WorldWideScience

Sample records for high field dipole

  1. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  2. A method to assess the loss of a dipole antenna for ultra-high-field MRI.

    Science.gov (United States)

    Chen, Gang; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C

    2017-06-19

    To describe a new bench measurement based on quality (Q) factors to estimate the coil noise relative to the sample noise of dipole antennas at 7 T. Placing a dipole antenna close to a highly conductive sample surrogate (HCSS) greatly reduces radiation loss, and using QHCSS gives a more accurate estimate of coil resistance than Qunloaded . Instead of using the ratio of unloaded and sample-loaded Q factors, the ratio of HCSS-loaded and sample-loaded Q factors should be used at ultra-high fields. A series of simulations were carried out to analyze the power budget of sample-loaded or HCSS-loaded dipole antennas. Two prototype dipole antennas were also constructed for bench measurements to validate the simulations. Simulations showed that radiation loss was suppressed when the dipole antenna was HCSS-loaded, and coil loss was largely the same as when the dipole was loaded by the sample. Bench measurements also showed good alignment with simulations. Using the ratio QHCSS /Qloaded gives a good estimate of the coil loss for dipole antennas at 7 T, and provides a convenient bench measurement to predict the body noise dominance of dipole antenna designs. The new approach also applies to conventional surface loop coils at ultra-high fields. Magn Reson Med 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. The design of a large aperture high field dipole

    Energy Technology Data Exchange (ETDEWEB)

    Harfoush, F.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-12-01

    The impetus for this design report originated in the Snowmass 88 meeting where the subject of higher energies within the constraints of the existing Tevatron tunnel enclosure was investigated. It was determined that beam transport to the fixed target experimental areas was possible up to an energy of {approximately}1.5 Tev. Collider operation was feasible at somewhat higher energies (1.8 Tev), primarily limited by the ability to design a single turn beam abort system within the constraints of the straight section length. A new accelerator in the existing tunnel would, of necessity, have a similar though not identical lattice and straight section layout to the present Tevatron. Thus when issues arose in the magnet design requiring input from the accelerator standpoint we have assumed a Tevatron like machine. The possibility of using these high field magnets as elements in the existing Tevatron to create new warm space,' for another Interaction Region for example, also emphasizes compatibility with the present machine. 16 refs., 62 figs., 23 tabs.

  4. Alternative Approach to the Provision of the High-field Dipole for FCC-hh

    CERN Document Server

    AUTHOR|(SzGeCERN)435046

    2015-01-01

    This paper describes a possible approach to reducing the complexity and cost of the high field dipole magnets. In addition the cooling of the winding could be improved in the proposed design, with a consequent reduction in the shielding requirements. The correction of multipoles is also addressed: this feature may impact on the dynamic range of operation of the magnets. Noting that it would be possible to add a small gradient component to the dipole, it is suggested that a (partially) combined function lattice should be considered. The proposals lead to a brief re-appraisal of how best to apply superconductivity to magnets for large accelerators.

  5. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  6. Design of the EuCARD High-Field Model Dipole Magnet FRESCA2

    CERN Document Server

    Milanese, A; Durante, M; Manil, P; Perez, J C; Rifflet, J M; de Rijk, G; Rondeaux, F

    2012-01-01

    This paper reports on the design of FRESCA2, a dipole magnet model wound with Nb3Sn Rutherford cable. This magnet is one of the deliverables of the High Field Magnets work package of the European FP7-EuCARD project. The nominal magnetic flux density of 13 Tesla in a 100 mm bore will make it suitable for upgrading the FRESCA cable test facility at CERN. The magnetic layout is based on a block coil, with four layers per pole. The mechanical structure is designed to provide adequate pre-stress, through the use of bladders, keys and an aluminum alloy shrinking cylinder.

  7. Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC

    CERN Document Server

    AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando

    2017-01-01

    In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb3Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this informati...

  8. Quantum optical dipole radiation fields

    CERN Document Server

    Stokes, Adam

    2016-01-01

    We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.

  9. Formation of binary millisecond pulsars with relatively high surface dipole magnetic fields

    CERN Document Server

    Sutantyo, W

    2000-01-01

    We have carried out numerical evolutionary calculations of binary systems to investigate the formation of binary millisecond pulsars (pulsars with white dwarf companions). We apply the ``standard scenario'' in which the binary pulsars are formed from low-mass and intermediate-mass X-ray binaries as well the alternative scenario in which the neutron stars are formed by accretion-induced collapse (AIC) of white dwarfs. The mass transfer processes are carefully followed by taking into account a number of binary interactions. Assuming that the magnetic fields of the neutron stars decay due to the accretion, we calculate the pulsar surface dipole magnetic field strength at the end of the mass transfer as a function of the final orbital period. We find that while the observed data of the majority of pulsars are compatible with the derived relations, we fail to produce binary pulsars with relatively high magnetic fields and short orbital periods (such as PSR B0655+64). We conclude that those systems are most likely ...

  10. Estimation of the Required Amount of Superconductors for High-field Accelerator Dipole Magnets

    CERN Document Server

    Schwerg, N

    2007-01-01

    The coil size and the corresponding amount of superconducting material that is used during the design process of a magnet cross-section have direct impacts on the overall magnet cost. It is therefore of interest to estimate the minimum amount of conductors needed to reach the defined field strength before a detailed design process starts. Equally, it is useful to evaluate the efficiency of a given design by calculating the amount of superconducting cables that are used to reach the envisaged main field by simple rule. To this purpose, the minimum amount of conductors for the construction of a dipole of given main field strength and aperture size is estimated taking the actual critical current density of the used strands into account. Characteristic curves applicable for the NED Nb3Sn strand specification are given and some of the recently studied different dipole configurations are compared. Based on these results, it is shown how the required amount of conductors changes due to the iron yoke contribution and...

  11. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  12. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.

    Science.gov (United States)

    Wang, Jiming; Chen, Weibin; Zhan, Qiwen

    2010-10-11

    We report a new method to create high purity longitudinally polarized field with extremely long depth of focus in the focal volume of a high numerical aperture (NA) objective lens. Through reversing the radiated field from an electric dipole array situated near the focus of the high-NA lens, the required incident field distribution in the pupil plane for the creation of an ultra-long optical needle field can be found. Numerical examples demonstrate that an optical needle field with a depth of focus up to 8λ is obtainable. Throughout the depth of focus, this engineered focal field maintains a diffraction limited transverse spot size (<0.43λ) with high longitudinal polarization purity. From the calculated pupil plane distribution, a simplified discrete complex pupil filter can be designed and significant improvements over the previously reported complex filters are clearly demonstrated.

  13. The Inverse Problem for the Dipole Field

    CERN Document Server

    Epp, V

    2015-01-01

    The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.

  14. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  15. Bent Solenoids with Superimposed Dipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  16. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    Science.gov (United States)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  17. The entanglement of two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process

    Institute of Scientific and Technical Information of China (English)

    Liao Xiang-Ping; Fang Mao-Fa; Cai Jian-Wu; Zheng Xiao-Juan

    2008-01-01

    This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.

  18. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.

  19. Investigation of the dipole response of nickel isotopes in the presence of a high-frequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Dominic M.

    2010-01-25

    The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of {sup 56-57}Ni and {sup 67-72}Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm{sup 2} Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich {sup 67-69}Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the ({gamma},n) and ({gamma},2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable {sup 58}Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured ({gamma},n) and ({gamma},np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of {sup 67-69}Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the {chi}{sup 2} minimization of the model GDR to the measured data of the ({gamma},2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the

  20. Chaos in a gravitational field with dipoles

    Institute of Scientific and Technical Information of China (English)

    陈菊华; 王永久

    2003-01-01

    In this paper we investigate the dyna nics of a test particle in the gravitational field with dipoles. At first we study the gravitational potential by numerical simulations, we find that, for appropriate parameters, there are two different cases in the potential curve: one is the one-well case with a stable critical point, and the other is the three-well case with three stable critical points and two unstable critical points. By performing Poincare sections for different values of the parameters and initial conditions, we find a regular motion and a chaotic motion. From these Poincare sections,we further confirm that the chaotic motion of the test particle originates mainly from the dipoles.

  1. On Closely Coupled Dipoles in a Random Field

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Vincent, L.

    2006-01-01

    Reception of partially correlated fields by two closely coupled electrical dipoles is discussed as a function of load impedances and open-circuit correlations. Two local maxima of the power may be achieved for two different load impedances, but in those cases the output correlations are high...

  2. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    CERN Document Server

    Harding, Alice K

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap, we derive the accelerating electric field above the polar cap in space charge limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the polar cap and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-Pdot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission and the pulsar contribution to cosmic ray positrons.

  3. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  4. Improved Reconstruction of Dipole Directions from Spherical Magnetic Field Measurements

    CERN Document Server

    Gerhards, Christian

    2016-01-01

    Reconstructing magnetizations from measurements of the generated magnetic potential is highly non-unique. The matter of uniqueness can be improved, but not entirely resolved, by the assumption that the magnetization is locally supported. Here, we focus on the case that the magnetization is additionally assumed to be induced by an ambient magnetic dipole field, i.e., the task is to reconstruct the dipole direction as well as the susceptibility of the magnetic material. We investigate uniqueness issues and provide a reconstruction procedure from given magnetic potential measurements on a spherical surface.

  5. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  6. Lunar magnetic field - Permanent and induced dipole moments

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  7. Review- Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields

    Directory of Open Access Journals (Sweden)

    Tsutomu Ando, Noriyuki Hirota and Hitoshi Wada

    2009-01-01

    Full Text Available In this paper, the motion of a chainlike cluster of feeble magnetic particles induced by high magnetic field is discussed on the basis of the results of numerical simulations. The simulations were performed on glass particles with a diameter of 0.8 mm; and the viscosity, applied magnetic field and magnetic properties of the surrounding medium were changed. In addition to the magnetic field and the difference in magnetic susceptibility between the particles and the surrounding medium, the obtained results indicate that the viscosity is an essential factor for the formation of the chainlike alignment of feeble magnetic particles. We also carried out simulations using glass particles with a smaller diameter of 0.1 mm. Chainlike clusters were produced similar to those of ferromagnetic particles formed in a ferromagnetic fluid.

  8. An apparent paradox concerning the field of an ideal dipole

    CERN Document Server

    Parker, Edward

    2016-01-01

    The electric or magnetic field of an ideal dipole is known to have a Dirac delta function at the origin. The usual textbook derivation of this delta function is rather ad hoc and cannot be used to calculate the delta-function structure for higher multipole moments. Moreover, a naive application of Gauss's law to the ideal dipole field appears to give an incorrect expression for the dipole's effective charge density. We derive a general procedure for calculating the delta-function structure at the origin of an arbitrary ideal multipole field; this procedure leads to the nontrivial result that the divergence of a singular vector field can contain a \\emph{derivative} of a Dirac delta function even if the field itself does not contain a delta function. We also argue that a physical interpretation of the delta function in the dipole field previously given in the literature is incorrect.

  9. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  10. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    Science.gov (United States)

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Birotor dipole for Saturn's inner magnetic field from Cassini observations

    Science.gov (United States)

    Galopeau, Patrick

    2017-04-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR). These two periods were attributed to the northern and southern hemispheres respectively. We suppose that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A continuous wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for

  12. Field quality of the LHC dipole magnets in operating conditions

    CERN Document Server

    Bottura, L; Fartoukh, Stéphane David; Russenschuck, Stephan; Sanfilippo, S; Scandale, Walter; Schmidt, F; Todesco, Ezio; Walckiers, L; Wolf, R

    2002-01-01

    We report here the main results of the field measurements performed so far on the pre-series LHC superconducting dipoles at superfluid helium temperature. After discussing the results at injection and collision conditions, we focus on the non-linear contributions at high field, on the contribution of superconductor magnetization at injection, and on ramp rate effects. The statistics accumulated on the first magnets of the production verify the hypotheses that have been used to design the correctors scheme for the LHC. In particular high field saturation is in line with the expectations, although a small systematic deformation due to Lorentz forces affects both sextupole and decapole terms. The decay at injection and snap-back at beginning of beam acceleration require careful characterization.

  13. Synchronization of magnetic dipole rotation in an ac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, M; Cebers, A, E-mail: aceb@tesla.sal.lv [University of Latvia, Zellu-8, Riga, LV-1002 (Latvia)

    2011-07-22

    The synchronization of the rotation of magnetic dipoles due to weak dipolar interactions is studied. The set of equations is analyzed by the time averaging technique. It is found that dipoles synchronously oscillate at low applied fields and rotate synchronously at large applied fields. The mean angular velocity of synchronous rotation increases with the field strength and reaches a constant value equal to the angular frequency of the field above the critical value of the field strength. The critical value of the field strength above which the synchronous rotation takes place can be calculated from dimensionless parameters using a model derived from first principles by others. The values thus obtained are in good agreement with the values we obtain from a numerical simulation. Thus, we may conclude that the liquid flow observed in these systems may be caused by synchronized rotations of the dipoles.

  14. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  15. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    Science.gov (United States)

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  16. Detecting Electric Dipoles Interaction at the Interface of Ferroelectric and Electrolyte Using Graphene Field Effect Transistors.

    Science.gov (United States)

    Ma, Chunrui; Lu, Rongtao; Hu, Guangliang; Han, Jinsheng; Liu, Ming; Li, Jun; Wu, Judy

    2017-02-01

    Graphene was inserted into the interface between electric dipole layers from DEME-TFSI ionic liquid (top-gate) and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT, back-gate) to probe the interface dipole-dipole interaction in response to DC and pulsed gate voltages. A highly complicated behavior of the interface dipole-dipole interaction has been revealed as a combination of electrostatic and electrochemical effects. The interfacial polar molecules in the DEME-TFSI electrical double layer are pinned with assistance from the PLZT back-gate in response to a DC top-gate pump, leading to strong nonlinear electrochemical behavior. In contrast, depinning of these molecules can be facilitated by a faster pulsed top-gate pump, which results in a characteristic linear electrostatic behavior. This result not only sheds light on the dynamic dipole-dipole interactions on the interface between functional materials but also prototypes a unique pump and probe approach using graphene field effect transistors to detect the interface dipole-dipole interaction.

  17. Tests and Field Map of LHCb Dipole Magnet

    CERN Document Server

    Losasso, Marcello; Flegel, Wilfried; Giudici, Pierre-Ange; Hernando, Jose Angel; Jamet, Olivier; Lindner, Rolf; Renaud, Jean; Teubert, Frederic

    2005-01-01

    The LHCb experiment at the LHC at CERN is aimed to study CP violation and to measure the rare decays of B-mesons with exceptionally high precision. A 4 Tm dipole magnet is required for particle separation and momentum measurements. The 1600 ton warm magnet with sloping poles was installed and fully commissioned by the end of 2004. It is the first detector magnet of the four LHC experiments to have been aligned and commissioned in its final position. In this paper the magnet installation in the underground cavern of Point 8 and its alignment on the beam line are shortly reviewed. Results of a first magnetic field mapping in the region of the magnet poles and the fringe field in the location of the RICH detectors are presented. The mechanical equipment used for the automatic displacement of the Hall probe array is described together with the precision of the measurements obtained which are compared with TOSCA finite element calculations.

  18. Field quality issues in iron-dominated dipoles at low fields

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.C.

    1996-10-01

    In order to help assess the usable dynamic range of iron-dominated dipoles, field shape data at low field on several Fermi-lab accelerator dipole designs are presented. Emphasis is placed on the systematic and random values of the low field sextupole since it is the first ``allowed`` field error. The Main Injector dipoles provide four times smaller sextupole and more than 20 times less sextupole hysteresis than earlier designs for the Main Ring.

  19. Integrated optical electric field sensor with telescopic dipole

    Institute of Scientific and Technical Information of China (English)

    Bao Sun; Fushen Chen; Yongjun Yang

    2008-01-01

    An integrated optical electric field sensor based on a Mach-Zehnder interferometer with the telescopic dipole is designed and fabricated, and its electrodes are segmented and connected with a telescopic dipole.The measured results show that when the frequency response is from 10kHz to 6GHz with the antenna length of 55mm, the minimum detectable electric field of 20mV/m can be obtained, and the linear dynamics range can reach 90dB at 250MHz.

  20. Bistability between equatorial and axial dipoles during magnetic field reversals

    CERN Document Server

    Gissinger, Christophe; Schrinner, Martin; Dormy, Emmanuel

    2012-01-01

    Numerical simulations of the geodynamo in presence of an heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m = 0 axial dipolar field is replaced by an hemispherical magnetic field, dominated by an oscillating m = 1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of the Earth's dynamo.

  1. Bistability between equatorial and axial dipoles during magnetic field reversals.

    Science.gov (United States)

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-08

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.

  2. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  3. Field Asymmetric Waveform Ion Mobility Spectrometry Studies of Proteins: Dipole Alignment in Ion Mobility Spectrometry?

    Energy Technology Data Exchange (ETDEWEB)

    Shvartsburg, Alexandre A.; Bryskiewicz, Tadeusz; Purves, Randy; Tang, Keqi; Guevremont, Roger; Smith, Richard D.

    2006-11-02

    Approaches to characterization and separation of ions involving their mobilities in gases were developed since 1960-s. Conventional ion mobility spectrometry (IMS) measures the absolute mobility and the field asymmetric waveform IMS (FAIMS) exploits the difference between mobilities at high and low electric fields. However, all previous work was based on the orientationally averaged cross-sections Ωavg between ions and buffer gas molecules. Virtually all large ions are electric dipoles that will be oriented by a sufficiently strong electric field. At typical FAIMS conditions, that must happen for dipole moments > ~400 Debye, found for many macroions including most proteins above ~30 kDa. Mobilities of aligned dipoles depend on directional cross-sections Ωdir (rather than Ωavg), which should have a major effect on FAIMS separation parameters. Here we study the FAIMS behavior of ESI-generated ions for ten proteins up to ~70 kDa. Those above 29 kDa exhibit a strong increase of mobility at high field, which is consistent with predicted ion dipole alignment. This effect expands the FAIMS peak capacity by an order of magnitude, allowing separation of up to ~102 distinct protein conformers and revealing information about Ωdir and ion dipole moment that is of potential utility for structural characterization. Possible means to extend the dipole alignment to smaller ions are discussed.

  4. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    Science.gov (United States)

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  5. Strong dipole magnetic fields in fast rotating fully convective stars

    Science.gov (United States)

    Shulyak, D.; Reiners, A.; Engeln, A.; Malo, L.; Yadav, R.; Morin, J.; Kochukhov, O.

    2017-08-01

    M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and large-scale magnetic fields1,2,3,4. Such activity is driven by a dynamo powered by the convective motions in their interiors2,5,6,7,8. Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation-activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days2,6,8. The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux9, the stellar magnetic fields will also saturate, to values around 4 kG (ref. 10). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models11,12: stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4 kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.

  6. Design Studies and Optimization of High-Field Nb$_3$Sn Dipole Magnets for a Future Very High Energy PP Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab; Zlobin, A. V. [Fermilab

    2017-05-01

    High filed accelerator magnets with operating fields of 15-16 T based on the $Nb_3Sn$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $Nb_3Sn$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.

  7. An apparent paradox concerning the field of an ideal dipole

    Science.gov (United States)

    Parker, Edward

    2017-03-01

    The electric or magnetic field of an ideal dipole is known to have a Dirac delta function at the origin. The usual textbook derivation of this delta function is rather ad hoc and cannot be used to calculate the delta-function structure for higher multipole moments. Moreover, a naive application of Gauss’s law to the ideal dipole field appears to give an incorrect expression for the dipole’s effective charge density. We derive a general result for the delta-function structure at the origin of an arbitrary ideal multipole field without using any advanced techniques from distribution theory. We find that the divergence of a singular vector field can contain a derivative of a Dirac delta function even if the field itself does not contain a delta function. We also argue that a physical interpretation of the delta function in the dipole field previously given in the literature is perhaps misleading and may require clarification. Both the explanation of and the resolution to this ‘paradox’ should be accessible to someone who has taken a graduate- or advanced undergraduate-level course in classical electrodynamics.

  8. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  9. Electron Dipole-Dipole ESEEM in Field-Step ELDOR of Nitroxide Biradicals

    Science.gov (United States)

    Kulik, L. V.; Grishin, Yu. A.; Dzuba, S. A.; Grigoryev, I. A.; Klyatskaya, S. V.; Vasilevsky, S. F.; Tsvetkov, Yu. D.

    2002-07-01

    The use of a rapid stepping of the magnetic field for investigation of electron dipole-dipole ESEEM in pulsed X-band ELDOR is described. The magnetic field jump, synchronized with a microwave pumping pulse, is positioned between the second and the third pulses of the stimulated echo pulse sequence. This echo is measured as a function of the delay between the first and the second pulses. The data are analyzed for a Fourier transform resulting in a Pake resonance pattern. To remove the electron-nuclear contributions to ESEEM, time traces with pumping were divided by those without. This resulted in complete elimination of electron-nuclear contributions, which is seen from the absence of peaks at nuclear frequencies and the similarity of results for protonated and deuterated solvents. For increasing the electron-electron modulation depth, a scanning of the magnetic field during the microwave pumping is proposed. The interspin distances and their distribution are determined for two long-chained (ca. 2 nm) nitroxide biradicals in glassy toluene and in frozen nematic liquid crystal 4-cyano-4'-pentyl-biphenyl. For the latter solvent, the alignment of the axis connecting two nitroxides in biradicals is quantitatively analyzed.

  10. Effective field theory, electric dipole moments and electroweak baryogenesis

    Science.gov (United States)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-03-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  11. Beam induced electron cloud resonances in dipole magnetic fields

    Science.gov (United States)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  12. Breakdown of the Dipole Approximation in Strong-Field Ionization

    CERN Document Server

    Ludwig, A; Mayer, B W; Phillips, C R; Gallmann, L; Keller, U

    2014-01-01

    We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semi-classical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as origin of our observations.

  13. Comparative study between toroidal coordinates and the magnetic dipole field

    CERN Document Server

    Chávez-Alarcón, Esteban

    2012-01-01

    There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.

  14. Free induction decay caused by a dipole field

    Science.gov (United States)

    Ziener, C. H.; Kurz, F. T.; Kampf, T.

    2015-03-01

    We analyze the free induction decay of nuclear spins under the influence of restricted diffusion in a magnetic dipole field around cylindrical objects. In contrast to previous publications no restrictions or simplifications concerning the diffusion process are made. By directly solving the Bloch-Torrey equation, analytical expressions for the magnetization are given in terms of an eigenfunction expansion. The field strength-dependent complex nature of the eigenvalue spectrum significantly influences the shape of the free induction decay. As the dipole field is the lowest order of the multipole expansion, the obtained results are important for understanding fundamental mechanisms of spin dephasing in many other applied fields of nuclear magnetic resonance such as biophysics or material science. The analytical methods are applied to interpret the spin dephasing in the free induction decay in cardiac muscle and skeletal muscle. A simple expression for the relevant transverse relaxation time is found in terms of the underlying microscopic parameters of the muscle tissue. The analytical results are in agreement with experimental data. These findings are important for the correct interpretation of magnetic resonance images for clinical diagnosis at all magnetic field strengths and therapy of cardiovascular diseases.

  15. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    Science.gov (United States)

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  16. Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells

    NARCIS (Netherlands)

    Kwaadgras, Bas W.; Van Roij, René; Dijkstra, Marjolein

    2014-01-01

    When calculating the interaction between electric field-induced dipoles, the dipole moments are often taken to be equal to their polarizability multiplied by the external electric field. However, this approach is not exact, since it does not take into account the fact that particles with a dipole mo

  17. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    Science.gov (United States)

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  18. Electromagnetic fields due to dipole antennas over stratified anisotropic media.

    Science.gov (United States)

    Kong, J. A.

    1972-01-01

    Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information about the geometrical configuration and the physical constituents of the medium, are obtained in closed form. In view of the general formulation, various special cases are discussed.

  19. Large vortex-like structure of dipole field in computer models of liquid water and dipole-bridge between biomolecules.

    Science.gov (United States)

    Higo, J; Sasai, M; Shirai, H; Nakamura, H; Kugimiya, T

    2001-05-22

    We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity "site-dipole field" is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 A in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 A, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.

  20. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  1. High-resolution records of non-dipole variations in the intensity of the Earth's magnetic field (Utrecht Studies in Earth Sciences 037)

    NARCIS (Netherlands)

    de Groot, L.V.

    2013-01-01

    Our understanding of the short-term behavior of the Earth’s magnetic field is currently mainly hampered by a lack of high-resolution records of geomagnetic intensity variations that are well distributed over the globe and cover the same timespan. Over the past decades many efforts have been made to

  2. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  3. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean R. [JLAB, Old Dominion University; Castillo, Alejandro [JLAB, Old Dominion University

    2014-12-01

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependency is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.

  4. Electric dipole moments of light nuclei in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)

    2014-07-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.

  5. Measurement of the magnetic-field parameters of the NICA Booster dipole magnet

    Science.gov (United States)

    Kostromin, S. A.; Borisov, V. V.; Bichkov, A. V.; Golubitsky, O. M.; Donyagin, A. N.; Morozov, N. A.; Samsonov, E. V.; Omelyanenko, M. M.; Khodzhibagiyan, H. G.; Shemchuk, A. V.

    2016-12-01

    Serial assembly and tests of dipole and quadrupole magnets of the NICA Booster have started at the Laboratory of High Energy Physics of the Joint Institute for Nuclear Research (JINR). The accelerator is fitted with Nuclotron-type magnets with a superconducting winding and an iron yoke for shaping the needed magnetic field. The design of magnets for NICA was optimized (based on the experience gained in constructing and operating the JINR Nuclotron) for the production of magnetic fields of the required configuration in terms of the beam dynamics in the accelerator and the collider. Measurements of parameters of the field of each magnet are expected to be performed in the process of assembly and testing of each module of the magnet-cryostat system of the NICA Booster and Collider. The results of magnetic measurements for the NICA Booster dipole magnet are presented.

  6. Exploring dipole blockade using high- n strontium Rydberg atoms

    Science.gov (United States)

    Zhang, Xinyue; Ye, Shuzhen; Dunning, F. Barry; Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim

    2014-05-01

    Studies of the production of strongly-polarized quasi-1D high- n, n ~ 300 , strontium `` nF'' Rydberg states in an atomic beam by three-photon excitation in a weak dc field suggest that (in the absence of blockade effects) densities of ~106 cm-3 might be achieved. At such densities the interparticle separation, ~ 100 μm , becomes comparable to that at which dipole blockade effects are expected to become important. Apparatus modifications are underway to allow the exploration of blockade at very high- n and the effects of the high energy level density. Blockade is also being examined through calculations of the energy spectrum for two interaction atoms. Access to the blockade regime promises creation of Rydberg atoms at well-defined separations whose interactions can be coherently controlled using electric field pulses thereby enabling study of the dynamics of strongly-coupled Rydberg systems. Research supported by the NSF, the Robert A. Welch Foundation, and the FWF (Austria).

  7. Field Quality and Mechanical Analysis of the Beam Separation Dipole for HL-LHC Upgrade

    CERN Document Server

    AUTHOR|(CDS)2086334; Nakamoto, Tatsushi; Xu, Q; Kawamata, H; Todesco, Ezio

    2015-01-01

    High luminosity upgrade of the Large Hadron Collider (HL-LHC) project has been launched to attain a ten times higher integrated luminosity than the current LHC that has been in operation for over ten years. For this goal, the quadruple and dipole magnets around two interaction points, the ATLAS and the CMS, will be upgraded. High Energy Accelerator Research Organization (KEK) is in charge of developing the new superconducting beam separation dipole magnet (D1). The main dipole field of 5.6 T in a large aperture of 150 mm is generated using a cos-theta coil wound with Nb-Ti cables at nominal operating current of 12.0 kA at 1.9 K corresponding to 75% of the load line ratio. The main challenges for the D1 are larger aperture, a high level of iron saturation, radiation resistance, and tight constraints on field quality. This article summarizes the results of a detailed analysis on field error. Electromagnetic simulation with ROXIE was carried out for the 2-D model of the new D1. As possible design changes, a diam...

  8. A new estimate of average dipole field strength for the last five million years

    Science.gov (United States)

    Cromwell, G.; Tauxe, L.; Halldorsson, S. A.

    2013-12-01

    The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and

  9. Thermal pairing and giant dipole resonance in highly excited nuclei

    CERN Document Server

    Dang, Nguyen Dinh

    2014-01-01

    Recent results are reported showing the effects of thermal pairing in highly excited nuclei. It is demonstrated that thermal pairing included in the phonon damping model (PDM) is responsible for the nearly constant width of the giant dipole resonance (GDR) at low temperature $T $ 170 MeV.

  10. High-energy hadron-hadron (dipole-dipole) scattering from lattice QCD

    CERN Document Server

    Giordano, M

    2008-01-01

    In this paper the problem of the high-energy hadron-hadron (dipole-dipole) scattering is approached (for the first time) from the point of view of lattice QCD, by means of Monte Carlo numerical simulations. In the first part, we give a brief review of how high-energy scattering amplitudes can be reconstructed, using a functional integral approach, in terms of certain correlation functions of two Wilson loops and we also briefly recall some relevant analyticity and crossing-symmetry properties of these loop-loop correlation functions, when going from Euclidean to Minkowskian theory. In the second part, we shall see how these (Euclidean) loop-loop correlation functions can be evaluated in lattice QCD and we shall compare our numerical results with some nonperturbative analytical estimates appeared in the literature, discussing in particular the question of the analytic continuation from Euclidean to Minkowskian theory and its relation to the still unsolved problem of the asymptotic s-dependence of the hadron-ha...

  11. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  12. Nucleon Electric Dipole Moments in High-Scale Supersymmetric Models

    CERN Document Server

    Hisano, Junji; Kuramoto, Wataru; Kuwahara, Takumi

    2015-01-01

    The electric dipole moments (EDMs) of electron and nucleons are the promising probe of the new physics. In the generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we estimated the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in these scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron EDM in order to discriminate among the high-scale SUSY models.

  13. Nucleon electric dipole moments in high-scale supersymmetric models

    Science.gov (United States)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-11-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP -violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  14. Molecules with an induced dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  15. Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses

    OpenAIRE

    Koprinkov, I. G.

    2006-01-01

    Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.

  16. Dynamics of an electric dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  17. Compendium of the ULF/ELF electromagnetic fields generated above a sea of finite depth by submerged harmonic dipoles

    Science.gov (United States)

    Fraser-Smith, A. C.; Bubenik, D. M.

    1980-01-01

    This report extends earlier computations of the amplitudes of the quasi-static electromagnetic fields produced on and above the surface of a sea of finite depth by a submerged vertically directed harmonic magnetic dipole (VMD) to other dipoles. Specifically, it now presents data for the fields produced by a submerged vertically directed harmonic electric dipole (VED) and by submerged horizontally directed magnetic and electric dipoles (HMD and HED, respectively). The primary purpose of these computations is to determine the conditions under which an electrically conducting sea floor can produce significant changes in the fields, as compared with the fields produced on and above an infinitely deep sea, for frequencies in the ULF/ELF bands (frequencies less than 3 kHz). As in the earlier work, this report finds that even a comparatively highly conducting sea floor (conductivity of approximately 0.4S/m) can produce substantial changes in the field amplitudes for some source-receiver configurations, and, in the case of the horizontal dipoles (as previously found for the VMD), alterations of two orders of magnitude or more can occur in the amplitudes on the sea surface for smaller values of sigma.

  18. High-mass diffraction in the QCD dipole picture

    CERN Document Server

    Bialas, A; Peschanski, R

    1998-01-01

    Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (alpha/pi)^3 thus suggesting a rather appreciable diffractive cross-section.

  19. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    Science.gov (United States)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  20. Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments

    Science.gov (United States)

    Galopeau, P. H. M.

    2016-12-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining

  1. Implementation of an offset-dipole magnetic field in a pulsar modelling code

    CERN Document Server

    Breed, M; Harding, A K; Johnson, T J

    2014-01-01

    The light curves of gamma-ray pulsars detected by the Fermi Large Area Telescope show great variety in profile shape and position relative to their radio profiles. Such diversity hints at distinct underlying magnetospheric and/or emission geometries for the individual pulsars. We implemented an offset-dipole magnetic field in an existing geometric pulsar modelling code which already includes static and retarded vacuum dipole fields. In our model, this offset is characterised by a parameter epsilon (with epsilon = 0 corresponding to the static dipole case). We constructed sky maps and light curves for several pulsar parameters and magnetic fields, studying the effect of an offset dipole on the resulting light curves. A standard two-pole caustic emission geometry was used. As an application, we compared our model light curves with Fermi data for the bright Vela pulsar.

  2. Dependence of high-order-harmonic generation on dipole moment in Si O2 crystals

    Science.gov (United States)

    Yu, Chao; Zhang, Xirui; Jiang, Shicheng; Cao, Xu; Yuan, Guanglu; Wu, Tong; Bai, Lihua; Lu, Ruifeng

    2016-07-01

    High-order-harmonic generation in α-quartz Si O2 is theoretically investigated under a strong laser field by solving the extended semiconductor Bloch equations. The accurate band structures as well as dipole moments between different bands are obtained from state-of-the-art first-principles calculations. We find that the shapes of k -space-dependent dipole moments play an important role in harmonic generation. The calculated results show that harmonic conversion efficiency is significantly enhanced and the cutoff energy is distinctly increased when the dipole moments change greatly along a valley in the k direction in the solid. Based on that dependence on the dipole moment, we also show that symmetry groups greatly affect the harmonic spectra from the solid materials. Moreover, a two-color synthesized field is used to achieve a supercontinuum harmonic spectrum near the cutoff region, and isolated attosecond pulses can be obtained directly by filtering out the harmonic radiation. We hope the contribution presented in this work provides a useful reference for future studies on laser-crystal interactions.

  3. Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, E M; Erne, B H; Bakelaar, I A; Kuipers, B W M; Philipse, A P [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2007-01-24

    The magnetic properties of dispersions of magnetic silica microspheres have been investigated by measuring the magnetization curves and the complex magnetic susceptibility as a function of frequency and field amplitude. The silica spheres appear to have a net permanent magnetic dipole moment, even in zero field, which is increased significantly after a temporary exposure of the silica colloids to a saturating magnetic field. The magnetic properties of the microparticles in zero field are discussed in terms of the number and the orientations of the embedded nanoparticle dipoles along an easy axis of magnetization in the absence of an external field.

  4. Image dipoles approach to the local field enhancement in nanostructured Ag-Au hybrid devices.

    Science.gov (United States)

    David, Christin; Richter, Marten; Knorr, Andreas; Weidinger, Inez M; Hildebrandt, Peter

    2010-01-14

    We have investigated the plasmonic enhancement in the radiation field at various nanostructured multilayer devices that may be applied in surface enhanced Raman spectroscopy. We apply an image dipole method to describe the effect of surface morphology on the field enhancement in a quasistatic limit. In particular, we compare the performance of a nanostructured silver surface and a layered silver-gold hybrid device. It is found that localized surface plasmon states provide a high field enhancement in silver-gold hybrid devices, where symmetry breaking due to surface defects is a supporting factor. These results are compared to those obtained for multishell nanoparticles of spherical symmetry. Calculated enhancement factors are discussed on the background of recent experimental data.

  5. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    Science.gov (United States)

    Martin, James E.; van Swol, Frank

    2015-07-01

    In this paper, we show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In this paper, the case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. The ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.

  6. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils.

    Science.gov (United States)

    Raaijmakers, A J E; Luijten, P R; van den Berg, C A T

    2016-09-01

    Although the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, T. [Fermilab; Apollinari, G. [Fermilab; Apollinari, G. [Fermilab; Barzi, E. [Fermilab; Chlachidze, G. [Fermilab; Di Marco, J. [Fermilab; Nobrega, F. [Fermilab; Novitski, I. [Fermilab; Stoynev, S. [Fermilab; Turrioni, D. [Fermilab; Velev, G. [Fermilab; Zlobin, A. V. [Fermilab; Auchmann, B. [CERN; Izquierdo Bermudez, S, [CERN; Karppinen, M. [CERN; Rossi, L. [CERN; Savary, F. [CERN; Smekens, D. [CERN

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  8. Resonance in Interacting Induced-Dipole Polarizing Force Fields: Application to Force-Field Derivatives

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2009-03-01

    Full Text Available The Silberstein model of the molecular polarizability of diatomic molecules, generalized by Applequist et al. for polyatomic molecules, is analyzed. The atoms are regarded as isotropically polarizable points located at their nuclei, interacting via the fields of their induced dipoles. The use of additive values for atom polarizabilities gives poor results, in some cases leading to artificial predictions of absorption bands. The molecular polarizability of methane and its derivative are computed. The agreement with experimental mean molecular polarizabilities is within 1–5%. A hypothesis is indispensable for a suitable representation of polarizability derivative.

  9. Revised spin down of SGR 0418+5729: a no longer so low dipole magnetic field?

    CERN Document Server

    Tong, H

    2012-01-01

    The spin down behaviors of SGR 0418+5729 are investigated. The pulsar spin down model of Contopoulos & Spitkovsky (2006) is applied to SGR 0418+5729. It is shown that SGR 0418+5729 lies below the pulsar death line and its rotation-powered magnetospheric activities may therefore have stopped. The compact star is now spun down by the magnetic dipole moment perpendicular to its rotation axis. Our calculations show that SGR 0418+5729 may be a low magnetic field magnetar. However, it may also have a strong dipole magnetic field, if there is a small magnetic inclination angle. This result is obtained under the general assumption that its braking mechanism is similar to that of rotation-powered pulsars. Its dipole magnetic field may be much higher than the characteristic magnetic field. Therefore, SGR 0418+5729 may be a normal magnetar instead of a low magnetic field magnetar.

  10. Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media

    Science.gov (United States)

    Habashy, T. M.; Kong, J. A.; Tsang, L.

    1985-05-01

    Several techniques are employed to model dipole fields in a two-layer dissipative medium. The upper layer is assumed lossless, the lower lossy. Attention is limited to solutions of integrals over the vertical field by quasi-static approximation (QSA), steepest descent image-source (SDIS), residue and hybrid solution approaches. A comparison of the solutions with experimental data delineates the realms of effectiveness for each computational technique: QSA is good for frequencies below 100 kHz and measurements of less than 1/30 wavelength; SDIS is valid at high frequencies on thick layers; and, normal mode residue is applicable for low frequency thin layers. Finally, intermediate conditions require all three techniques.

  11. Measurement of Magnetic Field Uniformity For a Neutron Electric Dipole Moment Detector with New Lead Endcaps

    Science.gov (United States)

    Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel

    2016-09-01

    Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.

  12. A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment

    CERN Document Server

    Nouri, N; Brown, M A; Carr, R; Filippone, B; Osthelder, C; Plaster, B; Slutsky, S; Swank, C

    2015-01-01

    We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.

  13. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles

    CERN Document Server

    Bingham, Richard J; Smye, Stephen W

    2010-01-01

    Bilayer lipid membranes [BLMs] are an essential component of all biological systems, forming a functional barrier for cells and organelles from the surrounding environment. The lipid molecules that form membranes contain both permanent and induced dipoles, and an electric field can induce the formation of pores when the transverse field is sufficiently strong (electroporation). Here, a phenomenological free energy is constructed to model the response of a BLM to a transverse static electric field. The model contains a continuum description of the membrane dipoles and a coupling between the headgroup dipoles and the membrane tilt. The membrane is found to become unstable through buckling modes, which are weakly coupled to thickness fluctuations in the membrane. The thickness fluctuations, along with the increase in interfacial area produced by membrane buckling, increase the probability of localized membrane breakdown, which may lead to pore formation. The instability is found to depend strongly on the strengt...

  14. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes

    Science.gov (United States)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy

    2016-12-01

    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  15. Electric charge is a magnetic dipole when placed in a background magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    It is demonstrated, owing to the nonlinearity of QED, that a static charge placed in a strong magnetic field\\ $B$\\ is a magnetic dipole (besides remaining an electric monopole, as well). Its magnetic moment grows linearly with $B$ as long as the latter remains smaller than the characteristic value of $1.2\\cdot 10^{13}\\unit{G}$ but tends to a constant as $B$ exceeds that value. The force acting on a densely charged object by the dipole magnetic field of a neutron star is estimated.

  16. Mercury intrinsic magnetic field : Limits of the offset-dipole representation

    Science.gov (United States)

    Chanteur, Gérard M.; Modolo, Ronan; Richer, Emilie; Hess, Sébastien; Leblanc, François

    2013-04-01

    The interaction of the solar wind (SW) with the magnetic field of The analysis of MESSENGER orbital observations led Anderson et al (2011) to propose a dipole centered on the spin axis of the planet with a northward offset equal to 484±11 km to represent the intrinsic magnetic field of Mercury at northern latitudes higher than 30°. The magnetic moment has a magnitude of 195±10nT, points southward and is tilted by less than 3° with respect to the spin axis. The restriction to northern latitude comes from the lack of low altitude measurements of the magnetic field at southern latitudes due to MESSENGER orbit. Hence for the moment being there is no observation to constrain the representation of the southern planetary field. The suggested offset is equal to about 20% of the planetary radius which is quite a large value by comparison to 8.5% in the terrestrial case although with a lateral offset. This representation of the intrinsic field by an offset dipole suggests that the southern polar cap should be much wider than the northern one, leading to important consequences for magnetospheric dynamics. Nevertheless the offset dipole is just a convenient representation that can be fitted by the first terms of the multipolar development. The surface field of the planet produced by the offset dipole (OD) proposed by Anderson et al (2011) is thus fitted by the sum of a dipolar and a quadrupolar field (DQ) for northern latitudes higher than 50°. The resulting field differs slightly from the offset dipole field at northern latitudes but a separatrix exists at southern latitudes between dipolar-like and quadrupolar like field lines. This separatrix begins on the polar axis at an altitude RS equal to three times the ratio of the quadrupolar to the dipolar moment. When the relative axial offset of the dipole becomes larger than 16% then RS becomes larger than the planetary radius leading to important topological changes of the southern field. Global hybrid simulations of the

  17. Accurate Calculation of Fringe Fields in the LHC Main Dipoles

    CERN Document Server

    Kurz, S; Siegel, N

    2000-01-01

    The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed.

  18. Calculation and optimization of stray fields of septum dipole magnets

    CERN Document Server

    Holmes, Andrew J T

    1976-01-01

    A theoretical treatment is described of the external stray field of C- shaped septum magnets, such as those designed for the beam extraction systems of the 400 GeV CERN Super Proton Synchrotron. A special conformal transformation of the magnetic plane yields analytic expressions for the four components of the stray field: the septum- shape field (due to the form of the septum conductor), the edge-effect field (due to the mechanical clearance between septum and yoke), the cooling-duct field (due to the presence of these ducts in the septum), and the magnetomotance field (caused by the ampere-turn losses in the yoke). These expressions can be computed by numerical iteration. The septum-shape field turns out to be opposite in sign to the other three, making possible a criterion which creates a minimal stray field for a given magnetic induction. Plots of calculated and measured stray fields are presented for four prototype septum magnets whose total induction is between 0.38 and 1.41 T. (3 refs).

  19. Field Quality of the Short Superconducting Dipole Models for the LHC

    CERN Document Server

    Ang, Z; Sanfilippo, S; Siemko, A; Tommasini, D; Venturini-Delsolaro, W; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1-m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions.

  20. Field quality of the short superconducting dipole models for the LHC

    CERN Document Server

    Venturini-Delsolaro, W; Bottura, L; Sanfilippo, S; Siemko, A; Tommasini, D; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1- m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions. (9 refs).

  1. Progress on the Development of the $Nb_3Sn$ 11T Dipole for the High Luminosity Upgrade of LHC

    CERN Document Server

    Savary, Frederic; Bordini, Bernardo; Bottura, Luca; Fiscarelli, Lucio; Fleiter, Jerome; Foussat, Arnaud; Izquierdo Bermudez, Susana; Karppinen, Mikko; Lackner, Friedrich; Loffler, Christian H; Nilsson, Emelie; Perez, Juan Carlos; Prin, Herve; Principe, Rosario; Ramos, Delio; de Rijk, Gijs; Rossi, Lucio; Smekens, David; Sequeira Tavares, Sandra; Willering, Gerard; Zlobin, Alexander V

    2017-01-01

    The high-luminosity large hadron collider (LHC) project at CERN entered into the production phase in October 2015 after the completion of the design study phase. In the meantime, the development of the 11 T dipole needed for the upgrade of the collimation system of the machine made significant progress with very good performance of the first two-in-one magnet model of 2-m length made at CERN. The 11 T dipole, which is more powerful than the current main dipoles of LHC, can be made shorter with an equivalent integrated field. This will allow creating space for the installation of additional collimators in specific locations of the dispersion suppressor regions. Following tests carried out during heavy ions runs of LHC in the end of 2015, and a more recent review of the project budget, the installation plan for the 11 T dipole was revised. Consequently, one 11 T dipole full assembly containing two 11 T dipoles of 5.5-m length will be installed on either side of interaction point 7. These two units shall be inst...

  2. Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres

    NARCIS (Netherlands)

    Claesson, E.M.; Erne, B.H.; Bakelaar, I.A.; Kuipers, B.W.M.; Philipse, A.P.

    2007-01-01

    The magnetic properties of dispersions of magnetic silica microspheres have been investigated by measuring the magnetization curves and the complex magnetic susceptibility as a function of frequency and field amplitude. The silica spheres appear to have a net permanent magnetic dipole moment, even i

  3. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  4. Beam transport optics of dipole fringe field in the framework of third-order matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Sagalovsky, L. (Argonne National Lab. (USA))

    1990-12-01

    The paper describes analytical methods for studying the optical aberrations of charged particles' orbits in an extended fringing field of a dipole magnet. Solutions are obtained up to the third order in the formalism of the transfer matrix theory. (orig.).

  5. Electric dipole moments of light nuclei from chiral effective field theory

    NARCIS (Netherlands)

    de Vries, J.; Higa, R.; Liu, C. -P.; Mereghetti, E.; Stetcu, I.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We set up the framework for the calculation of electric dipole moments (EDMs) of light nuclei using the systematic expansion provided by chiral effective field theory (EFT). We take into account parity (P) and timer-reversal (T) violation which, at the quark-gluon level, originates from the QCD vacu

  6. Bipole-dipole interpretation with three-dimensional models (including a field study of Las Alturas, New Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, G.W.; Jiracek, G.R.

    1979-09-01

    The bipole-dipole responses of three-dimensional (3D) prisms were studied using an integral equation numerical solution. Although response patterns are quite complex, the bipole-dipole method appears to be a useful, efficient means of mapping the areal distribution of resistivity. However, 3D modeling is required for quantitative interpretation. Computer time for our solution varies from negligible for small bodies to 6 minutes on a UNIVAC 1108 for the largest possible body (85 cubes). Bipole-dipole response varies significantly with bipole orientation and position, but simply changing the distance between the bipole and the body does not greatly affect the response. However, the response is complex and interpretation ambiguous if both transmitter electrodes are located directly over a body. Boundaries of shallow bodies are much better resolved than those of deep bodies. Conductive bodies produce false polarization highs that can confuse interpretation. It is difficult to distinguish the effects of depth and resistivity contrast, and, as with all electrical methods, depth extent is difficult to resolve. Interactive interpretation of bipole-dipole field results from a geothermal prospect in New Mexico illustrates the value of the 3D modeling technique.

  7. Electric dipole and quadrupole properties of In$^{+}$ and Sr using finite field calculation

    CERN Document Server

    Yu, Yan-mei; Feng, Hui-hui; Fan, Heng; Liu, Wu-Ming

    2015-01-01

    The electric dipole and quadrupole properties of two frequency-standard candidates In$^{+}$ and Sr are calculated by using the finite-field approach. We reproduce the dipole polarizability of the 5s$^2$ $^1S^e_0$ and 5s5p $^3P^o_0$ of In$^+$ and Sr with an excellent agreement with the previously recommended data. Besides, the scalar and tensor dipole polarizabilities for $5s5p$ $^3P^o_{1,2}$ of In$^+$ and Sr and the second dipole hyperpolarizability for In$^+$ 5s$^2$ $^1S^e_0$ and 5s5p $^3P^o_{0,1,2}$ are given. The uncertainty is controlled down to around 1-4\\% for In$^+$ and 2-6\\% for Sr by increasing the basis-set and electronic-correlation levels hierarchically. The importance of the spin-orbit coupling effect is analyzed by comparing the spin-dependent and spin-free results. The dipole polarizability of In$^{+}$ demonstrates stronger dependency on the spin-orbit coupling effect than Sr. The quadrupole moment and quadrupole polarizabilities of 5s$^2$ $^1S^e_0$ and 5s5p $^3P^o_{0,1,2}$ are also given. Fina...

  8. Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    DeJarnette, Drew; Forcherio, Gregory T. [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Blake, Phillip [Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Keith Roper, D., E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

    2014-01-14

    Coupling and extinction of light among particles representable as point dipoles can be characterized using the coupled dipole approximation (CDA). The analytic form for dipole polarizability of spheroidal particles supports rapid electrodynamic analysis of nanoparticle lattices using CDA. However, computational expense increases for complex shapes with non-analytical polarizabilities which require discrete dipole (DDA) or higher order approximations. This work shows fast CDA analysis of assembled nanorings is possible using a single dipole nanoring polarizability extrapolated from a DDA calculation by summing contributions from individual polarizable volume elements. Plasmon resonance wavelengths of nanorings obtained using extracted polarizabilities blueshift as wall dimensions-to-inner radius aspect ratio increases, consistent with published theory and experiment. Calculated far-field Fano resonance energy maximum and minimum wavelengths were within 1% of full volume element results. Considering polarizability allows a more complete physical picture of predicting plasmon resonance location than metal dielectric alone. This method reduces time required for calculation of diffractive coupling more than 40 000-fold in ordered nanoring systems for 400–1400 nm incident wavelengths. Extension of this technique beyond nanorings is possible for more complex shapes that exhibit dipolar or quadrupole radiation patterns.

  9. Improvement of magnetosphere structure calculations using eccentric dipole to account for the internal magnetic field

    Science.gov (United States)

    Parunakian, David

    2014-05-01

    In this paper we build upon the results previously produced by numerous attempts, including our own, to approximate the geomagnetic field with a an eccentric dipole instead of spherical harmonics expansions. Among other motivations to do so is that dipole-related effects are much more pronounced relative to higher-order harmonics at large distances from the Earth, and that the shift of the order of magnitude about 0.1 Earth radii is significant enough for many magnetospheric structures such as the current sheet. We present the results of multivariate simulated annealing, which includes translational and rotational repositioning of the dipole. We also include similar results produced for Mercury and Saturn, and we extend Earth-related data with Oersted and Cluster measurements in order to further improve our accuracy.

  10. Hydromagnetic Waves in a Compressed Dipole Field via Field-Aligned Klein-Gordon Equations

    CERN Document Server

    Zheng, Jinlei; McKenzie, J F; Webb, G M

    2014-01-01

    Hydromagnetic waves, especially those of frequencies in the range of a few milli-Hz to a few Hz observed in the Earth's magnetosphere, are categorized as Ultra Low Frequency (ULF) waves or pulsations. They have been extensively studied due to their importance in the interaction with radiation belt particles and in probing the structures of the magnetosphere. We developed an approach in examining the toroidal standing Aflv\\'{e}n waves in a background magnetic field by recasting the wave equation into a Klein-Gordon (KG) form along individual field lines. The eigenvalue solutions to the system are characteristic of a propagation type when the corresponding eigen-frequency is greater than a cut-off frequency and an evanescent type otherwise. We apply the approach to a compressed dipole magnetic field model of the inner magnetosphere, and obtain the spatial profiles of relevant parameters and the spatial wave forms of harmonic oscillations. We further extend the approach to poloidal mode standing Alfv\\'{e}n waves...

  11. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  12. Inclusive and Exclusive observables from dipoles in high energy collisions

    CERN Document Server

    Flensburg, Christoffer; Lönnblad, Leif

    2011-01-01

    We present a new model for simulating exclusive final states in minimum-bias collisions between hadrons. In a series of papers we have developed a Monte Carlo model based on Mueller's dipole picture of BFKL-evolution, supplemented with non-leading corrections, which has shown to be very successful in describing inclusive and semi-inclusive observables in hadron collisions. In this paper we present a further extension of this model to also describe exclusive final states. This is a highly non-trivial extension, and we have encountered many details that influence the description, and for which no guidance from perturbative QCD could be found. Hence we have had to make many choices based on semi-classical and phenomenological arguments. The end result is a new event generator called DIPSY which can be used to simulate complete minimum-bias non-diffractive hadronic collision events. Although the description of data from the Tevatron and LHC is not quite as good as for PYTHIA, the most advanced of the general purp...

  13. Electro-optical determination of the constant electric dipole of disperse particles by the method of crossed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Voitylov, V.V.; Spartakov, A.A.; Tolstoi, N.A.; Trusov, A.A.; Boitsova, I.N. [St. Petersburg State Univ. (Russian Federation)

    1995-04-01

    An electro-optical method of crossed electric fields is proposed for determining constant dipole colloidal particles moments of colloidal particles. Fields of this type make it possible to study the motion of colloidal particles determined exclusively by their constant moments, which substantially improves the measurement accuracy of these moments. This is of particular importance for the investigation of colloidal particles with constant dipole moments less than or comparable to induced dipole moments. For a number of disperse systems, the constant dipole moments per unit area of particles are determined. It is shown that the values of these specific moments are close to each other.

  14. Analysis of classical phase space and energy transfer for two rotating dipoles in an electric field

    CERN Document Server

    González-Férez, Rosario; Salas, J Pablo; Schmelcher, Peter

    2016-01-01

    We explore the classical dynamics of two interacting rotating dipoles that are fixed in the space and exposed to an external homogeneous electric field. Kinetic energy transfer mechanisms between the dipoles are investigated varying both the amount of initial excess kinetic energy of one of them and the strength of the electric field. In the field-free case, and depending on the initial excess energy an abrupt transition between equipartition and non-equipartition regimes is encountered. The study of the phase space structure of the system as well as the formulation of the Hamiltonian in an appropriate coordinate frame provide a thorough understanding of this sharp transition. When the electric field is turned on, the kinetic energy transfer mechanism is significantly more complex and the system goes through different regimes of equipartition and non-equipartition of the energy including chaotic behavior.

  15. Force and torque on an electric dipole by spinning light fields

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate the optical force and torque applied to an electric dipole by a spinning light field. We prove that the dissipative part of the force depends on the orbital energy flow of the field only, while the spin energy flow is involved in the applied torque. The resulting change in the optical force is detailed for different experimentally relevant configurations, and we show in particular how this change is critical when surface plasmon modes are involved.

  16. CPMG relaxation rate dispersion in dipole fields around capillaries.

    Science.gov (United States)

    Kurz, F T; Kampf, T; Buschle, L R; Heiland, S; Schlemmer, H-P; Bendszus, M; Ziener, C H

    2016-09-01

    Transverse relaxation rates for Carr-Purcell-Meiboom-Gill (CPMG) sequences increase with inter-echo time in presence of microscopic magnetic field inhomogeneities due to nuclear spin diffusion. For a weak field approximation that includes diffusion effects, the CPMG relaxation rate shift for proton diffusion around capillaries in muscle tissue can be expressed in terms of a frequency correlation function and the inter-echo time. The present work provides an analytical expression for the local relaxation rate shift that is dependent on local blood volume fraction, diffusion coefficient, capillary radius, susceptibility difference and inter-echo time. Asymptotic regions of the model are in agreement with previous modeling results of Brooks et al., Luz et al. and Ziener et al. In comparison with simulation data, the model shows an equal or better accuracy than established approximations. Also, model behavior coincides with experimental data for rat heart and skeletal muscle. The present work provides analytical tools to extract sub-voxel information about uniform capillary networks that can be used to study capillary organization or micro-circulatory remodeling.

  17. How does the Indian Ocean subtropical dipole trigger the tropical Indian Ocean dipole via the Mascarene high?

    Institute of Scientific and Technical Information of China (English)

    FENG Junqiao; HU Dunxin; YU Lejiang

    2014-01-01

    The variation in the Indian Ocean is investigated using Hadley center sea surface temperature (SST) data during the period 1958-2010. All the first empirical orthogonal function (EOF) modes of the SST anomalies (SSTA) in different domains represent the basin-wide warming and are closely related to the Pacific El Niño-Southern Oscillation (ENSO) phenomenon. Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean. The second EOF modes in dif-ferent domains show different features. It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean (Indian Ocean dipole, IOD), and a southwest-northeast SSTA dipole in the southern Indian Ocean (Indian Ocean subtropical dipole, IOSD). It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale, in which the IOD pattern does not appear. A correlation anal-ysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later. One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed. The IOSD and the IOD can occur in sequence with the help of the Mas-carene high. The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event, likely due to the positive wind-evaporation-SST feedback mechanism. The Mascarene high will be weakened or intensified by this SSTA, which can affect the atmosphere in the tropical region by teleconnection. The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases (decreases). Hence, an anticyclone (cyclone) circulation appears over the Arabian Sea-India continent. The easterly or westerly anomalies appear in the equatorial Indian Ocean, inducing the onset stage of the IOD. This study shows that the SSTA associated with the IOSD can lead to the

  18. The field of the vertical electric dipole immersed in the heterogeneous half-space

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2014-07-01

    The field of the vertical electric dipole (VED) immersed in the heterogeneous conductive halfspace (sea) is analyzed in time domain. In the near field of the source, the amplitudes of the electric and magnetic components of the field are proportional to power 3/2 and power 5/2 of the conductivity of the medium, respectively. After termination of the transmitter pulse, all the VED components decay with time as ˜1/ t 5/2. The possibility of applying the VED field for estimating the electrical properties of the offshore geological sections is demonstrated.

  19. The Influence of Train Leakage Currents on the LEP Dipole Field

    CERN Document Server

    Bravin, Enrico; Dehning, Bernd; Drees, A; Galbraith, Peter; Geitz, M A; Henrichsen, K N; Koratzinos, M; Mugnai, G

    1998-01-01

    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 kilometres, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or »20 ppm frequency. Due to its size the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect of the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP ground cable and the vacuum chamber, interacting with the dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.

  20. The influence of train leakage currents on the LEP dipole field

    Science.gov (United States)

    Bravin, E.; Brun, G.; Dehning, B.; Drees, A.; Galbraith, P.; Geitz, M.; Henrichsen, K.; Koratzinos, M.; Mugnai, G.; Tonutti, M.

    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 km, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or ≈ 20 ppm. Due to its size, the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect on the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP vacuum chamber, affecting the LEP dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.

  1. LHC Dipole Axis, Spool Piece Alignment and Field Angle in Warm and Cold Conditions

    CERN Document Server

    Coccoli, M; García-Pérez, J

    2004-01-01

    The installation and commissioning of LHC requires knowledge of the magnetic alignment of the spool piece correctors mounted on the dipole end plates are, as well as of the dipole main field direction. The installation is based on the use of geometric information derived from mechanical measurements performed in warm conditions, assuming that geometric and magnetic axes coincide, and that thermal contractions of the assembly are homothetic. A series of measurements has been performed at room and superfluid Helium temperature to validate these assumptions. In this paper, a statistical analysis of the correlations obtained is presented for both corrector alignment and main field direction, and the results are compared with beam optics-based specifications.

  2. Chaotic Dynamics of Test Particle in the Gravitational Field with Magnetic Dipoles

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Hua; WANG Yong-Jiu

    2003-01-01

    We investigate the dynamics of the test particle in the gravitational field with magnetic dipoles in thispaper. At first we study the gravitational potential by numerical simulations. We find, for appropriate parameters, thatthere are two different cases in the potential curve, one of which is the one-well case with a stable critical point, and theother is the three-well case with three stable critical points and two unstable ones. As a consequence, the chaotic motionwill rise. By performing the evolution of the orbits of the test particle in the phase space, we find that the orbits of thetest particle randomly oscillate without any periods, even sensitively depending on the initial conditions and parameters.chaotic motion of the test particle in the field with magnetic dipoles becomes even obvious as the value of the magneticdipoles increases.

  3. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  4. A New Hermean Magnetic Field Model using a Modified Equivalent Source Dipole Method

    Science.gov (United States)

    Oliveira, Joana S.; Langlais, Benoit; Pais, M. Alexandra; Amit, Hagay; Thébault, Erwan

    2017-04-01

    Mercury is the only terrestrial planet, besides the Earth, that has a core dynamo which generates a global magnetic field. MESSENGER orbited Mercury from 2011 to 2015 and provided magnetic measurements which convey crucial information on the magnetic field environment of the planet. We use a local method based on Equivalent Source Dipole approach to model the internal field of Mercury. The method is especially well suited when measurements cover a limited fraction of the planet's surface. Dipoles are placed deep into the planet. Note that with this modeling scheme, we do not attempt to explicitly model the external field. As the planet is in spin-orbit resonance completing three sidereal days in two years, it takes three sidereal days (one solar day) for the Sun to cover all local longitudes. We therefore consider successive periods of one solar day. A dominantly axisymmetric field is found for each solar-day model showing a significant temporal variability. This could be due to some large-scale external field that appears as internal with respect to the spacecraft orbit. The changing altitude and latitude coverage of each model may also be invoked for this variability. We finally compute a 8-solar-day model, including all solar days during the MESSENGER mission, to describe the Hermean magnetic field. Maps of the field computed at 200 km altitude show a magnetic equator at 16°N latitude, and confirm the large-scale and close-to-axisymmetry structure of the internal magnetic field of Mercury. Our model is also in agreement with the magnetic equator crossings detected before. However, our magnetic equator latitude varies with the altitude to the planet. This is indicative that the dipole-offset hypothesis is over-simplified, and that dynamo modelers have to consider alternative models when attempting to model the Hermean dynamo.

  5. Studies of Beam Induced Electron Cloud Resonances in Dipole Magnetic Fields

    CERN Document Server

    Calvey, J R; Makita, J; Venturini, M

    2016-01-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring (CESR). These measurements are supported by both analytical models and computer simulations.

  6. Adiabatic Hamiltonian of charged particle motion in a dipole field. [geomagnetic trapping

    Science.gov (United States)

    Chen, A. J.; Stern, D. P.

    1975-01-01

    The Hamiltonian for a dipole field is developed, and the result is expressed by an analytic approximation accurate to within about 1%. This allows extension of results derived for equatorial particles to particles with arbitrary pitch angles; in particular, it makes available even in the presence of electric fields orthogonal to the magnetic field a function K that is preserved by the bounce-averaged motion. This function provides at once the equations of drift paths in (alpha, beta) or of their projections onto the equatorial plane; the derivation of a pacing function that times the progress of particles along such drift paths is also described.

  7. Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.

    Science.gov (United States)

    Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert

    2015-11-01

    In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation.

  8. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field

    Science.gov (United States)

    Srnka, L. J.

    1976-01-01

    The acquisition of thermoremanent magnetization (TRM) by a cooling spherical shell is studied for internal magnetizing dipole fields, using Runcorn's (1975) theorems on magnetostatics. If the shell cools progressively inward, inner regions acquire TRM in a net field composed of the dipole source term plus a uniform field due to the outer magnetized layers. In this case, the global dipole moment and external remanent field are nonzero when the whole shell has cooled below the Curie point and the source dipole has disappeared. The remanent field outside the shell is found to depend on the thickness, radii, and cooling rate of the shell, as well as the coefficient of TRM and the intensity of the magnetizing field. Some implications for the moon's remanent dipole moment are discussed.

  9. Non—conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    DongChuan-Hua

    2003-01-01

    The interactions between coulpled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes-Cummings model for coupled atoms, the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of field and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  10. Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    董传华

    2003-01-01

    The interactions between coupled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes Cummings model for coupled atoms,the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of fields and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  11. Chaotic Dynamics of Test Particle in the Gravitational Field with Magnetic Dipoles

    Institute of Scientific and Technical Information of China (English)

    CHENJu-Hua; WANGYong-Jiu

    2003-01-01

    We investigate the dynamics of the test particle in the gravitational field with magnetic dipoles in this paper. At first we study the gravitational potential by numerical simulations. We find, for appropriate parameters, that there are two different cases in the potential curve, one of which is the one-well case with a stable critical point, and the other is the three-well case with three stable critical points and two unstable ones. As a consequence, the chaotic motion will rise. By performing the evolution of the orbits of the test particle in the phase space, we find that the orbits of the test particle randomly oscillate without any periods, even sensitively depending on the initial conditions and parameters.By performing Poincaré sections for different values of the parameters and initial conditions, we further conform that the chaotic motion of the test particle in the field with magnetic dipoles becomes even obvious as the value of the magnetic dipoles increases.

  12. Displacement field of doubly periodic array of dislocation dipoles in elastically anisotropic media

    Science.gov (United States)

    Soleymani Shishvan, Siamak; Moghaddam, Babak

    2016-01-01

    The displacement field for dislocation dipoles periodically arranged along both x- and y-directions is found to be conditionally convergent. That is, different displacement fields are obtained depending on the order of the summation to be adopted. From the two summations, one can be performed analytically; however, the other one has to be performed numerically. We first derive analytic expressions for the displacement field of periodic array of dipoles along one (either x or y) direction considering anisotropic elasticity; they are then applied for the numerical summation (practically truncated) along the other direction. The resulting displacement field needs to be corrected by subtracting the spurious displacement field, whose expressions are analytically derived. As a first application, we employ the displacement and corresponding stress fields in a 2D discrete dislocation plasticity (DDP) model of a fine-grained polycrystal under shear loading. To this end, anisotropic plane-strain DDP method is utilised to solve the underlying boundary value problem. Subsequently, predictions of size-dependent plastic behaviour in anisotropic polycrystals with grain sizes in the range ? are presented.

  13. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    Science.gov (United States)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-05-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  14. Angular dependence of dipole-dipole-Curie-spin cross-correlation effects in high-spin and low-spin paramagnetic myoglobin.

    Science.gov (United States)

    Pintacuda, Guido; Hohenthanner, Karin; Otting, Gottfried; Müller, Norbert

    2003-10-01

    The (15)N-HSQC spectra of low-spin cyano-met-myoglobin and high-spin fluoro-met-myoglobin were assigned and dipole-dipole-Curie-spin cross-correlated relaxation rates measured. These cross-correlation rates originating from the dipolar (1)H-(15)N interaction and the dipolar interaction between the (1)H and the Curie spin of the paramagnetic center contain long-range angular information about the orientation of the (1)H-(15)N bond with respect to the iron-(1)H vector, with information measurable up to 11 A from the metal for the low-spin complex, and between 10 to 25 A for the high-spin complex. Comparison of the experimental data with predictions from crystal structure data showed that the anisotropy of the magnetic susceptibility tensor in low spin cyano-met-myoglobin significantly influences the cross-correlated dipole-dipole-Curie-spin relaxation rates.

  15. Effects of electric field on structures and dynamics in a two-dimensional dust dipole particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Huang, F.; Jiang, S. Z.; Chen, Z. Y.; Zhang, R. Y.

    2016-09-01

    Effects of radial electric field on the structures and dynamics of dust dipoles are studied by molecular dynamics simulations. The dipoles' configuration and mean distance to the system center are used to illustrate the structures of the whole system. It is shown that the dipole particles can arrange themselves into ring-like structures in the absence of external electric field, which can gradually transform to vortex, and then to radial arrangement with the increase of the strength of electric field. The trajectories, mean square displacement, and the mean speed in radial and tangential directions of dipoles are investigated to depict the effects of the radial electric filed on the collective motion of dust dipolar particles, which are closely associated with the growth of dust particle, especially for the formation of rod-like and some other complex fractal dust particles.

  16. New constraints on historical dipole field decay: Four centuries of archaeointensity from Cape Town, South Africa.

    Science.gov (United States)

    Hare, V. J.; Gallet, Y.; Genevey, A.

    2015-12-01

    Current global geomagnetic field models suffer from strong bias towards Northern Hemisphere data. Absolute intensity measurements from the Southern Hemisphere are key to understanding the evolution of the field over the historical era, especially recent strengthening of non-dipole contributions, and the appearance of the South Atlantic Magnetic Anomaly (SAMA). I present the first archaeointensity data for locally-fired historical bricks from several well-dated sites (1660-2009 AD) in Cape Town, South Africa. These data constitute the first archaeomagnetic intensity variation curve for southern Africa for the past few centuries. The ages of the sites are tightly constrained by historical and archaeological considerations. Archaeointensity data obtained by the Thellier and Thellier method (modified by Coe), are corrected for both TRM anisotropy and cooling rate dependence of TRM acquisition. Analysis of magnetic mineralogy was performed to aid selection of fragments. Reliable archaeointensity determinations were obtained for 48 of 80 specimens, and 45 were retained in the final analysis. Intensity results vary from 24.3 ± 0.6 μT (modern brick) to 40.7 ± 0.8 μT (1660 AD), corresponding to Virtual Axial Dipole Moments (VADMs) between 6.1 ± 0.2 and 10.2 ± 0.2 נ1022 Am2. Results are generally not in agreement with current field models, but are coherent with other archaeomagnetic datasets from the Southern Hemisphere. The possible reasons for this are discussed, as well as implications for the historical evolution of the field.

  17. Extending the radial diffusion model of Falthammar to non-dipole background field

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  18. Opendda: a Novel High-Performance Computational Framework for the Discrete Dipole Approximation

    CERN Document Server

    Donald, James Mc; Jennings, S Gerard

    2009-01-01

    This work presents a highly optimized computational framework for the Discrete Dipole Approximation, a numerical method for calculating the optical properties associated with a target of arbitrary geometry that is widely used in atmospheric, astrophysical and industrial simulations. Core optimizations include the bit-fielding of integer data and iterative methods that complement a new Discrete Fourier Transform (DFT) kernel, which efficiently calculates the matrix vector products required by these iterative solution schemes. The new kernel performs the requisite 3-D DFTs as ensembles of 1-D transforms, and by doing so, is able to reduce the number of constituent 1-D transforms by 60% and the memory by over 80%. The optimizations also facilitate the use of parallel techniques to further enhance the performance. Complete OpenMP-based shared-memory and MPI-based distributed-memory implementations have been created to take full advantage of the various architectures. Several benchmarks of the new framework indica...

  19. On the Electrodynamics of Moving Permanent Dipoles in External Electromagnetic Fields

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) b...

  20. Spherical harmonic series solution of fields excited by vertical electric dipole in earth-ionosphere cavity

    Institute of Scientific and Technical Information of China (English)

    Yuanxin WANG; Wensheng FAN; Weiyan PAN; Hongqi ZHANG

    2008-01-01

    The spherical harmonic series expression of electromagnetic fields excited by ELF/SLF vertical electric dipole in the spherical earth-ionosphere cavity is derived when the earth and ionosphere are regarded as non-ideal conductors. A method of speeding numerical convergence has been presented. The electromagnetic fields in the cavity are calculated by this algorithm, and the results show that the electromagnetic fields between the earth and the ionosphere are the sum of two traveling waves in the SLF band. Moreover, the results are in complete agreement with that of the well-known spherical second-order approximation in the SLF band. The electromagnetic fields in the cavity are a type of standing wave in the ELF band and the variation of the amplitude versus frequency coincides with Schumann's resonance.

  1. Numerical evaluation of electromagnetic fields due to dipole antennas in the presence of stratified media

    Science.gov (United States)

    Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.

    1974-01-01

    Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.

  2. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    Science.gov (United States)

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  3. The Dependence of the Field Decay on the Powering History of the LHC Superconducting Dipole Magnets

    CERN Document Server

    Sammut, N; Micallef, J; Sanfilippo, S

    2006-01-01

    The decay of the allowed multipoles in the Large Hadron Collider (LHC) dipoles is expected to perturb the beam stability during the particle injection. The decay amplitude is largely affected by the powering history of the magnet and is particularly dependent on the pre-cycle flat-top current and duration as well as the pre-injection preparation duration. With possible prospects of having different genres of cycles during the LHC operation, the powering history effect must be taken into account in the Field Description Model for the LHC and must hence be corrected during machine operation. This paper presents the results of the modelling of this phenomenon.

  4. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin, E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu [Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215 (United States); Zhang, Gu-Feng [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Geng, Kun [Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2015-12-07

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  5. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    CERN Document Server

    Zhang, Jingdi; Fan, Kebin; Wang, Xiaoning; Zhang, Gu-Feng; Geng, Kun; Zhang, Xin; Averitt, Richard D

    2015-01-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ~170. Above an in-gap E-field threshold amplitude of ~10 MVcm-1, THz-induced field electron emission is observed (TIFEE) as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  6. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    Science.gov (United States)

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  7. Stable pseudoanalytical computation of electromagnetic fields from arbitrarily-oriented dipoles in cylindrically stratified media

    Science.gov (United States)

    Moon, Haksu; Teixeira, Fernando L.; Donderici, Burkay

    2014-09-01

    Computation of electromagnetic fields due to point sources (Hertzian dipoles) in cylindrically stratified media is a classical problem for which analytical expressions of the associated tensor Green's function have been long known. However, under finite-precision arithmetic, direct numerical computations based on the application of such analytical (canonical) expressions invariably lead to underflow and overflow problems related to the poor scaling of the eigenfunctions (cylindrical Bessel and Hankel functions) for extreme arguments and/or high-order, as well as convergence problems related to the numerical integration over the spectral wavenumber and to the truncation of the infinite series over the azimuth mode number. These problems are exacerbated when a disparate range of values is to be considered for the layers' thicknesses and material properties (resistivities, permittivities, and permeabilities), the transverse and longitudinal distances between source and observation points, as well as the source frequency. To overcome these challenges in a systematic fashion, we introduce herein different sets of range-conditioned, modified cylindrical functions (in lieu of standard cylindrical eigenfunctions), each associated with nonoverlapped subdomains of (numerical) evaluation to allow for stable computations under any range of physical parameters. In addition, adaptively-chosen integration contours are employed in the complex spectral wavenumber plane to ensure convergent numerical integration in all cases. We illustrate the application of the algorithm to problems of geophysical interest involving layer resistivities ranging from 1000 Ω m to 10-8 Ω m, frequencies of operation ranging from 10 MHz down to the low magnetotelluric range of 0.01 Hz, and for various combinations of layer thicknesses.

  8. Multiconfiguration self-consistent-field calculation of the dipole moment function of CO/X 1 sigma +/

    Science.gov (United States)

    Billingsley, F. P., II; Krauss, M.

    1974-01-01

    Using the optimized valence configurations (OVC) multiconfiguration self-consistent-field (MCSCF) method, the dipole moment function for the ground state of CO in the vicinity of the equilibrium internuclear distance has been calculated. The OVC MCSCF calculation results are compared with existing Hartree-Fock and configuration interaction treatments of this molecule at single points and also the dipole moment function deduced from experimental infrared intensities. A general prescription for constructing OVC wavefunctions for diatomic molecules is also presented.

  9. Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    CERN Document Server

    Bellesia, B; Santoni, C; Todesco, E

    2006-01-01

    In order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found tha...

  10. Formation of electric dipoles in pea stem tissue due to an electric field

    Science.gov (United States)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  11. Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation

    Directory of Open Access Journals (Sweden)

    DePrince A

    2010-01-01

    Full Text Available Abstract We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small.

  12. Magnetic field component demonstration for a neutron electric dipole moment search

    Science.gov (United States)

    Slutsky, Simon

    2016-09-01

    A neutron electric dipole moment (EDM) search at the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) will probe with a sensitivity of EDM will appear as a variation in the precession frequency correlated with the electric field. Magnetic field gradients must be kept below 10 pT/cm to mitigate false EDMs produced by the geometric phase effect and to maximize the neutron spin-relaxation lifetime. I will discuss a prototype magnetic shielding system, including a nearly-hermetic superconducting lead shield, built to demonstrate the required gradients at 1/3-scale of the final experiment. Additionally, the system will evaluate the eddy current heating due to RF fields produced by a proposed neutron-``spin-dressing'' technique.

  13. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    Science.gov (United States)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  14. MULTIPLE FOCUSING OF ELECTROMAGNETIC FIELD OF MAGNETIC DIPOLE BY MEANS OF PLANE-PARALLEL TWO-LAYER LENS FROM METAMATERIALS

    Directory of Open Access Journals (Sweden)

    V. T. Erofeenko

    2016-01-01

    Full Text Available A method of analytical solution of the boundary-value problem of electromagnetic field penetration of point magnetic dipole through the infinite planar leans (screen from the focusing metamaterials is suggested. It is demonstrated, that for the lenses with special combinations of material parameters in layers the series of focuses are formed: one is over the screen and three is in front of the screen in the half-space of point source of the excitation field. The summary field of focuses in front of the lens is equal to the sum of fields of magnetic and electric dipoles.

  15. Dipole nano-laser

    Energy Technology Data Exchange (ETDEWEB)

    Protsenko, I E; Uskov, A V; Krotova, K E [Lebedev Physical Institute, Leninsky prospect 53, Moscow (Russian Federation); O' Reilly, E P [Tyndall National Institute, ' Lee Maltings' , Prospect Row, Cork (Ireland)], E-mail: protsen@sci.lebedev.ru, E-mail: protsenk@gmail.com

    2008-03-15

    Theoretically predicted 'dipole lasing', i.e., spontaneous excitation of coherent metal nano-particle dipole oscillations through interaction with a quantum-dot two-level system subject to population inversion is demonstrated. Equations for dipole lasing are the same as equations for ordinary laser, where the dipole momentum of nano-particle stands for the electromagnetic field cavity mode. Dipole lasing frequency corresponds to the localized plasmon resonance of the nano-particle. Dipole momentum of nano-particle leads to coherent dipole radiation. Optical cavity is not necessary, the size of the dipole laser can be smaller than the optical wavelength, i.e. it is dipole nano-laser. Threshold conditions and optical bistability in dipole nano-lasers are considered.

  16. Birotor dipole model for Saturn's inner magnetic field from CASSINI RPWS measurements and MAG data

    Science.gov (United States)

    Galopeau, Patrick H. M.

    2016-10-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR). These two periods were attributed to the northern and southern hemispheres respectively. The existence of a double period makes the study of the planetary magnetic field much more complicated and the building of a field model, based on the direct measurements of the MAG experiment from the magnetometers embarked on board Cassini, turns out to be uncertain. The first reason is the difficulty for defining a longitude system linked to the variable period, because the internal magnetic field measurements from MAG are not continuous. The second reason is the existence itself of two distinct periods which could imply the existence of a double rotation magnetic structure generated by Saturn's dynamo. However, the radio observations from the RPWS experiment allow a continuous and accurate follow-up of the rotation phase of the variable two periods, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz was performed in order to calculate the rotation phase of each Saturnian hemisphere. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to rotate around Saturn's axis at two different angular velocities; it is tilted and not centered. Then it is possible to fit the MAG data for each Cassini's revolution around the planet the periapsis of which is less than 5 Saturnian radii. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. Such a result can be used as a boundary condition for modelling and constraining the planetary dynamo.

  17. Discrepancy in the near-solute electric dipole moment calculated from the electric field.

    Science.gov (United States)

    Yang, Pei-Kun

    2011-10-01

    The electric dipole moment p(r) was computed as the integral of the permanent dipole moment of the solvent molecule μ(r) weighted by the orientational probability distribution Ω(r;O) over all orientations, where O is the orientation of the solvent molecule at r. The relationship between Ω(r;O) and the potential of the mean torque was derived; p(r) is proportional to the electric field E(r) under the following assumptions: (1) the van der Waals (vdW) interaction is independent of the orientation of the solvent molecule at r; (2) the solvent molecule and its electrical effect are modeled as a point dipole moment; (3) the solvent molecule at r is in a region far from the solute; and (4) μE(r) ≪ k(B) T, where k(B) is Boltzmann's constant and T is absolute temperature. The errors caused by calculating near-solute Ω(r) and p(r) from E(r) are unclear. The results show that Ω(r) is inconsistent with the value calculated from E(r) for water molecules in the first and second shells of solute with charge state Q = ±1 e, and a large variation in solvent molecular polarizability γ(mol) (r), which appeared in the first valley of 4πr(2) E(r) for |Q| < 1 e. Nonetheless, p(r) is consistent with the values calculated from E(r) for |Q| ≤ 1 e. The implication is that the assumptions for calculating p(r) can be ignored in the calculation of the solvation free energy of biomolecules, as they pertain to protein folding and protein-protein/ligand interactions.

  18. Effect of a magnetic field on massive-star winds - I. Mass-loss and velocity for a dipole field

    Science.gov (United States)

    Bard, Christopher; Townsend, Richard H. D.

    2016-11-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field Hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically thin correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a central assumption of the previously developed XADM model of X-ray emission from magnetospheres.

  19. Effect of a magnetic field on massive star winds I: mass-loss and velocity for a dipole field

    CERN Document Server

    Bard, Christopher

    2016-01-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically-thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically-thin-correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a ...

  20. Compensation of Third-Harmonic Field Error in the Main Dipole Magnets

    CERN Document Server

    Arpaia, P; Fiscarelli, L; Montenero, G; Garcia Perez, J; Walckiers, L

    2010-01-01

    One of the main requirements for the operations of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is a suitable correction of multipole errors in magnetic field. The feed-forward control of the LHC is based on the Field Description for the LHC (FiDel), capable of forecasting the magnet’s behavior in order to generate adequate current ramps for main and corrector magnets. Magnetic measurements campaigns aimed at validating the model underlying FiDel highlighted the need for improving the harmonic compensation of the third-harmonic (b3) component of the main LHC dipoles. In this paper, the results of a new measurement campaign for b3 harmonic compensation, carried out through the new Fast Acquisition Measurement Equipment (FAME), are reported. In particular, the mechanism and the measurement procedure of the compensation, as well as the new perspectives opened by preliminary experimental results, are illustrated.

  1. On combining Thole's induced point dipole model with fixed charge distributions in molecular mechanics force fields.

    Science.gov (United States)

    Antila, Hanne S; Salonen, Emppu

    2015-04-15

    The Thole induced point dipole model is combined with three different point charge fitting methods, Merz-Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self-consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4-10%.

  2. A New Method for Modeling the Coronal Magnetic Field with STEREO and Submerged Dipoles

    Science.gov (United States)

    Sandman, A. W.; Aschwanden, M. J.

    2011-06-01

    Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20 - 40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3 - 5 dipoles per active region yield misalignment angles of ˜ 11° - 18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7° - 13°, which is attributed to the non-potentiality due to currents in the active regions.

  3. Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications

    Science.gov (United States)

    Malhotra, Isha; Ranjan Jha, Kumud; Singh, G.

    2017-08-01

    In this paper, we have analyzed a photoconductive dipole antenna at terahertz (THz) frequency for sensing and imaging applications. For these applications, to detect powdered explosives, there is a need to have an image of the object under detection with high resolution to distinguish suspicious items from the normal background. The THz antenna is one of the most important components in a THz sensing and imaging system and there is a need to have such a transmitting THz source with high directivity and optimum radiation efficiency. Therefore, to achieve this, we have explored three photoconductive dipole antenna configurations to enhance the directivity and radiation efficiency. With the use of a simple dipole antenna and silicon lens, we are able to achieve the directivity of 10.7dBi and radiation efficiency of 91.59% in both E-plane and H-plane.

  4. Spherically restricted motion of a charge in the field of a magnetic dipole

    CERN Document Server

    Cortés, Emilio

    2013-01-01

    We study the restricted motion of an electric charge in a spherical surface in the field of a magnetic dipole. This is the classical non-relativistic St\\"oermer problem within a sphere, with the dipole in its centre. We start from a Lagrangian approach which allows us to analyze the dynamical properties of the system, such as the role of a velocity dependent potential, the symmetries and the conservation properties. We derive the Hamilton equations of motion and observe that in this restricted case the equations can be reduced to a quadrature. From the Hamiltonian function we find for the polar angle an equivalent one-dimensional system of a particle in the presence of an effective potential. This equivalent potential function, which is a double well potential, allows us to get a clear description of this dynamical problem. We are able to find closed horizontal trajectories, as well as their period. Depending on initial conditions, we can find also some bands covered by non-periodic trajectories, as well as t...

  5. Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms

    Science.gov (United States)

    Griffith, Joel; Blundell, Steven; Sapirstein, Jonathan

    2013-04-01

    Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.

  6. Radiation of Magnetic Dipole and Electric Quadrupole in Anisotropic Medium (Ⅱ) — Rading Electric Field

    Institute of Scientific and Technical Information of China (English)

    HONGQingquan; CHENShennian; WANGJiancheng

    2003-01-01

    Taking advantage of magnetic field ra-diated by magnetic dipole and electric quadrupole in anisotropic magnetic medium which had been calculated already, the authors go further to calculate radiating elec-tric field and to confirm the correctness of results.

  7. Precise Access to the Molecular-Frame Complex Recombination Dipole through High-Harmonic Spectroscopy

    Science.gov (United States)

    Schoun, S. B.; Camper, A.; Salières, P.; Lucchese, R. R.; Agostini, P.; DiMauro, L. F.

    2017-01-01

    We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N2 in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μ m driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.

  8. High energy scattering in (2+1)-dimensional QCD A dipole picture

    CERN Document Server

    Li, Maozhen; Miao Li; Chung-I Tan

    1995-01-01

    A dipole picture of high energy scattering is developed in the 2+1 dimensional QCD, following Mueller. A generalized integral equation for the dipole density with a given separation and center of mass position is derived, and meson-meson non-forward scattering amplitude is therefore calculated. We also calculate the amplitude due to two pomeron exchange, and the triple pomeron coupling. We compare the result obtained by this method to our previous result based on an effective action approach, and find the two results agree at the one pomeron exchange level.

  9. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate

    Science.gov (United States)

    Jarzembski, Amun; Park, Keunhan

    2017-04-01

    Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.

  10. Photoluminescence Under XUV Excitation Plus a Method of Dipole Summation for Local Fields Calculations.

    Science.gov (United States)

    Benitez, Eva Lopdrup

    Organic and inorganic phosphors have often been used in detectors as a method of converting soft x-rays into visible light, which can then be detected by such devices as photodiodes and CCD's. However, the energy dependence of photoluminescent efficiency has been poorly known. This dissertation reports measurements of photoluminescence as a function of energy from 11 to 450 eV for the phosphors yttrium oxysulfide (Y_2O _2S:Eu), yttrium oxide (Y_2 O_3:Eu), lanthanum oxysulfide (La_2O_2S:Tm), gadolinium oxysulfide (Gd_2O _2S:Tb), and strontium chlorophosphate (Sr _5Cl(PO_4_)3 :Eu). With inelastic electron scattering spectroscopy, the optical properties of these phosphors have also been measured from 2 to 160 eV. Using the measured absorption and reflection coefficients and a model originally derived by H. B. DeVore for semiconductors, it is shown that the major cause of structure in the soft x-ray efficiency of phosphors in this energy range is surface recombination of charge carriers. The efficiency vs. photon energy and change of efficiency vs. total photon dose of an organic phosphor, para-terphenyl, have also been measured. It is found that the data cannot be modeled with the Birks -Black function for quenching of luminescence. A new variation of the Birks-Black function is developed. This function and an empirical function are used to model the damage data, and show that the damage rate goes as approximately the second power of the energy of the incident photons causing the damage. In the second part of this dissertation, a new method for computing momentum-dependent local fields is described. This method makes it possible to relatively quickly perform the dipole summations necessary for calculating the B(q) function for tetragonal lattices, including complex perovskites. Some results are demonstrated for aspect ratios of a simple lattice and for the perovskite structures of two high-temperature superconductors.

  11. The fast multipole method and point dipole moment polarizable force fields

    Science.gov (United States)

    Coles, Jonathan P.; Masella, Michel

    2015-01-01

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  12. The Fast Multipole Method and Point Dipole Moment Polarizable Force Fields

    CERN Document Server

    Coles, Jonathan P

    2014-01-01

    We present a momentum conserving implementation of the fast multipole method for computing coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected $O(N)$ scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using both a standard integrator and a multiple time step one. Our tests show the applicability of FMM combined with state-of-the-art chemical models in molecular dynamical systems.

  13. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results

    Science.gov (United States)

    Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.

    2016-12-01

    We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.

  14. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

    Science.gov (United States)

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2017-04-01

    Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids.

  15. Robust Computation of Dipole Electromagnetic Fields in Arbitrarily-Anisotropic, Planar-Stratified Environments

    CERN Document Server

    Sainath, K; Donderici, B

    2013-01-01

    We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily-oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both the (complex) permittivity and permeability. Among the salient features of our formulation are (1) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (2) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly-evanescent spectra contributions, and (3) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly-evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phen...

  16. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  17. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    impregnated with epoxy and mounted between a support of stainless steel and a collar made from aluminum. The cold mass consisting of the coil assembly and a laminated steel yoke is cooled by two cryocoolers from via copper bars to below 20 K. Current leads were made from the same batch of HTS tape. Cryogen...... for accelerator applications in many fields, in particular where cryogenic liquid cooling is not an option....

  18. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell

    CERN Document Server

    Osin, D; Reader, J; Ralchenko, Yu

    2012-01-01

    The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was used to produce highly-charged ions of hafnium, tantalum and gold with an open 3d shell. The extreme-ultraviolet (EUV) spectra from these ions were recorded with a flat-field grazing-incidence spectrometer in the wavelength range of 4.5 nm to 25 nm. A total of 133 new spectral lines, primarily due to magnetic-dipole transitions within the ground-state $3d^n$ configurations of the Co-like to K-like ions, were identified by comparing energy-dependent experimental spectra with a detailed collisional-radiative modeling of the EBIT plasma.

  19. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  20. Molecular dynamics in high electric fields

    Science.gov (United States)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  1. Computation of high-resolution SAR distributions in a head due to a radiating dipole antenna representing a hand-held mobile phone

    NARCIS (Netherlands)

    Van de Kamer, JB; Lagendijk, JJW

    2002-01-01

    SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-field mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quas

  2. Accessing interior magnetic field vector components in neutron electric dipole moment experiments via exterior measurements, I. Boundary-value techniques

    CERN Document Server

    Plaster, B

    2013-01-01

    We propose a new concept for determining the interior magnetic field vector components in neutron electric dipole moment experiments. If a closed three-dimensional boundary surface surrounding the fiducial volume of an experiment can be defined such that its interior encloses no currents or sources of magnetization, each of the interior vector field components and the magnetic scalar potential will satisfy a Laplace equation. Therefore, if either the vector field components or the normal derivative of the scalar potential can be measured on the surface of this boundary, thus defining a Dirichlet or Neumann boundary-value problem, respectively, the interior vector field components or the scalar potential (and, thus, the field components via the gradient of the potential) can be uniquely determined via solution of the Laplace equation. We discuss the applicability of this technique to the determination of the interior magnetic field components during the operating phase of neutron electric dipole moment experim...

  3. Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields II. Global Alfv\\'en Modes

    CERN Document Server

    Sotani, H; Stergioulas, N; Vavoulidis, M

    2006-01-01

    We investigate torsional Alfv\\'{e}n modes of relativistic stars with a global dipole magnetic field. It has been noted recently (Glampedakis et al. 2006) that such oscillation modes could serve as as an alternative explanation (in contrast to torsional crustal modes) for the SGR phenomenon, if the magnetic field is not confined to the crust. We compute global Alfv\\'{e}n modes for a representative sample of equations of state and magnetar masses, in the ideal MHD approximation and ignoring $\\ell \\pm 2$ terms in the eigenfunction. We find that the presence of a realistic crust has a negligible effect on Alfv\\'{e}n modes for $B > 4\\times 10^{15}$ G. Furthermore, we find strong avoided crossings between torsional Alfv\\'{e}n modes and torsional crust modes. For magnetar-like magnetic field strengths, the spacing between consecutive Alfv\\'{e}n modes is of the same order as the gap of avoided crossings. As a result, it is not possible to identify modes of predominantly crustal character and all oscillations are pred...

  4. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    Science.gov (United States)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  5. The effect of an offset-dipole magnetic field on the Vela pulsar's gamma-ray light curves

    CERN Document Server

    Breed, M; Harding, A K; Johnson, T J

    2015-01-01

    Over the past six years, the Fermi Large Area Telescope has detected more than 150 gamma-ray pulsars, discovering a variety of light curve trends and classes. Such diversity hints at distinct underlying magnetospheric and/or emission geometries. We implemented an offset-dipole magnetic field, with an offset characterised by parameters epsilon and magnetic azimuthal angle, in an existing geometric pulsar modelling code which already includes static and retarded vacuum dipole fields. We use these different magnetic field solutions in conjunction with standard emission geometries, namely the two-pole caustic and outer gap models (the latter only for non-offset dipoles), and construct intensity maps and light curves for several pulsar parameters. We compare our model light curves to the Vela data from the second pulsar catalogue of Fermi. We use a refined chi-square grid search method for finding best-fit light curves for each of the different models. Our best fit is for the retarded vacuum dipole field and the o...

  6. The Field Radiated by a Ring Quasi-Array of an Infinite Number of Tangential or Radial Dipoles

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1953-01-01

    A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system with tan......A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system...... with tangential or radial dipoles, a field may be obtained that has a similar useful structure as the above-mentioned ring array, but which in contrast to the latter is essentially horizontally polarized. In this paper a systematic investigation has been made of the field from such an antenna system...... with tangential or radial dipoles. Recently it was stated in the literature that it is impossible to treat the general case where the increase of the current phase per revolution is arbitrarily large by using ordinary functions. The results obtained in this paper disprove this statement. A similar investigation...

  7. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    Science.gov (United States)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  8. Influence of atomic motion on the population and dipole squeezing of a cascade three-level atom in cavity field

    Institute of Scientific and Technical Information of China (English)

    Zhu Ai-Dong; Zhang Shou

    2004-01-01

    The dynamical property of a cascade three-level atom is investigated in the condition of atomic motion. The influence of atomic motion on the population and dipole squeezing is discussed. The results show that atomic motion makes the amplitude of atomic population be steady and increasing the parameter ep which denotes the atomic motion and the structure of field mode can shorten the period of collapse-revivals. By choosing an appropriate paramenter ep, we can obtain a dipole squeezed atom of long standing.

  9. Optimal dipole-field profiles for emittance reduction in storage rings

    Directory of Open Access Journals (Sweden)

    Chun-xi Wang

    2011-03-01

    Full Text Available In recent years nonuniform dipoles with bending-radius variation have been studied for reducing storage ring emittance. According to a new minimum-emittance theory, the effects of an arbitrary dipole can be characterized with two parameters determined by the dipole. To have a better idea of the potentials of nonuniform dipoles, here we numerically explore the possible values of these two parameters and associated bending profiles for optimal emittance reduction. Such optimization results provide a useful reference for lattice designs involving nonuniform bending. Simple bending-radius profiles (a short segment of constant radius with linear ramps on the sides were found to be close to the optimal. Basic beam and lattice properties such as emittance, energy spread, and phase advances are presented based on the optimal dipole solutions.

  10. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates.

    Science.gov (United States)

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-28

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per μm(2) has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch.

  11. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.

    Science.gov (United States)

    Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay

    2014-01-01

    We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

  12. 光偶极天线的远场方向性研究%Study of far-field directivity of optical dipole antenna

    Institute of Scientific and Technical Information of China (English)

    蒋双凤; 孔凡敏; 李康; 高晖

    2011-01-01

    By simulating the field distributions of two optical dipole antenna models with the finite-difference time-domain (FDTD) method, the variation regularity of their far-field radiation with their length increasing and the factors which can influence their far-field directivity are studied. The results show that the variation regularity of optical dipole antenna is analogous to that of classic symmetrical dipole antenna. But in the far-field directivity plot of optical dipole antenna, sidelobes occur much more quickly, owing to the existence of high-order localized surface plasmon modes. These results hold a significant promise of improving the performance of optical antennas.%用时域有限差分方法模拟了两种光偶极天线模型的场分布,研究了光偶极天线的远场辐射特性随其长度增加而变化的规律以及影响其远场方向性的因素,发现光偶极天线的远场方向性随其长度增加而变化的规律类似于经典对称振子天线的相应规律.但高阶局域表面等离激元模式的存在使得光偶极天线的远场辐射图更快地出现了旁瓣.这些发现对于提高光天线的性能具有重要意义.

  13. Dipole pomeron and. pi. /sup -/p elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-E-Aleem (Panjab Univ., Lahore (Pakistan). Physics Dept.)

    1982-10-16

    The differential cross-sections for high-energy ..pi../sup -/p elastic scattering showing structure near -t=4 (GeV/c)/sup 2/ for psub(L)=50 and 200 GeV/c together with total cross-sections for 50<=psub(L)<=370 GeV/c, and with -t extending up to 11 (GeV/c)/sup 2/ have been fitted by using a dipole pomeron model.

  14. Control of field quality for the production of the main LHC dipoles

    CERN Document Server

    Ferracin, P; Redaelli, S; Scandale, Walter; Todesco, Ezio

    2001-01-01

    We review the warm magnetic measurements of the first four main dipole prototypes (8 apertures) and their agreement with nominal design. We then estimate the order of magnitude of the corrections that may be needed to re-center the low-order normal harmonics around the nominal values for the forthcoming series production. Correction strategies that provide the minumum impact on production schedule and costs are analysed. For the case of b3 and b5 two possibilities are considered: a variation of the shims to optimize the azimuthal length of the two coil layers, and a variation of the copper wedges of the inner layer, leaving unchanged the azimuthal coil size. For optimizing b2 and b4, we consider modifications of the shape of the ferromagnetic insert, that is placed between the collars and the yoke. Comparison between measurements and simulations of the implemented insert modifications are given and a final design is proposed. Intrinsic limits to the control of field quality during the production are discussed...

  15. Analysis of large effective electric fields of weakly polar molecules for electron electric dipole moment searches

    CERN Document Server

    Sunaga, A; Hada, M; Das, B P

    2016-01-01

    The electric dipole moment of an electron (eEDM) is one of the sensitive probes of physics beyond the standard model. The possible existence of the eEDM gives rise to an experimentally observed energy shift, which is proportional to the effective electric field (Eeff) of a target molecule. Hence, an analysis of the quantities that enhance Eeff is necessary to identify suitable molecules for eEDM searches. In the context of such searches, it is generally believed that a molecule with larger electric polarization also has a larger value of Eeff. However, our Dirac-Fock and relativistic coupled-cluster singles and doubles calculations show that the hydrides of Yb and Hg have larger Eeff than those of fluorides, even though their polarizations are smaller. This is due to significant mixing of valence s and p orbitals of the heavy atom in the molecules. This mixing has been attributed to the energy differences of the valence atomic orbitals and the overlap of the two atomic orbitals based on the orbital interactio...

  16. Interaction between polar molecules subject to a far-off-resonant optical field: Entangled dipoles up- or down-holding each other

    CERN Document Server

    Lemeshko, Mikhail

    2011-01-01

    We show that the electric dipole-dipole interaction between a pair of polar molecules undergoes an all-out transformation when superimposed by a far-off resonant optical field. The combined interaction potential becomes tunable by variation of wavelength, polarization and intensity of the optical field and its dependence on the intermolecular separation exhibits a crossover from an inverse-power to an oscillating behavior. The ability thereby offered to control molecular interactions opens up avenues toward the creation and manipulation of novel phases of ultracold polar gases among whose characteristics is a long-range entanglement of the dipoles' mutual orientation. We devised an accurate analytic model of such optical-field-dressed dipole-dipole interaction potentials, which enables a straightforward access to the optical-field parameters required for the design of intermolecular interactions in the laboratory.

  17. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  18. Excitation of pygmy dipole resonance in neutron-rich nuclei via Coulomb and nuclear fields

    Indian Academy of Sciences (India)

    A Vitturi; E G Lanza; M V Andrés; F Catara; D Gambacurta

    2010-07-01

    We study the nature of the low-lying dipole strength in neutron-rich nuclei, often associated with the pygmy dipole resonance. The states are described within the Hartree–Fock plus RPA formalism, using different parametrizations of the Skyrme inter-action. We show how the information from combined reaction processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states.

  19. The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment

    Science.gov (United States)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1994-03-01

    Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.

  20. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain.

    Science.gov (United States)

    Konn, Daniel; Gowland, Penny; Bowtell, Richard

    2003-07-01

    To investigate the feasibility of direct MR detection of neuronal activity in the brain, neuronal current flow was modeled as an extended current dipole located in a conducting sphere. The spatially varying magnetic field induced within the sphere by such a dipole was calculated, including its form close to and within the current source. The predicted field variation was experimentally verified by measurements of the variation in phase of the MR signal in a sphere containing a model dipole. The effects of the calculated magnetic field distributions on the phase and magnitude of the signal in MR images were explored. The minimum detectable dipole strength under normal experimental conditions was calculated to be about 4.5 nAm, which is similar in magnitude to dipole strengths from evoked neuronal activity, and is an order of magnitude smaller than dipole strengths expected from spontaneous activity. This minimum detectable dipole strength increases with increasing spatial extent of the primary current distribution. In the experimental work, the effects of a field of [1.1 +/- 0.5] x 10(-10) T strength were detected, corresponding to the maximum net field caused by a dipole of 6.3 nAm strength with a spatial extent of 3 x 3 x 2 mm(3). Copyright 2003 Wiley-Liss, Inc.

  1. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates

    Science.gov (United States)

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-01

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per μm2 has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch.A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET

  2. Electromagnetic fields at the sea bottom induced by a line of immersed electric dipoles

    Directory of Open Access Journals (Sweden)

    Edson E.S. Sampaio

    2011-09-01

    Full Text Available The analysis of electromagnetic fields caused by alternate or transient electric currents flowing along a cable in sea water has several applications. It supports the interpretation of electromagnetic geophysical data and safety procedures against the threat of sea mines. The approach to the problem employs a magnetic vector potential in the frequency domain due to a pulse source electric dipole, and performs Laplace and Hankel transforms and integration along the cable, to describe the variation of the magnetic induction field due to an electric dipole of finite length. The result is applicable to shallow or deep sea water environments, adaptable to any transmitting current waveform and useful for wave-field separation. The prospects relate to a horizontal receiving coil at the sea bottom and simulate: a minesweeper campaign with a current source at the sea surface or a geophysical survey with a current source close to the sea floor. Therefore, the present analysis may serve: to define parameters in counter-sweeping of submarine mines; to map the conductivity of sediments under shallow waters for the prevention and control of contamination; and as a first approach in the characterization of offshore mineral and oil economic deposits.A análise de campos eletromagnéticos causados por correntes alternadas ou transientes fluindo ao longo de um cabo na água do mar tem várias aplicações. Ela prove suporte à interpretação de dados geofísicos eletromagnéticos e aos procedimentos de segurança contra a ameaça de minas submarinas. A abordagem do problema emprega um potencial vetorial magnético, no domínio da frequência, devido a um dipolo elétrico com uma fonte tipo pulso e calcula transformações de Laplace e de Hankel e integração ao longo do comprimento do cabo, para descrever a variação temporal do campo magnético de indução devido a um dipolo elétrico de comprimento finito. O resultado é aplicável em ambientes de água do

  3. Analysis of dipole-like ultra high frequency RFID tags close to metallic surfaces

    Institute of Scientific and Technical Information of China (English)

    Ling-fei MO; Hong-jian ZHANG; Hong-liang ZHOU

    2009-01-01

    It is a challenge for passive RFID tags to be mounted on the surface of metal because the parameters of tag antennas,such as the impedance matching, the radiation efficiency and the radiation pattern, are seriously affected by the metallic surface.This paper presents the characteristics of the dipole-like antennas of ultra high frequency (UHF) radio frequency identification (RFID) tags that are placed close to metallic surfaces. The finite element method (FEM) and method of moment (MoM) were used to simulate the changes of the antenna parameters near the metallic surface. Two typical dipole-like antennas close to the metallic surface, a closed loop antenna and a loaded meander antenna, were modeled, and the performance was evaluated. Experiment was carded out and the results were in good agreement with the simulation, showing that a distance of 0.05λ-0.1λ(λ is the free space wavelength) from the metallic surface could make the dipole-like UHF RFID tag performance be acceptable.

  4. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  5. Numerical study on ULF waves in a dipole field excited by sudden impulse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the SI spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given SI lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the SI affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the SI is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.

  6. Numerical study on ULF waves in a dipole field excited by sudden impulse

    Institute of Scientific and Technical Information of China (English)

    YANG Biao; FU SuiYan; ZONG QiuGang; WANG YongFu; ZHOU XuZhi; PU ZuYin; XIE Lun

    2008-01-01

    A three-dimensional numerical model is employed to investigate ULF waves ex-cited by the sudden impulse (SI) of the solar wind dynamic pressure interacting with a dipole magnetosphere. We focus on the solar wind-magnetosphere energy coupling through ULF waves, and the influences of the Sl spectrum on the cavity mode structure and the energy deposition due to field line resonances (FLRs) in the magnetosphere. The numerical results show that for a given Sl lasting for 1 min with amplitude of 50 mV/m impinging on the subsolar magnetopause, the total ULF energy transported from the solar wind to the magnetosphere is about the magni-tude of 1014 J. The efficiency of the solar wind energy input is around 1%, which depends little on the location of the magnetopause in the model. It is also found that the energy of the cavity mode is confined in the region near the magnetopause, whereas, the energy of the toroidal mode may be distributed among a few specific L-shells. With a given size of the model magnetosphere and plasma density distri-bution, it is shown that the fundamental eigenfrequency of the cavity mode and the central locations of the FLRs do not vary noticeably with the power spectrum of the SI. It is worth noting that the spectrum of the Sl affects the excitation of higher harmonics of the global cavity mode. The broader the bandwidth of the Sl is, the higher harmonics of cavity mode could be excited. Meanwhile, the corresponding FLRs regions are broadened at the same time, which implies that the global cavity modes and toroidal modes can resonate on more magnetic L-shells when more harmonics of the global cavity modes appear.

  7. Dipole source analysis for readiness potential and field using simultaneously measured EEG and MEG signals.

    Science.gov (United States)

    Mideksa, K G; Hellriegel, H; Hoogenboom, N; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2013-01-01

    Various source localization techniques have indicated the generators of each identifiable component of movement-related cortical potentials, since the discovery of the surface negative potential prior to self-paced movement by Kornhuber and Decke. Readiness potentials and fields preceding self-paced finger movements were recorded simultaneously using multichannel electroencephalography (EEG) and magnetoencephalography (MEG) from five healthy subjects. The cortical areas involved in this paradigm are the supplementary motor area (SMA) (bilateral), pre-SMA (bilateral), and contralateral motor area of the moving finger. This hypothesis is tested in this paper using the dipole source analysis independently for only EEG, only MEG, and both combined. To localize the sources, the forward problem is first solved by using the boundary-element method for realistic head models and by using a locally-fitted-sphere approach for spherical head models consisting of a set of connected volumes, typically representing the scalp, skull, and brain. In the source reconstruction it is to be expected that EEG predominantly localizes radially oriented sources while MEG localizes tangential sources at the desired region of the cortex. The effect of MEG on EEG is also observed when analyzing both combined data. When comparing the two head models, the spherical and the realistic head models showed similar results. The significant points for this study are comparing the source analysis between the two modalities (EEG and MEG) so as to assure that EEG is sensitive to mostly radially orientated sources while MEG is only sensitive to only tangential sources, and comparing the spherical and individual head models.

  8. Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix

    Science.gov (United States)

    He, Yi; Maciejczyk, Maciej; Ołdziej, Stanisław; Scheraga, Harold A.; Liwo, Adam

    2013-01-01

    A proposed coarse-grained model of nucleic acids demonstrates that average interactions between base dipoles, together with chain connectivity and excluded-volume interactions, are sufficient to form double-helical structures of DNA and RNA molecules. Additionally, local interactions determine helix handedness and direction of strand packing. This result, and earlier research on reduced protein models, suggest that mean-field multipole-multipole interactions are the principal factors responsible for the formation of regular structure of biomolecules. PMID:23496746

  9. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik;

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  10. Ultra-long-range giant dipole molecules in crossed electric and magnetic fields

    CERN Document Server

    Kurz, Markus; Schmelcher, Peter

    2011-01-01

    We show the existence of ultra-long-range giant dipole molecules formed by a neutral alkali ground state atom that is bound to the decentered electronic wave function of a giant dipole atom. The adiabatic potential surfaces emerging from the interaction of the ground state atom with the giant dipole electron posses a rich topology depending on the degree of electronic excitation. Binding energies and the vibrational motion in the energetically lowest surfaces are analyzed by means of perturbation theory and exact diagonalization techniques. The resulting molecules are truly giant with internuclear distances up to several $\\mu m$. Finally, we demonstrate the existence of intersection manifolds of excited electronic states that potentially lead to a vibrational decay of the ground state atom dynamics.

  11. Visualizing dipole radiation

    Science.gov (United States)

    Girwidz, Raimund V.

    2016-11-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.

  12. Magnetic field (B) and voltage (U) characteristics of the ALICE dipole magnet.

    CERN Multimedia

    2005-01-01

    The dipole magnet ready for testing, on 7 July the first current was injected. Ramping up to full current of 6 kA followed without any problem on 8 July. Then on 14 July, having operated without interruption at full current for more than 24 hours, the magnet was switched off until the start of the magnetic measurements.

  13. Highly excited hydrogen in strong d. c. electric fields: atomic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1988-03-01

    We excite atomic hydrogen from the ground state via a three-photon process to high-lying excited states in the presence of strong d.c. electric fields. The external field is used to manipulate, control, and design specific atomic structures. We can construct nearly 'one-dimensional' atoms whose electronic distributions are highly extended along the field, and which may have enormous electric dipole moments ('giant-dipole atoms').

  14. Measurement of a false electric dipole moment signal from $^{199}$Hg atoms exposed to an inhomogeneous magnetic field

    CERN Document Server

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Geltenbort, P; Green, K; van der Grinten, M G D; Grujic, Z; Harris, P G; Heil, W; Hélaine, V; Henneck, R; Horras, M; Iaydjiev, P; Ivanov, S N; Kasprzak, M; Kermaïdic, Y; Kirch, K; Knowles, P; Koch, H -C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Prashant, P N; Quéméner, G; Rebreyend, D; Ries, D; Roccia, S; Schmidt-Wellenburg, P; Severijns, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-01-01

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for $^{199}{\\rm Hg}$ atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  15. An exact line integral representation of the physical optics scattered field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

    DEFF Research Database (Denmark)

    Johansen, Peter M.; Breinbjerg, Olav

    1995-01-01

    An exact line integral representation of the electric physical optics scattered field is presented. This representation applies to scattering configurations with perfectly electrically conducting polyhedral structures illuminated by a finite number of electric Hertzian dipoles. The positions...

  16. Development of a Current Fit Function for NbTi to be Used for Calculation of Persistent Current Induced Field Errors in the LHC Main Dipoles

    CERN Document Server

    Schwerg, N

    2006-01-01

    A new fit function for the critical current density of superconducting NbTi cables for the LHC main dipoles is presented. Existing fit functions usually show a good matching of the very low field range, but produce a current density which is significantly too small for the intermediate and high field range. Consequently the multipole range measured at cold is only partially reproduced and loops from current cycling do not match. The presented function is used as input for the field quality calculation of a complete magnet cross-section including arbitrary current cycling and all hysteresis effects. This way allows to trace a so-called finger-print of the cable combination used in the LHC main bending magnets. The finger-print pattern is a consequence of the differences of the measured superconductor magnetization of cables from different manufacturers. The simulation results have been compared with measurements at cold obtained from LHC main dipoles and a very good agreement for low and intermediate field val...

  17. Impact of motion along the field direction on geometric-phase-induced false electric dipole moment signals

    CERN Document Server

    Yan, H

    2011-01-01

    Geometric-phase-induced false electric dipole moment (EDM) signals, resulting from interference between magnetic field gradients and particle motion in electric fields, have been studied extensively in the literature, especially for neutron EDM experiments utilizing stored ultracold neutrons and co-magnetometer atoms. Previous studies have considered particle motion in the transverse plane perpendicular to the direction of the applied electric and magnetic fields. We show, via Monte Carlo studies, that motion along the field direction can impact the magnitude of this false EDM signal if the wall surfaces are rough such that the wall collisions can be modeled as diffuse, with the results dependent on the size of the storage cell's dimension along the field direction.

  18. Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas

    Science.gov (United States)

    Jones, Ryan; Saint, Reece; Olmos, Beatriz

    2017-01-01

    We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is comparable to the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak (linear) driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we shed light on the role of disorder and averaging on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.

  19. Dipole-forbidden atomic transitions induced by superintense x-ray laser fields

    Science.gov (United States)

    Simonsen, Aleksander Skjerlie; Førre, Morten

    2016-06-01

    A hydrogen atom, initially prepared in the 2 s and/or 2 p (m =±1 ) states, is assumed irradiated by 0.8 keV (1.5 nm) photons in pulses of 1 -250 fs duration and intensities in the range 1020 to 1023W /cm2 . Solving the corresponding time-dependent Schrödinger equation from first principles, we show that the ionization and excitation dynamics of the laser-atom system is strongly influenced by interactions beyond the electric dipole approximation. A beyond-dipole two-photon Raman-like transition between the 2 s and 2 p (m =±1 ) states is found to completely dominate the underlying laser-matter interaction. It turns out that the large difference in the ionization rates of the 2 s and 2 p (m =±1 ) states is important in this context, effectively leading to a symmetry breaking in the corresponding (beyond-dipole) bound-bound dynamics with the result that a net population transfer between the states occurs throughout the laser-matter interaction period. Varying the x-ray exposure time as well as the laser intensity, we probe the phenomenon as the bound wave packet oscillates between having 2 s and 2 p (m =±1 ) character, eventually giving rise to a Rabi-like oscillation pattern in the populations.

  20. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations.

    Science.gov (United States)

    Shrestha, Rebika; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J

    2015-02-19

    The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the headgroup region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction of the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped toward the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ∼3 cm(-1) greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in an absolute magnitude of 8-11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed.

  1. Dipole Analysis of 249 High-Z SCP Union Supernovae According to the Expansion Center Model

    CERN Document Server

    Lorenzi, Luciano

    2011-01-01

    The topic of the paper is a preliminary analysis of 1743 data calculated for 249 High-z SCP Union supernovae, according to the expansion center model. The analysis of the ECM data set in Hubble units begins with 13 listed normal points corresponding to 13 z-bin samples at as many Hubble depths. Here the novel finding is a resulting clear drop in the average scattering of the SNe Ia absolute magnitudes M with the ECM Hubble depth D, after using the average trend computed in paper IX and here reconfirmed. Other correlations of the M scattering with the position in the sky are proposed as pointers for future investigations. Consequently, 13 ECM dipole tests on the 13 z-bin samples were carried out both with unweighed and weighed fittings. A further check was made through another ECM dipole test on the same 13 z bins, with Hubble depths D obtained by assuming M= according to paper IX and X. In conclusion the analysis of 249 SCP SNe confirms once again the expansion center model at any Hubble depth, including a s...

  2. Status of design, development and test of the dipole magnets for the high energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.M.; Boulios, G.; Finger, K.; Kaylor, L.; McConnon, A.; McConnon, S.; Osborne, S.; Sinnott, Z.; Pisz, F.; Swenson, C. [Westinghouse Magnet Systems Division, Round Rock, TX (United States)] [and others

    1994-12-31

    Westinghouse Magnet Systems Division has a contract to design, develop, build and test the superconducting dipole magnets for the High Energy Booster. This paper covers the key requirements of the magnet and the design features to meet these requirements. Although similar to the Collider dipole magnets, there are some key differences in the functional requirements and design constraints which lead to design differences. Most significant is the requirement to prevent quench during bipolar operation at a ramp rate of 62 A/s compared to unipolar operation at 4 A/s for the Collider. Testing of 50 mm magnets made for the SSCL string test show that the design is sensitive to interstrand eddy currents and resultant heating at the higher ramp rate. The cryostat diameter is not constrained by the fixed distance between top and bottom rings as in the Collider. The authors are taking advantage of the additional space allowed. Emphasis in this paper is placed on the design differences and the reasons for them in both the cold mass and the cryostat. The cold testing requirements and plans for test facilities to carry out the tests are summarized.

  3. Effect of a strong interfacial electric field on the orientation of the dipole moment of thiolated aib-oligopeptides tethered to mercury on either the N- or C-terminus.

    Science.gov (United States)

    Becucci, Lucia; Guryanov, Ivan; Maran, Flavio; Guidelli, Rolando

    2010-05-05

    Four oligopeptides consisting of a sequence of alpha-aminoisobutyric acid (Aib) residues, thiolated at either the N- or C-terminus by means of a -(CH(2))(2)-SH anchor, were self-assembled on mercury, which is a substrate known to impart a high fluidity to self-assembled monolayers (SAMs). The surface dipole potential of these peptide SAMs was estimated in 0.1 M KCl aqueous solution at a negatively charged electrode, where the interfacial electric field is directed toward the metal. To the best of our knowledge, this is the first estimate of the surface dipole potential of peptide SAMs in aqueous solution. The procedure adopted consisted in measuring the charge involved in the gradual expansion of a peptide-coated mercury drop and then combining the resulting information with an estimate of the charge density experienced by diffuse layer ions. The dipole moment of the tethered thiolated peptides was found to be directed toward the metal, independent of whether they were thiolated at the C- or N-terminus. This result was confirmed by the effect of these SAMs on the kinetics and thermodynamics of the Eu(III)/Eu(II) redox couple. The combined outcome of these studies indicates that a strong interfacial electric field orients the dipole moment of peptide SAMs tethered to mercury, even against their "natural" dipole moment.

  4. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    Science.gov (United States)

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-05

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

  5. High-resolution dipole (e, e) study for optical oscillator strengths of helium

    Institute of Scientific and Technical Information of China (English)

    凤任飞; 杨炳忻; 武淑兰; 邢士林; 张芳; 钟志萍; 郭学哲; 徐克尊

    1996-01-01

    The optical oscillator strengths of helium have been studied by a high-resolution dipole (e, e) method on the recently built high-resolution fast-electron energy-loss spectrometer. The difficulties of optical measurement have been avoided and the experimental precision has been improved by using this method. The optical oscillator strength density spectrum corresponding to the 1S n’P transitions and ionization of helium has been measured in the energy loss range of 21 - 26 eV. And the same work corresponding to the autoionization resonance region has been done in energy loss ranges of 59-67 eV and 69-74 eV. The above results have also been compared with those of the previous work.

  6. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment.

    Science.gov (United States)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-09-28

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  7. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  8. Research on the Rules of Electric Dipole in MagneticField%外磁场下电偶极子运动规律研究

    Institute of Scientific and Technical Information of China (English)

    任恒峰; 王清亮; 连润明; 孟峰

    2012-01-01

    This article negative ions. Using erg lts Yo dy di th scusses the interaction energy of the electric dipole that consisted of positive and e method of Taylor expansion, give the electric dipole's approximation potential en Based on the motion rules of free electric dipole, analyze the electric dipole's motion rules and solve namics equation by Newton's laws of motion in the external magnetic field . Finally, conclude the e lectric dipole's motion rules in the external magnetic field, that is to say, the electric dipole respectively does circular motion in radial of the eternal magnetic field, and does the simple harmonic oscillattion in tangential, whose overall trajectory is irregular spiral movement%利用泰勒展开取近似的方法,给出电偶极子的近似势能,并在自由电偶极子运动规律的基础上,讨论并得出了外磁场下电偶极子的运动规律:外磁场下电偶极子在径向做圆周运动,在切向做简谐振动,整体轨迹为不规则的螺旋式运动.

  9. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  10. Weak magnetic fields in Ap/Bp stars: Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy

    CERN Document Server

    Aurière, M; Silvester, J; Lignières, F; Bagnulo, S; Bale, K; Dintrans, B; Donati, J F; Folsom, C P; Gruberbauer, M; Hoa, A Hui Bon; Jeffers, S; Johnson, N; Landstreet, J D; Lebre, A; Lüftinger, T; Marsden, S; Mouillet, D; Naseri, S; Paletou, F; Petit, P; Power, J; Rincon, F; Strasser, S; Toque, N

    2007-01-01

    We have investigated a sample of 28 well-known spectroscopically-identified magnetic Ap/Bp stars, with weak, poorly-determined or previously undetected magnetic fields, with the aim of exploring the weak part of the magnetic field distribution of Ap/Bp stars. Using the MuSiCoS and NARVAL spectropolarimeters we have obtained 282 LSD Stokes V signatures of our 28 sample stars. All stars were detected, showing clearly that when observed with sufficient precision, all firmly classified Ap/Bp stars show detectable surface magnetic fields. To better characterise the surface magnetic field intensities and geometries of the sample, we have inferred the dipolar field intensity and the magnetic obliquity. The distribution of derived dipole strengths for these stars exhibits a plateau at about 1 kG, falling off to larger and smaller field strengths. Remarkably, in this sample of stars selected for their presumably weak magnetic fields, we find only 2 stars for which the derived dipole strength is weaker than 300 G. We i...

  11. Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-07-01

    The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.

  12. Dust detection in space using the monopole and dipole electric field antennas

    Science.gov (United States)

    Ye, S.-Y.; Kurth, W. S.; Hospodarsky, G. B.; Averkamp, T. F.; Gurnett, D. A.

    2016-12-01

    During the grand finale of the Cassini mission, the Radio and Plasma Wave Science instrument will be used to assess the risk involved in exposing the instruments to the dusty environment around the F and D rings. More specifically, the slope of the size distribution and the dust density will be determined based on the signals induced on the electric antennas by dust impacts. To reduce the uncertainties in the generation mechanism of the dust impact signals and the resulting dust properties based on the interpretation of data, we designed and carried out experiments in late 2015, when we switched antenna mode from monopole to dipole at the ring plane crossings. Comparison of the data collected with these two antenna setups provides valuable hints on how the dust impact signals are generated in each antenna mode.

  13. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

    CERN Document Server

    Sajadi, Mohsen; Kampfrath, Tobias

    2016-01-01

    Microscopic understanding of low-frequency molecular motions in liquids has been a longstanding goal in soft-matter science. So far, such low-frequency motions have mostly been accessed indirectly by off-resonant optical pulses. A more direct approach would be to interrogate the dynamic structure of liquids with terahertz (THz) radiation. Here, we provide evidence that resonant excitation with intense THz pulses is capable of driving reorientational-librational modes of aprotic polar liquids through coupling to the permanent molecular dipole moments. We observe a hallmark of this enhanced coupling: a transient optical birefringence up to an order of magnitude higher than obtained with optical excitation. Our results open up the path to applications such as efficient molecular alignment and systematic study of the coupling of rotational motion to other collective motions in liquids.

  14. First observation of trapped high-field seeking ultracold neutron spin states

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M., E-mail: manfred.daum@psi.ch [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Department of Physics, University of Virginia, Charlottesville, VA 22904-4714 (United States); Fierlinger, P. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Franke, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Geltenbort, P. [ILL, Institut Laue-Langevin, Grenoble (France); Goeltl, L. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Gutsmiedl, E. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Karch, J. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Kessler, G. [TUM, Physik-Department Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Kirch, K. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); IPP, Institut f. Teilchenphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Koch, H.-C.; Kraft, A.; Lauer, T. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Lauss, B. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Pierre, E. [LPC, Laboratoire de Physique Corpusculaire, ENSICAEN-CNRS/IN2P3, Caen (France); Pignol, G. [LPSC, Laboratoire de Physique Subatomique et de Cosmologie, UJF-CNRS/IN2P3-INPG, Grenoble (France); Reggiani, D.; Schmidt-Wellenburg, P. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland); Sobolev, Yu.; Zechlau, T. [Institut fuer Physik, Johannes-Gutenberg-Universitaet, Mainz (Germany); Zsigmond, G. [PSI, Paul-Scherrer-Institut, CH-5232 Villigen PSI (Switzerland)

    2011-10-25

    Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement.

  15. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  16. Neutron distribution, electric dipole polarizability and weak form factor of 48Ca from chiral effective field theory

    Science.gov (United States)

    Wendt, Kyle

    2016-03-01

    How large is the 48Ca nucleus? While the electric charge distribution of this nucleus was accurately measured decades ago, both experimental and ab initio descriptions of the neutron distribution are deficient. We address this question using ab initio calculations of the electric charge, neutron, and weak distributions of 48Ca based on chiral effective field theory. Historically, chiral effective field theory calculations of systems larger than 4 nucleons have been plagued by strong systematic errors which result in theoretical descriptions that are too dense and over bound. We address these errors using a novel approach that permits us to accurately reproduce binding energy and charge radius of 48Ca, and to constrain electroweak observables such as the neutron radius, electric dipole polarizability, and the weak form factor. For a full list of contributors to this work, please see ``Neutron and weak-charge distributions of the 48Ca nucleus,'' Nature Physics (2015) doi:10.1038/nphys3529.

  17. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  18. Design and Prototyping of a 400 MHz RF-dipole Crabbing Cavity for the LHC High-Luminosity Upgrade

    CERN Document Server

    De Silva, S U; Delayen, J R; Li, Z; Nicol, T H

    2015-01-01

    LHC High Luminosity Upgrade is in need of two crabbing systems that deflects the beam in both horizontal and vertical planes. The 400 MHz rf-dipole crabbing cavity system is capable of crabbing the proton beam in both planes. At present we are focusing our efforts on a complete crabbing system in the horizontal plane. Prior to LHC installation the crabbing system will be installed for beam test at SPS. The crabbing system consists of two rfdipole cavities in the cryomodule. This paper discusses the electromagnetic design and mechanical properties of the rf-dipole crabbing system for SPS beam test.

  19. Silicone films with high stiffness and increasing permittivity through dipole-grafting

    Science.gov (United States)

    Bluemke, Martin; Wegener, Michael; Krueger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that can be optimized by modifying the dielectric or mechanical properties of the electroactive polymer. The incorporation of inorganic particles in silicone elastomers shows a permittivity enhancement and undesired stiffening. We present another concept to obtain comparable properties by dipole grafting. Therefore, the organic dipole N-ally-N-methyl-4-nitroaniline is grafted in competition with the vinyl terminated PDMS to a hydrosilane cross-linker forming the PDMS network. With this procedure PDMS films with up to 25 wt% of the dipole were solvent casted and the chemical, mechanical, electrical, plus electromechanical properties of these novel materials were investigated.

  20. Field induced by an axial magnetic dipole in the presence of two fused superconducting spheres: Analytic solution

    Science.gov (United States)

    Palaniappan, D.

    2009-04-01

    An exact solution for a magnetostatic boundary value problem involving two fused (overlapping) spheres placed in a field generated by an axial magnetic point dipole is constructed based on the image method. The basic idea is illustrated for two unequal superconducting spheres intersecting with a vertex angle π /2 and the analytical solution for the scalar magnetic potential satisfying the Neumann boundary condition at the surface is derived. The image solution for a dipole-twin-sphere configuration consists of three image dipoles—one inside each sphere and the third inside a pseudo-/virtual sphere—all located at the respective inverse points inside the superconducting two-sphere assembly. The levitation force acting on the two-sphere superconducting surface is also calculated for the overlapping geometry. These exact results can be used as a benchmark for testing numerical algorithms for overlapping spherical superconductors. Our simple approach also offers clues for solving the Neumann boundary value problem for vertex angles π /n, n is an integer, and other related superconducting geometries.

  1. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    Science.gov (United States)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  2. Pygmy dipole resonance in stable nuclei

    Indian Academy of Sciences (India)

    P Von Neumann-Cosel

    2010-07-01

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution (, ′) experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a non-relativistic mean-field description, predicting significantly different properties of the PDR. The second part presents a novel approach to measure the complete electric dipole strength distribution from excitation energies starting at about 5 MeV across the giant dipole resonance (GDR) with high-resolution inelastic proton scattering under 0° at energies of a few 100 MeV/nucleon. The case of 208Pb is discussed in detail and first result from a recent experiment on 120Sn is presented.

  3. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. I. Laws of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g.

  4. Nb$_3$Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    CERN Document Server

    AUTHOR|(CDS)2075881

    2015-01-01

    The high luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11-T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11-T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets. Collaboration between the US LARP (LHC Accelerator Research Program) and CERN is developing the MQXF magnets, whereas the 11-T dipole magnets are being developed by CERN and Fermilab. This paper reviews the status of Nb3Sn technology for accelerator magnets, discusses its main challenges, and discusses how the MQXF and 11-T...

  5. A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2016-05-01

    Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.

  6. Threshold and high-frequency behavior of dipole-bound anion photodetachment

    CERN Document Server

    Chernov, V E; Chernov, Vladislav E.; Zon, Boris A.

    2003-01-01

    An explicit analytic description is given for dipole-bound anion (DBA) as an excess electron bound to the molecular neutral due to its dipole moment. The calculated DBA photodetachment cross-section displays $\\propto\\omega^{-2}$ behavior for large $\\omega$, in complete accordance with the experimental data [Bailey \\textit{et al.}, J. Chem. Phys \\textbf{104}, 6976 (1996)]. At the threshold the photodetachment cross-section displays the Gailitis--Damburg oscillations.

  7. Quantifying imaging performance bounds of extreme dipole illumination in high NA optical lithography

    Science.gov (United States)

    Lee, Myungjun; Smith, Mark D.; Biafore, John; Graves, Trey; Levy, Ady

    2016-10-01

    We present a framework to analyze the performance of optical imaging in a hyper numerical aperture (NA) immersion lithography scanner. We investigate the method to quantify imaging performance by computing upperand lower-bounds on the threshold normalized image log-slope (NILS) and the depth of focus (DOF) in conjunction with the traditional image quality metrics such as the mask error enhancement factor (MEEF) and the linearity for various different pitches and line to space (LS) duty cycles. The effects of the interaction between the light illumination and the feature size are extensively characterized based on the aerial image (AI) behavior in particular for the extreme dipole illumination that is one of the commonly used off-axis illuminations for sub-100nm logic and memory devices, providing resolution near the physical limit of an optical single patterning step. The proposed aerial imaging-based DOF bounds are compared to the results obtained from an experimentally calibrated resist model, and we observed good agreement. In general, the extreme dipole illumination is only optimal for a single particular pitch, therefore understanding the through-pitch imaging performance bound, which depends on the illumination shape, pattern size, and process conditions, is critically important. We find that overall imaging performance varies depending upon the number of diffracted beams passing through the scanner optics. An even number of beams provides very different trends compared to the results from an odd-number of beams. This significant non-linear behavior occurs in certain pitch regions corresponding to 3 beam interference imaging. In this region the imaging performance and the pattern printability become extremely sensitive to the LS duty cycle. In addition, there is a notable tradeoff between the DOF and the NILS that is observed in the problematic 3-beam region and this tradeoff eventually affects the achievable process window (PW). Given the practical real

  8. Impact of the dipole-moment representation on the intensity of high overtones

    Science.gov (United States)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Ushakov, Vladimir G.; Gordon, Iouli E.

    2016-12-01

    Calculating intensities of ro-vibrational transitions is particularly challenging for transitions from a given vibrational state to all upper states up to the dissociation limit because their probabilities decrease exponentially with increasing Δn , the change in the vibrational quantum number. The experimental intensities available for low- Δn values are well reproduced by a variety of models but the models can greatly diverge in predicting the intensities of unobserved high-overtone transitions, the divergence rapidly increasing with the overtone number. In this paper, we investigate the impact of the dipole-moment function (DMF) representation on the high-overtone intensity simulation of the CO molecule. We tested various DMF forms including pointwise representation combined with cubic-spline interpolation, power and trigonometric expansions, and Padé approximants. Numerical calculations were performed with the highly accurate empirical potential-energy function (PEF) of Coxon and Hajigeorgiou (2004) using quadruple-precision arithmetic. Most calculated intensities fall off in the entire range of transitions according to the Normal Intensity Distribution Law (NIDL) (Medvedev, 2012). The slope of the NIDL trend line varies little between different analytical DMFs for a given PEF since the slope is basically associated with the PEF. Based on the NIDL, the limits within which the simulated intensities fall off up to the dissociation limit can be established. We claim that DMFs represented by analytical functions yield best results for all transitions. The pointwise functions (interpolated, in particular, by the conventional cubic splines) result in an unphysical flattening of the intensities at high- Δn transitions, Δn > 7 for CO.

  9. Two aspects of high energy physics. Methods for extended Higgs models and constraints on the colour dipole picture

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, Andreas von

    2008-07-17

    Theories with extended Higgs sectors such as Two-Higgs-Doublet Models (THDMs) or the Next-to-Minimal Supersymmetric Standard Model (NMSSM) allow for rich CP phenomena and involved Higgs-potential structures. Employing a gauge invariant formulation for the tree-level Higgs potential of the general THDM, we derive compact criteria for its stability, electroweak symmetry breaking, and generalised CP properties in a clear geometrical language. A new type of CP symmetry is shown to impose strong restrictions on the Lagrangian and to require at least two fermion generations for non-trivial Yukawa terms. Large regions of the NMSSM parameter space are excluded due to an instable vacuum. We present a rigorous determination of the global minimum of the tree-level potential via Groebner bases. In a second part, we investigate the colour dipole picture. This model of high energy photonproton scattering permits a very successful description of available HERA data. Nevertheless, its range of applicability is limited. We derive general bounds on ratios of deep-inelastic proton structure functions within the colour dipole picture, following exclusively from its framework and photon wave function properties. Confronting these bounds with HERA data we can further restrict the range of applicability of the colour dipole picture. Finally, we calculate Ioffe times for a specific model and find them to be too small to justify the dipole picture at large photon virtualities. (orig.)

  10. The constant electric field effect on the dipole moment of a comb-like polymer with chromophore groups in side chains

    Directory of Open Access Journals (Sweden)

    Tamara P. Stepanova

    2015-03-01

    Full Text Available The study of conformational properties and tendency to association for chromophore-containing comb-like copolymer of β-(3,4-dicyanophenylazobenzenethyazole methacrylate (A and amylmethacrylate (B (1:1 has been carried out. The copolymer AB is of particular interest because of non-linear optical properties of its films. Dielectric permittivity and dipole moment temperature dependences in dilute cyclohexanone solutions in the temperature range from 20 to 70 °С, in the electric field E ≤ 104 V/cm were investigated by means of static dielectric polarization. It was shown that temperature and concentration dependences of dielectric permittivity for the solvent, copolymer AB, monomer A and polymer B were linear indicating low molecular interactions at temperatures and fields used. The invariable stoichiometry of components in solution for concentration lower than 10–3 mol/mol was proved. The values of dielectric permittivity were extrapolated to infinite dilution and increments α=(Δɛ12/Δx2x2=0 were calculated. The solvent dipole moments were calculated in terms of the Onsager theory whereas dipole moments of AB, A and B were calculated in terms of the Backingham statistical theory of dielectric polarization. Intramacromolecular conformational transition was found to be at ∼40 °C. Dipole moment of A was shown to increase with both temperature and electric field strength. Copolymer side chains trans-location takes place due to intramacromolecular association resulting in the compensation of dipole moments and Kirkwood factor g ≈ 0.6. The association of A units increases in the electric field reducing the dipole moment per monomer unit significantly and g values approximately twice.

  11. Magnetopause energy transfer dependence on the interplanetary magnetic field and the Earth's magnetic dipole axis orientation

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2012-03-01

    Full Text Available We examine the spatial variation of magnetospheric energy transfer using a global magnetohydrodynamic (MHD simulation (GUMICS-4 and a large data set of flux transfer events (FTEs observed by the Cluster spacecraft. Our main purpose is to investigate whether it is possible to validate previous results on the spatial energy transfer variation from the GUMICS-4 simulation using the statistical occurrence of FTEs, which are manifestations of magnetospheric energy transfer. Previous simulation results have suggested that the energy transfer pattern at the magnetopause rotates according to the interplanetary magnetic field (IMF orientation, and here we investigate whether a similar rotation is seen in the locations at which FTE signatures are observed. We find that there is qualitative agreement between the simulation and observed statistics, as the peaks in both distributions rotate as a function of the IMF clock angle. However, it is necessary to take into account the modulation of the statistical distribution that is caused by a bias towards in situ FTE signatures being observed in the winter hemisphere (an effect that has previously been predicted and observed in this data set. Taking this seasonal effect into account, the FTE locations support the previous simulation results and confirm the earlier prediction that the energy transfers in the plane of the IMF. In addition, we investigate the effect of the dipole orientation (both the dipole tilt angle and its orientation in the plane perpendicular to the solar wind flow on the energy transfer spatial distribution. We find that the energy transfer occurs mainly in the summer hemisphere, and that the dayside reconnection region is located asymmetrically about the subsolar position. Finally, we find that the energy transfer is 10% larger at equinox conditions than at solstice, contributing to the discussion concerning the semiannual variation of magnetospheric dynamics (known as "the Russell

  12. A Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminated by Electric or Magnetic Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, S.; Meincke, Peter; Jørgensen, E.;

    2002-01-01

    We derive a line integral representation of the physical optics (PO) scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles....

  13. Electric dipole moments of light nuclei in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan

    2014-04-25

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ{sub had} >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ{sub QCD} ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ{sub QCD} in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive

  14. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.

    Science.gov (United States)

    Esslinger, Moritz; Vogelgesang, Ralf

    2012-09-25

    Near-field microscopy offers the opportunity to reveal optical contrast at deep subwavelength scales. In scanning near-field optical microscopy (SNOM), the diffraction limit is overcome by a nanoscopic probe in close proximity to the sample. The interaction of the probe with the sample fields necessarily perturbs the bare sample response, and a critical issue is the interpretation of recorded signals. For a few specific SNOM configurations, individual descriptions have been modeled, but a general and intuitive framework is still lacking. Here, we give an exact formulation of the measurable signals in SNOM which is easily applicable to experimental configurations. Our results are in close analogy with the description Tersoff and Hamann have derived for the tunneling currents in scanning tunneling microscopy. For point-like scattering probe tips, such as used in apertureless SNOM, the theory simplifies dramatically to a single scalar relation. We find that the measured signal is directly proportional to the field of the coupled tip-sample system at the position of the tip. For weakly interacting probes, the model thus verifies the empirical findings that the recorded signal is proportional to the unperturbed field of the bare sample. In the more general case, it provides guidance to an intuitive and faithful interpretation of recorded images, facilitating the characterization of tip-related distortions and the evaluation of novel SNOM configurations, both for aperture-based and apertureless SNOM.

  15. A Magnetic Disturbance Compensation Method Based on Magnetic Dipole Magnetic Field Distributing Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Yun-tao; SHI Zhi-yong; L(U) Jian-gang; GUAN Zhen-zhen

    2009-01-01

    The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time, which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increase the geomagnetic measuring accuracy required for the geomagnetic matching localization, the strategy to eliminate the effect of connatural and induced magnetic fields of carrier on the geomagnetic measuring accuracy is investigated. The magnetic-dipoles magnetic field distributing theory is used to deduce the magnetic composition in the position of the sensor installed on the carrier. A geomagnetic measurement model is established by using the measuring data with the ideal sensor. Considering the magnetic disturbance of carrier and the error of sensor, a geomagnetic measuring compensation model is built. This model can be used to compensate the errors of carrier magnetic field and magnetic sensor in any case and its parameters have clear or specific physical meaning. The experimented results show that the model has higher geomagnetic measuring accuracy than that of others.

  16. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field

    Science.gov (United States)

    Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.

    2017-09-01

    Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.

  17. Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy

    Science.gov (United States)

    Amemiya, Naoyuki; Sogabe, Yusuke; Sakashita, Masaki; Iwata, Yoshiyuki; Noda, Koji; Ogitsu, Toru; Ishii, Yusuke; Kurusu, Tsutomu

    2016-02-01

    Electromagnetic field analyses were carried out to study the influence of coated-conductor magnetisation, i.e. the screening (shielding) current, on the field quality of a dipole magnet in a rotating gantry for hadron cancer therapy. The analyses were made on the cross section of a cosine-theta dipole magnet in a rotating gantry for carbon ions, which generated 2.90 T of magnetic field. The temporal profile (temporal variation) of the magnet current was determined based on the actual excitation schemes of the magnets in the rotating gantry. The experimentally determined superconducting property of a coated conductor was considered, and we calculated the temporal evolutions of the current-density distributions in all the turns of coated conductors in the magnet. From the obtained current-density distributions, we calculated the multipole components of the magnetic field and evaluated the field quality of the magnet. The deviation in the dipole component from its designed value was up to approximately 25 mT, which was approximately 1% of the designed maximum dipole component. Its variation between repeated excitations was approximately 0.03%, and it drifted approximately 0.06% in 10 s. Some compensation schemes might be required to counteract such influence of magnetisation on the dipole component. Meanwhile, the higher multipole components were small, stable, and sufficiently reproducible for a magnet in rotating gantries, i.e. |b 3| ˜ 1.1 × 10-3 and |Δb 3| ˜ 0.2 × 10-3 in 10 s.

  18. Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory

    Science.gov (United States)

    Higa, R.

    2013-08-01

    Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.

  19. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  20. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling...

  1. Tevatron AC dipole system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Kopp, S.E.; /Texas U.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  2. Critical behavior of isotropic three-dimensional systems with dipole-dipole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Belim, S. M., E-mail: sbelim@mail.ru [Dostoevsky Omsk State University (Russian Federation)

    2013-06-15

    The critical behavior of Heisenberg magnets with dipole-dipole interactions near the line of second-order phase transitions directly in three-dimensional space is investigated in terms of a field-theoretic approach. The dependences of critical exponents on the dipole-dipole interaction parameter are derived. Comparison with experimental facts is made.

  3. Retardation effects in induced atomic dipole-dipole interactions

    CERN Document Server

    Graham, S D

    2016-01-01

    We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.

  4. Analysis of large effective electric fields of weakly polar molecules for electron electric-dipole-moment searches

    Science.gov (United States)

    Sunaga, A.; Abe, M.; Hada, M.; Das, B. P.

    2017-01-01

    Combined experimental and theoretical studies on the electric dipole moment of the electron (eEDM) can probe energy scales of a few TeV to PeV. The possible existence of the eEDM gives rise to an experimentally observed energy shift, which is proportional to the effective electric field (Eeff) of a target molecule. Hence, an analysis of the quantities that enhance Eeff is necessary to identify suitable molecules for eEDM searches. In the context of such searches, it is generally believed that a molecule with larger electric polarization also has a larger value of Eeff. However, our Dirac-Fock and relativistic coupled-cluster singles and doubles calculations show that the hydrides of Yb and Hg have larger Eeff than those of fluorides, even though their polarizations are smaller. This is due to significant mixing of valence s and p orbitals of the heavy atom in the molecules. This mixing has been attributed to the energy differences of the valence atomic orbitals and the overlap of the two atomic orbitals based on the orbital interaction theory.

  5. Quench Performance and Field Quality of FNAL Twin-Aperture 11 T Nb3Sn Dipole Model for LHC Upgrades

    CERN Document Server

    Stoynev, S; Apollinari, G; Auchmann, B; Barzi, E; Izquierdo Bermudez, S; Bossert, R; Chlachidze, G; DiMarco, J; Karppinen, M; Nobrega, F; Novitski, I; Rossi, F; Savary, F; Smekens, D; Strauss, T; Turrioni, D; Velev, G; Zlobin, A V

    2016-01-01

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperture configuration. A summary of quench propagation studies in both apertures is given.

  6. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  7. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.

    Science.gov (United States)

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2012-01-15

    Optical antennas are of fundamental importance for the strongly localizing field beyond the diffraction limit. We report that planar optical antennas made of split-ring architecture are numerically found in three-dimensional simulations to outperform dipole antennas for the enhancement of localized field intensity inside their gap regions. The computational results (finite-difference time-domain) indicate that the resulting field localization, which is of the order of many thousandfold, in the case of the split-ring resonators is at least 2 times stronger than the one in the dipole antennas resonant at the same operating wavelength, while the two antenna types feature the same gap size and tip sharpness.

  8. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  9. Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions

    Science.gov (United States)

    Kuznetsov, Andrey A.; Pshenichnikov, Alexander F.

    2017-03-01

    Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ , the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.

  10. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  11. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  12. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  13. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  14. A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment

    Science.gov (United States)

    Kim, Young Jin; Kunkler, Brandon; Liu, Chen-Yu; Visser, Gerard

    2012-01-01

    We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the electric dipole moment of the electron. The DAQ system consists of two main components: a master board for DAQ control and eight individual analog-to-digital converter (ADC) boards for signal processing. This custom DAQ system provides galvanic isolation of the ADC boards from each other and the master board using fiber optic communication to reduce the possibility of ground loop pickup and attain ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  15. A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kunkler, Brandon; Liu, Chen-Yu; Visser, Gerard [CEEM, Physics Department, Indiana University, Bloomington, Indiana 47408 (United States)

    2012-01-15

    We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the electric dipole moment of the electron. The DAQ system consists of two main components: a master board for DAQ control and eight individual analog-to-digital converter (ADC) boards for signal processing. This custom DAQ system provides galvanic isolation of the ADC boards from each other and the master board using fiber optic communication to reduce the possibility of ground loop pickup and attain ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  16. Direct measurement of the plasma loss width in an optimized, high ionization fraction, magnetic multi-dipole ring cusp

    Science.gov (United States)

    Cooper, C. M.; Weisberg, D. B.; Khalzov, I.; Milhone, J.; Flanagan, K.; Peterson, E.; Wahl, C.; Forest, C. B.

    2016-10-01

    The loss width of plasma in the WiPAL multi-dipole magnetic ring cusp [Cooper et al., Phys. Plasmas 21, 13505 (2014); Forest et al., J. Plasma Phys. 81, 345810501 (2015)] has been directly measured using a novel array of probes embedded in the insulating plasma limiters. The large plasma volume ( ˜10 m3), small loss area associated with strong rare earth permanent magnets ( Bo˜2.23 kG at face), and large heating power ( ≤200 kW) produces a broad range of electron temperatures ( 2 magnetic fields, differs from previous devices: the cusp loss width is much larger than the Debye length and electron gyroradius and comparable to the collision length. Plasma parameters measured at the surface of ceramic limiter tiles covering the magnets and along radial chords in the cusp magnetic field indicate that electron density and temperature are nearly constant on magnetic field lines and that the mirror forces play little role in confining the plasma other than to constrict the loss area. Particle balance modeling is used to determine the cross field diffusion coefficient base on the measured losses to the limiters. The experimentally determined cross field diffusion coefficient (which determines the cusp loss width) is consistent with ambipolar diffusion across five orders of magnitude. The ambipolar diffusion across a given field line is set primarily by the electron-neutral collisions in the region where the magnetic field is the weakest, even though these plasmas can have ionization fractions near 1.

  17. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    OpenAIRE

    Ye Peng; Tao Liu; Haifeng Gong; Xianming Zhang

    2016-01-01

    The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric...

  18. Application of Nb3Sn superconductors in high-field accelerator magnets

    NARCIS (Netherlands)

    Ouden, den Andries; Wessel, Sander; Krooshoop, Erik; Kate, ten Herman

    1997-01-01

    Last year a record central field of 11 T at first excitation at 4.4 K has been achieved with the experimental LHC model dipole magnet MSUT by utilising a high Jc powder-in-tube Nb3Sn conductor. This is the first real breakthrough towards fields well above 10 T at 4 K. The clear influence of magnetis

  19. Research on the law of electric dipole in an electric field%外电场下电偶极子运动规律研究

    Institute of Scientific and Technical Information of China (English)

    任恒峰; 王清亮; 连润明; 陈东梅

    2012-01-01

    Discuss the motion of the electric dipole in a uniform electric field, obtain the interaction force between the two particles, and get the kinetic equation by Newton's laws of motion. Finally, derive the law of motion of the electric dipole in the uniform electric field, namely : In the direction of axes, the motion of electric dipole is super- position of uniform motion in a straight line and simple harmonic motion, at the moment of couple the trajectory is periodic spiral.%讨论了均匀外电场下电偶极子的运动,给出加了外电场后两离子实之间的相互作用力,并利用牛顿运动定律解出其动力学方程.最终得出外电场下电偶极子的运动规律,即:在轴线方向上,电偶极子的运动为匀速直线运动和简谐振动的叠加;在力偶矩下,电偶极子的运动轨迹为周期性的螺旋线.

  20. Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array

    CERN Document Server

    Lobanov, S V; Dregely, D; Giessen, H; Gippius, N A; Tikhodeev, S G

    2011-01-01

    We investigate numerically the interaction of an oscillating point dipole with a periodic array of optical Yagi-Uda nanoantennas in the weak coupling limit. A very strong near-field enhancement of the dipole emission by the resonant plasmon mode in the feed element is predicted in this structure. It is shown that the enhancement strength depends strongly on the dipole position, the direction of the dipole moment, and the oscillation frequency. The radiative intensity of the point dipole from appropriate places next to one feed element may exceed the radiative intensity of an equivalent dipole in free-space by a factor of hundred. In spite of only one director used in each nanoantenna of the array, the far-field emission pattern is highly directed. The radiative efficiency (the ratio of the radiative to the full emission) appears to be around 20%.

  1. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate

    Science.gov (United States)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a ‘non-volatile’ converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in ‘non-volatility’. In isolated nanomagnets, the magnetization rotates by \\lt 90^\\circ upon application of the electric field, but in a dipole-coupled pair consisting of one ‘hard’ and one ‘soft’ nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet’s magnetization rotates by \\gt 90^\\circ upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  2. Optimized tapered dipole nanoantenna as efficient energy harvester.

    Science.gov (United States)

    El-Toukhy, Youssef M; Hussein, Mohamed; Hameed, Mohamed Farhat O; Heikal, A M; Abd-Elrazzak, M M; Obayya, S S A

    2016-07-11

    In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

  3. Excluded volume effect of counterions and water dipoles near a highly charged surface due to a rotationally averaged Boltzmann factor for water dipoles.

    Science.gov (United States)

    Gongadze, Ekaterina; Iglič, Aleš

    2013-03-01

    Water ordering near a negatively charged electrode is one of the decisive factors determining the interactions of an electrode with the surrounding electrolyte solution or tissue. In this work, the generalized Langevin-Bikerman model (Gongadze-Iglič model) taking into account the cavity field and the excluded volume principle is used to calculate the space dependency of ions and water number densities in the vicinity of a highly charged surface. It is shown that for high enough surface charged densities the usual trend of increasing counterion number density towards the charged surface may be completely reversed, i.e. the drop in the counterions number density near the charged surface is predicted.

  4. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. Quenching of the Giant Dipole Resonance Strength at High Excitation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Santonocito, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Blumenfeld, Y. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Agodi, C. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Alba, R. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Bellia, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, I-95123 Catania (Italy); Coniglione, R. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Delaunay, F. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Del Zoppo, A. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Finocchiaro, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Frascaria, N. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Hongmei, F. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Lima, V. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France); Maiolino, C. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Migneco, E. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, I-95123 Catania (Italy); Piattelli, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Sapienza, P. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Scarpaci, J.A. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay (France)

    2007-05-15

    The evolution with excitation energy of the Giant Dipole Resonance features in nuclei of mass A{approx}108-136 is reviewed. We first discuss the results of the experiments performed with MEDEA studying the GDR gamma decay from hot nuclei populated at excitation energies above 300 MeV. The focus of the paper is on the excitation energy region between 160 and 290 MeV. This region has been investigated through the study of the reactions {sup 116}Sn + {sup 12}C at 17 and 23A MeV, and {sup 116}Sn + {sup 24}Mg at 17A MeV. Gamma-rays were detected using MEDEA in coincidence with evaporation residues detected in MACISTE. The analysis of the gamma-ray spectra and their comparison with statistical calculations are presented. The comparison with {gamma}-ray spectra from the reaction {sup 36}Ar + {sup 98}Mo at higher excitation energies shows a coherent scenario where a progressive reduction of {gamma} multiplicity relative to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy. Finally, the existence of a link between disappearance of collective motion and the liquid-gas phase transitions is discussed.

  6. Superdirective Magnetic Dipole Array as a First-Order Probe for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2012-01-01

    The theory as well as numerical and experimental results are presented for a superdirective array composed of closely spaced electrically small resonant magnetic dipole elements. The array operates on a metal ground plane and can exhibit a maximum directivity of 11.5 dBi, 15.2 dBi, and 17.8 d......Bi (including 3 dB due to the ground plane), for 2, 3, and 4 magnetic dipoles, respectively. The array is self-resonant and is directly excited by a 50-ohm coaxial cable through the ground plane. The array radiates essentially the $\\vert\\mu\\vert=1$ spherical modes, which, despite a narrow bandwidth, makes...

  7. Properties of the superconductor in accelerator dipole magnets

    Science.gov (United States)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  8. Electric Field Analysis of Static Vertical Dipole in Deepwater%深海中垂直静态电偶极子电位及电场分析

    Institute of Scientific and Technical Information of China (English)

    张鹏鹰

    2012-01-01

    通过建立电场在深海环境下的空气-海水两层模型,采用镜像法,得到深海模型中垂直静态电偶极子的电位和电场分布解析表达式,在此基础上,进行电位和三分量电场仿真计算,分析了两层模型下垂直静态电偶极子的电位、电场强度的分布特性,得到它们随海水深度变化的规律。%Two-layer model of air-seawater model is set up,and the analytical expressions of electric field distribution is derived for static electric dipole of the deep sea.The simulation of electric potential and the three-component electric field are made.The distribution characteristics of static electric dipole's electric potential and electric fields are analyzed,and the influence exerted by the vertical location of the dipole on the distribution of the fields is obtained.

  9. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. II. Approximation scheme and equations of motion

    Science.gov (United States)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.

  10. High field superconductor development and understanding

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C. [Florida State Univ., Tallahassee, FL (United States); Lee, Peter J. [Florida State Univ., Tallahassee, FL (United States); Tarantini, Chiara [Florida State Univ., Tallahassee, FL (United States)

    2014-09-28

    All present circular accelerators use superconducting magnets to bend and to focus the particle beams. The most powerful of these machines is the large hadron collider (LHC) at CERN. The main ring dipole magnets of the LHC are made from Nb-Ti but, as the machine is upgraded to higher luminosity, more powerful magnets made of Nb3Sn will be required. Our work addresses how to make the Nb3Sn conductors more effective and more suitable for use in the LHC. The most important property of the superconducting conductor used for an accelerator magnet is that it must have very high critical current density, the property that allows the generation of high magnetic fields in small spaces. Nb3Sn is the original high field superconductor, the material which was discovered in 1960 to allow a high current density in the field of about 9 T. For the high luminosity upgrade of the LHC, much higher current densities in fields of about 12 Tesla will be required. The critical value of the current density is of order 2600 A/mm2 in a field of 12 Tesla. But there are very important secondary factors that complicate the attainment of this critical current density. The first is that the effective filament diameter must be no larger than about 40 µm. The second factor is that 50% of the cross-section of the Nb3Sn conductor that is pure copper must be protected from any poisoning by any Sn leakage through the diffusion barrier that protects the package of niobium and tin from which the Nb3Sn is formed by a high temperature reaction. These three, somewhat conflicting requirements, mean that optimization of the conductor is complex. The work described in this contract report addresses these conflicting requirements. They show that very sophisticated characterizations can uncover the way to satisfy all 3 requirements and they also suggest that the ultimate optimization of Nb3Sn is still not yet in sight

  11. Geometric frequency shift for electric dipole searches with trapped spin-1/2 particles in general fields and measurement cells of arbitrary shape with smooth or rough walls

    CERN Document Server

    Steyerl, A; Müller, G; Golub, R

    2015-01-01

    The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first investigated by Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\mathbf{70}$, 032102 (2004)]. Their analysis was based on the Bloch equations. In subsequent work using the spin density matrix Lamoreaux and Golub [Phys. Rev. A $\\mathbf{71}$, 032104 (2005)] showed the usual relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently we presented a solution of the Schr\\"odinger equation for spin-$1/2$ particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [Steyerl $\\textit{et al.}$, Phys.Rev. A $\\mathbf{89}$, 052129 (2014)]. Here we extend this work to show how the Redfield theory follows directly from the Schr\\"odinger equation solution and include wall roughness, cylindrical trap geometry with arbitra...

  12. High-gain dipole antenna using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate for 5G applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.

  13. A high dynamic range data acquisition system for a solid-state electron Electric Dipole Moment experiment

    CERN Document Server

    Kim, Young Jin; Liu, Chen-Yu; Visser, Gerard

    2011-01-01

    We have built a high precision (24-bit) data acquisition (DAQ) system with eight simultaneously sampling input channels for the measurement of the electric dipole moment (EDM) of the electron. The DAQ system consists of two main components, a master board and eight individual analog-to-digital converter (ADC) boards. This custom DAQ system provides galvanic isolation, with fiber optic communication, between the master board and each ADC board to reduce the possibility of ground loop pickups. In addition, each ADC board is enclosed in its own heavy-duty radio frequency shielding enclosure and powered by DC batteries, to attain the ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  14. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    Science.gov (United States)

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  15. The steady-state dipole-flow test for characterization of hydraulic conductivity statistics in a highly permeable aquifer: Horkheimer Insel site, Germany.

    Science.gov (United States)

    Zlotnik, V A; Zurbuchen, B R; Ptak, T

    2001-01-01

    Over the last decade the dipole-flow test (DFT) evolved from the general idea of using recirculatory flow to evaluate aquifer properties, to the development of prototype instrumentation and feasibility studies, to a reliable tool for characterization of aquifer heterogeneity. The DFT involves the interpretation of head in recirculatory flow between injection and extraction sections (chambers) in a single well isolated from each other by a multipacker system. In this study, the steady-state dipole flow test (DFT) has been used to characterize the statistics of horizontal hydraulic conductivity (Kr) of the highly permeable, heterogeneous, and thin aquifer at the Horkheimer Insel site, Germany. In previous studies, Kr estimates were based on the steady-state head difference between chambers. A new by-chamber interpretation is proposed that is based on drawdown within each individual chamber. This interpretation yields more detailed information on structure of heterogeneity of the aquifer without introducing complexity into the analysis. The DFT results indicate that Kr ranges from 49 to 6000 m/day (mean ln Kr [(m/s)] approximately -4, and variance of ln Kr [(m/s)] approximately 1-2). Descriptive statistics from the DFT compare well with those from previous field and laboratory tests (pumping, borehole flowmeter, and permeameter tests and grain-size analysis) at this site. It is shown that the role of confining boundaries in the DFT interpretation is negligible even in this case of a thin (< 4 m thick) aquifer. This study demonstrates the flexibility of the DFT and expands the potential application of this method to a wide range of hydrogeologic settings.

  16. Dipole-Dipole Interactions of Charged Magnetic Grains

    CERN Document Server

    Perry, Jonathan; Hyde, Truell

    2010-01-01

    The interaction between dust grains is an important process in fields as diverse as planetesimal formation or the plasma processing of silicon wafers into computer chips. This interaction depends in large part on the material properties of the grains, for example whether the grains are conducting, non-conducting, ferrous or non-ferrous. This work considers the effects that electrostatic and magnetic forces, alone or in combination, can have on the coagulation of dust in various environments. A numerical model is used to simulate the coagulation of charged, charged-magnetic and magnetic dust aggregates formed from ferrous material and the results are compared to each other as well as to those from uncharged, non-magnetic material. The interactions between extended dust aggregates are also examined, specifically looking at how the arrangement of charge over the aggregate surface or the inclusion of magnetic material produces dipole-dipole interactions. It will be shown that these dipole-dipole interactions can ...

  17. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    Science.gov (United States)

    Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.

    2013-04-01

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.

  18. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency

    Science.gov (United States)

    Simons, Matt T.; Gordon, Joshua A.; Holloway, Christopher L.

    2016-09-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) with cesium (Cs) and rubidium (Rb) Rydberg atoms in the same vapor cell with coincident (overlapping) optical fields. Each atomic system can detect radio frequency (RF) electric (E) field strengths through the modification of the EIT signal (Autler-Townes (AT) splitting), which leads to a direct International System of Unit traceable RF E-field measurement. We show that these two systems can detect the same RF E-field strength simultaneously, which provides a direct in situ comparison of Rb and Cs RF measurements in Rydberg atoms. In effect, this allows us to perform two measurements of the same E-field strength, providing a relative comparison of the dipole moments of the two atomic species. This gives two measurements that help rule out systematic effects and uncertainties in this E-field metrology approach, which are important when establishing an international measurement standard for an E-field strength, and is a necessary step for this method to be accepted as a standard calibration technique. We use this approach to measure E-fields at 9.2 GHz, 11.6 GHz, and 13.4 GHz, which correspond to three different atomic states (different principal atomic numbers and angular momentums) for the two atom species.

  19. Observation of high energy electromagnetic dipole radiation in 14N+Ni reactions at Elab/A = 35 MeV

    Science.gov (United States)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R. F.; Paul, P.; Stachel, J.; Awes, T. C.; Ferguson, R. L.; Obenshain, F. E.; Plasil, F.; Young, G. R.

    1986-06-01

    High energy photons (20γ+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  20. Dipole defects in beryl

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, B A; Cordeiro, R C; Blak, A R, E-mail: bruna.holanda@usp.br, E-mail: renan.cordeiro@usp.br, E-mail: anablak@if.usp.br

    2010-11-15

    Dipole defects in gamma irradiated and thermally treated beryl (Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  1. Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu; Zhu, Yuan, E-mail: zhuy9@mail.sysu.edu, E-mail: phzktang@ust.hk; Chen, Mingming; Su, Longxing; Chen, Anqi; Zhao, Chengchun; Gui, Xuchun; Xiang, Rong; Huang, Feng [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Zikang, E-mail: zhuy9@mail.sysu.edu, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-16

    Surface water molecules induced grain boundaries (GBs) barrier modification was investigated in ZnO and ZnMgO/ZnO films. Tunable electronic transport properties of the samples by water were characterized via a field effect transistor (FET) device structure. The FETs fabricated from polar C-plane ZnO and ZnMgO/ZnO films that have lots of GBs exhibited obvious double Schottky-like current-voltage property, whereas that fabricated from nonpolar M-plane samples with GBs and ZnO bulk single-crystal had no obvious conduction modulation effects. Physically, these hallmark properties are supposed to be caused by the electrostatical coupling effect of crystal polar field and molecular dipole on GBs barrier.

  2. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  3. The radiation problem from a vertical short dipole antenna above flat and lossy ground. Novel formulation in the spectral domain with closed form analytical solution in the high frequency regime

    CERN Document Server

    Christakis, Ch; Sautbekov, S; Frangos, P; Atanov, S K

    2014-01-01

    In this paper we consider the problem of radiation from a vertical short Hertzian dipole above flat lossy ground, which represents the well known in the literature Sommerfeld radiation problem. The problem is formulated in a novel spectral domain approach, and by inverse three dimensional Fourier transformation the expressions for the received electric and magnetic field in the physical space are derived as one dimensional integrals over the radial component of wavevector, in cylindrical coordinates. Subsequent use of the Stationary Phase Method in the high frequency regime yields closed form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so called in the literature space wave, i.e. line of sight plus reflected EM field, represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results...

  4. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  5. Local Field Distribution Function and High Order Field Moments for metal-dielectric composites.

    Science.gov (United States)

    Genov, Dentcho A.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-11-01

    In a span of two decades the physics of nonlinear optics saw vast improvement in our understanding of optical properties for various inhomogeneous mediums. One such medium is the metal-dielectric composite, where the metal inclusions have a surface coverage fraction of p, while the rest (1-p) is assumed to represent the dielectric host. The computations carried out by using different theoretical models and the experimental data show existence of giant local electric and magnetic field fluctuations. In this presentation we will introduce a new developed 2D model that determines exactly the Local Field Distribution Function (LFDF) and all other relevant parameters of the film. The LFDF for small filling factors will be shown to transform from lognormal distribution into a single-dipole distribution function. We also will confirm the predictions of the scaling theory for the high field moments, which have a power law dependence on the loss factor.

  6. High Tc superconductivity mechanism controlled by electric dipole correlation and charge correlation

    OpenAIRE

    2008-01-01

    The model is based on a mirror symmetry breaking second order phase transition leading to a pairing between a free charge carriers and a free mirror charge carriers. This approach gives a unified description of low and high Tc superconductivity with a point of view differing from that of BCS theory.The material's crystal structure symmetry is the key to understand the mechanism of pairing by introducing a mirror plane polarization effect in lattice as it is described below.

  7. Direct summation of dipole-dipole interactions using the Wolf formalism.

    Science.gov (United States)

    Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael

    2015-07-07

    We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.

  8. Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization.

    Science.gov (United States)

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-04-16

    We developed the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently proposed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.

  9. Effects of electric fields and collisions on highly excited rubidium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, N.I.; Compton, R.N. [Tennessee Univ., Dept. of Chemistry and Physics, Knoxville, TN (United States)

    2003-10-01

    The effects of static and pulsed electric fields on the multiphoton ionization (MPI) of rubidium atoms at both low (atomic beam) and high (heat pipe) densities are studied using tunable OPO lasers. Two-photon excitation of np states is induced by the external electric field at both low and high densities. In addition, np signal is also seen at very low electric fields in the heat pipe, providing evidence for collision mixing as well as field mixing. At low Rb densities strong resonance features are observed in the energy region between the zero field limit (IP) and the field ionization limit. In addition, collisional detachment and charge transfer between excited ns and nd Rb Rydberg states and nozzle-jet cooled polar molecules (acetonitrile and acetone) are studied under crossed-beam conditions. The formation of dipole bound anions for acetone is only seen under nozzle jet expansion conditions and the maximum in the Rydberg electron transfer (RET) rate versus n depends upon the expansion gas (n{sub max} increases in the order H{sub 2}, He, Ne, Ar, Xe). For acetone (low dipole moment and large n{sub max}), collisional detachment dominates the charge transfer, whereas for acetonitrile (high dipole moment and low n{sub max}), charge transfer is seen to dominate the creation of Rb{sup +}. (authors)

  10. Effects of electric fields and collisions on highly excited rubidium atoms

    Science.gov (United States)

    Hammer, N. I.; Compton, R. N.

    2003-10-01

    The effects of static and pulsed electric fields on the multiphoton ionization (MPI) of rubidium atoms at both low (atomic beam) and high (heat pipe) densities are studied using tunable OPO lasers. Two-photon excitation of np states is induced by the external electric field at both low and high densities. In addition, np signal is also seen at very low electric fields in the heat pipe, providing evidence for collision mixing as well as field mixing. At low Rb densities strong resonance features are observed in the energy region between the zero field limit (IP) and the field ionization limit. In addition, collisional detachment and charge transfer between excited ns and nd Rb Rydberg states and nozzle-jet cooled polar molecules (acetonitrile and acetone) are studied under crossed-beam conditions. The formation of dipole bound anions for acetone is only seen under nozzle jet expansion conditions and the maximum in the Rydberg electron transfer (RET) rate versus n depends upon the expansion gas (n_max increases in the order H{2}, He, Ne, Ar, Xe). For acetone (low dipole moment and large n_max), collisional detachment dominates the charge transfer, whereas for acetonitrile (high dipole moment and low n_max), charge transfer is seen to dominate the creation of Rb+.

  11. Derivation of the magnetic field on a metal cylinder excited by a longitudinal magnetic dipole transmitter: II. Cylinder in a two-layer dissipative dielectric medium

    Science.gov (United States)

    Freedman, Robert

    2016-11-01

    We derive an exact convergent analytical solution for the complex frequency-dependent magnetic field on the surface of an infinitely long and perfectly conducting metal cylinder situated in a cylindrically layered dissipative medium. The inhomogeneous medium consists of two exterior cylindrical layers that are concentric with the cylinder. The magnetic field on the cylinder is excited by a longitudinally oriented oscillating magnetic dipole transmitter on the cylinder surface. An exact analytical solution to this problem has not been previously published and is of theoretical as well as practical importance, e.g., in modeling the responses of electromagnetic wave propagation well logging tools. It is shown that the magnetic field on the cylinder surface can be expressed as a real-axis integral; however, the integrand oscillates rapidly and diverges for large values of the integration variable. The real-axis integral is replaced by the sum of two convergent branch line integrals and a sum over the residues of the complex poles in the integrand of the real-axis integral. The poles correspond physically to waveguide modes that propagate with discrete wave numbers. A pole search algorithm is developed to locate the positions of the poles and compute their residues. Phase shifts and attenuations of the magnetic field between receivers for a 1.1 GHz well logging tool are computed to elucidate the pole spectra and the relative contributions of the waveguide modes and the branch cut integrals for different thicknesses of the innermost dielectric layer and for different layer properties.

  12. Axion Induced Oscillating Electric Dipole Moments

    CERN Document Server

    Hill, Christopher T

    2015-01-01

    The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.

  13. Particle flocculation and filtration by high-gradient magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, S. [Georgie Inst. of Technology, Atlanta, GA (United States)

    1997-01-01

    Flocculation and filtration of micrometer-sized particles in a high-gradient magnetic field (HGMF) were investigated. Experiments were conducted using a cryogenic magnet of 6 Tesla maximum strength. Hematite particles were used for flocculation and filtration experiments. A new approach of using magnetic fields to enhance separation of weakly magnetic particles was also investigated. This approach is based on magnetic seeding which involves flocculation of existing non-magnetic particles with injected paramagnetic particles. A particle-flocculation model was developed based on trajectory analysis. External forces due to gravity and magnetism, and interparticle forces such as electrostatic, hydrodynamic, magnetic dipole, and van der Waals forces, were taken into consideration in these models.

  14. High field magnet program at Brookhaven National Laboratory

    CERN Document Server

    Ghosh, A; Muratore, J; Parker, B; Sampson, W; Wanderer, P J; Willen, E

    2000-01-01

    The magnet program at Brookhaven National Laboratory (BNL) is focussed on superconducting magnets for particle accelerators. The effort includes magnet production at the laboratory and in industry, magnet R&D, and test facilities for magnets and superconductors. Nearly 2000 magnets-dipoles, quadrupoles, sextupoles and correctors for the arc and insertion regions-were produced for the Relativistic Heavy Ion Collider (RHIC), which is being commissioned. Currently, production of helical dipoles for the polarized proton program at RHIC, insertion region dipoles for the Large Hadron Collider (LHC) at CERN, and an insertion magnet system for the Hadron-Elektron-Ring- Analage (HERA) collider at Deutsches Elektronen-Synchrotron (DESY) is underway. The R&D effort is exploring dipoles with fields above 10 T for use in post-LHC colliders. Brittle superconductors-Nb/sub 3/Sn or HTS-are being used for these magnets. The superconductor test facility measures short-sample currents and other characteristics of sample...

  15. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  16. Helical Dipole Magnets for Polarized Protons in RHIC

    Science.gov (United States)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  17. Integral Measurement of Dipole Prototype of CSR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dipole prototype is C type used as bending magnet of the injection beam line in CSR, and acts as a model of the dipoles in the CSR main ring simultaneously. The designed relative uniformity of good field is 0.001 in 100 mm width. The results of the local distribution and transfunction at transverse profile measured

  18. Magnetic dipole oscillations and radiation damping

    Science.gov (United States)

    Stump, Daniel R.; Pollack, Gerald L.

    1997-01-01

    We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.

  19. Cable Magnetization Effects in the LHC Main Dipole Magnets

    CERN Document Server

    Bottura, L; Walckiers, L; Wolf, R

    1998-01-01

    Several short (1 m) and long (10 m) dipole models have been tested within the scope of the on-going R&D programme for LHC at CERN. We report here the results of measurements of field quality in these dipoles, focussing on the contribution of cable magnetization. We show that the results obtained over a significant (> 10) number of magnets at 1.8 and 4.2 K are in reasonable agreement with calculati ons of the dependence of allowed harmonics on field. The calculations are based on the Bean model of filament magnetization and assume an approximate Jc(B) dependence, calibrated against low field mea surements of strand magnetization. The field quality measurements at low field also correlate satisfactorily to measurements of cable critical current at high field and geometric filament diameter.

  20. Geometrical structures, vibrational frequencies, force constants and dissociation energies of isotopic water molecules (H2O, HDO, D2O, HTO, DTO, and T2O) under dipole electric field

    Institute of Scientific and Technical Information of China (English)

    Shi Shun-Ping; Zhang Quan; Zhang Li; Wang Rong; Zhu Zheng-He; Jiang Gang; Fu Yi-Bei

    2011-01-01

    The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries,the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf).The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O-H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u.to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.

  1. Doubly and triply linked porphyrin-perylene monoimides as near IR dyes with large dipole moments and high photostability

    KAUST Repository

    Jiao, Chongjun

    2011-01-21

    Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American Chemical Society.

  2. High field strength following the Kauai R-N geomagnetic reversal

    Energy Technology Data Exchange (ETDEWEB)

    Paul, H.A. (Occidental College, Los Angeles, CA (United States). Dept. of Geology)

    1993-04-01

    The paleomagnetism of superposed lava flows on Kauai, Hawaii shows that the ancient geomagnetic field was unusually strong following a reverse-to-normal polarity transition that occurred about 4 million years ago. Paleointensities were determined by a standard experimental procedure (Thelliers' method) that recreates the process of remanence acquisition in volcanic rocks. This experiment makes it possible to infer the strength of the geomagnetic field present with each lava flow formed, thus producing an accurate picture of the ancient field's behavior after the reversal. Samples from 10 volcanic units yielded virtual dipole moments (VDMs) ranging from 7.4 [times] 10[sup 22] Am[sup 2] to 14.5 [times] 10[sup 22] Am[sup 2] with an average of 11.1[times]10[sup 22] Am[sup 2]. This value is high in comparisons to the average VDM for the past 5 m.y., approximately 8.7[times]10[sup 22] Am[sup 2]. In contrast to the highly variable dipole moment observed following a 15 m.y. old reversal at Steen s Mountain, Oregon, the field following the Kauai transition was relatively steady. Surprisingly, the maximum dipole moments following the two reversals were nearly equal. This similarity hints that high field strength may be a systematic feature of the geodynamo immediately following a polarity reversal.

  3. Detailed discussion of a linear electric field frequency shift induced in confined gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments

    Science.gov (United States)

    Lamoreaux, S. K.; Golub, R.

    2005-03-01

    The search for particle electric dipole moments (EDM’s) is one of the best places to look for physics beyond the standard model of electroweak interaction because the size of time reversal violation predicted by the standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymmetry. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We develop a general analytical approach to describe a systematic effect recently observed in an electric dipole moment experiment using stored particles [J. M. Pendlebury , Phys. Rev. A 70, 032102 (2004)]. Our approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation function, are in good agreement with both the limiting cases studied in recent work that employed a numerical and heuristic analysis. Our general approach explains some of the surprising results observed in that work and displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously.

  4. Effects of gastrointestinal tissue structure on computed dipole vectors

    Science.gov (United States)

    Austin, Travis M; Li, Liren; Pullan, Andrew J; Cheng, Leo K

    2007-01-01

    Background Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM) cells and Interstitial Cells of Cajal (ICC). In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. Methods Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. Results The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the geometry of the small

  5. Effects of gastrointestinal tissue structure on computed dipole vectors

    Directory of Open Access Journals (Sweden)

    Pullan Andrew J

    2007-10-01

    Full Text Available Abstract Background Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM cells and Interstitial Cells of Cajal (ICC. In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. Methods Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. Results The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the

  6. Roton dipole moment

    OpenAIRE

    Mineev, V. P.

    2009-01-01

    The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...

  7. Artificial abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms

    CERN Document Server

    Cesa, A

    2013-01-01

    We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation of abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform laser field, we show that the combined atom-atom and atom-field interactions give rise to new, non-uniform, artificial gauge potentials. We identify the mechanism responsible for the emergence of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial magnetic fields are reached in the regime intermediate between the dipole blockade regime and the regime in which the atoms are sufficiently far apart such that atom-light interaction dominates over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation of experimentally attainable artificial magnetic fields resulting from this mechanism.

  8. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  9. Observation of high energy electromagnetic dipole radiation in /sup 14/N + Ni reactions at Esub(lab)/A = 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R.F.; Paul, P.; Stachel, J.; Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.; Plasil, F.; Young, G.R.

    1986-06-19

    High energy photons (20 < Esub(..gamma..) < 150 MeV) produced in inclusive /sup 14/N+Ni->..gamma..+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  10. The correlation between magneto-optical response and magnetic dipole resonance excitation in subwavelength silicon-nickel nanogratings

    Science.gov (United States)

    Musorin, A. I.; Barsukova, M. G.; Shorokhov, A. S.; Neshev, D. N.; Kivshar, Y. S.; Fedyanin, A. A.

    2017-09-01

    The advantages of gyrotopic materials are combined with the field of high-index metamaterials. The enhancement of the magneto-optical response in the spectral vicinity of the magnetic dipole resonance of a dielectric silicon nanodisks is numerically shown.

  11. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  12. Purely electric and magnetic dipole resonances in metamaterial dielectric resonators through perturbation theory inspired geometries

    CERN Document Server

    Campione, Salvatore; Warne, Larry K; Sinclair, Michael B

    2014-01-01

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometry in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole ...

  13. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics

    Science.gov (United States)

    Dai, Ye-Jing; Zhao, Yong-Jie; Zhao, Zhe; Zhao, Zhi-Hao; Zhou, Qi-Wu; Zhang, Xiao-Wen

    2016-07-01

    Acceptor doping is an efficient method to improve ferroelectric material performance through the formation of defect dipoles. Here, a high electrostrictive strain of 0.16-0.19%, and large d33\\ast of  >300 pm V-1 are obtained in CuO-doped (K0.5Na0.5)NbO3 ceramics. We analyzed the orientation relationship and the interaction between defect dipole polarization (P d) along orientation and spontaneous polarization (P s) parallel to in orthorhombic (K0.5Na0.5)NbO3. Thus, a ‘coupling effect’ mechanism was suggested to explain how the P d and P s can work together to contribute to the electrostrictive strains in this lead-free piezoelectric ceramic.

  14. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    the cross coupling between the electric field fluctuations and dipole moment fluctuations can be ignored. The peak frequencies in the spectra of the autocorrelation functions are also derived. They depend on the wave vector squared which is a fingerprint of the underlying dipole diffusion mechanism....... For the longitudinal direction the simulation results show that the cross coupling between the electric field and the dipole moment is non-negligible compromising the theoretical predictions. The underlying mechanism for this coupling is not clear.......Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...

  15. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  16. A skull-based multiple dipole phantom for EEG and MEG studies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, M.E.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)

    1996-07-01

    A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.

  17. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field

    Science.gov (United States)

    Virtanen, H.; Keshvari, J.; Lappalainen, R.

    2007-03-01

    As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg-1) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.

  18. Magnetization as a critical defining parameter for strand in precision dipole applications implications for field error and F-J stability

    CERN Document Server

    Collings, E W; Lee, E

    2001-01-01

    In hadron accelerators, between low energy particle injection and beam accumulation, the guiding dipoles are ramped at some rate dB/dt. Both at injection and during ramping the static and dynamic magnetizations of the magnet windings introduce multipolar distortions into the beam-line field. Dynamic magnetization, controllable by cable design, is estimated and used to provide a criterion against which to evaluate the allowable magnitude of static (persistent-current) magnetization, M, from a field-quality standpoint. The it is of NbTi and advanced Nb/sub 3/Sn conductors are compared and with regard to the latter the question of flux-jump stability is explored. A magnetization criterion for such stability is presented and compared to experiment. It is noted that since Delta M is proportional to critical current density, J/sub c/, and the strand's effective filament diameter, d/sub eff/, the latter has frequently been specified as a critical parameter, although it will need to be re-specified with every increas...

  19. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  20. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  1. Quantum electrodynamical corrections to a magnetic dipole in general relativity

    CERN Document Server

    Pétri, J

    2015-01-01

    Magnetized neutron stars are privileged places where strong electromagnetic fields as high as $\\BQ=4.4\\times10^9$~T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant~$\\alpha_{\\rm sf}$ and to any order in the ratio $\\Rs/R$ where $R$ is the neutron star radius and $\\Rs$ its Schwarzschild radius. Following our new 3+1~formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar~$\\ell=1$ and hexapolar~$\\ell=3$ component.

  2. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field

  3. On the Color Dipole Picture

    CERN Document Server

    Schildknecht, Dieter

    2016-01-01

    We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy $J/\\psi$ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.

  4. Separation of Pygmy Dipole and M1 Resonances in Zr90 by a High-Resolution Inelastic Proton Scattering Near 0°

    Science.gov (United States)

    Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.

    2012-06-01

    A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.

  5. Mercury Monohalides: Suitability for Electron Electric Dipole Moment Searches

    CERN Document Server

    Prasannaa, V S; Abe, M; Das, B P

    2014-01-01

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr,and HgI). We study the influence of the halide anions on effective electric field, and identify HgBr and HgI as interesting candidates for future electric dipole moment search experiments.

  6. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  7. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole

    CERN Document Server

    Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T

    2015-01-01

    We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.

  8. An evaluation of three diagnostic wind models (CALMET, MCSCIPUF, and SWIFT) with wind data from the Dipole Pride 26 field experiments

    Science.gov (United States)

    Cox, Robert M.; Sontowski, John; Dougherty, Catherine M.

    2005-12-01

    This paper describes the evaluation of three diagnostic wind models by direct comparison with wind field data. The models are the California Meteorological Model (CALMET), the Mass Consistent model (MCSCIPUF) associated with the Second Order Closure Integrated Puff (SCIPUFF) transport/dispersion model, and the Stationary Wind Field and Turbulence (SWIFT) model. The evaluation follows previous works by Chang, Franzese & Hanna, who compared the same three models, and by Bradley & Mazzola who evaluated SWIFT coupled with SCIPUFF. As with SWIFT, MCSCIPUF is incorporated in the Hazard Prediction and Assessment Capability (HPAC), while CALMET is linked with the California Puff model (CALPUFF), another transport and dispersion model. The Dipole Pride 26 (DP26) experiments, performed at the US Department of Energy (DOE) Nevada Test Site, are used as the source of the wind data. They provide a comprehensive set of meteorological data with wide-ranging atmospheric stability conditions over a complex terrain. Model calculations were compared with measured data in two phases. The first phase uses complete sets of data from eight locations (the 8M phase) as model inputs, and thus tests the ability of the models to reproduce input conditions. In the second phase, five of the measured wind sites are withheld from input, and instead used for validation of model calculations (the 3M phase). In the first phase, the errors were found (with some exceptions) to be quite small. In the second phase, mean absolute errors were found to be of the order of 1 ms[minus sign]1 and 30°, with only small differences among models in terms of performance.

  9. Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    CERN Document Server

    Gonzalez-Ferez, Rosario

    2008-01-01

    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.

  10. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  11. Vanishing of dipole matrix elements at level crossings.

    Science.gov (United States)

    Kocher, C. A.

    1972-01-01

    Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.

  12. Axion induced oscillating electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  13. Mercury monohalides: suitability for electron electric dipole moment searches.

    Science.gov (United States)

    Prasannaa, V S; Vutha, A C; Abe, M; Das, B P

    2015-05-08

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.

  14. Determination of AC Characteristics of Superconducting Dipole Magnets in the Large Hadron Collider Based on Experimental Results and Simulations

    CERN Document Server

    Ambjørndalen, Sara; Verweij, Arjan

    The Large Hadron Collider (LHC) utilizes high-field superconducting Main Dipole Magnets that bend the trajectory of the beam. The LHC ring is electrically divided into eight octants, each allocating a 7 km chain of 154 Main Dipole Magnets. Dedicated de- tection and protection systems prevent irreversible magnet damage caused by quenches. Quench is a local transition from the superconducting to the normal conducting state. Triggering of such systems, along with other failure scenarios, result in fast transient phenomena. In order to analyze the consequence of such electrical transients and failures in the dipole chain, one needs a circuit model that is validated against measurements. Currently, there exists an equivalent circuit of the Main Dipole Magnet resolved at an aperture level. Each aperture model takes into account the dynamic effects occurring in the magnets, trough a lossy-inductance model and parasitic capacitances to ground. At low frequencies the Main Dipole Magnet behaves as a linear inductor. Ca...

  15. Discovery of Two High-Magnetic-Field Radio Pulsars

    CERN Document Server

    Camilo, F M; Lyne, A G; Manchester, R N; Bell, J F; D'Amico, N; McKay, N P F; Crawford, F

    2000-01-01

    We report the discovery of two young isolated radio pulsars with very high inferred magnetic fields. PSR J1119-6127 has period P = 0.407 s, and the largest period derivative known among radio pulsars, Pdot = 4.0e-12. Under standard assumptions these parameters imply a characteristic spin-down age of only tau = 1.6 kyr and a surface dipole magnetic field strength of B = 4.1e13 G. We have measured a stationary period-second-derivative for this pulsar, resulting in a braking index of n = 2.91+-0.05. We have also observed a glitch in the rotation of the pulsar, with fractional period change Delta_P/P = -4.4e-9. Archival radio imaging data suggest the presence of a previously uncataloged supernova remnant centered on the pulsar. The second pulsar, PSR J1814-1744, has P = 3.975 s and Pdot = 7.4e-13. These parameters imply tau = 85 kyr, and B = 5.5e13 G, the largest of any known radio pulsar. Both PSR J1119-6127 and PSR J1814-1744 show apparently normal radio emission in a regime of magnetic field strength where som...

  16. Color dipole chain and its hadronization in pp collision

    Institute of Scientific and Technical Information of China (English)

    赵晋全; 王群; 谢去病

    1995-01-01

    High energy pp collision is dealt with by double-string model. Each string corresponds to one initial color dipole which will radiate gluons to form color dipole chain. Such gluon radiation process is described by color dipole model. According to the quark combination rule, the total multiplicity formulae for calculating primary meson and baryon of one dipole chain are presented- The calculated yields of various final hadrons in energy range =53- 1 800GeV agree well with available data.

  17. On the dipole moment of CO/+/.

    Science.gov (United States)

    Certain, P. R.; Woods, R. C.

    1973-01-01

    Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).

  18. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  19. Quantum logic via optimal control in holographic dipole traps

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, U [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Calarco, T [ECT, I-38050 Villazzano, TN (Italy); Zoller, P [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Browaeys, A [Laboratoire Charles Fabry de l' Institut d' Optique, Centre Universitaire, Batiment 503, F-91403 Orsay (France); Grangier, P [Laboratoire Charles Fabry de l' Institut d' Optique, Centre Universitaire, Batiment 503, F-91403 Orsay (France)

    2005-10-01

    We propose a scheme for quantum logic with neutral atoms stored in an array of holographic dipole traps where the positions of the atoms can be rearranged by using holographic optical tweezers. In particular, this allows for the transport of two atoms to the same well where an external control field is used to perform gate operations via the molecular interaction between the atoms. We show that optimal control techniques allow for the fast implementation of the gates with high fidelity.

  20. Quantum logic via optimal control in holographic dipole traps

    CERN Document Server

    Dorner, U; Zoller, P; Browaeys, A; Grangier, P

    2005-01-01

    We propose a scheme for quantum logic with neutral atoms stored in an array of holographic dipole traps where the positions of the atoms can be rearranged by using holographic optical tweezers. In particular, this allows for the transport of two atoms to the same well where an external control field is used to perform gate operations via the molecular interaction between the atoms. We show that optimal control techniques allow for the fast implementation of the gates with high fidelity.

  1. Application of Laser Magnetic Resonance Spectroscopy to the Measurement of Electric Dipole Moment of Free Radicals

    Institute of Scientific and Technical Information of China (English)

    郭远清; 黄光明; 林洁丽; 段传喜; 李奉延; 李津蕊; 刘煜炎

    2001-01-01

    An intracavity CO laser magnetic resonance spectrometer with homogeneous dc electric field applied via a pairof parallel Stark plates in the absorption cell is used to measure the electric dipole moments of free radicals.Taking advantage of the high sensitivity and high resolution of this technique and the Stark effect, highlyresolved saturated absorption spectra of the ν = 1 - 0 transition of 15 N16 O in the ground state X2 П3/2 have beensuccessfully observed in the presence of a low electric field. The electric dipole moment of NO in the electronicground state is determined asμ = 0.1566 ± 14D (Debye) from the analysis of the observed spectra, confirmingthat, combined with the Stark field, the laser magnetic resonance technique can be an effective and reliableapproach for the precise measurement of electric dipole moments of free radicals, especially unstable ones.

  2. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  3. PERSISTENT CURRENT EFFECT IN 15-16 T NB3SN ACCELERATOR DIPOLES AND ITS CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Zlobin, A. V. [Fermilab

    2016-11-08

    Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.

  4. Diamond dipole active antenna

    OpenAIRE

    Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  5. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  6. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  7. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  8. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  9. Slice of the LHC prototype beam tubes in dipole magnet

    CERN Multimedia

    1995-01-01

    A slice of the LHC accelerator prototype beam tubes surrounded by magnets. The LHC will accelerate two proton beams in opposite directions. The high bending and accelerating fields needed can only be reached using superconductors. At very low temperatures superconductors have no electrical resistance and therefore no power loss. The LHC will be the largest superconducting installation ever built, a unique challenge for CERN and its industrial partners. About dipole magnets: There will be 1232 dipole magnets in the LHC, used to guide the particles around the 27 km ring. Dipole magnets must have an extremely uniform field, which means the current flowing in the coils has to be very precisely controlled. Nowhere before has such precision been achieved at such high currents. The temperature is measured to five thousandths of a degree, the current to one part in a million. The current creating the magnetic field will pass through superconducting wires at up to 12 500 amps, about 30 000 times the current flowing ...

  10. Quantum Zeno suppression of dipole-dipole forces

    CERN Document Server

    Wüster, Sebastian

    2016-01-01

    We consider inter-atomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultra-cold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing controllable interactions with the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete arrest of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.

  11. Localization technique research of a pipeline robot based on the magnetic-dipole model

    Institute of Scientific and Technical Information of China (English)

    Junyuan LI; Hongjun CHEN; Shengfeng LI; Xiaohua ZHANG

    2008-01-01

    The magnetic field distribution of an emission antenna is studied in this paper. When the slenderness ratio of the emission antenna is high, the emission antenna can be simplified as a magnetic dipole for practical application. The numerical results of the magnetic dipole magnetic field show that the magnetic magnitude dis-tribution has a hump-shape, whose direction is perpendi-cular with the antenna axis direction. A localization method based on the hump-shape signal detection is presented. The experimental result shows that the preci-sion can reach a value of + 5 cm. The method can be used to localize a pipeline robot working in a metal pipe.

  12. A Broadband High-Gain Bi-Layer Log-Periodic Dipole Array (LPDA) for Ultra High Frequency (UHF) Conformal Load Bearing Antenna Structures (CLAS) Applications

    Science.gov (United States)

    2014-08-01

    antenna ,’’ IEEE Trans. Antennas Propag., Vol. 57, pp. 3458-3466, Nov. 2009. [12] A. Calmon, G. Pacheco, M.A.B. Terada, “A novel reconfigurable UWB log...Frequency reconfigurable compact multiband quasi-log periodic dipole array (QLPDA) antenna for wireless communications,’’ 2010 IEEE Antennas and...BEARING ANTENNA STRUCTURES (CLAS) APPLICATIONS Nicholas A. Bishop and Mohammod Ali University of South Carolina Jason Miller, David L. Zeppettella

  13. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  14. A plasmonic dipole optical antenna coupled quantum dot infrared photodetector

    Science.gov (United States)

    Mojaverian, Neda; Gu, Guiru; Lu, Xuejun

    2015-12-01

    In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.

  15. kT-scale colloidal interactions in high-frequency inhomogeneous AC electric fields. II. Concentrated ensembles.

    Science.gov (United States)

    Juárez, Jaime J; Liu, Brian G; Cui, Jing-Qin; Bevan, Michael A

    2011-08-02

    We report nonintrusive optical microscopy measurements of ensembles of polystyrene colloids in inhomogeneous AC electric fields as a function of field frequency and particle size. By using an inverse Monte Carlo (MC) simulation analysis of time-averaged particle microstructures, we sensitively measure induced dipole-dipole interactions on the kT energy scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-dipole interactions vanish. By using measured single dipole-field interactions and associated parameters from Part I as input in the inverse analysis, the dipole-dipole interactions in this work are accurately modeled with no adjustable parameters for conditions away from the crossover frequency (i.e., |f(CM)| > 0). As dipolar interactions vanish at the crossover, a single frequency-dependent parameter is introduced to account for microstructures that appear to result from weak AC electro-osmotic flow induced interactions. By connecting quantitative measures of equilibrium microstructures and kT-scale dipole-field and dipole-dipole interactions, our findings provide a basis to understand colloidal assembly in inhomogeneous AC electric fields.

  16. Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap

    Science.gov (United States)

    Li, Yuqing; Feng, Guosheng; Xu, Rundong; Wang, Xiaofeng; Wu, Jizhou; Chen, Gang; Dai, Xingcan; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2015-05-01

    We report a detailed study of effective magnetically levitated loading of cold atoms in a crossed dipole trap: an appropriate magnetic field gradient precisely compensates for the destructive gravitational force of the atoms and an additional bias field simultaneously eliminates the antitrapping potential induced by the magnetic field gradient. The magnetic levitation is required for a large-volume crossed dipole trap to form a shallow but very effective loading potential, making it a promising method for loading and trapping more cold atoms. For cold cesium atoms in the F =3 , m F =3 state prepared by three-dimensional degenerated Raman sideband cooling, a large number of atoms ˜3.2 ×106 have been loaded into a large-volume crossed dipole trap with the help of the magnetic levitation technique. The dependence of the number of atoms loaded and trapped in the dipole trap on the magnetic field gradient and bias field, respectively, is in good agreement with the theoretical analysis. The optimum magnetic field gradient of 31.13 G/cm matches the theoretical value of 31.3 G/cm well. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for many atomic species in high-field seeking states.

  17. High-temperature superconductors in high-field magnets

    NARCIS (Netherlands)

    Weijers, Hubertus Wilhelmus

    2009-01-01

    The properties of both BSCCO conductors and YBCO coated conductors and coils are studied to assess their applicability in high-field magnets. First, the magnetic field dependence of the critical current density in these HTS conductors is measured at 4.2 K in magnetic field conditions ranging from s

  18. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  19. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  20. Dipole-Dipole Interaction and the Directional Motion of Brownian Motors

    Institute of Scientific and Technical Information of China (English)

    YU Hui; ZHAO TongJun; JI Qing; SONG YanLi; WANG YongHong; ZHAN Yong

    2002-01-01

    The electric field of the microtubule is calculated according to its dipole distribution. The conformationalchange of a molecular motor is described by the rotation ofa dipole which interacts with the microtubulc. The mricalsimulation for the particle current shows that this interaction helps to produce a directional motion along the microtubule.And tte average displacement executes step changes that resemble the experimental result for kinesin motors.

  1. High-field bipolar loss measurement apparatus

    Science.gov (United States)

    Weldon, D.; Thullen, P.; Wollan, J.

    1980-09-01

    An apparatus was constructed to measure dissipation in superconducting wire in high alternating fields. The circuit incorporates a pair of locomotive traction motors as the capacitive circuit element for the bipolar swing. The design, construction and operating characteristics of the field coil and the associated circuitry are described.

  2. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  3. Construction of high magnetic field facilities approved

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 25 January, the National Development and Reform Commission gave the green light to a proposal to construct high magnetic field facilities for experimental use. The suggestion was jointly submitted by the Ministry of Education and CAS.

  4. Acceleration of magnetic dipoles by a sequence of current-carrying turns

    Science.gov (United States)

    Dolya, S. N.

    2014-11-01

    Magnetic dipoles are accelerated by a running gradient of the magnetic field that is produced by sequentially energizing current-carrying turns. Magnetic dipoles d sh = 60 mm in diameter and l tot = 1 m in length are gasdynamically preaccelerated to velocity V in = 1 km/s, with which they are injected into the main accelerator. The turnover of the dipoles in the field of an accelerating pulse is prevented and focusing of dipoles is provided by directing the dipoles into a titanium tube. The weight of the dipoles is m = 2 kg, and they acquire final velocity V fin = 5 km/s over acceleration length L acc = 300 m.

  5. An Experimental 11.5 T Nb3Sn LHC Type of Dipole Magnet

    NARCIS (Netherlands)

    Ouden, den A.; Wessel, S.; Krooshoop, E.; Dubbeldam, R.; Kate, ten H.H.J.

    1994-01-01

    As part of the magnet development program for the LHC an experimental 1 m long 11.5 T single aperture Nb3Sn dipole magnet has been designed and is now under construction. The design is focused on full utilisation of the high current density in the powder tube Nb3Sn. A new field optimisation has led

  6. Biological systems in high magnetic field

    Science.gov (United States)

    Yamagishi, A.

    1990-12-01

    Diamagnetic orientation of biological systems have been investigated theoretically and experimentally. Fibrinogen, one of blood proteins, were polymerized in static high magnetic fields up to 8 T. Clotted gels composed of oriented fibrin fibers were obtained even in a field as low as 1 T. Red blood cells (RBC) show full orientation with their plane parallel to the applied field of 4 T. It is confirmed experimentally that the magnetic orientation of RBC is caused by diamagnetic anisotropy. Full orientation is also obtained with blood platelet in a field of 3 T.

  7. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    Science.gov (United States)

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  8. LHC dipoles: the countdown has begun

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  9. Electric dipole moments of lithium atoms in Rydberg states

    Science.gov (United States)

    Dong, Hui-Jie; Huang, Ke-Shu; Li, Chang-Yong; Zhao, Jian-Ming; Zhang, Lin-Jie; Jia, Suo-Tang

    2014-09-01

    Recently, the diverse properties of Rydberg atoms, which probably arise from its large electric dipole moment (EDM), have been explored. In this paper, we report electric dipole moments along with Stark energies and charge densities of lithium Rydberg states in the presence of electric fields, calculated by matrix diagonalization. Huge electric dipole moments are discovered. In order to check the validity of the EDMs, we also use these electric dipole moments to calculate the Stark energies by numerical integration. The results agree with those calculated by matrix diagonalization.

  10. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  11. High RF Magnetic Field Near-Field Microwave Microscope

    Science.gov (United States)

    Tai, Tamin; Mircea, Dragos I.; Anlage, Steven M.

    2010-03-01

    Near-field microwave microscopes have been developed to quantitatively image RF and microwave properties of a variety of materials on deep sub-wavelength scales [1]. Microscopes that develop high-RF magnetic fields on short length scales are useful for examining the fundamental electrodynamic properties of superconductors [2]. We are creating a new class of near-field microwave microscopes that develop RF fields on the scale of 1 Tesla on sub-micron length scales. These microscopes will be employed to investigate defects that limit the RF properties of bulk Nb materials used in accelerator cavities, and the nonlinear Meissner effect in novel superconductors. Work funded by the US Department of Energy. [1] S. M. Anlage, V. V. Talanov, A. R. Schwartz, ``Principles of Near-Field Microwave Microscopy,'' in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Volume 1, edited by S. V. Kalinin and A. Gruverman (Springer-Verlag, New York, 2007), pp. 215-253. [2] D. I. Mircea, H. Xu, S. M. Anlage, ``Phase-sensitive Harmonic Measurements of Microwave Nonlinearities in Cuprate Thin Films,'' Phys. Rev. B 80, 144505 (2009).

  12. Background field coils for the High Field Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  13. Antenna development for high field plasma imaging.

    Science.gov (United States)

    Kong, X; Domier, C W; Luhmann, N C

    2010-10-01

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  14. Effects of dipole-dipole interaction between cigar-shaped BECs of cold alkali atoms: towards inverse-squared interactions.

    Science.gov (United States)

    Yu, Yue; Luo, Zhuxi; Wang, Ziqiang

    2014-07-30

    We show that the dipole-dipole coupling between Wannier modes in cigar-shaped Bose-Einstein condensates (BECs) is significantly enhanced while the short-range coupling is strongly suppressed. As a result, the dipole-dipole interaction can become the dominant interaction between ultracold alkali Bose atoms. In the long length limit of a cigar-shaped BEC, the resulting effective one-dimensional models possess an effective inverse squared interacting potential, the Calogero-Sutherland potential, which plays a fundamental role in many fields of contemporary physics; but its direct experimental realization has been a challenge for a long time. We propose to realize the Calogero-Sutherland model in ultracold alkali Bose atoms and study the effects of the dipole-dipole interaction.

  15. Magnetic fields during high redshift structure formation

    CERN Document Server

    Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S

    2012-01-01

    We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.

  16. LHC Dipoles: The countdown has begun

    CERN Multimedia

    2002-01-01

    One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.

  17. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  18. A gaussian model for simulated geomagnetic field reversals

    Science.gov (United States)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  19. Discrete dipole approximation of gold nanospheres on substrates: Considerations and comparison with other discretization methods

    Directory of Open Access Journals (Sweden)

    M. P. Menguc

    2011-09-01

    Full Text Available We embark on this preliminary study of the suitability of the discrete dipole approximation with surface interaction (DDA-SI method to model electric field scattering from noble metal nano-structures on dielectric substrates. The refractive index of noble metals, particularly due to their high imaginary components, require smaller lattice spacings and are especially sensitive to the shape integrity and the volume of the dipole model. The results of DDA-SI method are validated against those of the well-established finite element method (FEM and the finite difference time domain (FDTD method.

  20. Pygmy dipole resonance and dipole polarizability in 90Zr

    Science.gov (United States)

    Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.

    2014-05-01

    Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  1. Pygmy dipole resonance and dipole polarizability in {sup 90}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Nakada, H. [Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Shimbara, Y.; Nagashima, M. [Department of Physics, Niigata University, Niigata 950-21-2 (Japan); Sakuda, M.; Mori, T. [Department of Physics, Okayama University, Okayama 900-0082 (Japan); and others

    2014-05-02

    Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  2. High-Field Accelerator Magnets Beyond LHC

    CERN Document Server

    Devred, Arnaud

    2003-01-01

    The LHC magnet R&D Program has shown that the limit of NbTi technology at 1.8 K was in the range 10 to 10.5 T. Hence, to go beyond the 10-T threshold, it is necessary to change of superconducting material. Given the state of the art in HTS, the only serious candidate is Nb3Sn. A series of dipole magnet models built at Twente University and LBNL and a vigorous program underway at FNAL have demonstrated the feasibility of Nb3Sn magnet technology. The next step is to bring this technology to maturity, which requires further conductor and conductor insulation development and a simplification of manufacturing processes. After outlining a roadmap to address outstanding issues, we evoke the US proposal for a second generation of LHC Insertion Region (IR) magnets and the Next European Dipole (NED) initiative promoted by the European Steering Group on Accelerator R&D (ESGARD).

  3. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  4. Diffractive, inelastic and total cross sections in high energy pp, pA and γ*A reactions with the dipole formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ster, Andras [MTA Wigner FK, RMI, H-1525 Budapest 114, POBox 49 (Hungary)

    2015-04-10

    The Lund Monte Carlo model DIPSY has recently been extended to ions to study elastic, inelastic and diffractive processes in high energy collisions between electrons, protons and nuclei. In this BFKL-based dipole formalism of parton interactions fluctuations are naturally included and adding them to the pomeron ladder substantially determine the diffractive excitation cross sections of the processes. Starting from √(s{sub NN})=200 GeV and √(s{sub γ*N})=100 GeV we provide results for pp, pA and γ*A total, inelastic and diffractive cross sections that are shown and discussed in case of pp, pO, pCu, pPb and γ*Au reactions. We find good agreement with pp and pPb data. We find that the diffractive cross sections are relatively small compared to the total ones but with increasing collision energies they grow faster than the elastic or the inelastic ones. We make a comparison to calculations obtained by the more conventional method of the Glauber Model MC, too.

  5. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  6. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  7. Many-body dipole-induced dipole model for electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    Huang Ji-Ping; Yu Kin-Wah

    2004-01-01

    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch each other due to many-body and multipolar interactions. Thus various works have attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipoleinduced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield a correction.

  8. Acceleration of magnetic dipoles by the sequence of current turns

    CERN Document Server

    Dolya, S N

    2014-01-01

    Acceleration of magnetic dipoles is carried out by the running gradient of the magnetic field formed while sequent switching on the current turns. Magnetic dipoles, with a diameter of sixty millimeters and full length one meter, are pre-accelerated by using the gas-dynamic method to speed one kilometer per second, corresponding to the injection rate into the main accelerator. To prevent the turning of the dipoles by one hundred eighty degrees in the field of the accelerating pulse and focus them, the magnetic dipoles are accelerated inside the titanium tube. The magnetic dipoles have mass two kilograms and acquire the finite speed five kilometers per second on the acceleration length three hundreds meters.

  9. High-field bipolar loss measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Thullen, P.; Weldon, D.; Wollan, J.

    1980-01-01

    An apparatus was constructed to measure dissipation in superconducting wire in high alternating fields. The apparatus will be used to make measurements on conductors which must operate in fields up to 7.0 T and rates of field change up to 15 T/s. The magnet for this facility is wound of uninsulated, 15 strand Rutherford cable in which the strand is a 0.812 mm diameter, fully mixed matrix, Cu plus CuNi, multifilament NbTi conductor. The coil is wound in a bath cooled configuration with an overall current density of 7.8 kA/cm/sup 2/. The circuit incorporates a pair of locomotive traction motors as the capacitive circuit element for the bipolar swing. The design, construction and operating characteristics of the field coil and the associated circuitry are described.

  10. High magnetic fields in the USA

    Science.gov (United States)

    Campbell, Laurence J.; Parkin, Don E.; Crow, Jack E.; Schneider-Muntau, Hans J.; Sullivan, Neil S.

    During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) it is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) it studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) it has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state.

  11. EVALUATION OF ERRORS IN PARAMETERS DETERMINATION FOR THE EARTH HIGHLY ANOMALOUS GRAVITY FIELD

    Directory of Open Access Journals (Sweden)

    L. P. Staroseltsev

    2016-05-01

    Full Text Available Subject of Research.The paper presents research results and the simulation of errors caused by determining the Earth gravity field parameters for regions with high segmentation of gravity field. The Kalman filtering estimation of determining errors is shown. Method. Simulation model for the realization of inertial geodetic method for determining the Earth gravity field parameters is proposed. The model is based on high-precision inertial navigation system (INS at the free gyro and high-accuracy satellite system. The possibility of finding the conformity between the determined and stochastic approaches in gravity potential modeling is shown with the example of a point-mass model. Main Results. Computer simulation shows that for determining the Earth gravity field parameters gyro error model can be reduced to two significant indexes, one for each gyro. It is also shown that for regions with high segmentation of gravity field point-mass model can be used. This model is a superposition of attractive and repulsive masses - the so-called gravitational dipole. Practical Relevance. The reduction of gyro error model can reduce the dimension of the Kalman filter used in the integrated system, which decreases the computation time and increases the visibility of the state vector. Finding the conformity between the determined and stochastic approaches allows the application of determined and statistical terminology. Also it helps to create a simulation model for regions with high segmentation of gravity field.

  12. Transfer matrices of dipoles with bending radius variation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.

  13. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    Science.gov (United States)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.

  14. High-intensity, focused ultrasonic fields

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1988-01-01

    distribution, etc. involving nonlinearity, diffraction, and absorption in the high-intensity focused ultrasonic fields produced by an ellipsoid as well as a spherical cap focusing geometry. Data from the development of an ESWL of the piezoelectric disk type are reported including demands to transducers...

  15. Physics of semiconductors in high magnetic fields

    CERN Document Server

    Miura, Noboru

    2008-01-01

    This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.

  16. Optimization of Open Midplane Dipole Design for LHC IR Upgrade

    CERN Document Server

    Gupta, Ramesh C; Ghosh, Arup; Harrison, Michael; Mokhov, Nikolai V; Schmalzle, Jesse D; Wanderer, Peter

    2005-01-01

    The proposed ten-fold increase in Large Hadron Collider (LHC) luminosity requires high field (~15 T) magnets that are subjected to the high radiation power of ~9 kW/per beam directed towards each interaction region. This has a major impact in the design of first dipole in the "Dipole First" optics. The proposed design allows sufficient clear space between coils so that most of the particle showers from the interaction points (concentrated at the midplane due to strong magnetic field) can be transported outside the coil region to a warm absorber thus drastically reducing the peak power density in the coils and removing heat at a higher (nitrogen) temperature. The concept, however, presents several new technical challenges: (a) obtaining good field quality despite a large midplane gap, (b) minimizing peak fields on coil, (c) dealing with large vertical forces with no structure between the coils, (d) minimizing heat deposition in the cold region, (e) designing a support structure. Designs with different horizont...

  17. First principles description of the giant dipole resonance in 16O

    CERN Document Server

    Bacca, Sonia; Hagen, Gaute; Orlandini, Giuseppina; Papenbrock, Thomas

    2013-01-01

    We present an ab-initio calculation of the giant dipole resonance in 16O based on a nucleon-nucleon (NN) interaction from chiral effective field theory that reproduces NN scattering data with high accuracy. By merging the Lorentz integral transform and the coupled-cluster methods, we extend the previous theoretical limits for break-up observables in light nuclei with mass numbers (A<=7), and address the collective giant dipole resonance of 16O. We successfully benchmark the new approach against virtually exact results from the hyper-spherical harmonics method in 4He. Our results for 16O reproduce the position and the total strength (bremsstrahlung sum rule) of the dipole response very well. When compared to the cross section from photo-absorption experiments the theoretical curve exhibits a smeared form of the peak. The tail region between 40 and 100 MeV is reproduced within uncertainties.

  18. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  19. Theory of Dipole Induced Electromagnetic Transparency

    CERN Document Server

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  20. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  1. Multi-dipole observation system and study on the abnormal variation of the geoelectric field observed at Capital Circle area before the Wen'an Ms5.1 earthquake

    Institute of Scientific and Technical Information of China (English)

    MA Qin-zhong

    2008-01-01

    On July 4, 2006, a Ms 5.1 earthquake occurred in Wen'an county of Hebei Province f which the epicenter is near the Beijing city. The six geoelectric field monitoring stations have been in operation for several years around the Beijing area to examine the relationship between electric field changes and earthquake. This paper firstly explains the principle of the eliminating noise method by using multi-dipole observation system of the geoelectric field. Then the data observed at the stations are studied and a lot of abnormal signals preceding the Wen'an earthquake are selected, of which five abnormal signals of the geoelectric field are finally recognized as the precursory signals. The result shows that ① there probably exists the precursory signals of the geoelectric field preceding the Wen'an earthquake; ② there are sensitive sites in the spatial distribution of the abnormal variation of the geoelectric field before the quack; ~ the anomalous signals do not appear synchronously, and their durations are not same at different stations; ④ the amplitudes of the abnormal signals recorded at Baodi station are small, but large at Changli station, while the latter is farther from the epicentral area than the former.

  2. Energy deposition limits in a $Nb_{3}Sn$ separation dipole placed in front of the LHC high-luminosity inner triplet

    CERN Document Server

    Kashikhin, V V; Mokhov, N V; Rakhno, I L; Ruggiero, F; Strait, J B; Yadav, S; Zlobin, A V

    2003-01-01

    Interaction region inner triplets are among the systems which may limit the LHC performance. An option for a new higher luminosity IR is a double-bore inner triplet with separation dipoles placed in front of the first quadrupole. The radiation load on the first dipole, resulting from pp-interactions, is a key parameter to determine the feasibility of this approach. Detailed energy deposition calculations were performed with the MARS14 code for two Nb_3Sn dipole designs with no superconductor on the mid-plane. Comparison of peak power densities with those in the baseline LHC IR suggests that it may be possible to develop workable magnets for luminosities up to 10^35 cm^_2 s^_1.

  3. Dipole stabilizers for a four-vane high current RFQ: Theoretical analysis and experimental results on a real-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Grespan, F. [INFN-Laboratori Nazionali di Legnaro, Viale dell' universita 2, 35020 Legnaro, PD (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria, 16 I-20133 Milan (Italy)], E-mail: francesco.grespan@lnl.infn.it; Pisent, A.; Palmieri, A. [INFN-Laboratori Nazionali di Legnaro, Viale dell' universita 2, 35020 Legnaro, PD (Italy)

    2007-11-21

    The Dipole Stabilizing Rods (DSRs) are devices used in order to reduce a priori the effect of perturbation on the operating mode of a four-vane RFQ caused by neighboring dipole modes by increasing the frequency spacing between the TE210 mode and dipole modes, without, in principle, affecting the quadrupole TE210 mode. They have proven to be particularly useful in the case of coupled RFQ's whose overall length is significantly greater than the operating wavelength. In this article we present a circuit model of such DSRs, that, used in combination with a Transmission Line Model of a four vane RFQ, has allowed us to predict the dimensioning of the DSRs in the case of the aluminium model of TRASCO RFQ. The DSR parameters and, in general, the accuracy of the model have been also confirmed by HFSS simulations and by RF measurements on the above-mentioned model.

  4. Derivation of the high field semiconductor equations

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, P.S. (Los Alamos National Lab., NM (United States)); Cox, R.W. (Department of Computer Information Science, Indiana University, Purdue University, Indianapolis (USA)); Wagner, B.A. (Arizona Univ., Tucson, AZ (United States). Dept. of Mathematics)

    1991-01-01

    Electron and hole densities evolve in x-z phase space according to Boltzmann equations. When the mean free path of the particles is short and electric force on the particles is weak, a well-known expansion can be used to solve the Boltzmann equation. This asymptotic solution shows that the spatial density of electrons and holes evolves according to diffusion-drift equations. As devices become smaller, electric fields become stronger, which renders the Basic Semiconductor Equations increasingly inaccurate. To remedy this problem, we use singular perturbation techniques to obtain a new asymptotic expansion for the Boltzmann equation. Like the Hilbert expansion, the new expansion requires the mean free path to be short compared to all macroscopic length scales. However, it does not require the electric forces to be weak. The new expansion shows that spatial densities obey diffusion-drift equations as before, but the diffusivity D and mobility {mu} turn out to be nonlinear functions of the electric field. In particular, our analysis determines the field-dependent mobilities {mu}(E) and diffusivities D(E) directly from the scattering operator. By carrying out this asymptotic expansion to higher order, we obtain the high frequency corrections to the drift velocity and diffusivity, and also the corrections due to gradients in the electric field. Remarkably, we find that Einsteins's relation is still satisfied, even with these corrections. The new diffusion-drift equations, together with Poissons' equation for the electric field, form the high-field semiconductor equations, which can be expected to be accurate regardless of the strength of the electric fields within the semiconductor. In addition, our analysis determines the entire momentum distribution of the particles, so we derive a very accurate first moment model for semi-conductors by substituting the asymptotically-correct distribution back into the Boltzmann equation and taking moments.

  5. IMPROVEMENT OF EXPRESSION FOR EXCITATION BY AN ELECTRIC DIPOLE IN GTEM CELL

    Institute of Scientific and Technical Information of China (English)

    Ren Liehui; Chen Zhiyu

    2002-01-01

    On the basis of Wilson's work in which the vertical electric dipole is centrally located in GHz Transverse ElectroMagnetic (GTEM) cell, we deduce the expression for the field distribution excited by an electric dipole in the case that the dipole is not centrally located. It will be useful for EMC measurements using GTEM cell.

  6. IMPROVEMENT OF EXPRESSION FOR EXCITATION BY AN ELECTRIC DIPOLE IN GTEM CELL

    Institute of Scientific and Technical Information of China (English)

    RenLiehui; ChenZhiyu

    2002-01-01

    On the basis of Wilson's work in which the vertical electric dipole is centrally located in GHz Transverse ElectroMagntic(GTEM) cell, we deduce the expression for the field distribution excited by an electric dipole in the case that the dipole is not centrally located.It will be useful for EMCmeasurements using GTEM cell.

  7. Bound dipole solitary solutions in anisotropic nonlocal self-focusing media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Zozulya, A.A.; Mezentsev, V.K.;

    1997-01-01

    We find and analyze bound dipole solitary solutions in media with anisotropic nonlocal photorefractive material response. The dipole solutions consist of two elliptically shaped Gaussian-type beams separated by several diameters, and with a pi phase shift between their fields. Spatial evolution...... of two initially round Gaussian beams and their convergence to the above dipole solution is demonstrated experimentally....

  8. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  9. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; DUAN, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  10. Quantum emitter dipole-dipole interactions in nanoplasmonic systems

    CERN Document Server

    Nečada, Marek; Törmä, Päivi

    2016-01-01

    We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.

  11. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  12. Kick velocity induced by magnetic dipole and quadrupole radiation

    CERN Document Server

    Kojima, Yasufumi

    2010-01-01

    We examine the recoil velocity induced by the superposition of the magnetic dipole and quadrupole radiation from a pulsar/magnetar born with rapid rotation. The resultant velocity depends on not the magnitude, but rather the ratio of the two moments and their geometrical configuration. The model does not necessarily lead to high spatial velocity for a magnetar with a strong magnetic field, which is consistent with the recent observational upper bound. The maximum velocity predicted with this model is slightly smaller than that of observed fast-moving pulsars.

  13. Dipole strength distribution of {sup 50}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Udo; Beck, Tobias; Beller, Jacob; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2015-07-01

    A first nuclear resonance fluorescence (NRF) experiment with a 68% isotopically enriched {sup 50}Ti target has been performed at the superconducting Darmstadt electron linear accelerator S-DALINAC to investigate particle-bound dipole excitations in this nucleus. The target was irradiated with an unpolarized bremsstrahlung photon beam at endpoint energies of 7.5 MeV and 9.7 MeV. The observed excited states are analyzed with respect to their excitation energies, spin quantum numbers and transition strengths. A complementary NRF experiment with polarized photons will be conducted at the High Intensity gamma-ray Source in Durham, NC, USA to determine the polarity of the dipole transitions. Data will be analyzed with regard to the Pygmy Dipole Resonance, a weakly-collective electric dipole excitation which starts to form in nuclei of this mass region. The measured transition strengths will be compared to microscopic calculations in the quasiparticle-phonon model. The investigation of the magnetic dipole strength distribution will focus on strong spin-flip transitions between the p,f spin-orbit partners expected in the nuclear shell model. First results of the measurements and the evaluation will be presented and discussed.

  14. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    Science.gov (United States)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  15. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  16. The soliton properties of dipole domains in superlattices

    Institute of Scientific and Technical Information of China (English)

    张启义; 田强

    2002-01-01

    The formation and propagation of dipole domains in superlattices are studied both by the modified discrete driftmodel and by the nonlinear Schrodinger equation. The spatiotemporal distribution of the electric field and electrondensity are presented. The numerical results are compared with the soliton solutions of the nonlinear Schrodingerequation and analysed. It is shown that the numerical solutions agree with the soliton solutions of the nonlinearSchrodinger equation. The dipole electric-field domains in semiconductor superlattices have the properties of solitons.

  17. Applications of high dielectric materials in high field magnetic resonance

    Science.gov (United States)

    Haines, Kristina Noel

    At high magnetic fields, radiation losses, wavelength effects, self-resonance, and the high resistance of components all contribute to losses in conventional RF MRI coil designs. The hypothesis tested here is that these problems can be combated by the use of high permittivity ceramic materials at high fields. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in compact structures at high frequencies and can potentially solve some of the challenges of high field coil design. In this study NMR probes were constructed for operation at 600 MHz (14.1 Tesla) and 900 MHz (21.1 Tesla) using inductively fed CaTiO3 (relative permittivity of 156-166) cylindrical hollow bore dielectric resonators. The designs showed the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore, which accommodates the sample. The 600 MHz probe has an unmatched Q value greater than 2000. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 microm3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures. The 900 MHz probe has an unmatched Q value of 940 and shows Q performance five times better than Alderman-Grant and loop-gap resonators of similar dimensions. High resolution images were acquired of an excised mouse spinal cord (25 microm 3) and an excised rat soleus muscle (20 microm3). The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, a new material is introduced with high dielectric constant and low background MRI signal. The material is based upon metal titanates, which can be made into geometrically formable suspensions in de-ionized water. The suspension's material properties are

  18. Complete electric dipole response in 208Pb

    CERN Document Server

    Tamii, A; von Neumann-Cosel, P; Fujita, Y; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Hatanaka, K; Heilmann, A M; Ishikawa, D; Itoh, M; Ong, H J; Kawabata, T; Kalmykov, Y; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yamada, R; Yosoi, M; Zenihiro, J

    2011-01-01

    A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range testing up-to-date nuclear model calculations. The E1 polarizability extracted from the data provides a constraint on the neutron skin thickness in 208Pb and the poorly known density dependence of the symmetry energy, relevant to the description of neutron stars.

  19. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  20. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  1. Dipole blockade in a cold Rydberg atomic sample

    CERN Document Server

    Comparat, Daniel; 10.1364/JOSAB.27.00A208

    2010-01-01

    We review here the studies performed about interactions in an assembly of cold Rydberg atoms. We focus more specially the review on the dipole-dipole interactions and on the effect of the dipole blockade in the laser Rydberg excitation, which offers attractive possibilities for quantum engineering. We present first the various interactions between Rydberg atoms. The laser Rydberg excitation of such an assembly is then described with the introduction of the dipole blockade phenomenon. We report recent experiments performed in this subject by starting with the case of a pair of atoms allowing the entanglement of the wave-functions of the atoms and opening a fascinating way for the realization of quantum bits and quantum gates. We consider then several works on the blockade effect in a large assembly of atoms for three different configurations: blockade through electric-field induced dipole, through F\\"orster resonance and in van der Waals interaction. The properties of coherence and cooperativity are analyzed. ...

  2. Positivity and unitarity constraints on dipole gluon distributions

    CERN Document Server

    Peschanski, Robi

    2016-01-01

    In the high-energy domain, gluon transverse-momentum dependent distributions in nuclei obey constraints coming from positivity and unitarity of the colorless QCD dipole distributions through Fourier-Bessel transformations. Using mathematical properties of Fourier-positive functions, we investigate the nature of these constraints which apply to dipole model building and formulation

  3. Strongly magnetized rotating dipole in general relativity

    Science.gov (United States)

    Pétri, J.

    2016-10-01

    Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.

  4. Reorientation of Defect Dipoles in Ferroelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Bao-Shan; LI Guo-Rong; ZHAO Su-Chuan; ZHU Zhi-Gang; DING Ai-Li

    2005-01-01

    @@ We investigate the frequency, temperature, tetragonality and quenched temperature dependences of the hysteresis loops in Pb[(Zr0.52 Ti0.48)0.95 (Mn1/3Nb2/3)0.05]O3 (PMnN-PZT) ceramics. It has been demonstrated that the polarization-field hysteresis curves show "pinched" shapes when tested at room temperature, higher frequency or using the large-tetragonality specimen. While normal square-like loops are observed at 200 ℃ and 0.01 Hz or using the small-tetragonality one. Meanwhile, close relations between the P-E loops and the applied frequency,temperature or tetragonality reveal that there exists a typical relaxation time corresponding to the reorientation of the defect dipoles. It can be seen further from the quenched temperature dependences of the loops that the reorientation of the defect dipoles may influence the pinching. Compared to the intrinsic depinning procedure induced by changes of the distribution of defect dipoles, we provide new evidence for extrinsic depinning mechanism of the defect dipoles in the ferroelectric ceramics.

  5. Conceptual design of Dipole Research Experiment (DREX)

    Science.gov (United States)

    Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  6. Dipole modes with depressed amplitudes in red giants are mixed modes

    Science.gov (United States)

    Mosser, B.; Belkacem, K.; Pinçon, C.; Takata, M.; Vrard, M.; Barban, C.; Goupil, M.-J.; Kallinger, T.; Samadi, R.

    2017-02-01

    Context. Seismic observations with the space-borne Kepler mission have shown that a number of evolved stars exhibit low-amplitude dipole modes, which is referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. Subsequently, and based on this scenario, the prevalence of high magnetic fields in evolved stars has been inferred. It should be noted, however, that this conclusion remains indirect. Aims: We intend to study the properties of mode depression in evolved stars, which is a necessary condition before reaching conclusions about the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. Methods: We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. We use a simple model to explain how mode visibilities are connected to the extra damping seen in depressed modes. Results: Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result, observed in more than 90% of the bright stars (mV ≤ 11), invalidates the hypothesis that depressed dipole modes result from the suppression of the oscillation in the radiative core of the stars. Observations also show that, except for visibility, seismic properties of the stars with depressed modes are equivalent to those of normal stars. The measurement of the extra damping that is responsible for the reduction of mode amplitudes, without any prior on its physical nature, potentially provides an efficient tool for elucidating the mechanism responsible for the mode depression. Conclusions: The mixed nature of the depressed modes in red giants and their unperturbed global seismic

  7. High-field magnetization in transuranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan) and KYOKUGEN, Osaka University, Osaka 560-8531 (Japan)]. E-mail: sugiyama@phys.sci.osaka-u.ac.jp; Nakashima, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Aoki, D. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ikeda, S. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Yamamoto, E. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Nakamura, A. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Homma, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Kindo, K. [Institite of Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Hagiwara, M. [KYOKUGEN, Osaka University, Osaka 560-8531 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan)

    2007-03-15

    We measured the high-field magnetization up to 55T and constructed a magnetic phase diagram for a transuranium antiferromagnet NpRhGa{sub 5} with the tetragonal structure. The magnetization at 4.2K for H(parallel) [100] indicates a sharp metamagnetic transition with a step at H{sub c}=26T and saturates above H{sub s}=38T, reaching 0.43{mu}{sub B}/Np. An ordered moment of 0.96{mu}{sub B}/Np at zero field, which was determined from the neutron scattering experiment, is found to be reduced to 0.43{mu}{sub B}/Np at H{sub s}, together with an orientation of the magnetic moment from the (001) plane to the (100) plane.

  8. Splitting of the Dipole and Spin Dipole Resonances in Pb

    Science.gov (United States)

    Austin, Sam M.

    2000-10-01

    The response to different neutrino flavors of a supernova neutrino detector based on Pb depends on the position of the spin-dipole resonance(Fuller, Fowler and McLaughlin, Phys. Rev. D59,085005(1999)). In this talk I will present a phenomenolgical model that allows one to extract the splitting of the dipole and spin-dipole resonances from the variation with bombarding energy of the L=1 resonance in (p,n) reactions. This model has been applied previously to the Zr isotopes (Sam M. Austin, Phys. Rev. C, submitted). The dipole splitting for ^208Pb is determined from available data on the (p,n) reaction for bombarding energies between 45 to 200 MeV. It is found to be 4.7±2.0 MeV, with the spin-dipole resonance lying at lower excitation energy.

  9. Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices

    Science.gov (United States)

    Montoya, S. A.; Couture, S.; Chess, J. J.; Lee, J. C. T.; Kent, N.; Henze, D.; Sinha, S. K.; Im, M.-Y.; Kevan, S. D.; Fischer, P.; McMorran, B. J.; Lomakin, V.; Roy, S.; Fullerton, E. E.

    2017-01-01

    The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions have prompted efforts to discover new material systems that can host these kinds of magnetic structures. Here, we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques, we determined the range of material properties and magnetic fields where skyrmions form. Micromagnetic modeling closely matches our observation of small skyrmion features (˜50 to 70 nm) and suggests that these classes of skyrmions have a rich domain structure that is Bloch-like in the center of the film and more Néel-like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields.

  10. A Gaussian Model for Simulated Geomagnetic Field Reversals

    CERN Document Server

    Wicht, Johannes

    2015-01-01

    Field reversals are the most spectacular changes in the geomagnetic field but remain little understood. Paleomagnetic data primarily constrain the reversal rate and provide few additional clues. Reversals and excursions are characterized by a low in dipole moment that can last for some 10kyr. Some paleomagnetic records also suggest that the field decreases much slower before an reversals than it recovers afterwards and that the recovery phase may show an overshoot in field intensity. Here we study the dipole moment variations in several extremely long dynamo simulation to statistically explored the reversal and excursion properties. The numerical reversals are characterized by a switch from a high axial dipole moment state to a low axial dipole moment state. When analysing the respective transitions we find that decay and growth have very similar time scales and that there is no overshoot. Other properties are generally similar to paleomagnetic findings. The dipole moment has to decrease to about 30% of its m...

  11. Eigenstates of the full Maxwell equations for a two-constituent composite medium and their application to a calculation of the local electric field of a time dependent point electric dipole in a flat-slabs microstructure

    CERN Document Server

    Farhi, Asaf

    2016-01-01

    An exact calculation of the local electric field ${\\bf E}({\\bf r})$ is described for the case of a time dependent point electric dipole ${\\bf p}e^{-i\\omega t}$ in the top layer of an $\\epsilon_2$, $\\epsilon_1$, $\\epsilon_2$ three parallel slabs composite structure, where the $\\epsilon_1$ layer has a finite thickness $2d$ but the $\\epsilon_2$ layers are infinitely thick. For this purpose we first calculate all the eigenstates of the full Maxwell equations for the case where $\\mu=1$ everywhere in the system. The eigenvalues appear as special, non-physical values of $\\epsilon_1$ when $\\epsilon_2$ is given. These eigenstates are then used to develop an exact expansion for the physical values of ${\\bf E}({\\bf r})$ in the system characterized by physical values of $\\epsilon_1(\\omega)$ and $\\epsilon_2(\\omega)$. Results are compared with those of a previous calculation of the local field of a time dependent point charge in the quasi-static regime. Numerical results are shown for the local electric field in practicall...

  12. Low-cost, pseudo-Halbach dipole magnets for NMR

    Science.gov (United States)

    Tayler, Michael C. D.; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.

  13. Analog of landau Levels to Electric Dipole

    CERN Document Server

    Ribeiro, L R; Nascimento, J R; Furtado, Claudio

    2006-01-01

    In this article we discuss the analogy between the dynamics of a neutral particle with an electric dipole, in the presence of configuration of magnetic field, with Landau level quantization for charged particle. We analyze this quantization based on the He-Mckelar-Wilkens interaction developed of similar way that Ericsson and Sj\\"oqvist[Phys Rev. A {\\bf 65} 013607 (2001)] was analyzed the Landau-Aharonov-Casher effect. The energy level and eingenfuctions and eigenvalues are obtained.

  14. CP-violation and electric dipole moments

    Science.gov (United States)

    Le Dall, Matthias; Ritz, Adam

    2013-03-01

    Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.

  15. Dipole Engineering for Conducting Polymers

    Science.gov (United States)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  16. Image theory for electric dipoles above a conducting anisotropic earth

    Science.gov (United States)

    Mahmoud, S. F.

    1984-07-01

    New image representations for vertical electric dipoles (VED) above an imperfectly conducting and axially anisotropic earth are developed. These include multidiscrete images at different depths below the air-earth interface and multipole image sources. It is shown that, in contrast with the available image representations in the literature, the developed ones predict the correct behavior of the fields in the far zone along the earth's surface. Extension to a layered earth's model is made. The theory is also extended to the horizontal electric dipole with similar conclusions to the case of the vertical dipole.

  17. Classical crystal formation of dipoles in two dimensions

    DEFF Research Database (Denmark)

    Hansen, Kenneth Christian Klochmann; Fedorov, D. V.; Jensen, A. S.;

    2015-01-01

    We consider a two-dimensional layer of dipolar particles in the regime of strong dipole moments. Here we can describe the system using classical methods and determine the crystal structure that minimizes the total energy. The dipoles are assumed to be aligned by an external field and we consider...... different orientations of the dipolar moments with respect to the two-dimensional plane of motion. We observe that when the orientation angle changes away from perpendicular and towards the plane, the crystal structure will change from a hexagonal form to one that has the dipoles sitting in equidistant rows...

  18. A high performance field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  19. High-field Magnet Development toward the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio [Fermilab

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  20. 在类克尔介质腔中三能级原子的原子偶极矩的高阶压缩%Higher-Order Squeezing for Atomic Dipole of a Three-Level Atom in the Kerr-Like Medium Cavity Fields

    Institute of Scientific and Technical Information of China (English)

    卢俊; 许毅; 董传华

    2003-01-01

    In this paper, evolution of the higher-order squeezing for atomic dipole of three-level atom in the Kerr-like medium is investigated. The atom discussed has two configurations and is driven by the single-mode coherent state field. Our results show that the squeezing effects are clearly influenced by nonlinear parameters, the initial atom state and the detuning.

  1. Interaction between heat dipole and circular interracial crack

    Institute of Scientific and Technical Information of China (English)

    Wan-shen XIAO; Chao XIE; You-wen LIU

    2009-01-01

    The heat dipole consists of a heat source and a heat sink. The problem of an interfacial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theo-rem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture are analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different po-sitions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.

  2. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    Science.gov (United States)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  3. Observation of St\\"uckelberg oscillations in dipole-dipole interactions

    CERN Document Server

    van Ditzhuijzen, C S E; Heuvell, H B van Linden van den

    2009-01-01

    We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. This proves coherent interaction during at least 0.6 $\\mu$s. The oscillating RF field brings the interaction between cold Rydberg atoms in two separated volumes in resonance and we observe multi-photon transitions when varying the amplitude of the RF-field and the static field offset. The angular momentum states we use show a quadratic Stark shift, which leads to an essentially different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. Both functions are further studied in the classical limit. The oscillatory behavior of both functions correspond to Stueckelberg oscillations, an interferenc...

  4. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity...

  5. Dipole—Dipole Interaction and the Directional Motion of Brownian

    Institute of Scientific and Technical Information of China (English)

    YUHui; ZHAOTong-Jun; 等

    2002-01-01

    The electric field of the microtubule is calculated according to its dipole distribution.The conformational change of a molecular motor is described by the rotation of a dipole which interacts with the microtubule.The numerical simulation for the particle currend shows that this interaction helps to produce a directional motion along the microtubule.And the average displacement executes step changes that resemble the experimental result for kinesin motors.

  6. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  7. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  8. Electric dipole moments of light nuclei

    Science.gov (United States)

    Mereghetti, Emanuele

    2017-01-01

    Electric dipole moments (EDMs) are extremely sensitive probes of physics beyond the Standard Model (SM). A vibrant experimental program is in place, with the goal to improve the existing neutron EDM bound by one/two orders of magnitude, and to test new ideas for the measurement of EDMs of light ions, such as deuteron and helium, at a comparable level. The success of this program, and its implications for physics beyond the SM, relies on the precise calculation of the EDMs in terms of the couplings of CP-violating operators. In light of the non-perturbative nature both of QCD at low energy and of the nuclear interactions, these calculations have proven difficult, and are affected by large theoretical uncertainties. In this talk I will review the progress that in recent years has been achieved on different aspects of the calculation of hadronic and nuclear EDMs. In particular, I will discuss how the interplay between lattice QCD and Chiral Effective Field Theory (EFT) has allowed to reduce a set of hadronic uncertainties. Finally, I will discuss how the measurements of th EDMs of one, two and three nucleon systems can be used to discriminate between various possible mechanisms of time-reversal violation at high energy.

  9. Numerical simulations of magnetic suspensions with hydrodynamic and dipole-dipole magnetic interactions

    Science.gov (United States)

    Gontijo, R. G.; Cunha, F. R.

    2017-06-01

    This work describes a numerical model to compute the translational and rotational motion of N spherical magnetic particles settling in a quiescent viscous fluid under creeping flow condition. The motion of the particles may be produced by the action of gravitational forces, Brownian thermal fluctuations, magnetic dipole-dipole interactions, external magnetic field, and hydrodynamic interactions. In order to avoid particle overlap, we consider a repulsive force based on a variation of a screened-Coulomb potential mixed with Hertz contact forces. The inertia of the particles is neglected so that a mobility approach to describe the hydrodynamic interactions is used. The magnetic dipoles are fixed with respect to the particles themselves. Thus they can only interact magnetically between them and with an external applied magnetic field. Therefore the effect of magnetic field moment rotation relative to the particle as a consequence of a finite amount of particle anisotropy is neglected in this work. On the other hand, the inclusion of particle viscous hydrodynamic interactions and dipolar interactions is considered in our model. Both long-range hydrodynamic and magnetic interactions are accounted by a sophisticated technique of lattice sums. This work considers several possibilities of periodic and non-periodic particle interaction schemes. This paper intends to show the benefits and disadvantages of the different approaches, including a hybrid possibility of computing periodic and non-periodic particle interactions. The well-known mean sedimentation velocity and the equilibrium magnetization of the suspension are computed to validate the numerical scheme. The comparison is performed with the existent theoretical models valid for dilute suspensions and several empirical correlations available in the current literature. In the presence of dipole-dipole particle interactions, the simulations show a non-monotonic behavior of the mean sedimentation velocity as the particle

  10. The Fields Excited by SLF/ELF Vertical Electric Dipole in Earth-ionosphere Under the Ideal Conductor%SLF/ELF垂直电偶极子在理想导电地-电离层中的场

    Institute of Scientific and Technical Information of China (English)

    张在武; 段卫星; 何京国; 王元新

    2011-01-01

    在理想导电地面与电离层条件下,我们导出了SLF/ELF垂直电偶极子在球形地-电离层壳体中产生的电磁场的球谐级数表达式,并提出了一种加速收敛算法。利用此算法分别算出了电场分量随传播距离、高度及工作频率的变化,所得计算结果与Barrick方法所得结果基本吻合。由于地面和电离层没有吸收损耗,地面与电离层之间产生的场是"驻波",在ELF频段,其频率变化规律能正确反映出"舒曼"谐振现象。%We derive the spherical harmonic series expressions of electromagnetic fields excited by SLF/ELF vertical electric dipole in spherical Earth-ionosphere guide when earth and ionosphere are regarded as the ideal conductor.Moreover,a method to speed numerical convergence has been presented.The electromagnetic fields in the cavity have been calculated by this algorithm.From the result,electromagnetic fields between earth and ionosphere are the sum of two travelling wave in SLF band.The calculated result perfectly agrees with the Barrick's result.Because there is not absorbability attenuation between the earth and ionosphere,the fields in Earth-ionosphere guide are a kind of standing wave.In ELF band,the variation of the amplitude verse frequency coincides with the Schumann resonance.

  11. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  12. Temperature changes associated with radiofrequency exposure near authentic metallic implants in the head phantom-a near field simulation study with 900, 1800 and 2450 MHz dipole

    Energy Technology Data Exchange (ETDEWEB)

    Matikka, H; Lappalainen, R [Department of Physics and Mathematics, Kuopio Campus, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Keshvari, J, E-mail: hanna.virtanen@uef.f, E-mail: reijo.lappalainen@uef.f, E-mail: jafar.keshvari@nokia.co [Corporate development office, Nokia Corporation, Linnoitustie 6, 02600 Espoo (Finland)

    2010-10-07

    Along with increased use of wireless communication devices operating in the radiofrequency (RF) range, concern has been raised about the related possible health risks. Among other concerns, the interaction of medical implants and RF devices has been studied in order to assure the safety of implant carriers under various exposure conditions. In the RF range, the main established quantitative effect of electromagnetic (EM) fields on biological tissues is heating due to vibrational movements of water molecules. The temperature changes induced in tissues also constitute the basis for the setting of RF exposure limits and recommendations. In this study, temperature changes induced by electromagnetic field enhancements near passive metallic implants have been simulated in the head region. Furthermore, the effect of the implant material on the induced temperature change was evaluated using clinically used metals with the highest and the lowest thermal conductivities. In some cases, remarkable increases in maximum temperatures of tissues (as much as 8 {sup 0}C) were seen in the near field with 1 W power level whereas at lower power levels significant temperature increases were not observed.

  13. Temperature changes associated with radiofrequency exposure near authentic metallic implants in the head phantom—a near field simulation study with 900, 1800 and 2450 MHz dipole

    Science.gov (United States)

    Matikka (formerly Virtanen, H.; Keshvari, J.; Lappalainen, R.

    2010-10-01

    Along with increased use of wireless communication devices operating in the radiofrequency (RF) range, concern has been raised about the related possible health risks. Among other concerns, the interaction of medical implants and RF devices has been studied in order to assure the safety of implant carriers under various exposure conditions. In the RF range, the main established quantitative effect of electromagnetic (EM) fields on biological tissues is heating due to vibrational movements of water molecules. The temperature changes induced in tissues also constitute the basis for the setting of RF exposure limits and recommendations. In this study, temperature changes induced by electromagnetic field enhancements near passive metallic implants have been simulated in the head region. Furthermore, the effect of the implant material on the induced temperature change was evaluated using clinically used metals with the highest and the lowest thermal conductivities. In some cases, remarkable increases in maximum temperatures of tissues (as much as 8 °C) were seen in the near field with 1 W power level whereas at lower power levels significant temperature increases were not observed.

  14. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the

  15. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  16. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  17. Fermion Dipole Moment and Holography

    CERN Document Server

    Kulaxizi, Manuela

    2015-01-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  18. Shifting nodal-plane suppressions in high-order harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    CERN Document Server

    Das, T

    2016-01-01

    We analyze the imprint of nodal planes in high-order harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semi-analytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wavefunction. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for $\\mathrm{O}_2$, whose highest occupied molecular orbital provides...

  19. Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    Science.gov (United States)

    Das, T.; Figueira de Morisson Faria, C.

    2016-08-01

    We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.

  20. High-Gain High-Field Fusion Plasma

    Science.gov (United States)

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  1. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  2. North-South Asymmetries in Earth's Magnetic Field: Effects on High-Latitude Geospace

    CERN Document Server

    Laundal, K M; Milan, S E; Haaland, S E; Coxon, J; Pedatella, N M; Förster, M; Reistad, J P

    2016-01-01

    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutr...

  3. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  4. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  5. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  6. Synchronization of interacting quantum dipoles

    Science.gov (United States)

    Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.

    2015-08-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  7. Dipole modes with depressed amplitudes in red giants are mixed modes

    CERN Document Server

    Mosser, B; Pincon, C; Takata, M; Vrard, M; Barban, C; Goupil, M-J; Kallinger, T; Samadi, R

    2016-01-01

    Seismic observations have shown that a number of evolved stars exhibit low-amplitude dipole modes, which are referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. We intend to study the properties of depressed modes in evolved stars, which is a necessary condition before concluding on the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result invalidates the hypothesis that the depressed dipole modes result from the suppression of the oscillat...

  8. Development of a single-layer Nb3Sn common coil dipole model

    Energy Technology Data Exchange (ETDEWEB)

    Igor Novitski et al.

    2002-12-13

    A high-field dipole magnet based on the common coil design was developed at Fermilab for a future Very Large Hadron Collider. A short model of this magnet with a design field of 11 T in two 40-mm apertures is being fabricated using the react-and-wind technique. In order to study and optimize the magnet design two 165-mm long mechanical models were assembled and tested. A technological model consisting of magnet straight section and ends was also fabricated in order to check the tooling and the winding and assembly procedures. This paper describes the design and technology of the common coil dipole magnet and summarizes the status of short model fabrication.The results of the mechanical model tests and comparison with FE mechanical analysis are also presented.

  9. The optimised sc dipole of SIS100 for series production

    Science.gov (United States)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10‑4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  10. Ocular dominance affects magnitude of dipole moment: an MEG study.

    Science.gov (United States)

    Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi

    2010-08-23

    To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5+/-6.1 nAm with left-eye stimulation and 16.1+/-3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0+/-5.2 and 21.5+/-2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe.

  11. Neutron electric dipole moment from gauge/string duality

    CERN Document Server

    Bartolini, Lorenzo; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea

    2016-01-01

    We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological $\\theta$ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result - a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be $d_n = 1.8 \\cdot 10^{-16}\\, \\theta\\;e\\cdot \\mathrm{cm}$. The electric dipole moment of the proton is exactly the opposite.

  12. Tunable Entanglement, Antibunching and Saturation effects in Dipole Blockade

    CERN Document Server

    Gillet, J; Bastin, T

    2009-01-01

    We report a simple model which enables us to analyze quantitatively the dipole blockade effect on the dynamical evolution of a two two-level atom system driven by an external laser field. The multiple excitations of the atomic sample are taken into account. We find very large concurrence in the dipole blockade regime. We further find that entanglement can be tuned by changing the intensity of the exciting laser. We also report a way to lift the dipole blockade paving the way to manipulate in a controllable way the blockade effects. We finally report how a continuous monitoring of the dipole blockade is possible using photon-photon correlations of the scattered light.

  13. Double dipole lithography for 65-nm node and beyond: defect sensitivity characterization and reticle inspection

    Science.gov (United States)

    Hsu, Stephen; Chu, Tsann-bin; Van Den Broeke, Douglas; Chen, J. Fung; Hsu, Michael; Corcoran, Noel P.; Volk, William; Ruch, Wayne E.; Sier, Jean-Paul E.; Hess, Carl E.; Lin, Benjamin S.; Yu, Chun-Chi; Huang, George

    2004-12-01

    Double Dipole Lithography (DDLä) has been demonstrated to be capable of patterning complex 2D devices patterns. [1,2,3] Due to inherently high aerial image contrast from dipole illumination, we have found that it can meet lithography manufacturing requirements, such as line edge roughness (LER), and critical dimension uniformity (CDU), for the upcoming 65nm node using ArF binary chrome masks. For patterning at k1 below 0.35, DDL is one of the promising resolution enhancement techniques (RET), which can offer process latitudes that are comparable to more costly alternatives such as two-exposure alternating PSM. To use DDL for printing actual IC devices, the original design data must be converted into a "vertical (V)" mask and a "horizontal (H)" mask for the respective X-dipole and Y-dipole exposures. We demonstrated that our model-based DDL mask data processing methodology is capable of converting complex 2D logic and memory designs into dipole-compatible mask layouts. [2,3] Due to the double exposure, stray light must be well controlled to ensure uniform printing across the entire chip. One intuitive solution to minimize stray light is to apply large patches of chrome in the open field areas in order to reduce the background (non-pattern area) exposure level. Unfortunately, this is not viable for a clear-field poly gate mask as it incorporates a positive photoresist process. We developed an innovative and practical background-shielding scheme called sub-resolution grating block (SGB), which is part of the DDL layout conversion method for full-chip application. This technique can effectively minimize the impact of long-range stray light on critical features during the two exposures. Reticles inspection is another important issue for the implementation of DDL technology. In this work, we reported a methodology on how to characterize defects and optimize inspection sensitivity for DDL RET reticles.

  14. Heat Treatment Optimization of Rutherford Cable for a 15 T Nb3Sn Dipole Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela [barzi@fnal.gov

    2016-12-22

    FNAL has been developing a 15 T Nb3Sn dipole demonstrator for a future Very High Energy pp Collider based on an optimized 60-mm aperture 4-layer “cos-theta” coil. To increase magnet efficiency, the coil was graded by using two cables with same 15 mm width and different thicknesses made of two different Restacked Rod Process (RRP®) wires. Due to the non-uniform field distribution in dipole coils the maximum field in the inner coil will reach 15-16 T, whereas the maximum field in the outer coil is 12-13 T. In preparation for the 15 T dipole coil reaction, heat treatment studies were performed on strands extracted from these cables with the goal of achieving the best coil performance in the corresponding magnetic fields. In particular, the effect of maximum temperature and time on the cable critical current was studied to take into account actual variations of these parameters during coil reaction. In parallel and in collaboration with OST, development was performed on optimizing Nb3Sn RRP® wire design and layout. Index Terms— Accelerator magnet, critical current density, Nb3Sn strand, Rutherford cable.

  15. Dipolar condensates with tilted dipoles in a pancake-shaped confinement

    Science.gov (United States)

    Mishra, Chinmayee; Nath, Rejish

    2016-09-01

    The effect of dipolar orientation with respect to the condensate plane on the mean-field dynamics of dipolar Bose-Einstein condensates in a pancake-shaped confinement is discussed. The stability of a quasi-two-dimensional condensate, with respect to the tilting angle, is found to be different from a two-dimensional layer of dipoles, indicating the relevance of the transverse extension while characterizing two-dimensional dipolar systems. An anisotropic excitation spectrum exhibiting a highly tunable, rotonlike minimum can arise entirely from the dipole-dipole interactions, by tilting the dipoles. At the magic angle and in the absence of contact interactions, the long-wavelength excitations are not phononlike and always unstable. The post-roton-instability dynamics, in contrast to phonon instability, in a uniform condensate, is featured by a transient, defect-free, stripe pattern, which eventually undergoes local collapses, and driving the condensate back into the stable regime can make them sustained for longer. Hopping between stripes has been observed before it melts into a uniform state in the presence of dissipation. Finally, we discuss a class of solutions, in which a quasi-two-dimensional condensate is self-trapped in one direction, as well as a regime of interaction parameters, including attractive short-range interactions, at which a two-dimensional anisotropic soliton can be stabilized, and we show that a chromium condensate with a relatively small number of atoms is well suited for this.

  16. QCD dipole model and $k_{T}$ factorization

    CERN Document Server

    Bialas, A; Peschanski, R

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k_T factorization at the leading logarithm approximation (in -log x_Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k_T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  17. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  18. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  19. Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification

    Science.gov (United States)

    Hurshkainen, Anna A.; Derzhavskaya, Tatyana A.; Glybovski, Stanislav B.; Voogt, Ingmar J.; Melchakova, Irina V.; van den Berg, Cornelis A. T.; Raaijmakers, Alexander J. E.

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7 T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7 T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7 T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298 MHz. To improve the detection range of the B1 + field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7 T MRI machine indicated redistribution of the B1 + field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14 dB accompanied by a strong field redistribution. In contrast, when put

  20. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.