 196641 (Russian Federation); Kapoustina, A. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany); Kuehnlein, W. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany); Kuznetsov, V. [Efremov Institute, St. Petersburg 196641 (Russian Federation); Merola, M. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185-1129 (United States); Youchison, D.L. [Sandia National Laboratories, Albuquerque, NM 87185-1129 (United States)

    2005-11-15

    Several electron beam and ion beam facilities are involved in high heat flux testing of plasma-facing components for next step fusion devices. Up to a certain degree, these machines are comparable, but differences concern, e.g. beam generation, beam sweeping, calibration techniques and diagnostics. In order to get an information if tests in the different facilities are really comparable, a set of actively cooled CFC monoblocks has been heated in four electron beam and one ion beam facility at comparable power densities. The temperature response during these loadings has been registered and used as a criteria for assessment.

  11. Heat flux solarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  12. High Heat Flux Test Simulation of Tungsten Macro-brush Mock-ups for the KSTAR Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. H.; Kim, K. M.; Kim, H. T.; Kim, H. K.; Bang, E. N.; Lee, K. S.; Park, S. H.; Yang, H. L.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The divertor has been an important part of PFC because of its intrinsic function achieving effective particle control to keep high quality plasma with enough shaping flexibility. The divertor will be exposed to heat loads during operation of KSTAR-like plasma fusion device. Therefore, it is important to withstand high heat loads. In this paper, the hydraulic thermo-mechanical analysis was performed by ANSYS WORKBENCH 15.0 in order to predict the fatigue lifetime of the mock-ups for the high heat flux (HHF) test under the KSTAR base mode operating conditions. Under KSTAR base mode operating conditions, the finite element analysis was performed to predict the fatigue lifetime of the mock-ups for the HHF test. The results of analyses showed that the mock-up's temperatures were within the recommended operational range, and its fatigue lifetime was about 1,513 cycles.

  13. Thermal behavior and temperature measurements of melting beryllium plasma-facing components exposed to high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA, IRFM, F-13108 St Paul-lez-Durance (France); Pocheau, C. [CEA, IRFM, F-13108 St Paul-lez-Durance (France); Kovari, M.; Barnard, J.M.; Crowley, B.; Godwin, J.; Lane, C. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-08-15

    The emissivity of metallic materials is low and varies with temperature and wavelength inducing errors on surface temperature measurements. High heat flux experiments on beryllium were carried out to investigate the thermal behavior of bulk Be tiles. Thermal modeling aiming at determining the surface and bulk temperatures have been performed using ANSYS®. A Be tile was exposed to heat flux with power density ranging between 1 and 7 MW/m{sup 2}. Surface temperatures were measured using an infrared camera in the 3–5 μm range and two-color pyrometers, one at short wavelengths (1.5–1.7 μm) and one at mid IR range wavelengths (2–4 μm) range. Both the IR camera and two-color pyrometers do not provide accurate temperature measurements on melted Be due to changes in the emissivities and emissivity ratio induced by surface modifications.

  14. Realization of high heat flux tungsten monoblock type target with graded interlayer for application to DEMO divertor

    Science.gov (United States)

    Richou, M.; Gallay, F.; Böswirth, B.; Chu, I.; Lenci, M.; Loewenhoff, Th; Quet, A.; Greuner, H.; Kermouche, G.; Meillot, E.; Pintsuk, G.; Visca, E.; You, J. H.

    2017-12-01

    The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. In DEMO, divertor targets must survive an environment of high heat fluxes (˜up to 20 MW m-2 during slow transients) and neutron irradiation. One advanced concept for components in monoblock configuration concerns the insertion of a compositionally graded layer between tungsten and CuCrZr instead of the soft copper interlayer. As a first step, a thin graded layer (˜25 μm) was developed. As a second step, a thicker graded layer (˜500 μm), which is actually being developed, will also be inserted to study the compliant role of a macroscopic graded layer. This paper reports the results of cyclic high heat flux loading tests up to 20 MW m-2 and to heat flux higher than 25 MW m-2 that mock-ups equipped with thin graded layer survived without visible damage. First feedback on manufacturing steps is also presented. Moreover, the first results obtained on the development of the thick graded layer and its integration in a monoblock configuration are shown.

  15. GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.

  16. Far scrape-off layer particle and heat fluxes in high density

    DEFF Research Database (Denmark)

    Müller, H. W.; Bernert, M.; Carralero, D.

    2014-01-01

    The far scrape-off layer transport is studied in ASDEX Upgrade H-mode discharges with high divertor neutral density N0,div, high power across the separatrix Psep and nitrogen seeding to control the divertor temperature. Such conditions are expected for ITER but usually not investigated in terms...... of turbulent SOL transport. At high N0,div and Psep the H-mode discharges enter a regime of high cross-field particle and power transport in the SOL which is accompanied by a significant change of the turbulence characteristic analogous to the transition from conductive to convective transport in L......-mode. Parallel particle and power flux densities of several 1023 m−2 s−1 and 10 MW m−2 have been detected about ∼40 to 45 mm outside the separatrix mapped to the outer mid-plane. The particle flux fall-off length reached up to 45 mm. This paper presents for the first time an empirical condition to enter the high...

  17. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    Science.gov (United States)

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between

  18. High heat flux engineering for the upgraded neutral beam injection systems of MAST-U

    Energy Technology Data Exchange (ETDEWEB)

    Dhalla, F., E-mail: Fahim.dhalla@ccfe.ac.uk; Mistry, S.; Turner, I.; Barrett, T.R.; Day, I.; McAdams, R.

    2015-10-15

    Highlights: • A new Residual Ion Dump (RID) and bend magnet system for the upgraded NBI systems have been designed for the 5 s MAST-U pulse requirements. • Design scoping was performed using numerical ion-tracing analysis software (MAGNET and OPERA codes). • A more powerful bending magnet will separate the residual ions into full, half and third energy components. • Three separate CuCrZr dumps spread the power loading resulting in acceptable power footprints. • FE thermo-mechanical analyses using ANSYS to validate the designs against the ITER SDC-IC code. • New bend magnet coils, yoke and CuCrZr water-cooled plates are in the procurement phase. - Abstract: For the initial phase of MAST-U operation the two existing neutral beam injection systems will be used, but must be substantially upgraded to fulfil expected operational requirements. The major elements are the design, manufacture and installation of a bespoke bending magnet and Residual Ion Dump (RID) system. The MAST-design full energy dump is being replaced with new actively-cooled full, half and third energy dumps, designed to receive 2.4 MW of ion power deflected by an iron-cored electromagnet. The main design challenge is limited space available in the vacuum vessel, requiring ion-deflection calculations to ensure acceptable heat flux distribution on the dump panels. This paper presents engineering and physics analysis of the upgraded MAST beamlines and reports the current status of manufacture.

  19. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements.

    Science.gov (United States)

    Burg, Brian R; Tong, Jonathan K; Hsu, Wei-Chun; Chen, Gang

    2012-10-01

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions several orders of magnitude higher than those of conventional sensors such as thermocouples, semiconductor diodes, as well as resistance and infrared thermometers. The use of traditional cantilevers, however, entails a series of important measurement limitations, because their interactions with the sample and surroundings often create parasitic deflection forces and the typical metal layer degrades the thermal sensitivity of the cantilever. The paper introduces a design to address these issues by decoupling the sample and detector section of the cantilever, along with a thermomechanical model, the fabrication, system integration, and characterization. The custom-designed bi-arm cantilever is over one order of magnitude more sensitive than current commercial cantilevers due to the significantly reduced thermal conductance of the cantilever sample arm. The rigid and immobile sample section offers measurement versatility ranging from photothermal absorption, near-field thermal radiation down to contact, conduction, and material thermal characterization measurements in nearly identical configurations.

  20. Latent heat sink in soil heat flux measurements

    Science.gov (United States)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  1. Calibration of soil heat flux sensors.

    NARCIS (Netherlands)

    Loon, van W.K.P.; Bastings, H.M.H.; Moors, E.J.

    1998-01-01

    Soil heat flux is difficult to measure accurately and soil heat flux plates are difficult to calibrate. In this research the reference heat flux was calculated from the temperature gradient and independent thermal conductivity measurements. Reference conductivities, as measured by the non-steady

  2. Results and analysis of high heat flux tests on a full-scale vertical target prototype of ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France)]. E-mail: missir@drfc.cad.cea.fr; Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Bobin-Vastra, I. [FRAMATOME, Le Creusot (France); Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France); Durocher, A. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance, Cedex (France)

    2005-11-15

    After an extensive R and D development program, a full-scale divertor target prototype, manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full monoblock geometry. The lower part (CFC armour) and the upper part (W armour) of each monoblock were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. This paper summarises and analyses the main test results obtained on this prototype.

  3. Geometrical correction factors for heat flux meters

    Science.gov (United States)

    Baumeister, K. J.; Papell, S. S.

    1974-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.

  4. Dynamic ignition regime of condensed system by radiate heat flux

    Science.gov (United States)

    Arkhipov, V. A.; Zolotorev, N. N.; Korotkikh, A. G.; Kuznetsov, V. T.

    2017-05-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20-50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions.

  5. Use of EPICS and Python technology for the development of a computational toolkit for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, Ritesh, E-mail: ritesh@ipr.res.in; Swamy, Rajamannar, E-mail: rajamannar@ipr.res.in; Khirwadkar, Samir, E-mail: sameer@ipr.res.in

    2016-11-15

    Highlights: • An integrated approach to software development for computational processing and experimental control. • Use of open source, cross platform, robust and advanced tools for computational code development. • Prediction of optimized process parameters for critical heat flux model. • Virtual experimentation for high heat flux testing of plasma facing components. - Abstract: The high heat flux testing and characterization of the divertor and first wall components are a challenging engineering problem of a tokamak. These components are subject to steady state and transient heat load of high magnitude. Therefore, the accurate prediction and control of the cooling parameters is crucial to prevent burnout. The prediction of the cooling parameters is based on the numerical solution of the critical heat flux (CHF) model. In a test facility for high heat flux testing of plasma facing components (PFC), the integration of computations and experimental control is an essential requirement. Experimental physics and industrial control system (EPICS) provides powerful tools for steering controls, data simulation, hardware interfacing and wider usability. Python provides an open source alternative for numerical computations and scripting. We have integrated these two open source technologies to develop a graphical software for a typical high heat flux experiment. The implementation uses EPICS based tools namely IOC (I/O controller) server, control system studio (CSS) and Python based tools namely Numpy, Scipy, Matplotlib and NOSE. EPICS and Python are integrated using PyEpics library. This toolkit is currently under operation at high heat flux test facility at Institute for Plasma Research (IPR) and is also useful for the experimental labs working in the similar research areas. The paper reports the software architectural design, implementation tools and rationale for their selection, test and validation.

  6. Results and analysis of high heat flux tests on a full scale vertical target prototype of ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M.; Escourbiac, F.; Schlosser, J.; Durocher, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [EFDA Close Support Unit, Garching (Germany); Bobin-Vastra, I. [Framatome, 71 - Le Creusot (France)

    2004-07-01

    After an extensive development program, a Full-Scale Divertor Target prototype (VTFS) manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full mono-block geometry. The lower part (CFC armour) and the upper part (W armour) of each mono-block were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. The CFC mono-block was successfully tested up to 1000 cycles at 23 MW/m{sup 2} without any indication of failure. This value is well beyond the ITER design target of 300 cycles at 20 MW/m{sup 2}. The W mono-block endured {approx}600 cycles at 10 MW/m{sup 2}. This value of flux is one order of magnitude higher than the ITER design target for the upper part of the vertical target. Fatigue damage is observed when pursuing the cycling up to 15 MW/m{sup 2}. A first stress analysis seems to predict these factual results. However, macro-graphic examinations should bring a better damage valuation. Meanwhile, the fatigue testing will continue on the W healthy part of the VTFS prototype with castellation located on the heated surface (reducing the stresses close to the W-Cu interface). (authors)

  7. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  8. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  9. Thermal modelling of various thermal barrier coatings in a high heat flux rocket engine

    Science.gov (United States)

    Nesbitt, James A.

    1989-01-01

    Traditional Air Plasma Sprayed (APS) ZrO2-Y2O3 Thermal Barrier Coatings (TBC's) and Low Pressure Plasma Sprayed (LPPS) ZrO2-Y2O3/Ni-Cr-Al-Y cermet coatings were tested in a H2/O2 rocked engine. The traditional ZrO2-Y2O3 (TBC's) showed considerable metal temperature reductions during testing in the hydrogen-rich environment. A thermal model was developed to predict the thermal response of the tubes with the various coatings. Good agreement was observed between predicted temperatures and measured temperatures at the inner wall of the tube and in the metal near the coating/metal interface. The thermal model was also used to examine the effect of the differences in the reported values of the thermal conductivity of plasma sprayed ZrO2-Y2O3 ceramic coatings, the effect of 100 micron (0.004 in.) thick metallic bond coat, the effect of tangential heat transfer around the tube, and the effect or radiation from the surface of the ceramic coating. It was shown that for the short duration testing in the rocket engine, the most important of these considerations was the effect of the uncertainty in the thermal conductivity of temperatures (greater than 100 C) predicted in the tube. The thermal model was also used to predict the thermal response of the coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries and to explain the previously-observed increased life of coatings on rods over that on tubes. A thermal model was also developed to predict heat transfer to the leading edge of High Pressure Fuel Turbopump (HPFTP) blades during start-up of the space shuttle main engines. The ability of various TBC's to reduce metal temperatures during the two thermal excursions occurring on start-up was predicted. Temperature reductions of 150 to 470 C were predicted for 165 micron (0.0065 in.) coatings for the greater of the two thermal excursions.

  10. Development of Modular Spray-Cooled Assemblies for High Heat Fluxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR project will develop modular spray-cooled assemblies that satisfy NASA power and mass budgets and can be scaled to cool multiple heat sources...

  11. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: g.pintsuk@fz-juelich.de [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Bobin-Vastra, I.; Constans, S. [AREVA NP PTCMI-F, Centre Technique, Fusion, F-71200 Le Creusot (France); Gavila, P. [Fusion for Energy, E-08019 Barcelona (Spain); Rödig, M. [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Riccardi, B. [Fusion for Energy, E-08019 Barcelona (Spain)

    2013-10-15

    Highlights: • We characterize tungsten mono-block components after exposure to ITER relevant heat loads. • We qualify the manufacturing technology, i.e., hot isostatic pressing and hot radial pressing, and repair technologies. • We determine the microstructural influences, i.e., rod vs. plate material, on the damage evolution. • Needle like microstructures increase the risk of deep crack formation due to a limited fracture strength. -- Abstract: In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m{sup 2} with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m{sup 2} were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected

  12. Experimental results and a self-consistent model of evaporation and high heat flux extraction by evaporating flow in a micro-grooved blade

    Science.gov (United States)

    Monazami, Reza; Saadat, Mehdi; Zhu, Jianzhong; Haj-Hariri, Hossein

    2015-11-01

    The problem of evaporation from a vertical micro-grooved blade heated from above is investigated. The required superheat to handle the incoming flux is calculated using the results of the study by Monazami and Haj-Hariri (2012). The relation between the applied heat flux, dry-out length and the maximum equilibrium temperature for several geometries and working fluids are studied. Furthermore, a computational study of the evaporating meniscus is conducted to evaluate the evaporation rates and dissipated heat flux at the liquid-vapor interface. The computational study accounts for the flow and heat transfer in both liquid and vapor phases. The results of this study indicate that the micro-grooved structure can dissipate heat fluxes as high as 10MW/m2 for superheats as low as 5 degrees Kelvin. Experiments are conducted to verify the computational and analytical results. The findings of this work are applicable to the design of thermal management systems for high heat flux applications. Partially supported by the MAXNET Energy Partnership (Max Planck Institute and UVA).

  13. High heat flux testing of first wall mock-ups with and without neutron irradiation

    Directory of Open Access Journals (Sweden)

    G. Pintsuk

    2016-12-01

    For qualification, all three flat-tile mock-ups were exposed to cyclic steady state heat loads in the electron beam facility JUDITH-1 up to a maximum of 3.0MW/m2. Thereby, each tile was loaded individually as the full loading area exceeds the limits of the facility.

  14. Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer

    Science.gov (United States)

    2011-09-01

    annular film in the wavy-annular regime is marred by interfacial waves. Nonetheless, these waves were fairly sinusoidal in profile and do not shatter...regime is marred by interfacial waves, these waves are fairly small in profile and do not evolve into large waves, nor do they appear to have an...Silvestri, M., Soldaini, G., Zavalluilli, R., Two-phase cooling experiments-pressure drop, heat transfer and burnout measurements, Energia nucleare

  15. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    Science.gov (United States)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  16. Monitoring sensible heat flux over urban areas in a high-altitude city using Large Aperture Scintillometer and Eddy Covariance

    Science.gov (United States)

    Du, Junping; Timmermans, Wim J.; Ma, Yaoming; Su, Bob; Pema, Tsering

    2017-04-01

    Urbanization leads to modifications of surface energy balance which governs the momentum, heat and mass transfer between urban canopy layer and the atmosphere, thus impacts dynamic processes in the urban ABL and ultimately influence the local, regional and even global climate. It is essential to obtain accurate urban ABL observations to enhance our understanding of land-atmosphere interaction process over the urban area and help to improve the prediction ability of numerical model. However, up to now, there are rarely observations in high latitude cities. In one of the highest cities in the world, Lhasa, Eddy Covariance (EC) measurements have been ongoing since 10 August 2016 and a Large Aperture Scintillometer (LAS) started to work on 12 November 2016, in addition to a UHI network which has been running since 2012. Taking advantage of these observations, this poster will estimate and analyze the surface energy balance in the winter of 2016 in Lhasa, with an emphasis on sensible heat flux. An analytical footprint model and the radiative surface temperature retrieved from Landsat 8 will be employed to compare EC and LAS measurements.

  17. Cooling of High Heat Flux Flat Surface with Nanofluid Assisted Convective Loop: Experimental Assessment

    Directory of Open Access Journals (Sweden)

    Arya Amir

    2017-12-01

    Full Text Available Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. % = 0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.

  18. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Science.gov (United States)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.; Deck, Christian P.; Katoh, Yutai; Terrani, Kurt A.

    2017-08-01

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300-350 °C under a representative high heat flux (∼0.66 MW/m2) during one cycle of irradiation in an un-instrumented ;rabbit; capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. The success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  19. High Heat Flux Block Ablator-in-Honeycomb Heat Shield Using Ablator/Aerogel-Filled Foam Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultramet and ARA Ablatives Laboratory previously developed and demonstrated advanced foam-reinforced carbon/phenolic ablators that offer substantially increased high...

  20. Performance of high temperature heat flux plates and soil moisture probes during controlled surface fires

    Science.gov (United States)

    W. J. Massman; J. M. Frank; S. M. Massman; W. D. Shepperd

    2003-01-01

    Natural and prescribed fires play an important role in managing and maintaining most ecosystems in the western United States. The high soil temperatures associated with fire influence forests and their ability to regenerate after a fire by altering soil properties and soil chemistry and by killing microbes, plant roots, and seeds. Because prescribed fire is frequently...

  1. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... that hold times could be damaging even at room temperature, well below temperatures typically associated with creep. Hold times resulted in shorter fatigue lives in the high cycle fatigue, long life regime (i.e., at low strain amplitudes) than those of materials tested under the same conditions without hold...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...

  2. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, Matteo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Seong, Jee H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jdacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Richenderfer, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kossolapov, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-11-01

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuing forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.

  3. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  4. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere]|[Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  5. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  6. Improved structural strength and lifetime of monoblock divertor targets by using doped tungsten alloys under cyclic high heat flux loading

    Science.gov (United States)

    Nogami, S.; Guan, W. H.; Hattori, T.; James, K.; Hasegawa, A.

    2017-12-01

    The divertor is one of the most important components of a fusion reactor, which performs the function of the removal of waste material from fusion plasma. Because the divertor is subjected to cyclic high heat flux loading up to about 20 MW m-2 induced by the plasma, the plasma facing material of the divertor should exhibit good thermo-mechanical properties. In this work, the possibility of improving the structural strength and the lifetime of fusion reactor divertors by using K-doped W and K-doped W-3%Re as plasma facing material instead of ordinary pure W was evaluated by thermo-mechanical finite element analysis (FEA). These materials have been developed for divertor applications in Japan and show higher recrystallization temperature and strength than pure W. The results of the present study indicated that K-doped W and K-doped W-3%Re render lower applied strain to the divertor and longer fatigue life of the plasma facing material. The evaluation results regarding the macro-crack formation life based on the FEA analyses indicated the possibility of an extension of the fatigue life by using K-doped W and K-doped W-3%Re.

  7. Heat flux and thermal conduction in O+ and H+ ion flows deduced from EISCAT-VHF radar observations in the high-latitude topside ionosphere

    Science.gov (United States)

    Wu, Jian; Taieb, Charley

    1994-06-01

    With two periods of EISCAT-VHF radar observations, magnetically quiet and moderately disturbed, we have calculated the H+ and O+ heat fluxes in using formulae of Wu and Taieb (1993), accounting not only for temperature gradients but also for pressure gradients, velocity gradients, and diffusion-thermal effects. They correspond to different physical processes that are calculated and compared between them. Then, the general features of the H+ and O+ ion thermal conductions are studied during the two periods of observation in the high-latitude topside ionosphere. The analysis of the two periods of measurements revealed the following trends, to be confirmed by further observations: (1) During the two periods the H+ heat flux Q2 is always upward in the altitude range from 600 km up to about 1000 km. It is larger during the quiet period than during the disturbed period. (2) The most important dominant mechanism for H+ heat flux is the diffusion-thermal effect due to the H+-O+ collision, with a correcting term due to the H+ temperature gradient. (3) The O+ heat flux is always downward in the same altitude range during the two periods of observations. The absolute value during the disturbed period is slightly larger than that during the quiet period. (4) The dominant mechanism for O+ heat flux is its temperature gradient, corrected by the coupling with the H+ ion. (5) The O+ thermal conduction is less important during the quiet period than during the disturbed period, while for the H+ thermal conduction it is the contrary. (6) The H+ thermal conduction increases with altitude below about 1000 km.

  8. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  9. Cooling High Heat Flux Micro-Electronic Systems using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators

    OpenAIRE

    Costa-Patry, Etienne

    2011-01-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating...

  10. Diameter effect on critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, A. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada)], E-mail: atana052@uottawa.ca; Cheng, S.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Groeneveld, D.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Shan, J.Q. [Department of Nuclear Engineering, Xi' an Jiaotong University (China)

    2009-02-15

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods.

  11. Heat-Flux Gage thermophosphor system

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  12. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90–200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  13. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  14. Heat flux sensors for infrared thermography in convective heat transfer.

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  15. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  16. Power handling of a liquid-metal based CPS structure under high steady-state heat and particle fluxes

    Directory of Open Access Journals (Sweden)

    T.W. Morgan

    2017-08-01

    Full Text Available Liquid metal infused capillary porous structures (CPSs are considered as a potential divertor solution for DEMO due to their potential power handling capability and resilience to long term damage. In this work the power handling and performance of such Sn-based CPS systems is assessed both experimentally and via modelling. A Sn-CPS target was exposed to heat fluxes of up to 18.1 MW m−2 in He plasma in the Pilot-PSI linear device. Post-mortem the target showed no damage to nor any surface exposure of the underlying W-CPS felt. The small pore size (∼40µm employed resulted in no droplet formation from the target in agreement with calculated Rayleigh-Taylor and Kelvin-Helmoholtz instability thresholds. The temperature response of the Sn-target was used to determine the thermal conductivity of the mixed Sn-CPS material using COMSOL modelling. These values were then used via further finite element analysis to extrapolate to DEMO relevant monoblock designs and estimate the maximum power handling achievable based on estimated temperature windows for all component elements of the design. For an optimized design a heat-load of up to 20 MW m−2 may be received while the use of CPS also offers other potential design advantages such as the removal of interlayer requirements.

  17. Anthropogenic heat flux estimation from space: first results

    Science.gov (United States)

    Chrysoulakis, Nektarios; Heldens, Wieke; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Albitar, Ahmad; Gabey, Andrew; Parlow, Eberhard; Olofson, Frans

    2016-04-01

    While Earth Observation (EO) has made significant advances in the study of urban areas, there are several unanswered science and policy questions to which it could contribute. To this aim the recently launched Horizon 2020 project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the urban energy budget. The anthropogenic heat flux is the heat flux resulting from vehicular emissions, space heating and cooling of buildings, industrial processing and the metabolic heat release by people. Optical, thermal and SAR data from existing satellite sensors are used to improve the accuracy of the radiation balance spatial distribution calculation, using also in-situ reflectance measurements of urban materials are for calibration. EO-based methods are developed for estimating turbulent sensible and latent heat fluxes, as well as urban heat storage flux and anthropogenic heat flux spatial patterns at city scale and local scale by employing an energy budget closure approach. Independent methods and models are engaged to evaluate the derived products and statistical analyses provide uncertainty measures as well. Ultimate goal of the URBANFLUXES is to develop a highly automated method for estimating urban energy budget components to use with Copernicus Sentinel data, enabling its integration into applications and operational services. Thus, URBANFLUXES prepares the ground for further innovative exploitation of European space data in scientific activities (i.e. Earth system modelling and climate change studies in cities) and future and emerging applications (i.e. sustainable urban planning) by exploiting the improved data quality, coverage and revisit times of the Copernicus data. The URBANFLUXES products will therefore have the potential to support both sustainable planning strategies to improve the quality of life in cities, as well as Earth system models to

  18. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  19. Comparison between FEM and high heat flux thermal fatigue testing results of ITER divertor plasma facing mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, F., E-mail: fabio.crescenzi@enea.it; Roccella, S.; Visca, E.; Moriani, A.

    2014-10-15

    Highlights: • Divertor is an important part of the ITER machine. • Finite element analysis allows designers to explore multiple design options, reducing physical prototypes and optimizing design performance. • The hydraulic thermal-mechanical analysis performed by ANSYS and the test results on small-scale mock-ups manufactured by HRP were compared. • FEA results confirmed many experimental data, then it could be very useful for next design optimization. - Abstract: The divertor is one of the most challenging components of “DEMO” the next step ITER machine, so many tasks regarding modeling and experiments have been made in the past years to assess manufacturing processes, materials and thus the life-time of the components. In this context the finite element analysis (FEA) allows designers to explore multiple design options, to reduce physical prototypes and to optimize design performance. The comparison between the hydraulic thermal-mechanical analysis performed by ANSYS WORKBENCH 14.5 and the test results [1] on small-scale mock-ups manufactured with the Hot Radial Pressing (HRP) [2] technology is presented in this paper. During the thermal fatigue testing in the Efremov TSEFEY facility to assess the heat flux load-carrying capability of the mock-ups, only the surface temperature was measured, so the FEA was important because it allowed to know any other information (temperature inside the materials, local water temperature, local stress, etc.). FEA was performed coupling the thermal-hydraulic analysis, that calculated the temperature distributions on the components and the heat transfer coefficient (HTC) between water and heat sink tube, with the mechanical analysis. The comparison between analysis and testing results was based on the temperature maps of the loaded surface and on number of the cycles supported during the testing and those predicted by the mechanical analysis using the experimental fatigue curves for CuCrZr-IG, that is the structural

  20. Simulation for heat flux mitigation by gas puffing in KSTAR

    Science.gov (United States)

    Shim, Seung Bo; Kotov, Vladislav; Hong, Suk-Ho; Detlev, Reiter; Kim, Jin Yong; Na, Yong Su; Lee, Hae June

    2013-10-01

    Control of heat flux is very important to achieve high performance long pulse operation in tokamaks. There are so many efforts to reduce the heat flux like change of divertor structure, snowflake divertor, and RMP, etc. Detachment by gas puffing is used for long time to reduce the heat flux. In this paper edge plasma scenarios of KSTAR are analyzed numerically by well-known B2-Eirene code package(SOLPS4.3). High performance discharges with heating power ~ 8 MW and core flux ~ 1021 s-1 is used. Gas puffed on the outer mid-plane(OMP), both divertors is likely to stay attached. So, gas puffed on the outer target, one is near the private flux region(PFR) and the other is near the scrape-off-layer(SOL). When gas puffed near the SOL is still attached, and it is worse than gas puff from OMP because it is too close to cryo-pump. The case near the PFR shows high recycling region easily compared with OMP case. When one forth gas puffed on the PFR, results are similar with OMP case. But it is still not good for detachment operation. Detachment operation window is too small for the gas puffing on the PFR. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No. 2012-0000579).

  1. Gradient heat flux measurement as monitoring method for the diesel engine

    Science.gov (United States)

    Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.

    2017-11-01

    The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.

  2. A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods: Soil Heat Flux Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhongming [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Russell, Eric S. [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Missik, Justine E. C. [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Huang, Maoyi [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Strickland, Chris E. [Pacific Northwest National Laboratory, Richland Washington USA; Clayton, Ray [Pacific Northwest National Laboratory, Richland Washington USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland Washington USA; Ma, Yulong [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA

    2017-07-12

    We evaluated nine methods of soil heat flux calculation using field observations. All nine methods underestimated the soil heat flux by at least 19%. This large underestimation is mainly caused by uncertainties in soil thermal properties.

  3. Application of a Heat Flux Sensor in Wind Power Electronics

    Directory of Open Access Journals (Sweden)

    Elvira Baygildina

    2016-06-01

    Full Text Available This paper proposes and investigates the application of the gradient heat flux sensor (GHFS for measuring the local heat flux in power electronics. Thanks to its thinness, the sensor can be placed between the semiconductor module and the heat sink. The GHFS has high sensitivity and yields direct measurements without an interruption to the normal power device operation, which makes it attractive for power electronics applications. The development of systems for monitoring thermal loading and methods for online detection of degradation and failure of power electronic devices is a topical and crucial task. However, online condition monitoring (CM methods, which include heat flux sensors, have received little research attention so far. In the current research, an insulated-gate bipolar transistor (IGBT module-based test setup with the GHFS implemented on the base plate of one of the IGBTs is introduced. The heat flux experiments and the IGBT power losses obtained by simulations show similar results. The findings give clear evidence that the GHFS can provide an attractive condition monitoring method for the thermal loading of power devices.

  4. Characterization of thick plasma spray tungsten coating on ferritic/martensitic steel F82H for high heat flux armor

    Science.gov (United States)

    Yahiro, Y.; Mitsuhara, M.; Tokunakga, K.; Yoshida, N.; Hirai, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Nakashima, H.

    2009-04-01

    Two types of plasma spray tungsten coatings on ferritic/martensitic steel F82H made by vacuum plasma spray technique (VPS) and air plasma spray technique (APS) were examined in this study to evaluate the possibility as plasma-facing armor. The VPS-W/F82H showed superior properties. The porosity of the VPS-W coatings was about 0.6% and most of the pores were smaller than 1-2 μm and joining of W/F82H and W/W was fairly good. Thermal load tests indicated high potential of this coating as plasma-facing armor under thermal loading. In case of APS-W/F82H, however, porosity was 6% and thermal load properties were much worse than VPS-W/F82H. It is likely that surface oxidation during plasma spray process reduced joining properties. Remarkably, both coatings created soft ferrite interlayer after proper heat treatments probably due to high residual stress at the interfaces after the production. This indicates the potential function of the interlayer as stress relieve and possible high performance of such coating component under thermal loads.

  5. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test.

    Science.gov (United States)

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m(2) with high accuracy and the response time of less than 10 s.

  6. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  7. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    Science.gov (United States)

    Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-11-01

    Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived ;heat pulses; with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and

  8. Viscous relaxation of Ganymede's impact craters: Constraints on heat flux

    Science.gov (United States)

    Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.

    2017-01-01

    Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event

  9. Surface renewal method for estimating sensible heat flux | Mengistu ...

    African Journals Online (AJOL)

    For short canopies, latent energy flux may be estimated using a shortened surface energy balance from measurements of sensible and soil heat flux and the net irradiance at the surface. The surface renewal (SR) method for estimating sensible heat, latent energy, and other scalar fluxes has the advantage over other ...

  10. Critical heat flux variations on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, A.; Luxat, J.C., E-mail: behdada@mcmaster.ca, E-mail: luxatj@mcmaster.ca [McMaster Univ., Engineering Physics Dept., Hamilton, Ontario (Canada)

    2012-07-01

    Heavy water moderator surrounding each fuel channel is one of the important safety features in CANDU reactors since it provides an in-situ passive heat sink for the fuel in situations where other engineered means of heat removal from fuel channels have failed. In a critical break LOCA scenario, fuel cooling becomes severely degraded due to rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes experiencing significant heat-up during early stages of the accident when coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the pressure tube (PT) into contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to CT and a large heat flux spike from the CT to the moderator fluid. For conditions where subcooling of the moderator fluid is low, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in continued thermal creep strain deformation of both the PT and the CT. The focus of this work is to develop a mechanistic model to predict Critical Heat Flux (CHF) on the CT surface following a contact with its pressure tube. A mechanistic CHF model is applied based on a concept of wall dry patch formation, prevention of rewetting and subsequent dry patch spreading. Results have been compared to an empirical correlation and a good agreement has been obtained. The model has been used to predict the spatial variation of CHF over a cylinder with dimensions of CANDU CT. (author)

  11. Thin Film Heat Flux Sensors: Design and Methodology

    Science.gov (United States)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  12. Damage behavior of REE-doped W-based material exposed to high-flux transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jing [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai–Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Lin, Jin–shan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zan, Xiang; Zhu, Xiao–yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Xu, Qiu [Research Reactor Institute, Kyoto University, Osaka-Fu 590-0494 (Japan); Wu, Yu–Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China)

    2016-12-15

    Pure W and W-Lu alloys were prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technology. The performance and relevant damage mechanism of W-(0%, 2%, 5%, 10%) Lu alloys under transient heat loads were investigated using a laser beam heat load test to simulate the transient events in future nuclear fusion reactors. Scanning electron microscopy was used to observe the morphologies of the damaged surfaces and energy dispersive X-ray spectroscopy was used to conduct composition analysis. Damages to the surface such as cracks, pits, melting layers, Lu-rich droplets, and thermal ablation were observed. A mass of dense fuzz-like nanoparticles formed on the outer region of the laser-exposed area. Recrystallization, grain growth, increased surface roughness, and material erosion were also observed. W-Lu samples with low Lu content demonstrated better thermal performance than pure W, and the degree of damage significantly deteriorated under repetitive transient heat loads.

  13. Design and operation of a high-heat flux, flush-mounted ‘rail’ Langmuir probe array on Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    A.Q. Kuang

    2017-08-01

    Full Text Available A poloidal array of toroidally-extended, flush-mounted ‘rail’ Langmuir probes was recently installed on Alcator C-Mod's vertical target plate divertor. The aim was to investigate if a Langmuir probe array could be designed to survive reactor-level heat fluxes and have the ability to make measurements that could be reliably interpreted under reactor-level plasma densities, neutral densities and magnetic fields. Langmuir probes are typically built to have incident field-line angles >10° to avoid interpretation issues associated with sheath expansion. However, at the high parallel heat fluxes experienced in reactor-relevant conditions such a probe would quickly overheat and melt. To mitigate both the issues of extreme heat flux and sheath expansion, each probe was designed to be flush with the divertor surface, toroidally-extended and field-aligned, giving it a ‘rail’ geometry. The flush mounted probes have proven to be exceptionally robust surviving the 2015–2016 campaign – a first for a C-Mod probe system. Examination of the probe current-voltage (I-V characteristics reveals that they are immune to sheath expansion at incident field angles down to ∼0.5°. Comparison of the flush probes to traditional proud probes shows that both measure the same electron pressure across the divertor plate. However, there are significant and systematic differences in the density, temperature and floating potential. This suggests that there is important physics, perhaps unique to conditions in a vertical-target plate divertor with small field-line attack angles, that affects the I-V characteristics and is not currently included in probe data analyses. Finally, the probe response is examined in the ‘death-ray’ regime, just near detachment. Previous work using proud probes has suggested that the ‘death-ray’ is an artefact of the probe bias. However, on flush mounted probes the ‘death-ray’ manifests itself under different conditions, which

  14. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  15. Heat flux measurement in SSME turbine blade tester

    Science.gov (United States)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  16. Effectiveness of Haemodiafiltration with Heat Sterilized High-Flux Polyphenylene HF Dialyzer in Reducing Free Light Chains in Patients with Myeloma Cast Nephropathy.

    Science.gov (United States)

    Rousseau-Gagnon, Mathieu; Agharazii, Mohsen; De Serres, Sacha A; Desmeules, Simon

    2015-01-01

    In cases of myeloma cast nephropathy in need of haemodialysis (HD), reduction of free light chains using HD with High-Cut-Off filters (HCO-HD), in combination with chemotherapy, may be associated with better renal recovery. The aim of the present study is to evaluate the effectiveness of haemodiafiltration (HDF) in reducing free light chain levels using a less expensive heat sterilized high-flux polyphenylene HF dialyzer (HF-HDF). In a single-centre prospective cohort study, 327 dialysis sessions were performed using a 2.2 m2 heat sterilized high-flux polyphenylene HF dialyzer (Phylther HF22SD), a small (1.1m2) or large (2.1 m2) high-cut-off (HCO) dialyzer (HCOS and HCOL) in a cohort of 16 patients presenting with dialysis-dependent acute cast nephropathy and elevated free light chains (10 kappa, 6 lambda). The outcomes of the study were the mean reduction ratio (RR) of kappa and lambda, the proportion of treatments with an RR of at least 0.65, albumin loss and the description of patient outcomes. Statistical analysis was performed using linear and logistic regression through generalized estimating equation analysis so as to take into account repeated observation within subjects and adjust for session duration. There were no significant differences in the estimated marginal mean of kappa RR, which were respectively 0.67, 0.69 and 0.70 with HCOL-HD, HCOS-HDF and HF-HDF (P = 0.950). The estimated marginal mean of the proportions of treatments with a kappa RR ≥0.65 were 68%, 63% and 71% with HCOL-HD, HCOS-HDF and HF-HDF, respectively (P = 0.913). The estimated marginal mean of lambda RR were higher with HCOL-HDF (0.78), compared to HCOL-HD and HF-HDF (0.62, and 0.61 respectively). The estimated marginal mean proportion of treatments with a lambda RR ≥0.65 were higher with HCOL-HDF (81%), compared to 57% in HF-HDF (P = 0.042). The median albumin loss were 7, 21 and 63 g/session with HF-HDF, HCOL-HD and HCOL-HDF respectively (P = 0.044). Among survivors, 9 out of 10

  17. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    Science.gov (United States)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to    1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  18. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring

    Science.gov (United States)

    Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.

    2017-06-01

    Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.

  19. Transient critical heat flux and blowdown heat-transfer studies

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  20. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux; Etude thermique et hydrodynamique d'une couche tourbillonnaire d'hydrogenen liquide sous flux de chaleur eleve

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-03-01

    In order to achieve a cold neutrons source ({lambda} {>=} 4.10{sup -10} m) in a high flux reactor ({approx} 10{sup 15} neutrons/cm{sup 2}.s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm{sup 2} and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [French] En vue de realiser une source de neutrons froids ({lambda} {>=} 4.10{sup -10} m) dans un reacteur a haut flux ({approx} 10{sup 15} neutrons thermiques/cm{sup 2}.s), on a forme dans un vase cylindrique transparent en verre, hors-pile, une couche tourbillonnaire ('vortex') d'hydrogene liquide (diametre exterieur 145 mm, epaisseur effective 15 mm, hauteur 180 mm environ). Le mouvement giratoire est obtenu par injection tangentielle du liquide pres de la paroi. L'etude porte sur la determination des conditions thermiques et hydrodynamiques de la formation d'une telle couche et sur les regles de similitude de ce phenomene. On a observe les caracteristiques de l'ecoulement giratoire en fonction du debit (de 5 a 27 g/s, soit de 4.3 a 23 1/mn), de la vitesse d'injection (entre 10 et 110 m/s) et de la largeur du deversoir (18 et 25 mm), ceci pour six diametres differents d'injecteur (1.0 ; 1.5; 1.9; 2.25; 2.65 et 3.0 mm). Le flux de chaleur total mesure

  1. Critical heat flux, post dry-out and their augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia

    1999-07-01

    The report shows the state of art review on the critical heat flux and the post-dryout heat transfer. The work, which is a merge of original researches carried out at the Institute of Thermal Fluid Dynamic of ENEA (National Agency for New Technology, Energy and the Environment) and a thorough review of the recent literature, is divided in four chapters: critical heat flux in subcooled flow boiling; critical heat flux in saturated flow boiling; post-dryout heat transfer; enhancement of critical heat flux and post-dryout heat transfer. [Italian] Si passa in rassegna lo stato dell'arte sulla crisi termica e sullo scambio termico post-crisi, che compendia studi tradizionali condotti dall'ENEA. Il rapporto e' suddiviso in quattro parti: crisi termica in ebollizione sottoraffreddata; crisi termica in ebollizione satura; scambio termico dopo la crisi termica; incremento del flusso termico critico e dello scambio termico post-crisi.

  2. Heat flux anomalies in Antarctica revealed from satellite magnetic data

    DEFF Research Database (Denmark)

    Maule, Cathrine Fox; Purucker, Michael E.; Olsen, Nils

    2005-01-01

    The geothermal heat flux is an important factor in the dynamics of ice sheets; it affects the occurrence of subglacial lakes, the onset of ice streams, and mass losses from the ice sheet base. Because direct heat flux measurements in ice-covered regions are difficult to obtain, we developed a met...

  3. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  4. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  5. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    Science.gov (United States)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  6. Prediction of critical heat flux using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Zaferanlouei, Salman, E-mail: zaferanlouei@gmail.co [Nuclear Engineering and Physics Department, Faculty of Nuclear Engineering, Center of Excellence in Nuclear Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran (Iran, Islamic Republic of); Rostamifard, Dariush; Setayeshi, Saeed [Nuclear Engineering and Physics Department, Faculty of Nuclear Engineering, Center of Excellence in Nuclear Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2010-06-15

    The prediction of Critical Heat Flux (CHF) is essential for water cooled nuclear reactors since it is an important parameter for the economic efficiency and safety of nuclear power plants. Therefore, in this study using Adaptive Neuro-Fuzzy Inference System (ANFIS), a new flexible tool is developed to predict CHF. The process of training and testing in this model is done by using a set of available published field data. The CHF values predicted by the ANFIS model are acceptable compared with the other prediction methods. We improve the ANN model that is proposed by to avoid overfitting. The obtained new ANN test errors are compared with ANFIS model test errors, subsequently. It is found that the ANFIS model with root mean square (RMS) test errors of 4.79%, 5.04% and 11.39%, in fixed inlet conditions and local conditions and fixed outlet conditions, respectively, has superior performance in predicting the CHF than the test error obtained from MLP Neural Network in fixed inlet and outlet conditions, however, ANFIS also has acceptable result to predict CHF in fixed local conditions.

  7. Observational & modeling analysis of surface heat and moisture fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E. [Florida State Univ., Tallahassee, FL (United States)

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  8. Modern perspectives on measuring and interpreting seafloor heat flux

    Science.gov (United States)

    Harris, Reid N.; Fisher, A.; Ruppel, C.; Martinez, F.

    2008-01-01

    There has been a resurgence of interest in marine heat flow in the past 10–15 years, coinciding with fundamental achievements in understanding the Earth's thermal state and quantifying the dynamics and impacts of material and energy fluxes within and between the lithosphere and hydrosphere. At the same time, technical capabilities have dwindled to the point that no U.S. academic institution currently operates a seagoing heat flow capacity.In September 2007, a workshop was convened in Salt Lake City with sponsorship from the U.S. National Science Foundation (NSF) and participation by scientists and engineers from North America, Europe, and Asia. The primary goals of the workshop were to (1) assess high-priority scientific and technical needs and (2) to evaluate options for developing and maintaining essential capabilities in marine heat flow for the U.S. scientific community.

  9. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  10. High flux expansion divertor studies in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-06-29

    Projections for high-performance H-mode scenarios in spherical torus (ST)-based devices assume low electron collisionality for increased efficiency of the neutral beam current drive. At lower collisionality (lower density), the mitigation techniques based on induced divertor volumetric power and momentum losses may not be capable of reducing heat and material erosion to acceptable levels in a compact ST divertor. Divertor geometry can also be used to reduce high peak heat and particle fluxes by flaring a scrape-off layer (SOL) flux tube at the divertor plate, and by optimizing the angle at which the flux tube intersects the divertor plate, or reduce heat flow to the divertor by increasing the length of the flux tube. The recently proposed advanced divertor concepts [1, 2] take advantage of these geometry effects. In a high triangularity ST plasma configuration, the magnetic flux expansion at the divertor strike point (SP) is inherently high, leading to a reduction of heat and particle fluxes and a facilitated access to the outer SP detachment, as has been demonstrated recently in NSTX [3]. The natural synergy of the highly-shaped high-performance ST plasmas with beneficial divertor properties motivated a further systematic study of the high flux expansion divertor. The National Spherical Torus Experiment (NSTX) is a mid-sized device with the aspect ratio A = 1.3-1.5 [4]. In NSTX, the graphite tile divertor has an open horizontal plate geometry. The divertor magnetic configuration geometry was systematically changed in an experiment by either (1) changing the distance between the lower divertor X-point and the divertor plate (X-point height h{sub X}), or by (2) keeping the X-point height constant and increasing the outer SP radius. An initial analysis of the former experiment is presented below. Since in the divertor the poloidal field B{sub {theta}} strength is proportional to h{sub X}, the X-point height variation changed the divertor plasma wetted area due to

  11. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  12. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  13. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  14. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  15. Conjugated Conduction-Free Convection Heat Transfer in an Annulus Heated at Either Constant Wall Temperature or Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    HAROON IMTIAZ

    2017-04-01

    Full Text Available In this paper, we investigate numerically the effect of thermal boundary conditions on conjugated conduction-free convection heat transfer in an annulus between two concentric cylinders using Fourier Spectral method. The inner wall of the annulus is heated and maintained at either CWT (Constant Wall Temperature or CHF (Constant Heat Flux, while the outer wall is maintained at constant temperature. CHF case is relatively more significant for high pressure industrial applications, but it has not received much attention. This study particularly focuses the latter case (CHF. The main influencing parameters on flow and thermal fields within the annulus are: Rayleigh number Ra; thickness of inner wall Rs; radius ratio Rr and inner wall-fluid thermal conductivity ratio Kr. The study has shown that the increase in Kr increases the heat transfer rate through the annulus for heating at CWT and decreases the inner wall dimensionless temperature for heating at CHF and vice versa. It has also been proved that as the Rs increases at fixed Ra and Rr, the heat transfer rate decreases for heating at CWT and the inner wall dimensionless temperature increases for heating at CHF at Kr 1 depends on Rr. It has been shown that for certain combinations of controlling parameters there will be a value of Rr at which heat transfer rate will be minimum in the annulus in case of heating at CWT, while

  16. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  17. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

    NARCIS (Netherlands)

    van Eden, G. G.; Morgan, T. W.; van der Meiden, H. J.; J Matejicek,; T Chraska,; Wirtz, M.; De Temmerman, G.

    2014-01-01

    The performance of the full-W ITER divertor may be significantly affected by the interplay between steady-state plasma exposure and transient events. To address this issue, the effect of a high-flux H plasma on the thermal shock response of W to ELM-like transients has been investigated. Transient

  18. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  19. Charring rate of wood exposed to a constant heat flux

    Science.gov (United States)

    R. H. White; H. C. Tran

    1996-01-01

    A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...

  20. Diamond thin film temperature and heat-flux sensors

    Science.gov (United States)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  1. Characteristics of combustion and heat transfer of excess enthalpy flames stabilized in a stagnation flow. 2nd Report. ; Heat flux at high flow rate and effects of Lewis number. Yodomi nagarechu ni anteika sareta choka enthalpy kaen no nensho oyobi etsudentatsu tokusei. 2. ; Koryuryo ni okeru netsuryusoku oyobi Lewis su no koka

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S. (Daido Institute of Technology, Nagoya (Japan)); Asato, K.; Kawamura, T. (Gifu University, Gifu (Japan). Faculty of Engineerirng); Mazaki, T. (Daido Senior High School, Nagoya (Japan)); Umemura, H. (Mitsubishi Electric Corp., Tokyo (Japan))

    1993-08-25

    For the purpose of developing small-sized combustors of high heat transfer efficiency for household and business uses, a study has been carried out on the characteristics of an excess enthalpy flame stabilized in a stagnant flow, the maximum heat flux utilizable from flames through a heat receiver wall, the heat transfer characteristics near the extinction limits, and the effects of Lewis number (Le). Even when heat is drawn from the heat receiver wall in the downstream of flames, stable flames are kept until they extremely approach the heat receiver wall by the effect of preheating for lean methane-air flames of Le[approx equal]1.0 and lean propane-air flames of Le>1.0 and by the effect of preheating and Lewis effect for lean hydrogen-air flames of Le<1.0. In any flames, therefore, the heat flux to the heat receiver wall increases abruptly with the increase of stagnant velocity gradient and thereby the heat transfer characteristics at the heat receiver wall are improved. Heat transfer in the cases where flames exist on the outside and inside of the temperature boundary layer depend not on the thickness of the temperature boundary layer but on the position of flames. 6 refs., 9 figs.

  2. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  3. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  4. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  5. Reconciling heat-flux and salt-flux estimates at a melting ice-ocean interface

    CERN Document Server

    Keitzl, Thomas; Notz, Dirk

    2016-01-01

    The ratio of heat and salt flux is employed in ice-ocean models to represent ice-ocean interactions. In this study, this flux ratio is determined from direct numerical simulations of free convection beneath a melting, horizontal, smooth ice-ocean interface. We find that the flux ratio at the interface is three times as large as previously assessed based on turbulent-flux measurements in the field. As a consequence, interface salinities and melt rates are overestimated by up to 40\\% if they are based on the three-equation formulation. We also find that the interface flux ratio depends only very weakly on the far-field conditions of the flow. Lastly, our simulations indicate that estimates of the interface flux ratio based on direct measurements of the turbulent fluxes will be difficult because at the interface the diffusivities alone determine the mixing and the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across t...

  6. Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Gonzaga Univ., Spokane, WA (United States). Dept. of Mechanical Engineering; Khani, Farzad [Bakhtar Institute of Higher Education, Ilam (Iran, Islamic Republic of). Dept. of Mathematics; Darvishi, Mohammad Taghi [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mathematics

    2010-10-15

    The homotopy analysis method (HAM) has been used to develop an analytical solution for the thermal performance of a circular-thin-foil heat flux gage with temperature dependent thermal conductivity and thermal contact resistance between the edge of the foil and the heat sink. Temperature distributions in the foil are presented illustrating the effect of incident heat flux, radiation emission from the foil, variable thermal conductivity, and contact resistance between the foil and the heat sink. The HAM results agree up to four places of decimal with the numerical solutions generated using the symbolic algebra package Maple. This close comparison vouches for the high accuracy and stability of the analytic solution. (orig.)

  7. Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    2010-01-01

    Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.

  8. Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow

    Science.gov (United States)

    Cardone, G.; Tortora, G.; del Vecchio, A.

    2005-02-01

    The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.

  9. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    Science.gov (United States)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  10. A model for the prediction of safe heat flux from a downward-facing hot patch

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C. Nowneswara; Jayanti, S., E-mail: sjayanti@iitm.ac.in

    2013-12-15

    Highlights: • Elucidation of the effect inclination on bubble size and shape. • Computational model for heat transfer under film boiling conditions. • Elucidation of heat leakage from a hot patch. • Development of a dimensionless correlation for safe heat flux. - Abstract: Pool boiling from the underside of flat, downward-facing patch is important in analyzing possible accident scenarios related to nuclear power generation. Significant deterioration in heat transfer may occur in stationary film boiling leading to high wall temperatures. In the present work, we have studied, experimentally and through computational fluid dynamics simulations, the nature of the bubbles that are formed at a hot patch. Noting that large, flattened bubbles can be formed at a heated surface, we develop a heat transfer-only model which takes into account the conduction within the plate and the convective and boiling heat transfer to the surrounding liquid medium. It is shown that the safe heat flux, beyond which significant wall temperature rise may occur, is very small compared the critical heat flux for thick plates made of poorly conducting materials. A dimensionless correlation is proposed to calculate the safe heat flux.

  11. A Revised Estimate of Earth's Surface Heat Flux: 47TW ± 2TW

    Science.gov (United States)

    Davies, J.; Davies, R.

    2011-12-01

    is 47 ± 2 TW, which is similar but slightly higher than previous estimates (e.g. Pollack et al., 1993 - 45 ± 1 TW; and Jaupart et al., 2007, - 46 ± 3 TW). It is challenging to reconcile such a high heat flow with estimates of internal heat sources in a monotonically cooling mantle. We will discuss alternative explanations and also how this work can be extended to produce a best estimate of the local heat flux globally.

  12. Heat flux in the coastal zone

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Edson, J.

    1998-01-01

    Various difficulties with application of Monin-Obukhov similarity theory are surveyed including the influence of growing waves, advection and internal boundary-layer development. These complications are normally important with offshore flow. The transfer coefficient for heat is computed from eddy...... the heat transfer and thermal roughness length but has no obvious influence on momentum roughness length. A new formulation of the thermal roughness length based on the internal boundary-layer depth is calibrated to the RASEX data. For the very stable case, the turbulence is mainly detached from...... the surface and existing formulations do not apply. As an alternative to adjusting the thermal roughness length, the transfer coefficient is related directly to the stability and the internal boundary-layer depth. This avoids specification of roughness lengths resulting from the usual integration of the non...

  13. Analysis of edge stability for models of heat flux width

    Directory of Open Access Journals (Sweden)

    M.A. Makowski

    2017-08-01

    Full Text Available Detailed measurements of the ne, Te, and Ti profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completely consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.

  14. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    Science.gov (United States)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  15. Wedge Heat-Flux Indicators for Flash Thermography

    Science.gov (United States)

    Koshti, Ajay M.

    2003-01-01

    Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.

  16. Predicting critical heat flux in slug flow regime of uniformly heated ...

    African Journals Online (AJOL)

    Numerical computation code (PWR-DNBP) has been developed to predict Critical Heat Flux (CHF) of forced convective flow of water in a vertical heated channel. The code was based on the liquid sub-layer model, with the assumption that CHF occurred when the liquid film thickness between the heated surface and vapour ...

  17. An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.-H.; Wu, H.-H. [Department of Systems and Naval Mechatronic Engineering National Cheng Kung University Tainan, Taiwan 701 (China)

    2006-09-21

    In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study.

  18. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    Science.gov (United States)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.

  19. Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment

    Energy Technology Data Exchange (ETDEWEB)

    Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. (Los Alamos National Lab., NM (United States)); Doran, C.; Hubbe, J.; Shaw, W. (Pacific Northwest Lab., Richland, WA (United States)); Coulter, R.; Martin, T. (Argonne National Lab., IL (United States)); Kunkel, K. (Illinois State Water Survey, Champaign, IL (United States))

    1991-01-01

    Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

  20. High-flux solar photon processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S [SRI International, Menlo Park, CA (United States)

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  1. Thermotronics. Towards nanocircuits to manage radiative heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering; Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik

    2017-05-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20{sup th} century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  2. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER

    Science.gov (United States)

    Chang, C. S.; Ku, S.; Loarte, A.; Parail, V.; Köchl, F.; Romanelli, M.; Maingi, R.; Ahn, J.-W.; Gray, T.; Hughes, J.; LaBombard, B.; Leonard, T.; Makowski, M.; Terry, J.

    2017-11-01

    The XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates. The simulation results compare well against the empirical scaling λ q \\propto 1/BPγ obtained from present tokamak devices, where λ q is the divertor heat-flux width mapped to the outboard midplane, γ  =  1.19 as found by Eich et al (2013 Nucl. Fusion 53 093031), and B P is the magnitude of the poloidal magnetic field at the outboard midplane separatrix surface. This empirical scaling predicts λ q  ≲  1 mm when extrapolated to ITER, which would require operation with very high separatrix densities (n sep/n Greenwald  >  0.6) (Kukushkin et al 2013 J. Nucl. Mater. 438 S203) in the Q  =  10 scenario to achieve semi-detached plasma operation and high radiative fractions for acceptable divertor power fluxes. Using the same simulation code and technique, however, the projected λ q for ITER’s model plasma is 5.9 mm, which could be suggesting that operation in the ITER Q  =  10 scenario with acceptable divertor power loads may be obtained over a wider range of plasma separatrix densities and radiative fractions. The physics reason behind this difference is, according to the XGC1 results, that while the ion magnetic drift contribution to the divertor heat-flux width is wider in the present tokamaks, the turbulent electron contribution is wider in ITER. Study will continue to verify further this important projection. A high current C-Mod discharge is found to be in a mixed regime: While the heat-flux width by the ion neoclassical magnetic drift is still wider than the turbulent electron heat-flux width, the heat-flux magnitude is dominated by the narrower electron heat-flux.

  3. Heat transfer experiments with a central receiver tube subjected to unsteady and non-uniform heat flux

    Science.gov (United States)

    Fernández-Torrijos, María; Marugán-Cruz, Carolina; Sobrino, Celia; Santana, Domingo

    2017-06-01

    In this work, a molten salt test loop to study the heat transfer process in external molten salt receivers is described. The experimental installation is formed by a cylindrical molten salt tank, a pump, a flow meter, and an induction heater to generate the heat flux, which is applied in a small rectangular region of the tube surface. In central tower plants, the external receiver pipe is considered to be under unilateral concentrated solar radiation, because only one side of the pipe receives high heat flux. The main advantage of using an induction heater is the control of heating in different areas of the tube. In order to measure the effects of a non-homogenous and unsteady heat flux on the wall temperature distribution a series of experiments have been carried out. 4 K-type thermocouples have been welded at different axial and azimuthal positions of the pipe to obtain the wall temperature distribution. Different temperature measurements have been made varying the heat flux and water velocity to study their effects on the heat transfer process.

  4. Pool boiling of distilled water over tube bundle with variable heat flux

    Science.gov (United States)

    Swain, Abhilas; Mohanty, Rajiva Lochan; Das, Mihir Kumar

    2017-08-01

    The experimental investigation of saturated pool boiling heat transfer of distilled water over plain tube bundle, under uniform and varying heat flux condition along the height are presented in this article. Experiments are carried out under various heat flux configurations applied to rows of tube bundles and pitch distance to diameter ratios of 1.25, 1.6 and 1.95. The wall superheats and pool boiling heat transfer coefficients over individual rows are determined. The pool boiling heat transfer coefficients for variable heat flux and uniform heat flux conditions are compared. The results indicate that the bundle effect is found to exist for uniform as well as variable heat flux under all operating conditions in the present investigation. The variable heat flux resulted in range of wall superheat being highest for decreasing heat flux from bottom to top and lowest for increasing heat flux from bottom to top.

  5. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?

    Science.gov (United States)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.

    2017-05-01

    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  6. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  7. Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method.

    Science.gov (United States)

    Sola, A; Bougiatioti, P; Kuepferling, M; Meier, D; Reiss, G; Pasquale, M; Kuschel, T; Basso, V

    2017-04-25

    The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143 ± 0.007) 10-7 Vm/W and (1.101 ± 0.015) 10-7 Vm/W with the heat flux method and (2.313 ± 0.017) 10-7 V/K and (4.956 ± 0.005) 10-7 V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.

  8. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2013-03-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  9. Heat flux decay length during RF power operation in the Tore Supra tokamak

    Science.gov (United States)

    Corre, Y.; Gunn, J. P.; Firdaouss, M.; Carpentier, S.; Chantant, M.; Colas, L.; Ekedahl, A.; Gardarein, J.-L.; Lipa, M.; Loarer, T.; Courtois, X.; Guilhem, D.; Saint-Laurent, F.

    2014-01-01

    The upgrade of its ion cyclotron resonance (ICRH) and lower hybrid current drive (LHCD) heating systems makes the Tore Supra (TS) tokamak particularly well suited to address the physics and technology of high-power and steady-state plasma-surface interactions. High radio frequency (RF) heating powers have been successfully applied up to 12.2 MW coupled to the plasma, in which about 7.85 MW flows through the scrape-off layer. Thermal calculation based on thermography measurements gives the heat flux density distribution on the TS toroidal limiter located at the bottom of the machine. The target heat flux densities are divided by the incidence angle of the field lines with the surface and mapped to the magnetic flux surface to evaluate the power flowing in the scrape-off layer (SOL). The power profile shows a narrow component near the last closed flux surface and a wide component in the rest of the SOL. The narrow component is attributed to significant cross-field heat flux density around the plasma contact point, about 0.8% of the parallel heat flux density in the SOL, when incident angles are nearly tangential to the surface. The wide component is used to derive the experimental heat flux decay length (λq) and parallel heat flux in the SOL. The power widths are measured for a series of 1 MA/3.8 T discharges involving a scan of RF injected power 3.5 ⩽ Ptot ⩽ 12.2 MW. Independently of the heating power, we measured λq,OMP = 14.5 ± 1.5 mm at the outer mid-plane and parallel heat flux in the SOL in the range 130\\le Q_{\\parallel}^{LCFS}\\le 490\\,MW\\,m^{-2} . TS values obtained with L-mode limiter plasmas are broader than those derived from L-mode divertor plasmas, confirming earlier results obtained with an ohmically heated plasma leaning on the inboard wall of TS.

  10. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    Science.gov (United States)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; hide

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  11. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  12. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  13. The heat budgets of magmatic arcs: Discrepancies between heat flow measurements, volatile fluxes, and interpretations of the geologic record

    Science.gov (United States)

    Van Buer, N. J.

    2015-12-01

    Arc magmatic processes, from differentiation to emplacement, depend crucially on the rate at which heat and magma are supplied to the arc crust. In active arcs, the total heat flow can be estimated relatively directly by measuring and quantifying the amounts of heat lost via conduction, hydrothermal circulation, and eruption. This total heat flow can be used to calculate the implied magmatic flux at depth. Alternatively, magmatic flux in active arcs can be estimated from measured rates of volatile emissions, usually SO2. Unfortunately, heat flow and volatile flux data sufficiently detailed to make these calculations exist for only a handful of active arcs. In the geologic record, rates of arc magmatic flux have most frequently been estimated by measuring the preserved volumes of intrusive and extrusive products and dividing by the geochronologically determined duration of arc activity. This can be converted to heat flow by assuming a certain amount of heat carried per volume of magma. The ranges of magmatic flux estimated via either heat flow or SO2 are similar for modern arcs, but, on average, estimates from the geologic record are lower by about a factor of three (Fig. 1). This discrepancy may indicate that the assumption that preserved igneous rock volumes represent the total advective flux is a poor choice when interpreting the geologic record. Recycling of early solidified magma and loss of cumulates to the mantle may be important, i.e., the time-integrated advective flux might significantly exceed the net preserved intrusive volume. This is also supported by other lines of evidence, including geochemical mass-balance arguments, thermal models of basalt flux needed to allow substantial assimilation and/or crystal fractionation in the lower crust, high-temperature thermochronology in arcs, and thermal models of the conditions necessary to cause large, explosive eruptions from upper crustal magma chambers. Substantial recycling or convection within the arc crust

  14. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 1: Micro-Channel Heat Sink for Direct Refrigeration Cooling

    Science.gov (United States)

    2008-09-01

    115 11.3.1 H eat T ransfer R esults ...................................................................................... 115 II.3. 1.1...Figure Page 11.5.2 (a) Mass conservation for liquid and homogeneous layer control volumes. (b) Energy conservation for homogenous layer control volume...flow layer near the heated walls of the micro- channel and a second subcooled bulk liquid layer. Mass, momentum and energy control volume conservation

  15. A 2-D imaging heat-flux gauge

    Energy Technology Data Exchange (ETDEWEB)

    Noel, B.W.; Borella, H.M. (Los Alamos National Lab., NM (United States)); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. (Oak Ridge National Lab., TN (United States)); Turley, W.D. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  16. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  17. The sensivity of geomagnetic reversal frequency to core-mantle boundary heat flux magnitude and heterogeneity.

    Science.gov (United States)

    Metman, Maurits; de Groot, Lennart; Thieulot, Cedric; Biggin, Andrew; Spakman, Wim

    2015-04-01

    For a number of decades the core-mantle boundary (CMB) heat flux has been thought to be a key parameter controlling the geomagnetic field. A CMB heat flow increase is assumed to destabilize the geodynamo, increasing and decreasing the reversal frequency and dipole moment, respectively. The opposite case where a CMB flux decrease induces a relatively high dipole moment, as well as a low reversal frequency, would correspond to the characteristics of a superchron (Biggin et al., 2012). So far, only the magnitude of the CMB heat flux has been subject of research. However, the temporal and spatial heat flux distribution across the CMB also appears to have an influence on the geomagnetic reversal frequency. For example, the amount of heat flux heterogeneity may also be associated with a destabilization of the dynamo, increasing the reversal frequency (Olson et al., 2010). In this work we set out to assess: - (1) How the geomagnetic field intensity and reversals are predominantly sensitive to CMB heat flux magnitude or heterogeneity; - (2) what combination of magnitude and heterogeneity best reproduces the geomagnetic record on the 10 Myr timescale. To this end we use the PARODY software and test for a number of CMB heat flow modes (spherical harmonics of increasing degree and order, with an amplitude of 10 mW/m^2) and magnitudes (ranging from 20 to 100 mW/m^2). We will show our modeling results of how CMB heat flow magnitude and heterogeneity control the paleomagnetic record in terms of reversal frequency and dipole moment. Also relevant snapshots in time of outer core convection and thermal/magnetic structure will be shown. References Biggin et al. (2012). Nature Geoscience, 5(8):526-533. Olson et al. (2010). PEPI, 180(1-2):66 - 79.

  18. Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.

    Science.gov (United States)

    Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas

    2015-04-01

    Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.

  19. Design of a heating system for plasma flux simulation

    OpenAIRE

    Fallas-Chinchilla, Juan Carlos; Fallas-Agüero, Manuel; Del Valle-Gamboa, Juan Ignacio; Fonseca-Flores, Luis Diego

    2013-01-01

    VASIMR® plasma rocket and its possible applications are promoting innovations in the space propulsion area. Ad Astra Rocket Company (VASIMR® designer) constantly needs instruments to evaluate the plasma engine and its components, in order to acquire critical information to warrant a safe operation. This study describes the design and construction of a heating system, to simulate a plasma flux within a ceramic tube. This part of the engine plays a critical role, transporting a gas to ionize at...

  20. Using heat to characterize streambed water flux variability in four stream reaches.

    Science.gov (United States)

    Essaid, Hedeff I; Zamora, Celia M; McCarthy, Kathleen A; Vogel, Jason R; Wilson, John T

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed.

  1. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter ...

  2. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  3. Dry Block Calibrator Using Heat Flux Sensors and an Adiabatic Shield

    Science.gov (United States)

    Hohmann, M.; Marin, S.; Schalles, M.; Krapf, G.; Fröhlich, T.

    2015-08-01

    The main problems of conventional dry block calibrators are axial temperature gradients and calibration results which are strongly influenced by the geometry and the thermal properties of the thermometers under test. To overcome these disadvantages, a new dry block calibrator with improved homogeneity of the inner temperature field was developed for temperatures in the range from room temperature up to . The inner part of the dry block calibrator is a cylindrical normalization block which is divided into three parts in the axial direction. Between these parts, heat flux sensors are placed to measure the heat flux in the axial direction inside the normalization block. Each part is attached to a separate tube-shaped heating zone of which the heating power can be controlled in a way that the axial heat flux measured by means of the heat flux sensors is zero. Additionally, an internal reference thermometer is used to control the absolute value of the temperature inside the normalization block. To minimize the radial heat flux, an adiabatic shield is constructed which is composed of a secondary heating zone that encloses the whole assembly. For rapid changes of the set point from high to low temperatures, the design contains an additional ventilation system to cool the normalization block. The present paper shows the operating principle as well as the results of the design process, in which numerical simulations based on the finite element method were used to evaluate and optimize the design of the dry block calibrator. The final optimized design can be used to build a prototype of the dry block calibrator.

  4. Satellite evidence for no change in terrestrial latent heat flux in the ...

    Indian Academy of Sciences (India)

    Terrestrial latent heat flux (LE) in the Three-River Headwaters region (TRHR) of China plays an essential role in quantifying the amount of water evaporation and carbon sink over the high altitude. Tibetan Plateau (TP). Global warming is expected to accelerate terrestrial hydrological cycle and to increase evaporation.

  5. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  6. ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

    Science.gov (United States)

    Chatterjee, S.; Nuncio, M.; Satheesan, K.

    2017-07-01

    The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.

  7. The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    Directory of Open Access Journals (Sweden)

    Tkachenko Egor M.

    2016-01-01

    Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.

  8. Alongshore wind stress and heat flux divergence off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, B.P.; Rao, D.P.

    Annual variation of heat flux divergence (Qv) was computed for the coastal waters of Visakhapatnam. The mean values of net heat exchange (Qn) and heat flux divergence (Qv) were found to be 114 and 115 W.m/2 respectively on annual scale. The net heat...

  9. Tetrakis-amido high flux membranes

    Science.gov (United States)

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  10. Heat Flux and Entropy Produced by Thermal Fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, Alberto; Naert, A.

    2013-01-01

    We report an experimental and theoretical analysis of the energy exchanged between two conductors kept at different temperature and coupled by the electric thermal noise. Experimentally we determine, as functions of the temperature difference, the heat flux, the out-of-equilibrium variance......, and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constraints on the energy exchanged between coupled nanosystems held...

  11. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.

    Science.gov (United States)

    Chakraborty, Surya Deb; Kant, Yogesh; Mitra, Debashis

    2015-01-15

    Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of ±2 °C than MODIS with an error of ±3 °C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 °C & for MODIS data is 3.7 °C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  13. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  14. Comparison of sensible heat flux estimates using AVHRR with scintillometer measurements over semi-arid grassland in northwest Mexico

    NARCIS (Netherlands)

    Watts, C.J.; Chehbouni, A.; Rodriguez, J.C.; Kerr, Y.H.; Hartogensis, O.K.; Bruin, de H.A.R.

    2000-01-01

    The problems associated with the validation of satellite-derived estimates of the surface fluxes are discussed and the possibility of using the large aperture scintillometer is investigated. Simple models are described to derive surface temperature and sensible heat flux from the advanced very high

  15. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    Science.gov (United States)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  16. High-Performance Heat Pipe

    Science.gov (United States)

    Alario, J. P.; Kosson, R.; Haslett, R.

    1985-01-01

    Single vapor channel and single liquid channel joined by axial slot. New design, permits high heat-transport capacity without excessively reducing heat-transfer efficiency. Contains two large axial channels, one for vapor and one for liquid, permitting axial transport and radial heat-transfer requirements met independently. Heat pipe has capacity of approximately 10 to sixth power watt-inches (2.5 X 10 to sixth power watt-cm) orders of magnitude greater than heat capacity of existing heat pipes. Design has high radial-heat-transfer efficiency, structurally simple, and has large liquid and vapor areas.

  17. Critical heat flux tests for a 12 finned-element assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J., E-mail: Jun.Yang@cnl.ca; Groeneveld, D.C.; Yuan, L.Q.

    2017-03-15

    Highlights: • CHF tests for a 12 finned-fuel-element assembly at highly subcooled conditions. • Test approach to maximize experimental information and minimize heater failures. • Three series of tests were completed in vertical upward light water flow. • Bundle simulators of two axial power profiles and three heated lengths were tested. • Results confirm that the prediction method predicts lower CHF values than measured. - Abstract: An experimental study was undertaken to provide relevant data to validate the current critical heat flux (CHF) prediction method of the NRU driver fuel for safety analysis, i.e., to confirm no CHF occurrence below the predicted values. The NRU driver fuel assembly consists of twelve finned fuel elements arranged in two rings – three in the inner ring and nine in the outer ring. To satisfy the experimental objective tests at very high heat fluxes, very high mass velocities, and high subcoolings were conducted where the CHF mechanism is the departure from nucleate boiling (DNB). Such a CHF experiment can be very difficult, costly and time consuming since failure of the heating surface due to rupture or melting (physical burnout) is expected when the DNB type of CHF is reached. A novel experimental approach has been developed to maximize the amount of relevant experimental information on safe operating conditions in the tests, and to minimize any possible heater failures that inherently accompany the CHF occurrence at these conditions. Three series of tests using electrically heated NRU driver fuel simulators with three heated lengths and two axial power profiles (or axial heat flux distribution (AFD)) were completed in vertical upward light water flow. Each series of tests covered two mass flow rates, several heat flux levels, and local subcoolings that bound the ranges of interest for the analysis of postulated slow loss-of-regulation accident (LORA) and loss-of-flow accident (LOFA) scenarios. Tests for each mass flow rate of

  18. A modified force-restore approach to modeling snow-surface heat fluxes

    Science.gov (United States)

    Charles H. Luce; David G. Tarboton

    2001-01-01

    Accurate modeling of the energy balance of a snowpack requires good estimates of the snow surface temperature. The snow surface temperature allows a balance between atmospheric heat fluxes and the conductive flux into the snowpack. While the dependency of atmospheric fluxes on surface temperature is reasonably well understood and parameterized, conduction of heat from...

  19. Advanced Tethersonde for High-Speed Flux Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  20. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  1. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as ice grew from 5 to 25 cm thick. Heat, momentum, and dissolved oxygen fluxes were all successfully derived. Quantification of salt fluxes was unsuccessful due to noise in the conductivity sensor, a problem which appears to be resolved in a subsequent version of the instrument. Heat fluxes during...... as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...

  2. Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig

    Science.gov (United States)

    Cuda, Vincent, Jr.; Hass, Neal E.

    2010-01-01

    An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.

  3. Comprehensive Analysis of Convective Heat Transfer in Parallel Plate Microchannel with Viscous Dissipation and Constant Heat Flux Boundary Conditions

    Science.gov (United States)

    Kushwaha, Hari Mohan; Sahu, Santosh Kumar

    2017-10-01

    This paper reports the hydrodynamically and thermally fully developed, laminar, incompressible, forced convective heat transfer characteristics of gaseous flows through a parallel plate microchannel with different constant heat flux boundary conditions. The first order velocity slip and viscous dissipation effects are considered in the analysis. Here, three different thermal boundary conditions such as: both plates kept at different constant heat fluxes, both plates kept at equal constant heat fluxes and one plate kept at constant heat flux and other one insulated are considered for the analysis. The deviation in Nusselt number between the model that considers both first order velocity slip and temperature jump and the one that considers only velocity slip is reported. Also, the effect of various heat flux ratios on the Nusselt number is reported in this analysis. In addition, the deviation in Nusselt number between first and second order slip model is discussed in this study.

  4. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging

    Directory of Open Access Journals (Sweden)

    Maogui Hu

    2015-07-01

    Full Text Available Sensible heat flux (H plays an important role in characterizations of land surface water and heat balance. There are various types of H measurement methods that depend on observation scale, from local-area-scale eddy covariance (EC to regional-scale large aperture scintillometer (LAS and remote sensing (RS products. However, methods of converting one H scale to another to validate RS products are still open for question. A previous area-to-area regression kriging-based scaling method performed well in converting EC-scale H to LAS-scale H. However, the method does not consider the path-weighting function in the EC- to LAS-scale kriging with the regression residue, which inevitably brought about a bias estimation. In this study, a weighted area-to-area regression kriging (WATA RK model is proposed to convert EC-scale H to LAS-scale H. It involves path-weighting functions of EC and LAS source areas in both regression and area kriging stages. Results show that WATA RK outperforms traditional methods in most cases, improving estimation accuracy. The method is considered to provide an efficient validation of RS H flux products.

  6. Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    1999-01-01

    of forest, agricultural fields, mires and lakes within the boreal zone, was determined for 3 days of the campaign in 1994. It was found to be lower than the heat flux over forest and higher than the heat Aux over agricultural fields. The regional heat flux estimated by the mixed-layer evolution method...

  7. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

    Directory of Open Access Journals (Sweden)

    Waqar Azeem Khan

    Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

  8. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.

    Science.gov (United States)

    Li, Xiantao

    2014-09-01

    We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples.

  9. Critical role of electron heat flux on Bohm criterion

    Science.gov (United States)

    Tang, Xian-Zhu; Guo, Zehua

    2016-12-01

    Bohm criterion, originally derived for an isothermal-electron and cold-ion plasma, is often used as a rule of thumb for more general plasmas. Here, we establish a more precise determination of the Bohm criterion that are quantitatively useful for understanding and modeling collisional plasmas that still have collisional mean-free-path much greater than plasma Debye length. Specifically, it is shown that electron heat flux, rather than the isothermal electron assumption, is what sets the Bohm speed to be √{ k B ( T e ∥ + 3 T i ∥ ) / m i } with T e , i ∥ the electron and ion parallel temperature at the sheath entrance and mi the ion mass.

  10. SPECTRAL data-based estimation of soil heat flux

    Science.gov (United States)

    Singh, R.K.; Irmak, A.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.

  11. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  12. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    Uncertainties in the flux estimates, resulting from the use of bulk method and remotely sensed data are worked out and are presented for individual and total fluxes. These uncertainties in satellite derived fluxes are further compared...

  13. Quantitative method for measuring heat flux emitted from a cryogenic object

    Science.gov (United States)

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  14. Contribution of Heat Fluxes on Cyclone Narelle as Simulated by a Mesoscale Model

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah

    2013-12-01

    Full Text Available Heat fluxes from oceanic evaporation particularly latent heat is important to drive the formation and intensification of Cyclone Narelle. The research was carried out by introducing a mesoscale model, namely Weather and Research Forecasting (WRF. One domain with spatial resolution at 10 km was utilized in the model. The model involved significant physical parameters, e.g., Kain-Fritsch in the cumulus scheme, Yonsei University in the Planetary Boundary Layer scheme, and WRF Single-Moment 3-class in the microphysics scheme. The analysis focused on January 8th to 14th upon all stages of Narelle. The result showed that Sea Surface Temperatures (SST higher than 26°C was a favorable environment for Cylone Narelle to form. Surface sensible and latent heat fluxes have strong positive correlation with wind speed and SST. It can be concluded that these variables were highly correlated with surface heat flux that further lead to the formation and intensification of Cyclone Narelle in early January 2013 over South Indian Ocean. The tracks and stages of the model are nearly similar to the observations, the differences are found in late phases of Narelle.

  15. Fabrication and Testing of a Thin-Film Heat Flux Sensor for a Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Fralick, Gustave; Wrbanek, John; Sayir, Ali

    2009-01-01

    The NASA Glenn Research Center (GRC) has been testing high efficiency free-piston Stirling convertors for potential use in radioisotope power systems since 1999. Stirling convertors are being operated for many years to demonstrate a radioisotope power system capable of providing reliable power for potential multi-year missions. Techniques used to monitor the convertors for change in performance include measurements of temperature, pressure, energy addition, and energy rejection. Micro-porous bulk insulation is used in the Stirling convertor test set up to minimize the loss of thermal energy from the electric heat source to the environment. The insulation is characterized before extended operation, enabling correlation of the net thermal energy addition to the convertor. Aging microporous bulk insulation changes insulation efficiency, introducing errors in the correlation for net thermal energy addition. A thin-mm heat flux sensor was designed and fabricated to directly measure the net thermal energy addition to the Stirling convertor. The fabrication techniques include slip casting and using Physical Vapor Deposition (PVD). One micron thick noble metal thermocouples measure temperature on the surface of an Alumina ceramic disc and heat flux is calculated. Fabrication, integration, and test results of a thin film heat flux sensor are presented.

  16. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  17. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    Energy Technology Data Exchange (ETDEWEB)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-07-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  18. Striation pattern of target particle and heat fluxes in three dimensional simulations for DIII-D

    Science.gov (United States)

    Frerichs, H.; Schmitz, O.; Reiter, D.; Evans, T. E.; Feng, Y.

    2014-02-01

    The application of resonant magnetic perturbations results in a non-axisymmetric striation pattern of magnetic field lines from the plasma interior which intersect the divertor targets. The impact on related particle and heat fluxes is investigated by three dimensional computer simulations for two different recycling conditions (controlled via neutral gas pumping). It is demonstrated that a mismatch between the particle and heat flux striation pattern (splitting vs. no splitting), as is repeatedly observed in ITER similar shape H-mode plasmas at DIII-D, can be reproduced by the simulations for high recycling conditions at the onset of partial detachment. These results indicate that a detailed knowledge of the particle and energy balance is at least as important for realistic simulations as the consideration of a change in the magnetic field structure by plasma response effects.

  19. Tidal and atmospheric forcing of the upper ocean in the Gulf of California. 2: Surface heat flux

    Science.gov (United States)

    Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.

    1993-01-01

    Satellite infrared imagery and coastal meteorological data for March 1984 through February 1985 are used to estimate the net annual surface heat flux for the northern Gulf of California. The average annual surface heat flux for the area north of Guaymas and Santa Rosalia is estimated to be +74 W/sq m for the 1984-1985 time period. This is comparable to the +20-50 W/sq m previously obtained from heat and freshwater transport estimates made with hydrographic surveys from different years and months. The spatial distribution of the net surface heat flux shows a net gain of heat over the whole northern gulf. Except for a local maximum near San Esteban Island, the largest heat gain (+110-120 W/sq m) occurs in the Ballenas and Salsipuedes channels, where strong tidal mixing produces anomalously cold sea surface temperatures (SSTs) over much of the year. The lowest heat gain occurs in the Guayamas Basin (+40-50 W/sq m), where SSTs are consistently warmer. In the relatively shallow northern basin the net surface heat flux is farily uniform, with a net annual gain of approxmately +70 W/sq m. A local minimum in heat gain (approximately +60 W/sq m) is observed over the shelf in the northwest, where spring and summer surface temperatures are particularly high. A similar minimum in heat gain over the shelf was observed in a separate study in which historical SSTs and 7 years (1979-1986) of meteorological data from Puerto Penasco were used to estimate the net surface heat flux for the northern basin. In that study, however, the heat fluxes were higher, with a gain of +100 W/sq m over the shelf and +114 W/sq m in the northern basin. These larger values are directly attributable to the higher humidities in the 1979-1986 study compared to the 1984-1985 satellite study. High humidities reduce evaporation and the associated latent heat loss, promoting a net annual heat gain. In the norther Gulf of California, however, tidal mixing appears to play a key role in the observed gain of

  20. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust

    Science.gov (United States)

    Hutnak, M.; Fisher, A. T.; Harris, R.; Stein, C.; Wang, K.; Spinelli, G.; Schindler, M.; Villinger, H.; Silver, E.

    2008-09-01

    Hydrothermal circulation on the sea floor at mid-ocean ridge flanks extracts ~30% of heat from the oceanic lithosphere on a global basis and affects numerous tectonic, magmatic and biogeochemical processes. However, the magnitude, mechanisms and implications of regional-scale fluid and heat flow on mid-ocean ridge flanks are poorly understood. Here we analyse swath-map, seismic and sea-floor heat-flux data to quantify the heat and fluid discharge through a few widely spaced basement outcrops on the Cocos Plate. Heat removed by conduction from a 14,500 square kilometre region of the sea floor is 60-90% lower than that predicted by lithospheric cooling models. This implies that a substantial portion of the heat is extracted by advection, which requires fluid discharge of 4-80×103 litres per second. The heat output of individual discharging outcrops is inferred to be comparable to that from black-smoker vent fields seen on mid-ocean ridges. Our analysis shows that hydrothermal circulation on mid-ocean ridge flanks through widely spaced outcrops can extract a large fraction of lithospheric heat. This circulation requires a very high crustal permeability at a regional scale. Focused flows of warm, nutrient-rich hydrothermal fluid may enhance sub-seafloor microbial habitats and enable direct sampling of these systems.

  1. Tests on dynamic corrosion by water. Influence of the passage of a heat flux on the corrosion kinetics. pH measurement in water at high temperature; Essais de corrosion dynamique par l'eau. Influence du passage d'un flux thermique sur la cinetique de corrosion. Mesure du pH dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L.; Hure, J.; Saint-James, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France); Le peintre [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1958-07-01

    The passage of a heat flux through the surface of a metal placed in a corrosive medium influences the rate of corrosion, these being higher than under adiabatic conditions. The apparatus developed for corrosion tests is described, it is possible to obtain with this equipment: 1) Heat fluxes greater than 200 W/cm{sup 2}, across aluminium canning, which is cooled by water (temperature 50 deg. C), circulating with flow rates of the order of 5 to 6 m/s. 2) Heat fluxes which can go up to 150 W/cm{sup 2}, across canning of zircaloy or stainless steel. The cooling fluid is pressurized water at a temperature around 280 deg. C, the flow-rate of circulation reaching 6 m/s. The results obtained on aluminium canning are studied from the viewpoint of corrosion, paying particular attention to cavitation phenomena which can cause serious damage in certain special circumstances. After developing a glass electrode system capable of supporting high pressures, the authors have investigated materials capable of functioning as a hydrogen electrode and of resisting satisfactorily corrosion by water at 200 deg. C. Various possibilities have been examined: electrodes of special glasses, quartz, metals, with a membrane etc... The results of the various tests and the practical limits of utilisation are given. (author)Fren. [French] Le passage d'un flux thermique a travers la surface d'un metal place dans un milieu corrosif influence les vitesses de corrosion, celles-ci etant plus elevees que dans des conditions adiabatiques. On decrit les appareils mis au point, pour essais de corrosion. Ils permettent d'obtenir: 1) A travers des gaine aluminium des flux thermiques depassant 200 W /cm{sup 2}. Les gaines sont refroidies par l'eau (temperature 50 deg. C), circulant a des vitesses de l'ordre de 5 a 6 m/s. 2) A travers des gaines en zircaloy ou acier inoxydable des flux thermiques pouvant s'elever a 150 W/cm{sup 2}. Le fluide de refroidissement est de l

  2. Optimization-based design of heat flux manipulation devices with emphasis on fabricability.

    Science.gov (United States)

    Peralta, Ignacio; Fachinotti, Víctor D

    2017-07-24

    In this work, we present a new method for the design of heat flux manipulating devices, with emphasis on their fabricability. The design is obtained as solution of a nonlinear optimization problem where the objective function represents the given heat flux manipulation task, and the design variables define the material distribution in the device. In order to facilitate the fabrication of the device, the material at a given point is chosen from a set of predefined metamaterials. Each candidate material is assumed to be a laminate of materials with high conductivity contrast, so it is a metamaterial with a highly anisotropic effective conductivity. Following the discrete material optimization (DMO) approach, the fraction of each material at a given finite element of the mesh is defined as a function of continuous variables, which are ultimately the design variables. This DMO definition forces the fraction of each candidate to tend to either zero or one at the optimal solution. As an application example, we designed an easy-to-make device for heat flux concentration and cloaking.

  3. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Drag and heat flux reduction mechanism of blunted cone with aerodisks

    Science.gov (United States)

    Huang, Wei; Li, Lang-quan; Yan, Li; Zhang, Tian-tian

    2017-09-01

    The major challenge among a number of design requirements for hypersonic vehicles is the reduction of drag and aerodynamic heating. Of all these techniques of drag and heat flux reduction, application of forward facing aerospike conceived in 1950s is an effective and simpler technique to reduce the drag as well as the heat transfer rate for blunt nosed bodies at hypersonic Mach numbers. In this paper, the flow fields around a blunt cone with and without aerodisk flying at hypersonic Mach numbers are computed numerically, and the numerical simulations are conducted by specifying the freestream velocity, static pressure and static temperatures at the inlet of the computational domain with a three-dimensional, steady, Reynolds-averaged Navier-Stokes equation. An aerodisk is attached to the tip of the rod to reduce the drag and heat flux further. The influences of the length of rod and the diameter of aerodisk on the drag and heat flux reduction mechanism are analyzed comprehensively, and eight configurations are taken into consideration in the current study. The obtained results show that for all aerodisks, the reduction in drag of the blunt body is proportional to the extent of the recirculation dead air region. For long rods, the aerodisk is found not that beneficial in reducing the drag, and an aerodisk is more effective than an aerospike. The spike produces a region of recirculation separated flow that shields the blunt-nosed body from the incoming flow, and the recirculation region is formed around the root of the spike up to the reattachment point of the flow at the shoulder of the blunt body. The dynamic pressure in the recirculation area is highly reduced and thus leads to the decrease in drag and heat load on the surface of the blunt body. Because of the reattachment of the shear layer on the shoulder of the blunt body, the pressure near that point becomes large.

  5. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    Science.gov (United States)

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  6. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  7. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.; Fer, Ilker; McPhee, Miles G.; Randelhoff, Achim

    2017-02-01

    We report observations of heat and momentum fluxes measured in the ice-ocean boundary layer from four drift stations between January and June 2015, covering from the typical Arctic basin conditions in the Nansen Basin to energetic spots of interaction with the warm Atlantic Water branches near the Yermak Plateau and over the North Spitsbergen slope. A wide range of oceanic turbulent heat flux values are observed, reflecting the variations in space and time over the five month duration of the experiment. Oceanic heat flux is weakly positive in winter over the Nansen Basin during quiescent conditions, increasing by an order of magnitude during storm events. An event of local upwelling and mixing in the winter-time Nansen basin highlights the importance of individual events. Spring-time drift is confined to the Yermak Plateau and its slopes, where vertical mixing is enhanced. Wind events cause an approximate doubling of oceanic heat fluxes compared to calm periods. In June, melting conditions near the ice edge lead to heat fluxes of O(100 W m-2). The combination of wind forcing with shallow Atlantic Water layer and proximity to open waters leads to maximum heat fluxes reaching 367 W m-2, concurrent with rapid melting. Observed ocean-to-ice heat fluxes agree well with those estimated from a bulk parameterization except when accumulated freshwater from sea ice melt in spring probably causes the bulk formula to overestimate the oceanic heat flux.

  8. Heat and salt fluxes in the West Spitsbergen Current area in summer

    Directory of Open Access Journals (Sweden)

    Jan Piechura

    2002-09-01

    Full Text Available Fluxes of radiation, sensible and latent heat, and fluxes of heat and salt within the upper layer of the ocean were calculated on the basis of measurements carried out in the area of the Norwegian-Atlantic and West Spitsbergen Currents during summer 2000.      The sea surface radiation balance was calculated from direct measurements of downward and upward short-wave (solar radiation, the net radiation fluxes and sea surface temperature. The daily doses of radiation energy reaching and leaving the sea surface were also estimated.      To calculate the vertical heat fluxes in the atmospheric boundary layer the bulk parameterisation method was used. In most cases, the calculated heat fluxes were rather low, the average sensible heat flux was c. 10 W m-2, and the latent heat flux about one order of magnitude higher; this is what could be expected in summer. Salt fluxes to the air in the process of aerosol production are very small and can be neglected.      In summer the highest quantities of heat and salt are exchanged during mixing with surrounding waters.      According to our measurements, Atlantic Water on its northward course from about 70oN to 79oN loses about 100 TW of heat and 900 × 103 kg of salt. We thought it could be interesting to find out what happens to them. Some preliminary results of our investigation are presented here.

  9. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface

  10. Surface energy balance closure in an arid region: role of soil and heat flux

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.; Berkowicz, S.M.

    2004-01-01

    The large soil heat fluxes in hot desert regions are very important in energy balance studies. Surface energy balance (SEB) observations, however, reveal that there is an imbalance in Surface flux measurements and that it is difficult to isolate those flux measurements causing the imbalance errors.

  11. Eddy Heat Fluxes across the Antarctic Circumpolar Current in Northern Drake Passage

    Science.gov (United States)

    Watts, D. R.; Tracey, K. L.; Donohue, K. A.; Chereskin, T. K.

    2012-12-01

    A local dynamics array of 24 current and pressure recording inverted echo sounders (CPIES) was deployed as part of the cDrake experiment for 4 years centered near 57S, 63W spanning a local maximum eddy kinetic energy region between the Subantarctic Front and Polar Front. The CPIES array provides full water-column estimates of velocity and temperature that were mapped to quantify and characterize eddy heat flux. Objective mapping was used to separate the total eddy heat fluxes into a nondivergent (rotational) part that recirculates around mean temperature-variance structures and a divergent part that accounts for the net eddy flux of heat across the Antarctic Circumpolar Current. The vertical shear, aligned along isotherms, is equivalent-barotropic and contributes only nondivergent heat flux. In contrast, the dynamically important component of eddy heat flux that transfers energy from the mean to the eddy field is driven by nearly depth-independent geostrophic currents that can cross the temperature front. Thus as in Bishop [2012], the coupling between the nearly depth-independent currents measured at the bottom and the temperatures in the baroclinic front accounts for all the divergent component of eddy heat flux. The separation reveals divergent heat fluxes that typically are oriented differently and have magnitudes a few times smaller than the total eddy heat fluxes. The mapped annual-mean eddy heat fluxes have a spatial structure that is relatively consistent from year-to-year and exhibit a region of strong poleward divergent fluxes just downstream of a prominent topographic ridge (Shackleton Fracture Zone). The fluxes peak in the upper water column at 100-200 kW m^{-2} near 200 m depth and decrease to 10-15% as large by 600 m depth, below which they are relatively constant and coherent to the sea floor. In these "hot spots" of eddy heat flux the vertically-integrated poleward divergent fluxes are 50 - 100 MW m^{-1}. The time series of daily heat flux show that

  12. Modeling the surface heat flux response to long-lived SST anomalies in the North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Power, S.B.; Kleeman, R.; Colman, R.A. [Bureau of Meteorology Research Centre, Melbourne (Australia)] [and others

    1995-09-01

    An atmospheric general circulation model (AGCM), a simplified atmospheric model (SAM) of surface heat flux, and various idealized analytic models have been used to investigate the atmospheric response over the North Atlantic to SST anomalies, including a general cooling associated with a weakened thermohaline circulation. Latent heating dominates the surface heat flux response, while sensible heating plays an important secondary role. The total heat flux response is weaker than presumed in recent studies using ocean models under highly idealized surface boundary conditions. This implies that stability of the thermohaline circulation to high-latitude freshening in more sophisticated coupled systems (that incorporate either AGCMs or models like SAM) will be increased. All three kinds of atmospheric models exhibit nonrestorative behavior away from the anomaly peak that is primarily associated with the advection of cooled air eastward. This simple picture is complicated in the AGCM by the fact that the winds weaken over the SST anomaly, which helps to moderate the response. Analytic models for atmospheric temperature forced using imposed surface temperature anomalies highlight conditions under which a nonrestorative response can arise. Previous work has shown that the length scale of spatially periodic anomalies partially determines the magnitude of the response in a diffusive atmosphere. Here the authors show that this scale dependence has much wider applicability by considering more localized anomalies and by the inclusion of advective transport processes. The modification of the response by sea ice changes and the absence of any statistically significant change in the basin-averaged hydrological cycle are also discussed. 62 refs., 19 figs.

  13. Very high flux research reactors based on particle fuels

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  14. Doubling of critical heat flux using a grapheme oxide nanofluid and its repeatabiltiy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-10-15

    CHF(Critical Heat Flux : heat flux which makes dramatic increase of temperature on heater surface) is one of the most important phenomena in the thermal hydraulic system. High CHF makes more thermal margin of heat transfer. This makes high efficiency and safety of power plant especially in nuclear power plant. Much smaller danger can be concerned to public society like radioactive material leakage in the accidents. Graphene Oxide which can be deposited on the heater surface makes nano-scale structures with enhancing thermal limit of heater. Three major models of enhancing limit of heater have been concerned in many heat transfer studies. In this study, wettability that is about ability to wet on surface and thermal activity which is about thermal property of coated layer are concerned to analyze the mechanism of CHF enhancing. Also, chemical reduction of Graphene Oxide(GO) to Reduced Graphene Oxide(RGO) on the surface will be concerned with one reason of changing wettability of nano-scale structure on the heater surface. We used GO nanofluid 0.001 volume percent. Two models are compared to explain how CHF is enhanced. Results show wettability increased with slightly reduced GO and structure. And in thermal activity model, the most powerful term, thickness of layer, is too small to affect thermal activity. It has low ability to explain how GO nanofluid can enhance CHF.

  15. Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications

    Science.gov (United States)

    Begeman, Carolyn Branecky; Tulaczyk, Slawek M.; Fisher, Andrew T.

    2017-10-01

    Geothermal heat flux (GHF) is an important part of the basal heat budget of continental ice sheets. The difficulty of measuring GHF below ice sheets has directly hindered progress in the understanding of ice sheet dynamics. We present a new GHF measurement from below the West Antarctic Ice Sheet, made in subglacial sediment near the grounding zone of the Whillans Ice Stream. The measured GHF is 88 ± 7 mW m-2, a relatively high value compared to other continental settings and to other GHF measurements along the eastern Ross Sea of 55 mW m-2 and 69 ± 21 mW m-2 but within the range of regional values indicated by geophysical estimates. The new GHF measurement was made 100 km from the only other direct GHF measurement below the ice sheet, which was considerably higher at 285 ± 80 mW m-2, suggesting spatial variability that could be explained by shallow magmatic intrusions or the advection of heat by crustal fluids. Analytical calculations suggest that spatial variability in GHF exceeds spatial variability in the conductive heat flux through ice along the Siple Coast. Accurate GHF measurements and high-resolution GHF models may be necessary to reliably predict ice sheet evolution, including responses to ongoing and future climate change.

  16. Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2012-11-01

    Full Text Available Aerodynamic roughness height (Zom is a key parameter required in several land surface hydrological models, since errors in heat flux estimation are largely dependent on optimization of this input. Despite its significance, it remains an uncertain parameter which is not readily determined. This is mostly because of non-linear relationship in Monin-Obukhov similarity (MOS equations and uncertainty of vertical characteristic of vegetation in a large scale. Previous studies often determined aerodynamic roughness using a minimization of cost function over MOS relationship or linear regression over it, traditional wind profile method, or remotely sensed vegetation index. However, these are complicated procedures that require a high accuracy for several other related parameters embedded in serveral equations including MOS. In order to simplify this procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter from single or two heat flux measurements analyzed via Ensemble Kalman Filter (EnKF that affords non-linearity. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while the majority of data assimilation study have paid attention to updates of other land surface state variables such as soil moisture or land surface temperature. The approach of this study was applied to grassland in semi-arid Tibetan Plateau and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can be inversely tracked from heat flux EnKF final analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance method and literature value. Through a calibration of this parameter, this adjusted the sensible heat previously overestimated and latent heat flux previously underestimated by the original Surface Energy Balance System (SEBS model. It was considered that

  17. Flow Boiling Heat Transfer in Two-Phase Micro Channel Heat Sink at Low Water Mass Flux

    Science.gov (United States)

    Kuznetsov, Vladimir V.; Shamirzaev, Alisher S.

    2009-08-01

    Boiling heat transfer at water flow with low mass flux in heat sink which contained rectangular microchannels was studied. The stainless steel heat sink contained ten parallel microchannels with a size of 640 × 2050 μm in cross-section with typical wall roughness of 10-15 μm. The local flow boiling heat transfer coefficients were measured at mass velocity of 17 and 51 kg/m2s, heat flux on 30 to 150 kW/m2 and vapor quality of up to 0.8 at pressure in the channels closed to atmospheric one. It was observed that Kandlikar nucleate boiling correlation is in good agreement with the experimental data at mass flow velocity of 85 kg/m2s. At smaller mass flux the Kandlikar model and Zhang, Hibiki and Mishima model demonstrate incorrect trend of heat transfer coefficients variation with vapor quality.

  18. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)

    1997-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  19. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  20. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux

    Science.gov (United States)

    Lin, Wenxian; Armfield, S. W.

    2013-12-01

    It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when

  1. How do patchy snow covers affect turbulent sensible heat fluxes? - Numerical analysis and experimental findings

    Science.gov (United States)

    Schlögl, Sebastian; Mott, Rebecca; Lehning, Michael

    2017-04-01

    The surface energy balance of a snow cover significantly changes once the snow cover gets patchy. The substantial progress in knowledge about the surface energy balance of patchy snow covers is a mandatory requirement to reduce biases in flux parameterizations in larger scale meteorological or climatological models. The aim of this project was to numerically improve energy balance calculations late in the melting season when the spatial variability of turbulent fluxes is especially high owing to the complex feedback between bare/snow-covered areas and the atmosphere above. In order to account for the feedback between the atmosphere and the patchy snow-cover we calculated three-dimensional air temperature and wind velocity fields with the non-hydrostatic atmospheric model ARPS for an idealized flat test site initialized with different snow distributions and atmospheric conditions. The physics-based surface process model Alpine3D has been forced with these atmospheric fields close to the snow surface in order to resolve the small-scale spatial variability. We further initialized the model with atmospheric fields above the blending height as a reference case. The numerical analysis shows that for simulations initialized with fully-resolved atmospheric fields below the blending height, turbulent sensible heat fluxes are up to 50 W/m2 larger than for calculations forced without resolved atmospheric fields. This difference in turbulent sensible heat fluxes over snow increase with increasing number of snow patches and decreasing snow-cover fraction. This is mainly attributed to an increase in the mean near-surface air temperature over snow due to horizontal and vertical exchange processes induced by the heterogeneous land-surface. We used flux footprint estimations to analyse turbulence data measured during three ablation periods in the Dischma valley (Switzerland). This fundamental theory was deployed for eddy-covariance measurements revealing the origin of the measured

  2. An inverse method to estimate stem surface heat flux in wildland fires

    Science.gov (United States)

    Anthony S. Bova; Matthew B. Dickinson

    2009-01-01

    Models of wildland fire-induced stem heating and tissue necrosis require accurate estimates of inward heat flux at the bark surface. Thermocouple probes or heat flux sensors placed at a stem surface do not mimic the thermal response of tree bark to flames.We show that data from thin thermocouple probes inserted just below the bark can be used, by means of a one-...

  3. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  4. High flux diffractometers on reactor neutron sources

    Science.gov (United States)

    Hewat, Alan W.

    2006-11-01

    Continuous neutron sources such as reactors can deliver a very high time-averaged flux to the sample using a relatively wide band of wavelengths, while still retaining good resolution. For example, the D20 diffractometer at ILL Grenoble, the world's highest flux neutron powder machine, can collect complete patterns at 100 ms intervals, and this has been important for the real time study of explosive SHS reactions. New very large 2D detectors, such as those recently installed on D2B and D19 at ILL, are up to an order of magnitude larger than previous designs, and will provide unmatched speed of data collection from very small samples, opening up new scientific perspectives for powder and single crystal diffraction. We will discuss future reactor based diffractometers designed for rapid data collection from small samples in special environments.

  5. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    Science.gov (United States)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central

  6. Thermal problems on high flux beam lines

    Science.gov (United States)

    Avery, Robert T.

    1984-05-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler beam line VI [1] now nearing operation will be able to provide up to ˜ 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 m from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2. Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2) and is comparable to that if welding torches. Clearly, cooling and configuration are of critical importance. Configurations for the first mask, the movable mask and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on the heating of crystals and mirrors is also presented. For the future, many additional intense wiggler/undulator beam lines are contemplated at several storage rings. The design of these beamlines would be enhanced by faster and more accurate computational techniques. LBL is developing a computer code which will be capable of giving photon power densities onto impinged surfaces for a wide range of source and beam line parameters. These include electron beam energy, current, emittance and orbit deviations; wiggler/undulator length, period and magnetic field; photon energy and angular distribution; reflection/absorption at intermediate impinged surfaces; defining apertures and focusing by mirrors. Three-dimensional computer programs for temperature, stress and strain have been available for some years, but "user friendly" versions are being sought. Other items to pursue are also suggested.

  7. Anthropogenic Heat Flux Estimation from Space: Results of the second phase of the URBANFLUXES Project

    Science.gov (United States)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-04-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu

  8. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  9. Monitoring a supervolcano in repose: Heat and volatile flux at the yellostone caldera

    Science.gov (United States)

    Lowenstern, J. B.; Hurwitz, S.

    2008-01-01

    Although giant calderas ("supervolcanoes") may slumber for tens of thousands of years between eruptions, their abundant earthquakes and crustal deformation reveal the potential for future upheaval. Any eventual supereruption could devastate global human populations, so these systems must be carefully scrutinized. Insight into dormant but restless calderas can be gained by monitoring their output of heat and gas. At Yellowstone, the large thermal and CO2 fluxes require massive input of basaltic magma, which continues to invade the lower to mid-crust, sustains the overlying high-silica magma reservoir, and may result in volcanic hazard for millennia to come. The high flux of CO2 may contribute to the measured deformation of the caldera floor and can also modify the pressure, thermal, and chemical signals emitted from the magma. In order to recognize precursors to eruption, we must scrutinize the varied signals emerging from restless calderas with the goal of discriminating magmatic, hydrothermal, and hybrid phenomena.

  10. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  11. Heat fluxes from an Arctic fjord with glaciers and ice-bergs

    Science.gov (United States)

    Leikvin; Sundfjord, A.

    2013-12-01

    Glaciers on the Northern Hemisphere and on Svalbard in particular, are decreasing in volume. In Hornsund, SW Spitsbergen, the reduction of the multiple tide water glaciers has been observed for more than a century. Melt water from the glaciers represent a contribution of relatively cold fresh water to the water masses in the west, by the West -Spitsbergen current. We have used a numerical hydrodynamical model to simulate the fluxes of heat and fresh water between the Hornsund fjord and the water masses outside the fjord, with ice bergs and glacier melting included. Glacier melting and ice-berg melting are in general poorly described in hydrodynamical models of the Arctic. The Regional Ocean Modeling System (ROMS) model was set up for the Hornsund area with high resolution (160m), and fluxes through the fjord were calculated for the year 2011. The ocean current model was evaluated against current meter measurements and hydrographic data from strategic locations in the inner parts of Hornsund. An estimate of the heat flux and its seasonal signal between Hornsund and the outer water masses has been found. It is concluded that the there is a significant potential of oceanic heat contributing to facial melting of the tide water glacier fronts. Correspondingly, the glaciers contribute with a fresh water volume that mixes with the coastal northward current west of Svalbard and subsequently with the West Spitsbergen current. This flux is considered to be substantial, and indicates that glacier melting and ice-berg melting should be included in regional Arctic hydrodynamical ocean models.

  12. Modelling the mechanical response of an idealized ice stream to variations in geothermal heat flux

    Science.gov (United States)

    Smith-Johnsen, Silje; de Fleurian, Basile; Hestnes Nisancioglu, Kerim

    2017-04-01

    The spatial distribution of geothermal heat flux beneath the Greenland Ice Sheet is largely unknown partly due to difficulties in accessing the bed, and bore hole data providing point measurements only. Studies using tectonic, seismic and magnetic models to retrieve the geothermal heat flux show very different results indicating large uncertainties. However, modelling studies point to a geothermal heat flux anomaly that may influence the Northeast Greenland Ice Stream (NEGIS). Previous studies have investigated the impact of the uncertainty in geothermal heatflux on ice dynamics. These studies are mainly focusing on the impact on the ice rheology as the basal condition are derived from inverse modelling methods (including the geothermal heat flux variability in the variability of the friction coefficient). Another important feedback is the increase in subglacial meltwater production which may affect the sliding velocities of an ice stream, and has not been taken into account in preceding studies. In this study we investigate the impact of variations in geothermal heat flux on ice dynamics by analysing the mechanical response of a synthetic ice stream simulating NEGIS using the Ice Sheet System Model (Larour et al. 2012). We present results from model experiments using different heat flux configurations, friction laws and a hydrology model, showing the importance of geothermal heat flux on basal conditions of fast flowing ice.

  13. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. E × B shear pattern formation by radial propagation of heat flux wavesa)

    Science.gov (United States)

    Kosuga, Y.; Diamond, P. H.; Dif-Pradalier, G.; Gürcan, Ã.-. D.

    2014-05-01

    A novel theory to describe the formation of E ×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E ×B staircase is discussed.

  15. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  16. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  17. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    CERN Document Server

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  18. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    Science.gov (United States)

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  19. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  20. Surface heat fluxes and ecosystem function in the Cretan Sea (eastern Mediterranean): a modelling study

    Science.gov (United States)

    Siddorn, J. R.; Allen, J. I.

    2003-01-01

    As a component of the Mediterranean Forecast System Pilot Project, a data buoy was deployed in the Cretan Sea. A 1-D ecosystem model of the site has been used to investigate the role of surface heat fluxes in determining modelled ecosystem behaviour. The method of calculation of these fluxes, the quality of the data used, and the temporal resolution of the data all had an impact upon the modelled ecosystem function. The effects of the changes in heat flux formulation were substantial, with both annually averaged properties of the system and the seasonal evolution of the biology being affected. It was also found that the ecosystem model was extremely sensitive to the accuracy of the meteorological forcing data used, with substantial changes in biology found when offsets in the forcing data were imposed. The frequency of forcing data was relatively unimportant in determining the biological function, although lower frequency forcing damped high frequency variability in the biology. During periods of mixing the biology showed an amplified response to changes in physical dynamics, but during periods of stratification the variations in the physics were found to be less important. Zooplankton showed more sensitivity to physical variability than either phytoplankton or bacteria. The consequences for ecosystem modelling are discussed.

  1. Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition

    Directory of Open Access Journals (Sweden)

    H.K. Dawood

    2014-11-01

    Full Text Available This work reports numerical simulation for three dimensional laminar mixed convective heat transfers at different nanofluids flow in an elliptic annulus with constant heat flux. A numerical model is carried out by solving the governing equations of continuity, momentum and energy using the finite volume method (FVM with the assistance of SIMPLE algorithm. Four different types of nanofluids Al2O3, CuO, SiO2 and ZnO, with different nanoparticles size 20, 40, 60 and 80 nm, and different volume fractions ranged from 0% to 4% using water as a base fluid were used. This investigation covers a Reynolds number in the range of 200 to 1000. The results revealed that SiO2–Water nanofluid has the highest Nusselt number, followed by Al2O3–Water, ZnO–Water, CuO–Water, and lastly pure water. The Nusselt number increased as the nanoparticle volume fraction and Reynolds number increased; however, it decreased as the nanoparticle diameter increased. It is found that the glycerine–SiO2 shows the best heat transfer enhancement compared with other tested base fluids.

  2. Theoretical models of flux pinning and flux motion in high-{Tc} superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, D.O.

    1991-12-31

    Various issues involved in the development of phenomenological models of flux pinning and motion in high-{Tc} oxides are discussed. A simplified model is presented for the critical current density and is used to examine the question of whether flux flow results from an instability due to plasticity of the flux-line array or from pin breaking.

  3. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  4. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  5. Kinetic simulations of electron heat flux in the scrape-off layer

    Directory of Open Access Journals (Sweden)

    M. Zhao

    2017-08-01

    Enhanced radiation near the target, forcing Te drop by factor 10 for low upstream v* comparable to that expected at the separatrix in the ITER baseline H-mode scenario, was required in KIPP runs. Pairs of such cases with two different ways of radiation power sink, by modeling sink (a evenly from all velocity space, and (b only from high energy electrons, were compared. The simulation results show almost no difference between the two cases in the steady-state, despite the presence of a strong heat flux limiting upstream and enhancement downstream.

  6. Critical heat flux and boiling heat transfer to water in a 3-mm-diameter horizontal tube.

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Wambsganss, M. W.; Hull, J. R.; France, D. M.

    2000-12-04

    Boiling of the coolant in an engine, by design or by circumstance, is limited by the critical heat flux phenomenon. As a first step in providing relevant engine design information, this study experimentally addressed both rate of boiling heat transfer and conditions at the critical point of water in a horizontal tube of 2.98 mm inside diameter and 0.9144 m heated length. Experiments were performed at system pressure of 203 kPa, mass fluxes in range of 50 to 200 kg/m{sup z}s, and inlet temperatures in range of ambient to 80 C. Experimental results and comparisons with predictive correlations are presented.

  7. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  8. In situ soil temperature and heat flux measurements during controlled surface burns at a southern Colorado forest site

    Science.gov (United States)

    W. J. Massman; J. M. Frank; W. D. Shepperd; M. J. Platten

    2003-01-01

    This study presents in situ soil temperature measurements at 5-6 depths and heat flux measurements at 2-5 depths obtained during the fall/winter of 2001/ 2002 at seven controlled (surface) fires within a ponderosa pine forest site at the Manitou Experimental Forest in central Colorado. Six of these burns included three different (low, medium, and high) fuel loadings...

  9. Correlation analysis of heat flux and fire behaviour and hazards of polycrystalline silicon photovoltaic panels

    Science.gov (United States)

    Ju, Xiaoyu; Zhou, Xiaodong; Peng, Fei; Wu, Zhibo; Lai, Dimeng; Hu, Yue; Yang, Lizhong

    2017-05-01

    This work aims to gain a better understanding of fire behaviour and hazards of PV panels under different radiation heat fluxes. The cone calorimeter tests were applied to simulate the situations when the front and back surfaces are exposed to heat flux in a fire, respectively. Through comparison of ignition time, mass loss rate and heat release rate, it is found that the back-up condition is more hazardous than face-up condition. Meanwhile, three key parameters: flashover propensity, total heat release and FED, were introduced to quantitatively illustrate fire hazards of a PV panel.

  10. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Total Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Total Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Total Heat Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Total Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  12. Recession-Tolerant Heat Flux Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project will develop a suite of diagnostic sensors using Direct Write technology to measure temperature, surface recession depth, and heat flux of an...

  13. Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars

    National Research Council Canada - National Science Library

    Kiemle, Christoph; Wirth, Martin; Fix, Andreas; Rahm, Stephan; Corsmeier, Ulrich; Di Girolamo, Paolo

    2011-01-01

    Vertical profiles of the latent heat flux in a convective boundary layer (CBL) are obtained for the first time over complex terrain with airborne water vapour differential absorption lidar and Doppler wind lidar...

  14. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2017-08-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  15. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  16. High Efficiency Microchannel Diamond Heat Sinks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While absolute power levels in microelectronic devices are relatively modest (a few tens to a few hundred watts), heat fluxes can be significant (~50 W/cm2 in...

  17. Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Al-Rashdi, Maryam H. [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Pop, I. [Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Highlights: • Convective boundary layer flow and heat transfer in a nanofluid is investigated. • Second order slip increases the rate of shear stress and decreases the rate of heat transfer in a nanofluid. • In nanofluid flow zero normal flux of the nanoparticles at the surface is realistic to apply. • Multiple solutions are identified for certain values of the parameter space. • The upper branch solution is found to be stable, hence physically realizable. - Abstract: In this work, the effects of the second order slip, constant heat flux, and zero normal flux of the nanoparticles due to thermophoresis on the convective boundary layer flow and heat transfer characteristics in a nanofluid using Buongiorno's model over a permeable shrinking sheet is studied theoretically. The nonlinear coupled similarity equations are solved using the function bvp4c using Matlab. Similarity solutions of the flow, heat transfer and nanoparticles volume fraction are presented graphically for several values of the model parameters. The results show that the application of second order slip at the interface is found to be increased the rate of shear stress and decreased the rate of heat transfer in a nanofluid, so need to be taken into account in nanofluid modeling. The results further indicate that multiple solutions exist for certain values of the parameter space. The stability analysis provides guarantee that the lower branch solution is unstable, while the upper branch solution is stable and physically realizable.

  18. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    Science.gov (United States)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2015-03-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  19. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    Science.gov (United States)

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  20. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    Science.gov (United States)

    Khaled, M.; Garnier, B.; Harambat, F.; Peerhossaini, H.

    2010-02-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented.

  1. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    Science.gov (United States)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids

    Science.gov (United States)

    Kamatchi, R.; Venkatachalapathy, S.; Nithya, C.

    2016-11-01

    In the present study, reduced graphene oxide (rGO) is synthesized from graphite using modified Hummer and chemical reduction methods. Various characterizations techniques are carried out to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. Different concentrations of 0.01, 0.1, and 0.3 g/l of rGO/water nanofluids are prepared by dispersing the flakes in DI water. The colloidal stability of 0.3 g/l concentration is measured after 5 days using Zetasizer and found to be stable. The rGO/water nanofluids are then used to study the effect on the enhancement of critical heat flux (CHF) in pool boiling heat transfer. Results indicate an enhancement in CHF ranging from 145 to 245 % for the tested concentrations. The mechanisms of CHF enhancement are analyzed based on surface wettability, surface roughness, and porous layer thickness. The macrolayer dryout model sufficiently supports the mechanism of CHF enhancement of thin wire with rGO deposits, which is not reported yet.

  3. Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The objective of present attempt is to analyse the flow and heat transfer in the flow of an Oldroyd-B fluid over a non-linear stretching sheet having variable thickness. Characteristics of heat transfer are analyzed with temperature dependent thermal conductivity and heat source/sink. Cattaneo-Christov heat flux model is considered rather than Fourier’s law of heat conduction in the present flow analysis. Thermal conductivity varies with temperature. Resulting partial differential equations through laws of conservation of mass, linear momentum and energy are converted into ordinary differential equations by suitable transformations. Convergent series solutions for the velocity and temperature distributions are developed and discussed. Keywords: Oldroyd-B fluid, Variable sheet thickness, Cattaneo-Christov heat flux model, Heat source/sink, Temperature dependent thermal conductivity

  4. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  5. High specific heat superconducting composite

    Science.gov (United States)

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  6. Analytical model of particle and heat flux collection by dust immersed in dense magnetized plasmas

    Science.gov (United States)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.

    2017-10-01

    A comprehensive analytical description is presented for the particle and heat fluxes collected by dust in dense magnetized plasmas. Compared to the widely used orbital motion limited theory, the suppression of cross-field transport leads to a strong reduction of the electron fluxes, while ion collection is inhibited by thin-sheath effects and the formation of a potential overshoot along the field lines. As a result, the incoming heat flux loses its sensitivity to the floating potential, thereby diminishing the importance of electron emission processes in dust survivability. Numerical simulations implementing the new model for ITER-like detached divertor plasmas predict a drastic enhancement of the dust lifetime.

  7. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet

    Science.gov (United States)

    Hashim; Khan, Masood

    The underlying intentions of this article are to investigate the impact of non-Fourier heat flux model on the stagnation-point flow of non-Newtonian Carreau fluid. In this study, the innovative Cattaneo-Christov constitutive model is introduced to study the characteristics of thermal relaxation time. The flow is impelled by a slendering surface which is of the variable thickness. In the model, the physical mechanism responsible for homogeneous-heterogeneous reactions are further taken into account. Also, the diffusion coefficients of the reactant and auto catalyst are considered to be equal. The governing non-linear partial differential equations consisting of the momentum, energy and concentration equations are reduced to the coupled ordinary differential equations by means of local similarity transformations. The transformed ODEs are tackled numerically by employing an effective shooting algorithm along with the Runge-Kutta Fehlberg scheme. The physical characteristics of the fluid velocity, temperature and concentration profiles are illuminated with the variation of numerous governing factors and are presented graphically. For instance, our result indicates that the temperature and thermal boundary layer thickness are lower in case of Cattaneo-Christov heat flux model when compared to classical Fourier's heat model. Meanwhile, the rate of heat transfer is significantly improved by a high wall thickness parameter and an opposite influence is found due to the thermal relaxation parameter. We further noticed that a higher value of homogeneous and heterogeneous reaction parameter corresponds to a deceleration in the concentration field and it shows an inverse relation for the Schmidt number. A correlation with accessible results for specific cases is found with fabulous consent.

  8. Estimation of surface heat flux for ablation and charring of thermal protection material

    Science.gov (United States)

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  9. Effect of melter feed foaming on heat flux to the cold cap

    Czech Academy of Sciences Publication Activity Database

    Lee, S.; Hrma, P.; Pokorný, R.; Kloužek, Jaroslav; VanderVeer, B.J.; Dixon, D.R.; Luksic, S.A.; Rodriguez, C.P.; Chun, J.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 496, DEC 1 (2017), s. 54-65 ISSN 0022-3115 Institutional support: RVO:67985891 Keywords : cold cap * foam layer * heat flux * heat conductivity * evolved gas Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.048, year: 2016

  10. Radiance limits of ceramic phosphors under high excitation fluxes

    Science.gov (United States)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  11. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  12. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-04-15

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)

  13. Diurnal Variation of Soil Heat Flux at an Antarctic Local Area during Warmer Months

    Directory of Open Access Journals (Sweden)

    Marco Alves

    2016-01-01

    Full Text Available Soil heat flux (G is one term in the energy balance equation, and it can be particularly important in regions with arid, bare, or thinly vegetated soil surfaces. However, in remote areas such as the Antarctic, this measurement is not routinely performed. The analysis of observational data collected by the ETA Project at the Brazilian Antarctic Station from December 2013 to March 2014 showed that, for the total daily energy flux, the surface soil flux heats the deeper soil layers during December and January and G acts as a heat source to the outer soil layers during February and March. With regard to daytime energy flux, G acts as a source of heat to the deeper layers. During the night-time, the soil is a heat source to the shallower soil layers and represents at least 29% of the net night-time radiation. A relatively simple method—the objective hysteresis method (OHM—was successfully applied to determine the surface soil heat flux using net radiation observations. A priori, the OHM coefficients obtained in this study may only be used for short-time parameterizations and for filling data gaps at this specific site.

  14. Impacts of soil–aquifer heat and water fluxes on simulated global climate

    Directory of Open Access Journals (Sweden)

    N. Y. Krakauer

    2013-05-01

    Full Text Available Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50 m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer–soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer–soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil–aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of > 1 K in the Arctic. The soil–aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in land-surface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  15. The CellFlux Storage Concept for Increased Flexibility in Sensible Heat Storage

    OpenAIRE

    Odenthal, Christian; Steinmann, Wolf-Dieter; Eck, Markus

    2015-01-01

    Packed beds using air at atmospheric pressure as heat transferring medium are the most cost effective systems for sensible heat storage. The basic idea of the CellFlux concept is to apply this concept also for liquid and/or pressurized primary HTFs by the introduction of an intermediate working fluid cycle. A heat exchanger is used for transferring energy between the primary HTF and the intermediate air cycle which eventually transfers the energy to a packed bed. The CellFlux concept...

  16. Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis

    Science.gov (United States)

    Stampfl, E.; Landsbaum, E. M.

    1973-01-01

    The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.

  17. Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    Science.gov (United States)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  18. Remote Heat Flux Measurement Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    Science.gov (United States)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (lambda > 6 micrometers). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 micrometers) radiation transmitted through the sapphire disk. The thermal conductivity k of the sapphire disk and the heat transfer coefficients h(sub 1) and h(sub 2) of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  19. Effective temperature in nonequilibrium state with heat flux using discrete variable model

    Science.gov (United States)

    Sobolev, S. L.

    2017-09-01

    The effective temperature, which acts as a criterion for thermalization in systems with heat flux, has been introduced on the bases of a relatively simple discrete variable model (DVM). The DVM is inherently nonlocal and can be used to describe multi-length and -time scale heat conduction including low-dimensional and sub-continuum regimes. Under far from equilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature and the corresponding nonequilibrium entropy go to zero, which points to a possible generalization of the third law in nonequilibrium situations.

  20. Constraining the heat flux between Enceladus’ tiger stripes: numerical modeling of funiscular plains formation

    Science.gov (United States)

    Bland, Michael; McKinnon, William B; Schenk, Paul M.

    2015-01-01

    The Cassini spacecraft’s Composite Infrared Spectrometer (CIRS) has observed at least 5 GW of thermal emission at Enceladus’ south pole. The vast majority of this emission is localized on the four long, parallel, evenly-spaced fractures dubbed tiger stripes. However, the thermal emission from regions between the tiger stripes has not been determined. These spatially localized regions have a unique morphology consisting of short-wavelength (∼1 km) ridges and troughs with topographic amplitudes of ∼100 m, and a generally ropy appearance that has led to them being referred to as “funiscular terrain.” Previous analysis pursued the hypothesis that the funiscular terrain formed via thin-skinned folding, analogous to that occurring on a pahoehoe flow top (Barr, A.C., Preuss, L.J. [2010]. Icarus 208, 499–503). Here we use finite element modeling of lithospheric shortening to further explore this hypothesis. Our best-case simulations reproduce funiscular-like morphologies, although our simulated fold wavelengths after 10% shortening are 30% longer than those observed. Reproducing short-wavelength folds requires high effective surface temperatures (∼185 K), an ice lithosphere (or high-viscosity layer) with a low thermal conductivity (one-half to one-third that of intact ice or lower), and very high heat fluxes (perhaps as great as 400 mW m−2). These conditions are driven by the requirement that the high-viscosity layer remain extremely thin (≲200 m). Whereas the required conditions are extreme, they can be met if a layer of fine grained plume material 1–10 m thick, or a highly fractured ice layer >50 m thick insulates the surface, and the lithosphere is fractured throughout as well. The source of the necessary heat flux (a factor of two greater than previous estimates) is less obvious. We also present evidence for an unusual color/spectral character of the ropy terrain, possibly related to its unique surface texture. Our simulations demonstrate

  1. Surface renewal analysis to obtain sensible heat flux in rice, maize and soybean canopies

    Science.gov (United States)

    Maruyama, A.; Paw U, K.; Snyder, R. L.

    2013-12-01

    The thermal environment in the plant canopy affects plants' growth processes such as flowering and ripening. High temperatures often cause grain sterility and poor filling, and reduce crop production in tropical and temperate regions. With global warming predicted, these effects have become a major concern worldwide. In this study, surface renewal analysis, which is a novel method for estimating scalar fluxes, was applied to rice, maize and soybean canopies to understand the dynamics of sensible heat in crop canopies. Surface renewal analysis has advantages of (1) lower cost of equipment, (2) a shorter fetch requirement and (3) less disturbance in the field. The temperature of the atmosphere (T) at multiple heights was measured at 10 Hz with fine-wire thermocouples to calculate sensible heat flux (H) from the ramp pattern of T. Variations in H determined from the T measurements at canopy top was from -80 to 120 Wm-2 for rice, and it showed reasonable diurnal variation. However, H values determined from the T measurements within the canopies were smaller because of differences in temperature ramp frequency with height. These results suggest that not all turbulent structures penetrate deeply into canopies. The results for rice, maize and soybean canopies will be presented at the meeting.

  2. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    Science.gov (United States)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  3. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  4. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  5. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  6. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat and carbon fluxes in semi-arid basin

    Science.gov (United States)

    Xie, Zhenghui; Zeng, Yujin

    2017-04-01

    Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.

  7. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    Science.gov (United States)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  8. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  9. A Study of Heat Flux Induced Dryout in Capillary Grooves

    Science.gov (United States)

    1992-12-01

    to operate the heat pipe at or near maximum heat transfer conditions. One of the problems with maximizing the performance is the danger of living on...the characteristic dimension of the groove or pore. At this point, the pressure gradient between the condenser and evaporator is maximized , and...Note: T1|=25 - -142- RUN LETTER DESl •GATION: T9 DATE: 10-02-1992 TIME: 14:55:48 GROOVE NIB R: I THEB MRMETRIC PRESSURE IS 29.011 M OF IMER Y THE

  10. Spatial Disaggregation of Latent Heat Flux Using Contextual Models over India

    Directory of Open Access Journals (Sweden)

    Rajasekaran Eswar

    2017-09-01

    Full Text Available Estimation of latent heat flux at the agricultural field scale is required for proper water management. The current generation thermal sensors except Landsat-8 provide data on the order of 1000 m. The aim of this study is to test three approaches based on contextual models using only remote sensing datasets for the disaggregation of latent heat flux over India. The first two approaches are, respectively, based on the estimation of the evaporative fraction (EF and solar radiation ratio at coarser resolution and disaggregating them to yield the latent heat flux at a finer resolution. The third approach is based on disaggregation of the thermal data and estimating a finer resolution latent heat flux. The three approaches were tested using MODIS datasets and the validation was done using the Bowen Ratio energy balance observations at five sites across India. From the validation, it was observed that the first two approaches performed similarly and better than the third approach at all five sites. The third approach, based on the disaggregation of the thermal data, yielded larger errors. In addition to better performance, the second approach based on the disaggregation of solar radiation ratio was simpler and required lesser data processing than the other approaches. In addition, the first two approaches captured the spatial pattern of latent heat flux without introducing any artefacts in the final output.

  11. Modelling sub-daily latent heat fluxes from a small reservoir

    Science.gov (United States)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart

    2014-11-01

    Accurate methods of latent heat flux quantification are essential for water management and for use in hydrological and meteorological models. Currently the effect of small lakes in most numerical weather prediction modelling systems is either entirely ignored or crudely parameterized. In order to test methods for modelling hourly latent heat flux from small water bodies, this study compares results from several modelling approaches to values measured by the eddy covariance method at an agricultural reservoir in southeast Queensland, Australia. Mass transfer estimates of LE calculated using the theoretical mass transfer model and using the Tanny et al. (2008) and Sacks et al. (1994) bulk transfer coefficients showed the best relationship with measured values under a range of meteorological conditions. The theoretical model showed the strongest correlation with measured values, while the Tanny et al. (2008) and Sacks et al. (1994) models had regression equation slopes with the closest proximity to 1. Latent heat fluxes estimated using the Granger and Hedstrom (2011) evaporation model, that was specifically developed for use at small reservoirs, showed a poor relationship with measured values, particularly in stable atmospheric conditions. The 1-dimensional hydrodynamics model, DYRESM, was used to obtain predictions of hourly latent heat flux without the use of water surface temperature measurements. DYRESM estimates of latent heat flux showed a slightly worse relationship with measured values than those predicted using the traditional mass transfer models (which used measurements of water surface temperature). However, DYRESM performed considerably better than the Granger and Hedstrom (2011) model.

  12. Instantaneous heat flux flowing into ceramic combustion chamber wall surface of low heat rejection engine; Shanetsu engine no ceramic nenshoshitsu hekimen eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Y.; Hagihara, Y. [Musashi Institute of Technology, Tokyo (Japan); Kimura, S. [Nissan Motor Co. Ltd., Tokyo (Japan); Adachi, K. [Daido Hoxan Inc., Sapporo (Japan); Nagano, H. [Riso Kagaku Corp., Tokyo (Japan); Ishii, A. [Mitani Sangyo Co. Ltd., Tokyo (Japan)

    1998-08-25

    To evaluate the effectiveness of low heat rejection engine under heat loss condition, instantaneous heat fluxes flowing into ceramic piston surface and aluminum alloy (Loex) piston surface using thin film thermocouple were measured, and both were compared. As a result, in the working stroke, the instantaneous heat flux flowing into ceramic piston surface was larger than the instantaneous heat flux flowing into Loex piston surface. Accordingly, it became clear that reduction of heat loss was not effected when ceramics that thermal conductivity is small was used for combustion chamber wall. 21 refs., 14 figs.

  13. Estimation of bulk transfer coefficient for latent heat flux (Ce)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    Coefficients in Diabatic Conditions’, Bow~dary-Layer Meteo- rol. 8, 465-474. Murakami. T., Nakazowa. T., and He, T.: 1984, ‘On the 40-50 Day Oscillations During the Monsoon During the Northern Hemisphere Summer. Part II: Heat and Moisture Budget’, J. Mereoi...

  14. Round-robin test of heat flux sensors

    NARCIS (Netherlands)

    Turzo-Andras, E.; Blokland, H.; Hammerschmidt, U.; Rudtsch, S.; Stacey, C.; Krös, C.; Magyarlaki, T.; Nemeth, S.

    2011-01-01

    The first intercomparison on the density of heat flow-rate measurements has been organized by MKEH (Hungarian Trade Licensing Office, Metrology Division) within the framework of EUROMET (Project No. 426). This round-robin test gives evidence about the measurement capabilities of the local

  15. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    Thermal diffusivity () of the soil has been calculated by range and lag methods and also from amplitudes and phase angles of first and second harmonics. The two methods lead to similar results. Diurnal soil heat ux and soil temperatures at different depths are modelled and found to be comparable with observations.

  16. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the day by intense solar radiation than the lay- ers beneath, resulting in temperature gradient between the surface and subsoil on the one hand and surface and air layers near the ground on the other. Within the soil this causes heat flow downward as a thermal wave, the amplitude of which changes with depth. Estimation of ...

  17. On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection

    Science.gov (United States)

    Sahoo, Swarandeep; Sreenivasan, Binod

    2017-08-01

    The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone-anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a

  18. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  19. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    Science.gov (United States)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2017-03-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  20. Radiative heat transfer with hydromagnetic flow and viscous dissipation over a stretching surface in the presence of variable heat flux

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh

    2009-01-01

    Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.

  1. Turbulent Fluxes of Sensible Heat Measured by Research UAV 'M2AV Carolo'

    Science.gov (United States)

    Martin, S.; Bange, J.

    2009-09-01

    Research aircraft equipped for turbulence measurements in the atmospheric boundary layer (ABL) are suitable platforms to measure area-representative mean values and statistical moments of second order - like variance, spectral distribution and turbulent fluxes - in situ i.e. without the use of any theoretical assumptions. Since manned research aircraft are expensive the use of small unmanned aerial vehicle (UAV) or mini aerial vehicles (MAV) is attractive. Such research UAV are able to measure vertical profiles of the lower troposphere, for instance. The next, more challenging league is the measurement of the turbulent fluctuations of the wind vector and simultaneously at least one scalar quantity in order to calculate turbulent fluxes using eddy covariance. To do this, fast and accurate sensors are required, with small weight, small dimensions and small power consumption, in order to be operated on a small research UAV. Beside absolute and relative measurement accuracy, the response time of the sensors has to be short (in the order of several 10 Hz) to resolve turbulent eddies also in stable stratification (i.e. sub-metre range). Since light, small and fast sensors for air humidity and trace gases are not available currently, the first step is to measure the vertical flux of sensible heat H. Beside a slow (about 1 Hz) water vapour sensor, the automatically operating meteorological mini aerial vehicles (M2AV) are equipped with two temperature sensors and a wind measurement unit. One of the temperature sensors is slow but offers a high absolute accuracy, while the fast sensor (up to 100 Hz) has a high relative accuracy but is unstable in time. The two signals are blended using a complementary filter. The wind vector can be calculated using the inertial velocity (aircraft speed relative to the earth) and the true airspeed (aircraft speed relative to the airflow). The true airspeed of M2AV is computed from five-hole-probe pressure measurements whereas the aircraft

  2. Prediction of forced convective heat transfer and critical heat flux for subcooled water flowing in miniature tubes

    Science.gov (United States)

    Shibahara, Makoto; Fukuda, Katsuya; Liu, Qiusheng; Hata, Koichi

    2018-02-01

    The heat transfer characteristics of forced convection for subcooled water in small tubes were clarified using the commercial computational fluid dynamic (CFD) code, PHENICS ver. 2013. The analytical model consists of a platinum tube (the heated section) and a stainless tube (the non-heated section). Since the platinum tube was heated by direct current in the authors' previous experiments, a uniform heat flux with the exponential function was given as a boundary condition in the numerical simulation. Two inner diameters of the tubes were considered: 1.0 and 2.0 mm. The upward flow velocities ranged from 2 to 16 m/s and the inlet temperature ranged from 298 to 343 K. The numerical results showed that the difference between the surface temperature and the bulk temperature was in good agreement with the experimental data at each heat flux. The numerical model was extended to the liquid sublayer analysis for the CHF prediction and was evaluated by comparing its results with the experimental data. It was postulated that the CHF occurs when the fluid temperature near the heated wall exceeds the saturated temperature, based on Celata et al.'s superheated layer vapor replenishment (SLVR) model. The suggested prediction method was in good agreement with the experimental data and with other CHF data in literature within ±25%.

  3. On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2016-01-01

    Full Text Available The viscosity and the thermal conductivity of slag are among two of the most important material properties that need to be studied. In this paper we review the existing theoretical and experimental correlations for the thermal conductivity of slag. However, since, in general, slag behaves as a non-linear fluid, it is the heat flux vector which must be studied. Both explicit and implicit approaches are discussed and suggestions about the form of the heat flux vector and the thermal conductivity and their dependence on shear rate, porosity, deformation, etc. are provided. The discussion of the constitutive modeling of the heat flux vector for slag is from a theoretical perspective.

  4. Sensible Heat Flux Related to Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach

    Science.gov (United States)

    2017-06-01

    FLUX RELATED TO VARIATIONS IN ATMOSPHERIC TURBULENCE KINETIC ENERGY ON A SANDY BEACH by Jessica S. Koscinski June 2017 Thesis Advisor...KINETIC ENERGY ON A SANDY BEACH 5. FUNDING NUMBERS 6. AUTHOR(S) Jessica S. Koscinski 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Sensible heat flux, turbulence kinetic energy , surf zone 15. NUMBER OF PAGES 57 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  5. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  6. High-flux cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.; Finken, H.; Wenzlaff, A.

    1981-01-01

    Three routes to increase the permeate flux of asymmetric cellulose diacetate membranes of the Loeb-Sourirajan type are investigated: increasing the hydrophilicity of the membranes; increasing their compaction stability; employing a swelling agent which allows for higher solvent-to-polymer ratio in the casting solution. The effect of casting solution composition on flux and rejection of formamide-modified cellulose acetate membranes is shown in Figure 1, illustrating the general capability of this membrane type as function of solvent concentration. Membranes of casting solution composition cellulose diacetate/acetone/formamide 23/52/25 (solvent-to-polymer ratio 2.26) were used as reference membranes in this work.

  7. High-flux cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.; Finken, H.; Wenzlaff, A.

    1981-01-01

    Three routes to increase the permeate flux of asymmetric cellulose diacetate membranes of the Loeb-Sourirajan type were investigated: increasing the hydrophilicity of the membranes; increasing their compaction stability, and employing a swelling agent which allows for higher solvent-to-polymer ratio in the casting solution. The effect of casting solution composition on flux and rejection of formamide-modified cellulose acetate membrane is included, illustrating the general capability of this membrane type as function of solvent concentration. Membranes of casting solution composition cellulose diacetate/acetone/formamide 23/52/25 were used as reference membranes in the work. 6 figures. (DP)

  8. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  9. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    Science.gov (United States)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  10. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation.

  11. Gradient heat flux measurement while researching of saturated water steam condensation

    Science.gov (United States)

    Mityakov, V. Y.; Sapozhnikov, S. Z.; Zainullina, E. R.; Babich, A. Y.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    The heat flux measurement is used for research of heat transfer during condensation of saturated water steam at the surface of the tube made of stainless steel. A number of produced experimental setups allowed us to set different directions of movement of steam and cooling water, to change the space orientation of the tube, and also rotate the tube around its axis. In addition, the places of installation of the gradient heat flux sensors at internal and external surfaces of the tube were ranged. In the experiments we determined the local heat transfer coefficients, and their change along the length of the tube and for different values of the azimuthal angle. The obtained data allow to study in detail the formation of the film of condensate on the inside and outside surfaces of the tube and the heat transfer. The experimental results is in accordance with the classical ideas. The graphs show the pulsations of heat flux, which enable us to investigate non-stationary parameters of heat transfer during condensation. Experimental results differ from those calculated according to the Nusselt’s formula for 15% with standard uncertainty lower than 10%.

  12. High Temperature Composite Heat Exchangers

    Science.gov (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.

    2002-01-01

    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  13. AN EXPERIMENTAL STUDY FOR HEAT TRANSFER ENHANCEMENT BY LAMINAR FORCED CONVECTION FROM HORIZONTAL AND INCLINED TUBE HEATED WITH CONSTANT HEAT FLUX, USING TWO TYPES OF POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Thamir K. Jassem

    2015-02-01

    Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution  will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at  .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase.  It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.  

  14. Smoke Emissions from Aircraft Interior Materials at Elevated Heat Flux Levels Using Modified NBS Smoke Chamber.

    Science.gov (United States)

    1979-07-01

    sample actually grew out of the holder and extended toward the furnace, pro- ducing a dense, black , sooty smoke at the higher heat fluxes. It then...also pro- ducing vast amounts of black , sooty smoke at the higher heat fluxes. For these two plastics, smoke increased monotonically with increasing...PVF/f iberglaes-phenolic/ 0.505 89.9 Pmel Overhead Nomex Peper -phenolic Stowage honeycomb/fiberglass phenolic .26 Wool Car,e 0.250 74.0 Floering

  15. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  16. Research of the Border Mobility Influence on the Half-Space Temperature Field Under Heat Flux

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2014-01-01

    Full Text Available Among the problems of unsteady heat conduction, tasks that can be solved in analytical closedform hold a special place. This species can be used both for parametric optimization of thermal protection of structures and for testing of computational algorithms.The previous paper presented an analytical solution of the problem to find the half-space temperature field with the uniformly moving boundary, which was under the external heat flux of constant power. In this paper we consider a similar problem, but the law of the moving boundary is assumed to be arbitrary nondecreasing, and the power of the heat flux can vary over time.An analytical dependence of the problem solution on the temperature of a moving boundary was obtained by using the Fourier transformation in the spatial variable. To determine the temperature of moving boundary, Volterra integral equation of the second kind was drawn. The solution of this equation was numerically conducted using a specially developed computational algorithm.The obtained representation was used to research the most characteristic features of the process to form the temperature field in studied area when implementing the various laws of boundaries motion and different operating conditions for the external heat flux influence. Using computational experiments allowed us to find that the asymptotic nature of this dependence confirms the results obtained in previous work. It has been established that the nonlinear character of both the boundary motion law and the external heat flux power variation law mainly affect the specifics of the transition process.

  17. Divertor heat flux simulations in ELMy H-mode discharges of EAST

    Science.gov (United States)

    Xia, T. Y.; Xu, X. Q.; Wu, Y. B.; Huang, Y. Q.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.; EAST Team

    2017-11-01

    This paper presents heat flux simulations for the ELMy H-mode on the Experimental Advanced Superconducting Tokamak (EAST) using a six-field two-fluid model in BOUT++. Three EAST ELMy H-mode discharges with different plasma currents I p and geometries are studied. The trend of the scrape-off layer width λq with I p is reproduced by the simulation. The simulated width is only half of that derived from the EAST scaling law, but agrees well with the international multi-machine scaling law. Note that there is no radio-frequency (RF) heating scheme in the simulations, and RF heating can change the boundary topology and increase the flux expansion. Anomalous electron transport is found to contribute to the divertor heat fluxes. A coherent mode is found in the edge region in simulations. The frequency and poloidal wave number kθ are in the range of the edge coherent mode in EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. Statistical analysis of the type of turbulence shows that the turbulence transport type (blobby or turbulent) does not influence the heat flux width scaling. The two-point model differs from the simulation results but the drift-based model shows good agreement with simulations.

  18. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles

    Science.gov (United States)

    Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.

    2017-07-01

    In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.

  19. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  20. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  1. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  2. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  3. Solar Coronal Heating and the Magnetic Flux Content of the Network

    Science.gov (United States)

    Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.

    2003-01-01

    We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than approximately - 100 G, (2) approximately 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

  4. Momentum- and Heat-Flux Parametrization at Dome C, Antarctica: A Sensitivity Study

    Science.gov (United States)

    Vignon, Etienne; Genthon, Christophe; Barral, Hélène; Amory, Charles; Picard, Ghislain; Gallée, Hubert; Casasanta, Giampietro; Argentini, Stefania

    2017-02-01

    An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length z0 varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant z0 of 1 mm leads to a mean friction velocity bias of 24 % in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat z_{0t} to z0 on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached 100 % when z/L > 1; (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.

  5. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  6. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  7. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    Science.gov (United States)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-11-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  8. Periods of High Intensity Solar Proton Flux

    Science.gov (United States)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  9. Models of SOL transport and their relation to scaling of the divertor heat flux width in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M.A., E-mail: makowski1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Leonard, A.W.; Osborne, T.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Umansky, M. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Elder, J.D. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Nichols, J.H. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Baver, D.A.; Myra, J.R. [Lodestar Research Corporation, Boulder, CO (United States)

    2015-08-15

    Strong support for the critical pressure gradient model for the heat flux width has been obtained, in that the measured separatrix pressure gradient lies below and scales similarly to the pressure gradient limit obtained from the ideal, infinite-n stability codes, BALOO and 2DX, in all cases that have been examined. Predictions of a heuristic drift model for the heat flux width are also in qualitative agreement with the measurements. These results have been obtained using an improved high rep-rate and higher edge spatial resolution Thomson scattering system on DIII-D to measure the upstream electron temperature and density profiles. In order to compare theory and experiment, profiles of density, temperature, and pressure for both electrons and ions are needed as well values of these quantities at the separatrix. A simple method to identify a proxy for the separatrix has been developed to do so.

  10. Application of Satellite Altimeter Data to Studies of Ocean Surface Heat Flux and Upper Ocean Thermal Processes

    Science.gov (United States)

    Yan, Xiao-Hal

    2003-01-01

    This is a one-year cost extension of previous grant but carrying a new award number for the administrative purpose. Supported by this one-year extension, the following research has continued and obtained significant results. 20 papers have been published (9) or submitted (11) to scientific journals in this one-year period. A brief summary of scientific results on: 1. A new method for estimation of the sensible heat flux using satellite vector winds, 2. Pacific warm pool excitation, earth rotation and El Nino Southern Oscillations, 3. A new study of the Mediterranean outflow and Meddies at 400-meter isopycnal surface using multi-sensor data, 4. Response of the coastal ocean to extremely high wind, and 5. Role of wind on the estimation of heat flux using satellite data, are provided below as examples of our many research results conducted in the last year,

  11. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  12. Determination of regional heat fluxes from the growth of the mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria)

    1997-10-01

    The distribution of surface sensible heat flux is a critical factor in producing and modifying the mesoscale atmospheric flows, turbulence and evaporation. Parameterizations that assume homogeneous land characteristics are inappropriate to represent the spatial variability often found in nature. One possibility to overcome this problem is to increase the resolution of the model grid which demands unrealistic computing resources and data for model initialization. Area averaged fluxes can be obtained from aircraft measurements. It is essential that the flights are performed at a height where the individual surface features are not felt. A large number of flights and appropriate pattern to meet the task are needed in order to achieve a fair statistics. The mixed layer grows in response to the regional turbulent fluxes including the aggregation and small scale processes. The region of influence in upwind direction is typically 20 times the height of the mixed layer for convective and 100 times the height of the mixed layer for atmospheric near neutral conditions. In this study we determine the regional integrated sensible heat flux from information on the evolution of the mixed layer over the area. The required information to use the method can be derived from wind speed and temperature profiles obtained by radio-soundings when performed frequently enough to provide a reasonably detailed structure of the development of the mixed-layer. The method is applied to estimate the regional heat flux over the NOPEX experimental area for three days during the campaign in 1994. (au)

  13. Influence of spray characteristics on heat flux in dual phase spray impingement cooling of

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nayak

    2016-09-01

    Full Text Available The effects of variation of spray characteristics (mass flux, inlet pressure, flow rate, nozzle tip to target distance and plate thickness on heat flux were systematically investigated. The round spray released from a full cone internally mix atomizing nozzle was impinged with a wide range of air and water pressures on stationary hot steel surface of definite dimension. The effect of each parameter was examined while keeping others nearly fixed. Four different plate thicknesses i.e., 4 mm, 6 mm, 8 mm and 10 mm were tested and effect of plate thickness on heat transfer was determined. Surface heat flux at each experimental condition was computed from the transient temperature history measured by K-type thermocouples embedded at bottom surface of the plate. The mass impingement density was measured by the help of a simple mechanical patternator. The maximum surface heat flux of 4895.525 kW/m2 was achieved at an inlet water pressure of 4 bar, air pressure of 3 bar and nozzle height of 120 mm for an initial temperature of 850 °C of the 4 mm steel plate.

  14. Accuracy of soil heat flux plate measurements in coarse substrates - Field measurements versus a laboratory test

    NARCIS (Netherlands)

    Weber, S.; Graf, A.; Heusinkveld, B.G.

    2007-01-01

    The in-situ performance of heat flux plates within coarse porous substrates might be limited due to poor contact between plate and substrate. We tested this behaviour with a simple laboratory set-up. Two test substrates were placed above a reference material of known thermal conductivity between a

  15. Study of Particle Motion in He II Counterflow Across a Wide Heat Flux Range

    Science.gov (United States)

    Mastracci, Brian; Takada, Suguru; Guo, Wei

    2017-06-01

    Some discrepancy exists in the results of He II counterflow experiments obtained using particle image velocimetry (PIV) when compared with those obtained using particle tracking velocimetry (PTV): using PIV, it was observed that tracer particles move at roughly half the expected normal fluid velocity, v_n/2, while tracer particles observed using PTV moved at approximately v_n. A suggested explanation is that two different flow regimes were examined since the range of heat flux applied in each experiment was adjacent but non-overlapping. Another PTV experiment attempted to test this model, but the applied heat flux did not overlap with any PIV experiments. We report on the beginnings of a study of solid {D}_2 particle motion in counterflow using PTV, and the heat flux range overlaps that of all previous visualization studies. The observed particle velocity distribution transitions from a two-peak structure to a single peak as the heat flux is increased. Furthermore, the mean value of one peak in the bi-modal distributions grows at approximately the same rate as v_n, while the mean value of the single-peak distributions grows at roughly 0.4v_n, in reasonable agreement with both previous experiments and with the suggested model.

  16. Estimation of surface Latent Heat Fluxes from IRS-P4/MSMR ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    latent heat flux from satellite data. Liu and Niiler. (1984) and Liu (1986) applied the bulk formula to retrieve the surface LHF using near surface para- meters derived from satellite data. This method, hereafter referred to as the LN method, uses geo- physical parameters such as winds, sea surface tem- perature and surface ...

  17. Inverse determination of heat flux into a gun barrel using temperature sensors

    Science.gov (United States)

    Jablonski, Jonathan A.; Jablonski, Melissa N.

    2017-05-01

    A mathematical model is developed to describe the thermal response of a temperature sensor located within a gun barrel, which accounts for the time-constant of the sensor and a measurement bias. The model is inversely solved to estimate the total heat flux applied to the bore surface as well as the transient history of the applied heat flux for a given thermal response of a temperature sensor. A parametric study is conducted to determine the influence of sensor time-constant, sensor location within the gun barrel, and measurement bias on the accuracy of the estimated heat flux as applied to a 155mm gun barrel. It is found that the accuracy of the estimated heat flux improves as the time-constant of the sensor decreases, the sensor is located closer to the bore surface, and the measurement bias decreases. A regression model is provided to estimate that accuracy and it is shown how a typical thermocouple would perform at various locations through the thickness of the gun barrel.

  18. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  19. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  20. Effect of constant heat flux at outer cylinder on stability of viscous ...

    African Journals Online (AJOL)

    DR OKE

    SCIENCE AND. TECHNOLOGY www.ijest-ng.com www.ajol.info/index.php/ijest. 2015 MultiCraft Limited. All rights reserved. Effect of constant heat flux at ... applications, there is another situation in which the outer cylinder is maintained at constant temperature while the inner cylinder ...... Bulletin of the Japan Society.

  1. Temperature regimes and turbulent heat fluxes across a heterogeneous canopy in an Alaskan boreal forest

    Science.gov (United States)

    We evaluate local differences in thermal regimes and turbulent heat fluxes across the heterogeneous canopy of a black spruce boreal forest on discontinuous permafrost in interior Alaska. The data was taken during an intensive observing period in the summer of 2013 from two micrometeorological tower...

  2. Regional fluxes of momentum and sensible heat over a sub-arctic landscape during late winter

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik; Hasager, C.B.

    2001-01-01

    Based on measurements at Sodankyla Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls...

  3. Effect of Triangular Fins on Critical Heat Flux in Ethanol-cooled Combustion Chamber

    Science.gov (United States)

    Takegoshi, Masao; Suzuki, Ryosuke; Saito, Toshihito; Ono, Fumiei; Hiraiwa, Tetsuo; Tomioka, Sadatake

    A pressure-fed engine with a regeneratively-cooled combustion chamber is studied in JAXA. Operation chamber pressure is approximately 1 MPa. A proposed propellant combination is liquid oxygen and ethanol. However, it is necessary to understand the critical heat flux when ethanol is used as a coolant for regeneratively-cooled combustion chamber because the saturation pressure of it is 6.3 MPa. In general, it is known that the cooling wall with fins improves the cooling performance. In this study, the effect of triangular fins on critical heat flux of ethanol in ethanol-cooled combustion chamber was investigated. As the result, it was found that the critical heat flux of cooling wall with triangular fins was 23 % higher than that of that without fin in the same velocity condition of the coolant. The critical heat flux increases by the triangular fins on the cooling surface due to the effect of the combination cooling with film boiling and nucleate boiling.

  4. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements

    NARCIS (Netherlands)

    Jia, L.; Su, Z.; Hurk, van den B.; Menenti, M.; Moene, A.F.; Bruin, de H.A.R.; Baselga Yrisarry, J.J.; Ibanez, M.; Cuesta, A.

    2003-01-01

    This paper describes a modified version of the Surface Energy Balance System (SEBS) as regards the use of radiometric data from space and presents the results of a large area validation study on estimated sensible heat flux, extended over several months. The improvements were made possible by the

  5. Geometrical effects on the concentrated behavior of heat flux in metamaterials thermal harvesting devices

    Science.gov (United States)

    Xu, Guoqiang; Zhang, Haochun; Xie, Ming; Jin, Yan

    2017-10-01

    Thermal harvesting devices based on transformation optics, which can manipulate the heat flux concentration significantly through rational arrangements of the conductivities, have attracted considerable interest owing to several great potential applications of the technique for high-efficiency thermal conversion and collection. However, quantitative studies on the geometrical effects, particularly wedge angles, on the harvesting behaviors are rare. In this paper, we adopt wedge structure-based thermal harvesting schemes, and focus on the effects of the geometrical parameters including the radii ratios and wedge angles on the harvesting performance. The temperature deformations at the boundaries of the compressional region and temperature gradients for the different schemes with varying design parameters are investigated. Moreover, a concept for temperature stabilization was derived to evaluate the fluctuation in the energy distributions. In addition, the effects of interface thermal resistances have been investigated. Considering the changes in the radii ratios and wedge angles, we proposed a modification of the harvesting efficiency to quantitatively assess the concentration performance, which was verified through random tests and previously fabricated devices. In general, this study indicates that a smaller radii ratio contributes to a better harvesting behavior, but causes larger perturbations in the thermal profiles owing to a larger heat loss. We also find that a smaller wedge angle is beneficial to ensuring a higher concentration efficiency with less energy perturbations. These findings can be used to guide the improvement of a thermal concentrator with a high efficiency in reference to its potential applications as novel heat storage, thermal sensors, solar cells, and thermoelectric devices.

  6. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  7. Thermoelectric conversion of heat fluxes: analytical and experimental approach

    Science.gov (United States)

    Amokrane, Mounir; Nogarede, Bertrand

    2012-08-01

    When considering electric energy harvesting from waste heat, two different solutions of direct conversion are possible: pyroelectric and thermoelectric conversions. This paper presents a study of the thermoelectric conversion by two different approaches: analytical and experimental. Furthermore, a brief historical description of the discovery and early years of development of thermoelectricity is presented. The essential objective of this work is to develop a numerical tool that can estimate the output quantities of a thermoelectric converter, without knowing all its features. For this, two analytical models were developed, based on electrical and thermal phenomena occurring within the active element. The results obtained by this model were compared successfully with experiments carried out on an industrial thermoelectric element. Considering the centimetric size of the device (16 cm2 area), the electrical power recovered by this conversion varies from 16 to 80 mW for a temperature difference between 2 and 18 °C and according to the load value. In addition, both models transcribe the behavior of the active element with an accuracy of about 10%. In agreement with this, the output voltages reached are of the same magnitude for the models and the experimental values and vary from 0.1 to 0.8 V depending on the load connected and the type of convection. Another issue which is discussed for the two cases is that an optimal recovered energy is obtained for a given electric load taking into account the physical characteristics of the considered thermoelectric element. Finally, a conversion efficiency calculation has shown that it is possible to reach 45% of the Carnot efficiency. This denotes the interest to perform load matching to optimize the output power.

  8. Effects of optimized root water uptake parameterization schemes on water and heat flux simulation in a maize agroecosystem

    Science.gov (United States)

    Cai, Fu; Ming, Huiqing; Mi, Na; Xie, Yanbing; Zhang, Yushu; Li, Rongping

    2017-04-01

    As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air, improving its parameterization is key to enhancing the performance of land surface model simulations. Although different types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme most applicable to maize farmland ecosystems. Based on the 2007-09 data collected at the farmland ecosystem field station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer ( W x ) and whether the baseline cumulative root efficiency required for maximum plant transpiration ( W c ) is reached. The sensibility of the parameters of the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux simulation were evaluated. The results indicate that the model simulation was not sensitive to W x but was significantly impacted by W c . With the original model, soil humidity was somewhat underestimated for precipitation-free days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, respectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with relatively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM's performance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optimized RWU scheme available for the CoLM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.

  9. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  10. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    Science.gov (United States)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  11. Estimating land surface heat flux using radiometric surface temperature without the need for an extra resistance

    Science.gov (United States)

    Su, H.; Yang, Y.; Liu, S.

    2015-12-01

    Remotely-sensed land surface temperature (LST) is a key variable in energy balance and is widely used for estimating regional heat flux. However, the inequality between LST and aerodynamic surface temperature (Taero) poses a great challenge for regional heat flux estimation in one -source energy balance models. In this study, a one-source model for land (OSML) was proposed to estimate regional surface heat flux without a need for an empirical extra resistance. The proposed OSML employs both a conceptual VFC/LST trapezoid model and the electrical analogue formula of sensible heat flux (H) to estimate the radiometric-convective resistance (rae) by using a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX), using a remotely-sensed data set at a regional scale. Validated against tower observations, the root mean square deviation (RMSD) of H and latent heat flux (LE) from OSML was 47 W/m2 and 51 W/m2, which is comparable to other published studies. OSML and SEBS (Surface Energy Balance System) compared under the same available energy indicated that LE estimated by OSML is comparable to that derived from the SEBS model. In conducting further inter-comparisons of rae, the aerodynamic resistance derived from SEBS (ra_SEBS), and aerodynamic resistance (ra) derived from Brutsaert et al. (2005) in corn and soybean fields, we found that rae and ra_SEBS are comparable. Most importantly, our study indicates that the OSML method is applicable without having to acquire wind speed or to specify aerodynamic surface characteristics and that it is applicable to heterogeneous areas.

  12. How the Propagation of Heat-Flux Modulations Triggers E × B Flow Pattern Formation

    Science.gov (United States)

    Kosuga, Yusuke

    2013-10-01

    Recently, a new class of E × B flow pattern, called an `` E × B staircase,'' was observed in a simulation study using the full- f flux driven GYSELA code. Here, E × B staircases are quasi-regular steady patterns of localized shear layers and temperature profile corrugations. The shear layers are interspaced between regions of turbulent avalanching of the size of several correlation length (~ 10Δc). In this work, a theory to describe the formation of such E × B staircases from a bath of stochastic avalanches is presented, based on analogy of staircase formation to jam formation in traffic flow. Namely, staircase formation is viewed as a heat flux ``jam'' that causes profile corrugation, which is analogous to a traffic jam that causes corrugations in the local car density in a traffic flow. To model such an effect in plasmas, a finite response time τ is introduced, during which instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is an analogue of drivers' response time in traffic flow dynamics. It is shown that the extended model describes a heat flux ``jam'' and profile corrugation, which appears as an instability, in analogy to the way a clustering instability leads to a traffic jam. Such local amplification of heat and profile corrugations can lead to the formation of E × B staircases. The scale length that gives the maximum growth rate falls in the mesoscale range and is comparable to the staircase step spacing. Present address: IAS and RIAM, Kyushu University, Japan.

  13. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    Science.gov (United States)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  14. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements

    KAUST Repository

    Iglesias, Marco

    2017-09-20

    The assessment of the thermal properties of walls is essential for accurate building energy simulations that are needed to make effective energy-saving policies. These properties are usually investigated through in situ measurements of temperature and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal diffusivity parameter using different synthetic data sets. In this work, we adapt this methodology to an experimental study conducted in an environmental chamber, with measurements recorded every minute from temperature probes and heat flux sensors placed on both sides of a solid brick wall over a five-day period. The observed time series are locally averaged, according to a smoothing procedure determined by the solution of a criterion function optimization problem, to fit the required set of noise model assumptions. Therefore, after preprocessing, we can reasonably assume that the temperature and the heat flux measurements have stationary Gaussian noise and we can avoid working with full covariance matrices. The results show that our technique reduces the bias error of the estimated parameters when compared to other approaches. Finally, we compute the information gain under two experimental setups to recommend how the user can efficiently determine the duration of the measurement campaign and the range of the external temperature oscillation.

  15. Distribution of the heat and current fluxes in gas tungsten arcs

    Science.gov (United States)

    Tsai, N. S.; Eagar, T. W.

    1985-12-01

    The distribution of heat flux on a water-cooled copper anode as a function of welding process parameters has been determined experimentally following an experimental technique developed previously. The results indicate that arc length is the primary variable governing heat distribution and that the distribution is closely approximated by a gaussian function. The half width of the heat flux is defined by a distribution parameter, σ, which was determined from the experimental data and is expressed as a function of arc length, current, and electrode tip angle. The distribution parameter, σ, increases from 1.5 mm to 3.6 mm as the arc length increases from 2 mm to 9 mm for a 100 A arc. The experimental data also show that arc energy transfer efficiency is greater than 80 pct on the water-cooled anode which is much higher than has been measured in the presence of a molten metal pool. For this reason, it is believed that the distribution of the heat flux and not the magnitude is the most useful information obtained in this study. The effect of helium additions to the argon on the heat distribution is also reported.

  16. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  17. Inverse natural convection problem of estimating wall heat flux using a moving sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M.; Chung, O.Y.

    1999-11-01

    Inverse heat transfer problems have many applications in various branch of science and engineering. Here, the inverse problem of determining heat flux at the bottom wall of a two-dimensional cavity from temperature measurement in the domain is considered. The Boussinesq equation is used to model the natural convection induced by the wall heat flux. The inverse natural convection problem is posed as a minimization problem of the performance function, which is the sum of square residuals between calculated and observed temperature, by means of a conjugate gradient method. Instead of employing several fixed sensors, a single sensor is used which is moving at a given frequency over the bottom wall. The present method solves the inverse natural convection problem accurately without a priori information about the unknown function to be estimated.

  18. An inter-comparison of six latent and sensible heat flux products over the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-11-01

    Full Text Available The latent heat fluxes (LHF and sensible heat fluxes (SHF over the Southern Ocean from six different data sets are inter-compared for the period 1988–2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2, the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3 and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO; two global reanalysis products, namely, the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 data set (NCEP-2 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40; and the Objectively Analyzed Air–Sea Fluxes for the Global Oceans data set (OAFlux. All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific–South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea–air specific humidity and temperature differences; wind speed plays a minor role.

  19. Modelling spatial and temporal variability of surface water-groundwater fluxes and heat exchange along a lowland river reach

    Science.gov (United States)

    Munz, Matthias; Schmidt, Christian; Fleckenstein, Jan; Oswald, Sascha

    2013-04-01

    In this study we used the deterministic, fully-integrated surface-subsurface flow and heat transport model (HydroGeoSphere) to investigate the spatial and temporal variability of surface water-groundwater (SFW-GW) interaction along a lowland river reach. The model incorporates the hydrological as well as the heat transport processes including (1) radiative fluxes warming and cooling the surface water; (2) seasonal groundwater temperature changes; (3) occasionally occurring heat inputs due to precipitation and (4) highly variable SFW-GW water advective heat exchange driven by the general relation between SFW and GW hydraulic heads and geomorphological structure of the riverbed. The study area is a 100 m long lowland river reach of the Selke river, at the boundary of the Harz mountains characterized by distinctive gravel bars. Continuous time series of hydraulic heads and temperatures at different depth in the river bank, the hyporheic zone and within the river are used to define the boundary conditions, to calibrate and to validate the numerical model. The 3D modelling results show that the water and heat exchange at the SFW-GW interface is highly variable in space with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average GW temperature. To increase the understanding of evolving pattern, the observed temperature variations in space and time will be linked to dominant stream flow conditions, streambed morphology, advective and conductive heat exchange between SFW and GW and subsurface solute residence times. This study allows to analyse and quantify water and heat fluxes at the SFW-GW interface, to trace subsurface flow paths within the streambed sediments and thus improves the understanding of hyporheic zone exchange mechanisms. It is a sound basis for investigating quantitatively variations of sediment properties, boundary conditions and streambed morphology and also for subsequent

  20. Heating of coronal plasma by anomalous current dissipation. [induced by solar magnetic flux

    Science.gov (United States)

    Rosner, R.; Golub, L.; Coppi, B.; Vaiana, G. S.

    1978-01-01

    It is shown that there exist heating mechanisms which connect the observed radiative properties of the inner corona in a simple way to the underlying solar magnetic field. The mechanisms considered involve the generation and consequent dissipation of coronal currents. It is argued that the spatially and temporally inhomogeneous nature of the erupting solar magnetic field is an essential element of coronal heating. Unlike heating theories conceived in the context of the 'homogeneous' corona, this class of current heating models incorporates the observed stochastic coronal structuring at the onset, and does not view it as a complication of an otherwise straightforward model. Attention is given to the generation of coronal currents, the flux-tube emergence, the gradual growth and decay of active regions, the energetics of current dissipation, current sheath geometry and heat transport, and anomalous current dissipation.

  1. Advantages of analytically computing the ground heat flux in land surface models

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Daly, Edoardo

    2016-11-01

    It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

  2. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  3. Downward Heat Penetration below Seasonal Thermocline and its Impact on Sea Surface Temperature Variation Affected by Net Heat Flux during Summer Season

    Science.gov (United States)

    Hosoda, S.; Nonaka, M.; Tomita, T.; Taguchi, B.; Tomita, H.; Iwasaka, N.

    2016-02-01

    Oceanic heat capacity of the upper layer is a key of the change in the sea surface temperature (SST) affecting air-sea heat exchange and of the temporal scale of SST variability. In the past, studies of SST variability associated with the air-sea heat exchange have mainly focused on the conditions during the winter, because wintertime deep mixed layer (ML) accumulates a huge amount of heat to the atmosphere. On the contrary, ML during the warming season is thinner than it is during the cooling season, being only a few tens of meters deep at mid- and high- latitudes, bounded by a shallow and sharp seasonal thermocline. Since the ML that directly communicates with the atmosphere is thin, the ocean has been considered to play a passive role in air-sea interactions during the warming season. In this study, we clarified that subsurface ocean plays an important role to seasonal changes of SST and heat capacity during the warming season using observational data of Argo and J-OFURO2, which is net heat flux (Qnet) data from satellites. To clarify the role of upper ocean to the Qnet during summer, we introduce a concept of heat penetration depth (HPD), defined as the depth to which Qnet distinctly penetrates below the seasonal thermocline. Then we assume vertical one dimensional process between Qnet and temporal heat content (HC) change integrating temperature from surface to HPD. The vertical one dimensional process can be assumed in almost mid- and high-latitude NP, and we successfully characterize the heat capacity in terms of the HC above the HPD. The downward heat penetration below the shallow seasonal thermocline is widely found throughout the NP. On the basis of a simple estimation that the amount of heat accumulated by summer Qnet in the NP, about two-thirds of Qnet penetrates below the shallow seasonal thermocline. The effect of heat penetration also makes a magnitude of seasonal change in SST to be smaller, at least a half of that the magnitude under the assumption

  4. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean

    Science.gov (United States)

    Villas Bôas, A. B.; Sato, O. T.; Chaigneau, A.; Castelão, G. P.

    2015-03-01

    By collocating 10 years (1999-2009) of remotely sensed surface turbulent heat fluxes with satellite altimetry data, we investigate the impact of oceanic mesoscale eddies on the latent and sensible heat fluxes in the South Atlantic Ocean. In strongly energetic regions, such as the Brazil-Malvinas confluence and the Agulhas Current Retroflection, eddies explain up to 20% of the total variance in the surface turbulent heat fluxes with averaged anomalies of ± (10-20) W/m2. Cyclonic (anticyclonic, respectively) eddies are associated with negative (positive) heat flux anomalies that tend to cool (warm) the marine atmospheric boundary layer. A composite analysis of the turbulent heat flux anomalies inside the eddies reveals a direct relationship between eddy amplitude and the intensity of such anomalies. In addition, these anomalies are stronger near the eddy center, decaying radially to reach minimum values outside the eddies.

  5. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  6. Heated submicron particle fluxes using an optical particle counter in urban environment

    Directory of Open Access Journals (Sweden)

    M. Vogt

    2013-03-01

    Full Text Available From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass Dp (PM1 with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction Dp correlated (r2 = 0.4 with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx and BC measured on a densely trafficked street and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs for non-volatile particles Dp to be 2.4 ± 1.4 mg veh−1 km−1 based on either CO2 fluxes or traffic activity data. Light (LDV and heavy duty vehicle (HDV EFs were estimated using multiple linear regression and reveal that for non

  7. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  8. Analysis of frozen startup of high-temperature heat pipes and three-dimensional modeling of block-heated heat pipes

    Science.gov (United States)

    Faghri, Amir

    1991-11-01

    The use of high-temperature heat pipes has been proposed for cooling the leading edges and nose cones of re-entry vehicles, rail guns, and laser mirrors, as well as for the thermal management of future hypersonic vehicle structures. The startup behavior of high temperature heat pipes from the frozen state was investigated both numerically and experimentally for various heat loads and input locations. A high temperature sodium/stainless steel heat pipe with multiple heat sources and sinks was fabricated, processed, and tested. A numerical simulation of the transient heat pipe performance including the vapor region, wick structure, and the heat pipe wall is given. Furthermore, experimental and numerical analyses of several operating parameters of a low-temperature copper-water heat pipe under uniform circumferential heating and block heating has been performed. Finally, a numerical analysis of transient heat pipe performance including nonconventional heat pipes with nonuniform heat distributions is presented. Numerical calculations were then made for a leading edge heat pipe with localized high heat fluxes.

  9. High-pressure, flux-conserving tokamak equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Dory, R.A.; Peng, Y.K.M.

    1976-08-01

    Magnetohydrodynamic (MHD) tokamak equilibria are found with values of ..beta.. up to 20 percent and prescribed MHD safety factor values (e.g., q(axis) = 1 and q(edge) = 4.8) for tokamaks with aspect ratio A = 4 and D-shaped cross section. If such equilibria could be attained experimentally, they would be very attractive for decreasing the projected costs of tokamak power reactors substantially. In the flux-conserving tokamak (FCT) model, where rapid heating is applied to an already relatively hot plasma, these high ..beta.. equilibria are achievable. We study the quasi-static evolution of FCT equilibria as ..beta.. increases. An operating window is found in the pressure profile width w/sub p/: for high ..beta.. the values of w/sub p/ must lie between 0.40 and 0.55 of the plasma minor width. Within this window, plasma current and poloidal ..beta.. increase monotonically with ..beta... For fixed plasma boundary, significant poloidal surface currents are induced, but these can be eliminated by small increases in the plasma minor radius, the pressure profile width, and the vacuum toroidal field.

  10. Dynamic resistance of a high-Tc superconducting flux pump

    Science.gov (United States)

    Jiang, Zhenan; Hamilton, K.; Amemiya, Naoyuki; Badcock, R. A.; Bumby, C. W.

    2014-09-01

    Superconducting flux pumps enable large currents to be injected into a superconducting circuit, without the requirement for thermally conducting current leads which bridge between the cryogenic environment and room temperature. In this work, we have built and studied a mechanically rotating flux pump which employs a coated conductor high-Tc superconducting (HTS) stator. This flux pump has been used to excite an HTS double pancake coil at 77 K. Operation of the flux pump causes the current within the superconducting circuit to increase over time, before saturating at a limiting value. Interestingly, the superconducting flux pump is found to possess an effective internal resistance, Reff, which varies linearly with frequency, and is two orders of magnitude larger than the measured series resistance of the soldered contacts within the circuit. This internal resistance sets a limit for the maximum achievable output current from the flux pump, which is independent of the operating frequency. We attribute this effect to dynamic resistance within the superconducting stator wire which is caused by the interaction between the DC transport current and the imposed alternating magnetic field. We provide an analytical expression describing the output characteristics of our rotating flux pump in the high frequency limit, and demonstrate that it describes the time-dependent behavior of our experimental circuit. Dynamic resistance is highlighted as a generic issue that must be considered when optimizing the design of an HTS flux pump.

  11. Particle and heat flux estimates in Proto-MPEX in Helicon Mode with IR imaging

    Science.gov (United States)

    Showers, M. A.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2016-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a linear plasma device developing the plasma source concept for the Material Plasma Exposure eXperiment (MPEX), which will address plasma material interaction (PMI) science for future fusion reactors. To better understand how and where energy is being lost from the Proto-MPEX plasma during ``helicon mode'' operations, particle and heat fluxes are quantified at multiple locations along the machine length. Relevant diagnostics include infrared (IR) cameras, four double Langmuir probes (LPs), and in-vessel thermocouples (TCs). The IR cameras provide temperature measurements of Proto-MPEX's plasma-facing dump and target plates, located on either end of the machine. The change in surface temperature is measured over the duration of the plasma shot to determine the heat flux hitting the plates. The IR cameras additionally provide 2-D thermal load distribution images of these plates, highlighting Proto-MPEX plasma behaviors, such as hot spots. The LPs and TCs provide additional plasma measurements required to determine particle and heat fluxes. Quantifying axial variations in fluxes will help identify machine operating parameters that will improve Proto-MPEX's performance, increasing its PMI research capabilities. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  12. High-flux first-wall design for a small reversed-field pinch reactor

    Science.gov (United States)

    Cort, G. E.; Graham, A. L.; Christensen, K. E.

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time averaged heat flux of 4.5 MW/sq m with a conservatively estimated transient peak approximately twice the average value. The design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading is presented. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities.

  13. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  14. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  15. Roles of SST anomalies on wintertime turbulent heat fluxes over the Southern Hemisphere

    Science.gov (United States)

    Sugimoto, S.; Kasai, C.; Hanawa, K.

    2013-12-01

    Variations of turbulent heat flux (THF; sum of latent heat flux and sensible heat flux) over the Southern Hemisphere (60°-20°S) are investigated during 21 austral winters (June-August) of 1990-2010. The THF is calculated from the bulk formula using daily variables (surface wind speed, surface air specific humidity, surface air temperature, and sea surface temperature (SST)) of the Objective Analyzed air-sea Flux (OAFlux: Yu et al. 2008) dataset and bulk coefficients based on the Tropical Ocean and Global Atmosphere/Coupled Ocean-Atmosphere Response Experiment (TOGA/COARE) bulk flux algorithm 3.0. The THF have large temporal variances in five regions, where are vicinity of the strong currents: a return region of the Agulhas Current [10°-25°E, 38°-44°S], a downstream region of the Agulhas Return Current [40°-60°E, 38°-43°S], a region over the Leeuwin Current region [105°-120°E, 32°-38°S], a region over the East Australian Current [150°-160°E, 33°-39°S], and a Brazil-Malvinas Confluence region [48°-55°W, 36°-44°S]. By performing simple experiments with combinations of raw daily data and daily climatological data, we quantitatively assessed the relative contributions of SST, surface air temperature, and surface wind speed in determining the THF in the five regions. Results showed that SST is the primary control on the THF; a huge amount of heat release in the state of the positive SST anomaly.

  16. A New Paradigm for Understanding and Enhancing the Critical Heat Flux (CHF) Limit.

    Science.gov (United States)

    Fazeli, Abdolreza; Moghaddam, Saeed

    2017-07-12

    Nearly a century of research on enhancing critical heat flux (CHF) has focused on altering the boiling surface properties such as its nucleation site density, wettability, wickability and heat transfer area. But, a mechanism to manipulate dynamics of the vapor and liquid interactions above the boiling surface as a means of enhancing CHF has not been proposed. Here, a new approach is implemented to limit the vapor phase lateral expansion over the heat transfer surface and actively control the surface wetted area fraction, known to decline monotonically with increasing heat flux. This new degree of freedom has enabled reaching unprecedented CHF levels and revealed new details about the physics of CHF. The impact of wickability, effective heat transfer area, and liquid pressure on CHF is precisely quantified. Test results show that, when rewetting is facilitated, the CHF increases linearly with the effective surface heat transfer area. A maximum CHF of 1.8 kW/cm(2) was achieved on a copper structure with the highest surface area among all tested surfaces. A model developed based on the experimental data suggests that the thermal conductivity of the surface structures ultimately limits the CHF; and a maximum CHF of 7-8 kW/cm(2) may be achieved using diamond surface structures.

  17. Heat and mass transfer in magnetohydrodynamic flow of micropolar fluid on a circular cylinder with uniform heat and mass flux

    CERN Document Server

    Mansour, M A; El-Kabeir, S M

    2000-01-01

    Steady laminar boundary layer analysis of heat and mass transfer characteristics in magnetohydrodynamic (MHD) flow of a micropolar fluid on a circular cylinder maintained at uniform heat and mass flux has been conducted. The solution of the energy equation inside the boundary layer is obtained as a power series of the distance measured along the surface from the front stagnation point of the cylinder. The results of dimensionless temperature, Nusselt number, wall shear stress, wall couple stress and Sherwood number have been presented graphically for various values of the material parameters. The results indicate that the micropolar fluids display a reduction in drag as well as heat transfer rate when compared with Newtonian fluids.

  18. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.

    Science.gov (United States)

    Sperling, Or; Shapira, Or; Cohen, Shabtai; Tripler, Effi; Schwartz, Amnon; Lazarovitch, Naftali

    2012-09-01

    In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating

  19. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    Science.gov (United States)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  20. Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials

    Science.gov (United States)

    Chen, Fei; Yuan Lei, Dang

    2015-06-01

    The ability to harvest thermal energy and manipulate heat fluxes has recently attracted a great deal of research interest because this is critical to achieve efficient solar-to-thermal energy conversion in the technology of concentrated solar thermal collectors. Thermal metamaterials with engineered thermal conduction are often utilized to control the diffusive heat flow in ways otherwise not possible with naturally occurring materials. In this work, we adopt the transformation thermodynamics approach to design an annular fan-shaped thermal metamaterial which is capable of guiding heat fluxes and concentrating thermal energy to the central region of the metamaterial device without disturbing the temperature profile outside the structure - a fascinating and unique feature impossibly achieved with homogeneous materials. In experiment, this rationally-designed metamaterial structure demonstrates extreme heat flux compression from both line-shaped and point thermal sources with measured concentration efficiency up to 83.1%, providing the first experimental realization of our recent theoretical prediction (T. Han et al., Energy Environ. Sci., 2013, 6, 3537-3541). These unprecedented results may open up new possibilities for engineering thermal materials with desired properties that can be used for dramatically enhancing the efficiency of the existing solar thermal collectors.

  1. Accuracy of Zero-Heat-Flux Cutaneous Temperature in Intensive Care Adults.

    Science.gov (United States)

    Dahyot-Fizelier, Claire; Lamarche, Solène; Kerforne, Thomas; Bénard, Thierry; Giraud, Benoit; Bellier, Rémy; Carise, Elsa; Frasca, Denis; Mimoz, Olivier

    2017-07-01

    To compare accuracy of a continuous noninvasive cutaneous temperature using zero-heat-flux method to esophageal temperature and arterial temperature. Prospective study. ICU and NeuroICU, University Hospital. Fifty-two ICU patients over a 4-month period who required continuous temperature monitoring were included in the study, after informed consent. All patients had esophageal temperature probe and a noninvasive cutaneous device to monitor their core temperature continuously. In seven patients who required cardiac output monitoring, continuous iliac arterial temperature was collected. Simultaneous core temperatures were recorded from 1 to 5 days. Comparison to the esophageal temperature, considered as the reference in this study, used the Bland and Altman method with adjustment for multiple measurements per patient. The esophageal temperature ranged from 33°C to 39.7°C, 61,298 pairs of temperature using zero-heat-flux and esophageal temperature were collected and 1,850 triple of temperature using zero-heat-flux, esophageal temperature, and arterial temperature. Bias and limits of agreement for temperature using zero-heat-flux were 0.19°C ± 0.53°C compared with esophageal temperature with an absolute difference of temperature pairs equal to or lower than 0.5°C of 92.6% (95% CI, 91.9-93.4%) of cases and equal to or lower than 1°C for 99.9% (95% CI, 99.7-100.0%) of cases. Compared with arterial temperature, bias and limits of agreement were -0.00°C ± 0.36°C with an absolute difference of temperature pairs equal to or lower than 0.5°C of 99.8% (95% CI, 95.3-100%) of cases. All absolute difference of temperature pairs between temperature using zero-heat-flux and arterial temperature and between arterial temperature and esophageal temperature were equal to or lower than 1°C. No local or systemic serious complication was observed. These results suggest a comparable reliability of the cutaneous sensor using the zero-heat-flux method compared with esophageal or

  2. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M. [Department of Mathematics, Capital University of Science and Technology, Islamabad (Pakistan)

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  3. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  4. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    Science.gov (United States)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near

  5. Error field measurement, correction and heat flux balancing on Wendelstein 7-X

    Science.gov (United States)

    Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; Israeli, Ben; Wurden, Glen A.; Wenzel, Uwe; Andreeva, Tamara; Bozhenkov, Sergey; Biedermann, Christoph; Kocsis, Gábor; Szepesi, Tamás; Geiger, Joachim; Pedersen, Thomas Sunn; Gates, David; The W7-X Team

    2017-04-01

    The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m  =  1/2 island chain in a specially designed magnetic configuration. The flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small  ∼4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n  =  1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m  =  5/5 island chain. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world

  6. The monogroove high performance heat pipe

    Science.gov (United States)

    Alario, J.; Haslett, R.; Kosson, R.

    1981-06-01

    The development of the monogroove heat pipe, a fundamentally new high-performance device suitable for multi-kilowatt space radiator heat-rejection systems, is reported. The design separates heat transport and transfer functions, so that each can be separately optimized to yield heat transport capacities on the order of 25 kW/m. Test versions of the device have proven the concept of heat transport capacity control by pore dimensions and the permeability of the circumferential wall wick structure, which together render it insensitive to tilt. All cases tested were for localized, top-side heat input and cooling and produced results close to theoretical predictions.

  7. Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10

    Science.gov (United States)

    Wu, Ke; Li, Zhen-Dong; Zhao, Jian-Fu; Li, Hui-Xiong; Li, Kai

    2016-05-01

    Focusing on partial nucleate pool boiling at low heat flux, SOBER-SJ10, one of 27 experiments of the program SJ-10, has been proposed to study local convection and heat transfer around an isolated growing vapor bubble during nucleate pool boiling on a well characterized flat surface in microgravity. An integrated micro heater has been developed. By using a local pulse overheating method in the experimental mode of single bubble boiling, a bubble nucleus can be excited with accurate spatial and temporal positioning on the top-side of a quartz glass substrate with a thickness of 2 mm and an effective heating area of 4.5 mm in diameter, and then grows under an approximate constant heat input provided by the main heater on the back-side of the substrate. Ten thin film micro-RTDs are used for local temperature measurements on the heating surface underneath the growing bubble. Normal pool boiling experiments can also be carried out with step-by-step increase of heating voltage. A series of ground test of the flight module of SOBER-SJ10 have been conducted. Good agreement of the measured data of single phase natural convection with the common-used empirical correlation warrants reasonable confidence in the data. It is found that the values of the incipience superheat of pool boiling at different subcooling are consistent with each others, verifying that the influence of subcooling on boiling incipience can be neglected. Pool boiling curves are also obtained, which shows great influence of subcooling on heat transfer of partial nucleate pool boiling, particularly in lower heat flux.

  8. Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-10-01

    Full Text Available In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1 a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2 a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error ranging from 30 w/m2~50 w/m2,which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1 the scale disparity between the field measurement and the MODIS observation; 2 the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the

  9. Analytic calculation of energy transfer and heat flux in a one-dimensional system

    Science.gov (United States)

    Balakrishnan, V.; van den Broeck, C.

    2005-10-01

    In the context of the problem of heat conduction in one-dimensional systems, we present an analytical calculation of the instantaneous energy transfer across a tagged particle in a one-dimensional gas of equal-mass, hard-point particles. From this, we obtain a formula for the steady-state energy flux, and identify and separate the mechanical work and heat conduction contributions to it. The nature of the Fourier law for the model, and the nonlinear dependence of the rate of mechanical work on the stationary drift velocity of the tagged particle, are analyzed and elucidated.

  10. Study of heat flux deposition in the Tore Supra Tokamak; Etude des depots de chaleur dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, S.

    2009-02-15

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length lambda{sub q} (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length lambda{sub q} in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  11. Quantify the continuous dependence of SST-turbulent heat flux relationship on spatial scales

    Science.gov (United States)

    Li, Furong; Sang, Huiyan; Jing, Zhao

    2017-06-01

    Relationship among different quantities usually changes in the time, spatial, and spectral domains due to the complicated dynamics in the geosystem. In this study, we propose a general statistical modeling approach to address this problem and apply the approach to evaluating the continuous dependence of relationship between sea surface temperature (SST) and turbulent heat flux (T-Q relationship) on spatial scales. In the Kuroshio extension region, it is found that the turbulent heat flux (defined positive upward) anomalies are positively correlated to SST anomalies at scales ranging from 150 km to 4000 km. The T-Q relationship stays stable at mesoscales (<1000 km) with a regression coefficient α of 26 W/(m2K). However, its value decreases rapidly as scales further increase. In addition, α exhibits a pronounced seasonal cycle with coherent phase at all the scales. The largest and smallest values occur in winter and summer, respectively.

  12. Resolving the Mantle Heat Transfer Discrepancy by Reassessing Buoyancy Flux Estimates of Upwelling Plumes

    Science.gov (United States)

    Hoggard, Mark; Parnell-Turner, Ross; White, Nicky

    2017-04-01

    The size and relative importance of mantle plumes is a controversial topic within the geodynamics community. Numerical experiments of mantle convection suggest a wide range of possible behaviours, from minor plumelets through to large scale, whole-mantle upwellings. In terms of observations, recent seismic tomographic models have identified many large, broad plume-like features within the lower mantle. In contrast, existing estimates of buoyancy flux calculated from plume swells have suggested that these upwellings transfer a relatively minor amount of material and heat into the uppermost mantle. Here, we revisit these calculations of buoyancy flux using a global map of plume swells based upon new observations of dynamic topography. Usually, plume flux is calculated from the cross-sectional area of a swell multiplied by either plate velocity or spreading rate. A key assumption is that plume head material flows laterally at or below the velocity of the overriding plate. Published results are dominated by contributions from the Pacific Ocean and suggest that a total of ˜ 2 TW of heat is carried by plumes into the uppermost mantle. An alternative approach exploits swell volume scaled by a characteristic decay time, which removes the reliance on plate velocities. The main assumption of this method is that plumes are in quasi-steady state. In this study, we have applied this volumetric approach in a new global analysis. Our results indicate that the Icelandic plume has a buoyancy flux of ˜ 27 ± 4 Mg s-1 and the Hawaiian plume is ˜ 2.9 ± 0.6 Mg s-1. These revised values are consistent with independent geophysical constraints from the North Atlantic Ocean and Hawaii. All magmatic and amagmatic swells have been included, suggesting that the total heat flux carried to the base of the plates is ˜ 10 ± 2 TW. This revised value is a five-fold increase compared with previous estimates and provides an improved match to published predictions of basal heat flux across the

  13. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  14. Understanding and suppressing the near scrape-off layer heat flux feature in inboard-limited plasmas in TCV

    Science.gov (United States)

    Nespoli, F.; Labit, B.; Furno, I.; Horacek, J.; Tsui, C. K.; Boedo, J. A.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Ricci, P.; Halpern, F. D.; Sheikh, U.; Verhaegh, K.; Pitts, R. A.; Militello, F.; The EUROfusion MST1 Team; The TCV Team

    2017-12-01

    In inboard-limited plasmas, the scrape-off layer (SOL) shows two regions: the near SOL, extending a few mm from the last closed flux surface (LCFS), characterized by a steep gradient of the parallel heat flux radial profile, and a far SOL, typically some cm wide, with flatter heat flux profiles. The physics of the near SOL is investigated in TCV with two series of experiments featuring deuterium and helium plasmas, in which the plasma current, density and elongation have been varied. The parallel heat flux profiles are measured on the limiter by means of infrared thermography. For the first time, the near SOL is reported to disappear for low plasma current or at high density, for values of the SOL collisionality ν^*_SOL corresponding to a conduction-limited regime. The power in the near SOL Δ P_SOL is shown to decrease with the normalized Spitzer resistivity ν as Δ P_SOL\\proptoν-1 . The floating potential profiles, measured at the limiter using flush-mounted Langmuir probes (LP), show the presence of non-ambipolar currents, and their relation to the presence of a velocity shear layer is discussed. The shearing rate is shown to strictly correlate with the power in the near SOL Δ P_SOL , consistently with a recent theoretical model. Measurements of the near SOL on the Low Field Side (LFS) are performed using a reciprocating Langmuir probe (RP). The near SOL is reported to vanish simultaneously at the LFS and at the limiter. The near and far SOL widths are compared with the predictions from existing theoretical models, to which empirical corrections with resistivity and elongation are proposed.

  15. APS high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  16. Turbulence and heat flux observations in the Arctic north of Svalbard

    Science.gov (United States)

    Meyer, Amelie; Sundfjord, Arild; Fer, Ilker; Smedsrud, Lars Henrik

    2016-04-01

    Heat fluxes and mixing between the ocean and the sea ice in the Arctic is fundamental to understanding the new first year sea ice regime and consequences for regional and global ocean circulation. Here we present observations collected between January and June 2015 during the Norwegian Young sea Ice (N-ICE2015) campaign in the Arctic Ocean north of Svalbard. In January 2015, the Norwegian research vessel Lance was frozen into the ice at 83o.3N 21.5oE. Oceanographic, atmospheric, sea ice, snow and biological data were collected above, on, and below the ice using R/V Lance as the base for the ice camp that was drifting south towards the Fram Strait. Over the following six months, four different drifts took place in the same area, from the Nansen Basin, through the Marginal Ice Zone, to the open ocean. Throughout the drifts, the oceanography team collected turbulence measurements to estimate mixing, heat, salt, and momentum fluxes in the ice-ocean boundary layer and between the sub-surface warm Atlantic Water layer and the ice-ocean boundary layer close to freezing point. Water tracer data was collected to map water mass properties, and the distribution of the Atlantic Water inflow. Here we present 600 under-ice microstructure profiles spanning five months, from the deep Nansen Basin to the Yermak Plateau. During this period, several large atmospheric storms took place, forcing a fast drift of the ice camp. Tides were weak in the Nansen Basin and strong on the Yermak Plateau. We investigate vertical heat fluxes between the Atlantic Water layer and the surface mixed layer. Variations in mixing and heat fluxes are interpreted in terms of atmospheric forcing and regional topography.

  17. Transient response of a high-capacity heat pipe for Space Station Freedom

    Science.gov (United States)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  18. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    He, Hui; Pan, Liang-ming, E-mail: cneng@cqu.edu.cn; Wu, Yao; Chen, De-qi

    2015-08-15

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  19. Particle and heat flux measurements from XGC1 simulations: Spatial patterns and SOL width implications

    Science.gov (United States)

    Keramidas Charidakos, Ioannis; Myra, James; Parker, Scott; Ku, Seung-Hoe; Chowdhury, Jugal; Churchill, Michael; Hager, Robert; Chang, Choong-Seock

    2017-10-01

    Strong turbulence near the separatrix is believed to produce filamentary structures (blobs), whose detachment from the bulk can account for the intermittent nature of edge turbulence and impact the heat flux width. The SOL width is a parameter of paramount importance in modern tokamaks as it controls the amount of power deposited at the divertor plates, directly affecting thus the viability of fusion. Here, we analyze the results of simulations performed with the full-f, gyrokinetic code XGC1 which includes both turbulence and neoclassical effects in realistic divertor geometry. More specifically, we calculate the integrated particle and heat fluxes across the separatrix and present their spatial pattern. The flux is impacted by neoclassical effects and ExB turbulent-blobby motion. We isolate the ExB turbulent flux and estimate its contribution to the SOL width. Furthermore, we offer an interpretation of the observed patterns, tying them to the sheared perpendicular and parallel flows. We acknowledge computing resources on Titan at OLCF through the 2015 INCITE and the 2016 ALCC awards. Work supported by DOE Grant DE-FG02-97ER54392.

  20. Divertor Heat Flux Control with 3D Stochastic Magnetic Fields during ELM Suppression

    Science.gov (United States)

    Orlov, Dm; Moyer, Ra; Bykov, Io; Evans, Te; Wu, W.; Loarte, A.; Teklu, A.; Watkins, Jg; Wang, H.; Lyons, Bc; Trevisan, Gl; Makowski, Ma; Lasnier, C.; Fenstermacher, Me

    2017-10-01

    Experiments in DIII-D have been performed to modify the divertor heat and particle flux pattern during suppression of ELMs with resonant magnetic perturbation (RMP) fields. In this work, we assessed the impact of small current modulations in a subset of DIII-D I-coils on pedestal profiles, transport and stability as well as divertor conditions. Different I-coil subset ramps were performed allowing for a slow transition of the divertor footprints from n =3 to n =2 and n =1 distributions. We obtained long periods of RMP ELM suppression with slow I-coil quartet ramps. Strong divertor particle flux splitting was observed in these discharges as well as modulation of the divertor heat flux due to changes in toroidal spectrum of applied perturbation. Experimental results are compared to the TRIP3D modeling and to linear M3D-C1 simulations to understand the role of the plasma response on quantitative predictions of the divertor flux splitting. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-05ER54809.

  1. Measurement of the Nonlinearity of Heat-Flux Sensors Employing a CO_2 laser

    Science.gov (United States)

    van der Ham, E. W. M.; Beer, C. M.; Ballico, M. J.

    2018-01-01

    Heat-flux sensors are widely used in industry to test building products and designs for resistance to bushfire, to test the flammability of textiles and in numerous applications such as concentrated solar collectors. In Australia, such detectors are currently calibrated by the National Measurement Institute Australia (NMIA) at low flux levels of 20 W \\cdot m^{-2}. Estimates of the uncertainty arising from nonlinearity at industrial levels (e.g. 50 kW \\cdot m^{-2} for bushfire testing) rely on literature information. NMIA has developed a facility to characterize the linearity response of these heat-flux sensors up to 110 kW \\cdot m^{-2} using a low-power CO_2 laser and a chopped quartz tungsten-halogen lamp. The facility was validated by comparison with the conventional flux-addition method, and used to characterize several Schmidt-Boelter-type sensors. A significant nonlinear response was found, ranging from (3.2 ± 0.9)% at 40 kW \\cdot m^{-2} to more than 8 % at 100 kW \\cdot m^{-2}. Additional measurements confirm that this is not attributable to convection effects, but due to the temperature dependence of the sensor's responsivity.

  2. Extension and application of a scaling technique for duplication of in-flight aerodynamic heat flux in ground test facilities

    NARCIS (Netherlands)

    Veraar, R.G.

    2009-01-01

    To enable direct experimental duplication of the inflight heat flux distribution on supersonic and hypersonic vehicles, an aerodynamic heating scaling technique has been developed. The scaling technique is based on the analytical equations for convective heat transfer for laminar and turbulent

  3. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  4. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    Science.gov (United States)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  5. Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface

    Science.gov (United States)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.

  6. Influence of condensation on heat flux and pressure measurements in a detonation-based short-duration facility

    Science.gov (United States)

    Haase, S.; Olivier, H.

    2017-10-01

    Detonation-based short-duration facilities provide hot gas with very high stagnation pressures and temperatures. Due to the short testing time, complex and expensive cooling techniques of the facility walls are not needed. Therefore, they are attractive for economical experimental investigations of high-enthalpy flows such as the flow in a rocket engine. However, cold walls can provoke condensation of the hot combustion gas at the walls. This has already been observed in detonation tubes close behind the detonation wave, resulting in a loss of tube performance. A potential influence of condensation at the wall on the experimental results, like wall heat fluxes and static pressures, has not been considered so far. Therefore, in this study the occurrence of condensation and its influence on local heat flux and pressure measurements has been investigated in the nozzle test section of a short-duration rocket-engine simulation facility. This facility provides hot water vapor with stagnation pressures up to 150 bar and stagnation temperatures up to 3800 K. A simple method has been developed to detect liquid water at the wall without direct optical access to the flow. It is shown experimentally and theoretically that condensation has a remarkable influence on local measurement values. The experimental results indicate that for the elimination of these influences the nozzle wall has to be heated to a certain temperature level, which exclusively depends on the local static pressure.

  7. Surface thermocouples for measurement of pulsed heat flux in the divertor of the Alcator C-Mod tokamak.

    Science.gov (United States)

    Brunner, D; LaBombard, B

    2012-03-01

    A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ~10 MW/m(2) over an ~1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 μm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m(2), surface temperatures rise ~1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ~200 MW/m(2). Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.

  8. Dynamics of Soil Heat Flux in Lowland Area: Estimating the Soil Thermal Conductivy

    Science.gov (United States)

    Zimmer, T.; Silveira, M. V.; Roberti, D. R.

    2013-05-01

    In this work, it is shown soil thermal conductivity estimates in a flooded irrigated rice culture located at the Paraíso do Sul city for two distinct periods. The thermal conductivity is higher when the heat storage is higher and the soil surface temperature is lower. The soil thermal conductivity is also dependant on the soil texture, porosity and moisture. Therefore, it varies from soil to soil and in the same soil, depending on its soil moisture. For approximately 80% of its growing season, lowland flooded irrigated rice ecosystems stay under a 5 - 10 cm water layer. It affects the partitioning of the energy and water balance components. Furthermore this planting technique differs substantially from any other upland non-irrigated or irrigated crop ecosystems where the majority of observational studies have been conducted. In the present work, the dynamic of soil heat flux (G) is analyzed and the soil thermal conductivity (Ks) is estimated using experimental data form soil heat flux and soil temperature in a rice paddy farm in a subtropical location in Southern Brazil. In this region, rice grows once a year at river lowlands and wetlands while the ground is kept bare during the remaining of the year. The soil type is Planossolo Hidromórfico Distrófico, characterized as a mix between sandy and clay soil. The soil heat flux (G) was experimentally estimated with the sensor Hukseflux (HFP01SC-L) at 7 cm bellow the soil surface. The soil temperature at 5 cm and 10 cm was experimentally estimated using the sensor STP01. The experimental soil heat flux was compared with estimated soil heat flux by two forms: (1) using a know Ks from literature for this type of soil in saturated conditions (Ks=1.58); (2) using Ks estimated using the inversion of the equation Qg=-ks* ((T10-T5)/ (Z2-Z1)), where T10 and T5 are the temperature in 10 and 5 cm above the soil and Z2-Z1 is the difference between the positions in temperature measurement. The study period for estimating the Ks

  9. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Accuracy of correlations was estimated by calculating both the average and RMS error with available experimental data, and a new correlation is presented. The new correlation predicts the CHF data with average error 0.07% and RMS error 7.91 %. Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes.

  10. Impact of elevated carbon dioxide on soil heat storage and heat flux under unheated low-tunnels conditions.

    Science.gov (United States)

    Al-Kayssi, A W; Mustafa, S H

    2016-11-01

    Suboptimal regimes of air and soil temperature usually occur under unheated low-tunnels during winter crop cycles. CO2 is one of the most important gases linked to climate change and posing challenge to the current agricultural productivity. Field experiment was conducted in unheated low-tunnels (10.0 m long, 1.5 m wide and 1.0 m high) during winter and spring periods to evaluate the increasing CO2 concentration (352, 709, 1063, 1407, and 1761 ppm) on net radiation budget, soil-air thermal regime and pepper plants growth development and yield. CO2 was injected into each hollow space of the tunnel double-layer transparent polyethylene covers. Recorded integral net longwave radiation increased from 524.81 to 1111.84 Wm(-2) on January when CO2 concentration increased from 352 to 1761 ppm. A similar trend was recorded on February. Moreover, minimum soil surface and air temperatures were markedly increased from -1.3 and -6.8 °C to 3.4 and 0.6 °C, when CO2 concentration increased from 352 to 1761 ppm. Additionally, soil heat flux as well as soil heat storage increased with increasing CO2 concentrations accordingly. Increasing the tunnel minimum air and soil temperatures with the CO2 concentration treatments 1063, 1407 and 1761 ppm reflected in a significant pepper yield (3.19, 5.06 and 6.13 kg m(-2)) due to the modification of the surrounding plants microenvironment and prevented pepper plants from freezing and the accelerated the plant growth. On the contrary, the drop of minimum air and soil temperatures to freezing levels with the CO2 concentration treatments 352 and 709 ppm resulted in the deterioration of pepper plants development during the early growth stages on January. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  12. Estimating regional distribution of surface heat fluxes by combining satellite data and a heat budget model over the Kherlen River Basin, Mongolia

    Science.gov (United States)

    Matsushima, Dai

    2007-01-01

    SummaryThe regional distribution of surface heat fluxes and related parameters over a semi-arid region was estimated using a technique that incorporates the thermal-infrared brightness temperature from a satellite into a heat budget model of land surface including vegetation canopy. We studied the western part of the Kherlen River Basin in Mongolia, where typical steppe dominates, including forest-steppe in the northern part and dry-steppe in the southern part of the basin. Our goal was to estimate the temporal change of surface heat fluxes at a location in the typical steppe over a growing season, and to estimate the spatial distribution of surface heat fluxes over the study area. Seven parameters, including the bulk transfer coefficients, the evaporation efficiency, and the subsurface thermal inertia, which are relevant to the surface heat fluxes, were optimized employing the simplex method. To compensate for insufficient satellite data samples to reproduce the diurnal change of surface heat fluxes, the spatial distribution of the surface brightness temperature was used in the optimization rather than using diurnal change, which is referred to as spatial optimization. Diurnal changes in the surface heat fluxes estimated by spatial optimization were validated by observation. The surface heat fluxes were reasonably accurately reproduced on a daily basis, with the root-mean-squares error of the sensible and the latent heat within 15 W m -2 over the growing season. The evaporation efficiency of canopy and the subsurface thermal inertia optimized in this study correlated well with the volumetric soil water content in a shallow layer on a daily basis, which suggests that thermal inertia can be an indicator of water conditions in a shallow subsurface layer. Spatial distribution of estimated sensible and latent heat after rainfall on successive summer days is discussed.

  13. Phase Change Materials-Assisted Heat Flux Reduction: Experiment and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2016-01-01

    Full Text Available Phase change materials (PCM in the construction industry became attractive because of several interesting attributes, such as thermo-physical parameters, open air atmospheric condition usage, cost and the duty structure requirement. Thermal performance optimization of PCMs in terms of proficient storage of a large amount of heat or cold in a finite volume remains a challenging task. Implementation of PCMs in buildings to achieve thermal comfort for a specific climatic condition in Iraq is our main focus. From this standpoint, the present paper reports the experimental and numerical results on the lowering of heat flux inside a residential building using PCM, which is composed of oil (40% and wax (60%. This PCM (paraffin, being plentiful and cost-effective, is extracted locally from waste petroleum products in Iraq. Experiments are performed with two rooms of identical internal dimensions in the presence and absence of PCM. A two-dimensional numerical transient heat transfer model is developed and solved using the finite difference method. A relatively simple geometry is chosen to initially verify the numerical solution procedure by incorporating in the computer program two-dimensional elliptic flows. It is demonstrated that the heat flux inside the room containing PCM is remarkably lower than the one devoid of PCM.

  14. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  15. In-pile critical heat flux and post-dryout heat transfer measurements – A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: degroeneveld@gmail.com

    2017-06-15

    In the 1960s’ and 1970s’ Canada was a world leader in performing in-reactor heat transfer experiments on fuel bundles instrumented with miniature sheath thermocouples. Several Critical Heat Flux (CHF) and Post-CHF experiments were performed in Chalk River’s NRU and NRX reactors on water-cooled 3-, 18-, 19-, 21-, and 36-element fuel bundles. Most experiments were obtained at steady-state conditions, where the power was raised gradually from single-phase conditions up to the CHF and beyond. Occasionally, post-dryout temperatures up to 600 °C were maintained for several hours. In some tests, the fuel behaviour during loss-of-flow and blowdown transients was investigated – during these transients sheath temperatures could exceed 2000 °C. Because of the increasingly more stringent licensing requirements for in-pile heat transfer tests on instrumented fuel bundles, no in-pile CHF and post-dryout tests on fuel bundles have been performed anywhere in the world for the past 40 years. This paper provides details of these unique in-pile experiments and describes some of their heat transfer results.

  16. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  17. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  18. An improved mechanistic critical heat flux model for subcooled flow boiling

    Ener