WorldWideScience

Sample records for high fidelity single

  1. Superlocalization of single molecules and nanoparticles in high-fidelity optical imaging microfluidic devices.

    Science.gov (United States)

    Luo, Yong; Sun, Wei; Liu, Chang; Wang, Gufeng; Fang, Ning

    2011-07-01

    Superlocalization of single molecules and nanoparticles with a precision of subnanometer to a few tens of nanometers is crucial for elucidating nanoscale structures and movements in biological and chemical systems. A novel design of ultraflat and ultrathin glass/polydimethylsiloxane (PDMS) hybrid microdevices is introduced to provide almost uncompromised optical imaging quality for on-chip superlocalization and super-resolution imaging of single molecules and nanoparticles under a variety of microscopy modes. The performance of the high-fidelity (Hi-Fi) optical imaging microfluidic device was validated by precisely mapping micronecklaces made of fluorescent microtubules and 40 nm gold nanoparticles and by demonstrating the activation and excitation cycles of single Alexa Fluor 647 dyes for direct stochastic optical reconstruction microscopy in PDMS-based microchannels for the first time. Furthermore, the microdevice's feasibility for multimodality microscopy imaging was demonstrated by a vertical scan of live cells in epi-fluorescence and differential interference contrast (DIC) microscopy modes simultaneously.

  2. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492 (Japan); Fujiwara, Mikio; Sasaki, Masahide [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Koashi, Masato [Photon Science Center, The University of Tokyo, Bunkyo-ku, 113-8656 (Japan)

    2014-12-04

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  3. High-fidelity teleportation of continuous-variable quantum States using delocalized single photons

    DEFF Research Database (Denmark)

    Andersen, Ulrik L; Ralph, Timothy C

    2013-01-01

    states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...

  4. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

    Science.gov (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.

    2017-05-01

    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  5. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light

    Science.gov (United States)

    Chu, Xiao-Liu; Götzinger, Stephan; Sandoghdar, Vahid

    2017-01-01

    A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to 'single-photon sources', where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise. Such an intensity-squeezed beam of light would be desirable for a range of applications, such as quantum imaging, sensing, enhanced precision measurements and information processing. However, experimental realizations of these sources have been hindered by large losses caused by low photon-collection efficiencies and photophysical shortcomings. By using a planar metallodielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. The measured intensity fluctuations were limited by our detection efficiency and amounted to 2.2 dB squeezing.

  6. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  7. High-fidelity quantum driving

    DEFF Research Database (Denmark)

    Bason, Mark George; Viteau, Matthieu; Malossi, Nicola

    2011-01-01

    Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experi......Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources...... with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter...

  8. Hybrid High-Fidelity Auscultation Scope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Johnson Space Center's need for a space auscultation capability, Physical Optics Corporation proposes to develop a Hybrid High-Fidelity...

  9. High-fidelity quantum state preparation using neighboring optimal control

    Science.gov (United States)

    Peng, Yuchen; Gaitan, Frank

    2017-10-01

    We present an approach to single-shot high-fidelity preparation of an n-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two-qubit Bell state |β _{01}\\rangle = (1/√{2})[ |01\\rangle + |10\\rangle ] with an error probability ɛ ˜ 10^{-6} (10^{-5}) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state |\\overline{β }_{01}\\rangle.

  10. Status report on high fidelity reactor simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-12-11

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  11. The High Fidelity Plasma Speaker

    Science.gov (United States)

    McGall, James

    2014-10-01

    A plasma speaker is a device that uses ionized gas as the driving source of sound production, rather than the traditional magnetic coil and membrane setup found on a standard speaker. Similar to how lightning produces sound, or even a small static shock, a plasma speaker uses a modulating electric arc between two electrodes to produce sound. An electric circuit is built that allows the variance of the high voltage electric potential to be controlled by a 3.5 mm standard audio headphone jack, allowing sound energy to be transferred from the plasma to the air by means of pulse width modulation. For my summer project I have built two different models of plasma speakers and am working on a third. The speaker benefits from having a nearly massless driver, and I hypothesize that it should show a response rate faster than that of a traditional speaker and a decreased impulse response while having the drawbacks of inefficiency and a low maximum decibel output. The speakers are currently being optimized with magnetic stabilization of the plasma and will be tested soon for impulse response, frequency generation, efficiency, and audio coloration. Bridges for SUCCESS Grant at Salisbury University under Ph.D. Matthew Bailey.

  12. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  13. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Smith, Ralph [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Williams, Brian [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Figueroa, Victor [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2016-11-01

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is to employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.

  14. High-Fidelity Flash Lidar Model Development

    Science.gov (United States)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  15. High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  16. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    Science.gov (United States)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.; Lougovski, Pavel

    2018-01-01

    We report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.999 98 ±0.000 03 ), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530-1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3 ×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelity 0.9989 ±0.0004 . These gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.

  17. High-fidelity simulation enhances ACLS training.

    Science.gov (United States)

    Langdorf, Mark I; Strom, Suzanne L; Yang, Luanna; Canales, Cecilia; Anderson, Craig L; Amin, Alpesh; Lotfipour, Shahram

    2014-01-01

    Medical student training and experience in cardiac arrest situations is limited. Traditional Advanced Cardiac Life Support (ACLS) teaching methods are largely unrealistic with rare personal experience as team leader. Yet Postgraduate Year 1 residents may perform this role shortly after graduation. We expanded our ACLS teaching to a "Resuscitation Boot Camp" where we taught 2010 ACLS to 19 pregraduation students in didactic (12 hours) and experiential (8 hours) format. Immediately before the course, we recorded students performing an acute coronary syndrome/ventricular fibrillation (VF) scenario. As a final test, we recorded the same scenario for each student. Primary outcomes were time to cardiopulmonary resuscitation (CPR) and defibrillation (DF). Secondary measures were total scenario score, dangerous actions, proportion of students voicing "ventricular fibrillation," 12-lead ST-elevation myocardial infarction (STEMI) interpretation, and care necessary for return of spontaneous circulation (ROSC). Two expert ACLS instructors scored both performances on a 121-point scale, with each student serving as their own control. We used t tests and McNemar tests for paired data with statistical significance at pmask ventilation before DF. After instruction, students scored 97±4/121 points (p<.0001) with no dangerous actions. Before training, only 4 of 19 (21%) students performed both CPR and DF within 2 minutes, and 3 of these had ROSC. After training, 14 of 19 (74%) achieved CPR+DF≤2 minutes (p=.002), and all had ROSC. Before training, 5 of 19 (26%) students said "VF" and 4 of 19 obtained an ECG, but none identified STEMI. After training, corresponding performance was 13 of 19 "VF" (68%, p=021) and 100% ECG and STEMI identification (p<.05). This course significantly improved knowledge and psychomotor skills. Critical actions required for resuscitation were much more common after training. ACLS training including high-fidelity simulation decreases time to CPR and DF and

  18. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    Science.gov (United States)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  19. Long-Distance High-Fidelity Teleportation Using Singlet States

    OpenAIRE

    Shapiro, Jeffrey H.

    2001-01-01

    A quantum communication system is proposed that uses polarization-entangled photons and trapped-atom quantum memories. This system is capable of long-distance, high-fidelity teleportation, and long-duration quantum storage.

  20. Body-Sized Wideband High Fidelity Invisibility Cloak

    Science.gov (United States)

    Cohen, Nathan

    2012-09-01

    A human-sized microwave invisibility cloak has been realized. The invisibility cloak uses fractal metamaterials with two cloaking layers to achieve a high fidelity re-attainment of the intensity of an unobstructed direct path over a better than 50% bandwidth. A human subject was cloaked demonstrating a new milestone in diverted imaging capabilities: electrically large; high fidelity; and broad bandwidth. Transformational optics must now be considered less limiting in the guidance of practical applications.

  1. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  2. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    Science.gov (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  3. Interprofessional education in pharmacology using high-fidelity simulation.

    Science.gov (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Simulation Basics: How to Conduct a High-Fidelity Simulation.

    Science.gov (United States)

    Willhaus, Janet

    2016-02-01

    Well-planned and conducted health care simulation scenarios provide opportunities for staff development in areas such as communication, patient care, and teamwork. Consideration of resources, the location for the training, preparation of learners, and use of either a high-fidelity mannequin or a trained actor (eg, a standardized patient) are all part of the operational attentions needed to conduct a simulation training scenario. In order for participants to meet training objectives, the execution of the simulation session must be both planned and purposeful.

  5. Patterns of communication in high-fidelity simulation.

    Science.gov (United States)

    Anderson, Judy K; Nelson, Kimberly

    2015-01-01

    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.

  6. Enhancing pediatric clinical competency with high-fidelity simulation.

    Science.gov (United States)

    Birkhoff, Susan D; Donner, Carol

    2010-09-01

    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.

  7. Importance of debriefing in high-fidelity simulations

    Directory of Open Access Journals (Sweden)

    Igor Karnjuš

    2014-04-01

    Full Text Available Debriefing has been identified as one of the most important parts of a high-fidelity simulation learning process. During debriefing, the mentor invites learners to critically assess the knowledge and skills used during the execution of a scenario. Regardless of the abundance of studies that have examined simulation-based education, debriefing is still poorly defined.The present article examines the essential features of debriefing, its phases, techniques and methods with a systematic review of recent publications. It emphasizes the mentor’s role, since the effectiveness of debriefing largely depends on the mentor’s skills to conduct it. The guidelines that allow the mentor to evaluate his performance in conducting debriefing are also presented. We underline the importance of debriefing in clinical settings as part of continuous learning process. Debriefing allows the medical teams to assess their performance and develop new strategies to achieve higher competencies.Although the debriefing is the cornerstone of high-fidelity simulation learning process, it also represents an important learning strategy in the clinical setting. Many important aspects of debriefing are still poorly explored and understood, therefore this part of the learning process should be given greater attention in the future.

  8. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  9. High fidelity, radiation tolerant analog-to-digital converters

    Science.gov (United States)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  10. The theatre of high-fidelity simulation education.

    Science.gov (United States)

    Roberts, Debbie; Greene, Leah

    2011-10-01

    High-fidelity simulation is a useful mechanism to aid progression, development and skill acquisition in nurse education. However, nurse lecturers are daunted by sophisticated simulation technology. This paper presents a new method of introducing human patient simulation to students and educators, whilst seeking to demystify the roles, responsibilities and underpinning pedagogy. The analogy of simulation as theatre outlines the concepts of the theatre and stage (simulation laboratory); the play itself (Simulated Clinical Experience, SCE); the actors (nursing students); audience (peer review panel); director (session facilitator); and the production team (technical coordinators). Performing in front of people in a safe environment, repeated practice and taking on a new role teaches students to act, think and be like a nurse. This in turn supports student learning and enhances self confidence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Automating Initial Guess Generation for High Fidelity Trajectory Optimization Tools

    Science.gov (United States)

    Villa, Benjamin; Lantoine, Gregory; Sims, Jon; Whiffen, Gregory

    2013-01-01

    Many academic studies in spaceflight dynamics rely on simplified dynamical models, such as restricted three-body models or averaged forms of the equations of motion of an orbiter. In practice, the end result of these preliminary orbit studies needs to be transformed into more realistic models, in particular to generate good initial guesses for high-fidelity trajectory optimization tools like Mystic. This paper reviews and extends some of the approaches used in the literature to perform such a task, and explores the inherent trade-offs of such a transformation with a view toward automating it for the case of ballistic arcs. Sample test cases in the libration point regimes and small body orbiter transfers are presented.

  12. Derivation Of Probabilistic Damage Definitions From High Fidelity Deterministic Computations

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, L D

    2004-10-26

    This paper summarizes a methodology used by the Underground Analysis and Planning System (UGAPS) at Lawrence Livermore National Laboratory (LLNL) for the derivation of probabilistic damage curves for US Strategic Command (USSTRATCOM). UGAPS uses high fidelity finite element and discrete element codes on the massively parallel supercomputers to predict damage to underground structures from military interdiction scenarios. These deterministic calculations can be riddled with uncertainty, especially when intelligence, the basis for this modeling, is uncertain. The technique presented here attempts to account for this uncertainty by bounding the problem with reasonable cases and using those bounding cases as a statistical sample. Probability of damage curves are computed and represented that account for uncertainty within the sample and enable the war planner to make informed decisions. This work is flexible enough to incorporate any desired damage mechanism and can utilize the variety of finite element and discrete element codes within the national laboratory and government contractor community.

  13. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios.

    Science.gov (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer

    2017-11-16

    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  14. Concept Maps: A Tool to Prepare for High Fidelity Simulation in Nursing

    Science.gov (United States)

    Daley, Barbara J.; Beman, Sarah Black; Morgan, Sarah; Kennedy, Linda; Sheriff, Mandy

    2017-01-01

    In this study, the use of concept mapping as a method to prepare for high fidelity simulated learning experiences was investigated. Fourth year baccalaureate nursing students were taught how to use concept maps as a way to prepare for high fidelity simulated nursing experiences. Students prepared concept maps for two simulated experiences…

  15. The Creation of a CPU Timer for High Fidelity Programs

    Science.gov (United States)

    Dick, Aidan A.

    2011-01-01

    Using C and C++ programming languages, a tool was developed that measures the efficiency of a program by recording the amount of CPU time that various functions consume. By inserting the tool between lines of code in the program, one can receive a detailed report of the absolute and relative time consumption associated with each section. After adapting the generic tool for a high-fidelity launch vehicle simulation program called MAVERIC, the components of a frequently used function called "derivatives ( )" were measured. Out of the 34 sub-functions in "derivatives ( )", it was found that the top 8 sub-functions made up 83.1% of the total time spent. In order to decrease the overall run time of MAVERIC, a launch vehicle simulation program, a change was implemented in the sub-function "Event_Controller ( )". Reformatting "Event_Controller ( )" led to a 36.9% decrease in the total CPU time spent by that sub-function, and a 3.2% decrease in the total CPU time spent by the overarching function "derivatives ( )".

  16. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials

    Science.gov (United States)

    Pindera, Marek-Jerzy; Arnold, Steven M.

    2003-01-01

    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  17. Real-time High-fidelity Surface Flow Simulation.

    Science.gov (United States)

    Ren, Bo; Yuan, Tailing; Li, Chenfeng; Xu, Kun; Hu, Shi-Min

    2017-06-30

    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach.

  18. Supporting the lecturer to deliver high-fidelity simulation.

    Science.gov (United States)

    Dowie, Iwan; Phillips, Cheryl

    In response to a shortage of clinical practice placements for pre-registration nurses and midwives, nursing faculties have been examining alternative ways to support students to develop their clinical skills, with simulation being one of the more popular methods. In a nursing context, simulation is often used to replicate a clinical setting, such as a hospital ward or the patient's home. Some universities have introduced clinical suites that enable replication of clinical environments and offer the use of human patient simulators to mimic patient-focused scenarios. This article describes a small informal review that aimed to identify how lecturers felt about simulation in one faculty using high-fidelity simulated scenarios to inform the development of a subsequent research study. The results indicate that although many staff use simulation and believe it is a beneficial approach to learning, many also lack confidence and do not feel sufficiently prepared in its use. Most participants felt that the development of a simulation module for lecturers would increase their confidence.

  19. High-fidelity spin measurement on the nitrogen-vacancy center

    Science.gov (United States)

    Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae

    2017-10-01

    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

  20. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  1. High fidelity system modeling for high quality image reconstruction in clinical CT.

    Directory of Open Access Journals (Sweden)

    Synho Do

    Full Text Available Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging.

  2. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  3. High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.

    Science.gov (United States)

    Cooper, Allyson

    2015-01-01

    The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.

  4. Physics and Psychophysics of High-Fidelity Sound. Part 1: Perception of Sound and Music.

    Science.gov (United States)

    Rossing, Thomas D.

    1979-01-01

    Presents the first of a series of articles that discuss the perception of sound and music. This series of articles is intended to provide an introduction to the broad subject of high-fidelity sound recording and reproduction. (HM)

  5. Using high-fidelity simulation as a learning strategy in an undergraduate intensive care course.

    Science.gov (United States)

    Badir, Aysel; Zeybekoğlu, Zuhal; Karacay, Pelin; Göktepe, Nilgün; Topcu, Serpil; Yalcin, Begüm; Kebapci, Ayda; Oban, Gül

    2015-01-01

    Using high-fidelity simulations to facilitate student learning is an uncommon practice in Turkish nursing programs. The aim of the present study was to understand students' perceptions of the use of simulation in nursing courses. Subjects included 36 senior nursing students taking an intensive care course. This study revealed that high-fidelity simulation is an ideal method of promoting learning by helping students transfer theory into practice, build confidence and teamwork, and raise professional awareness.

  6. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    Science.gov (United States)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  7. Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain.

    Science.gov (United States)

    Naito, Tadasuke; Mori, Kotaro; Ushirogawa, Hiroshi; Takizawa, Naoki; Nobusawa, Eri; Odagiri, Takato; Tashiro, Masato; Ohniwa, Ryosuke L; Nagata, Kyosuke; Saito, Mineki

    2017-03-15

    Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production. IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate

  8. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    Science.gov (United States)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  9. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.

    Science.gov (United States)

    Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S

    2017-04-13

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  10. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    Science.gov (United States)

    Breton, S.-P.; Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.

    2017-03-01

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue 'Wind energy in complex terrains'.

  11. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  12. Low fidelity, high quality: a model for e-learning.

    Science.gov (United States)

    Gordon, Morris; Chandratilake, Madawa; Baker, Paul

    2013-08-01

    E-learning continues to proliferate as a method to deliver continuing medical education. The effectiveness of e-learning has been widely studied, showing that it is as effective as traditional forms of education. However, most reports focus on whether the e-learning is effective, rather than discussing innovations to allow clinical educators to ask 'how' and 'why' it is effective, and to facilitate local reproduction. Previous work has set out a number of barriers to the introduction of e-learning interventions. Cost, the time to produce interventions, and the training requirements for educators and trainees have all been identified as barriers. We set out to design an e-learning intervention on paediatric prescribing that could address these issues using a low-fidelity approach, and report our methods so as to allow interested readers to use a similar approach. Using low-cost, readily accessible tools and applying appropriate educational theory, the intervention was produced in a short period of time. As part of a randomised controlled trial, long-term retention of prescribing skills was demonstrated, with significantly higher prescribing skill scores in the e-learning group at 4 and 12 weeks (p e-learning. The design model described is simple and can be used by clinical teachers to support local development. Further research could investigate the experiences of these clinicians using this method of instructional design. © 2013 John Wiley & Sons Ltd.

  13. The Need for High-Fidelity Robotics Sensor Models

    Directory of Open Access Journals (Sweden)

    Phillip J. Durst

    2011-01-01

    Full Text Available Simulations provide a safe, controlled setting for testing and are therefore ideal for rapidly developing and testing autonomous mobile robot behaviors. However, algorithms for mobile robots are notorious for transitioning poorly from simulations to fielded platforms. The difficulty can in part be attributed to the use of simplistic sensor models that do not recreate important phenomena that affect autonomous navigation. The differences between the output of simple sensor models and true sensors are highlighted using results from a field test exercise with the National Robotics Engineering Center's Crusher vehicle. The Crusher was manually driven through an area consisting of a mix of small vegetation, rocks, and hay bales. LIDAR sensor data was collected along the path traveled and used to construct a model of the area. LIDAR data were simulated using a simple point-intersection model for a second, independent path. Cost maps were generated by the Crusher autonomy system using both the real-world and simulated sensor data. The comparison of these cost maps shows consistencies on most solid, large geometry surfaces such as the ground, but discrepancies around vegetation indicate that higher fidelity models are required to truly capture the complex interactions of the sensors with complex objects.

  14. High-fidelity simulation effects on CPR knowledge, skills, acquisition, and retention in nursing students.

    Science.gov (United States)

    Aqel, Ahmad A; Ahmad, Muayyad M

    2014-12-01

    There is a gap in the literature regarding learning outcomes linked to the use of high-fidelity simulators compared to that of traditional teaching methods. To examine the effect of using high-fidelity simulators on knowledge and skills acquisition and retention with university students. A randomized two-arm trial using two different educational approaches on 90 nursing students assigned randomly to two groups was used at two points of time. The results showed significant differences in favor of the participants in the high-fidelity simulator group on both the acquisition and retention of knowledge and skills over time. However, a significant loss of cardiopulmonary resuscitation knowledge and skills occurred at 3 months after training in both groups. The findings of this study may assist educators in integrating high-fidelity simulators in education and training. In addition, the findings may help nursing educators to arrange additional cardiopulmonary resuscitation training sessions in order to improve cardiac arrested patients' outcomes. High-fidelity simulation (HFS) provides students with interactive learning experiences in a safe controlled environment. HFS enables teachers to implement critical clinical scenarios, such as cardiac arrest, without risk to patients. Integrating the simulation training into nursing curricula will help to overcome the challenges that face many courses, specifically the shortage of clinical areas for training and the increase in numbers of nursing students. © 2014 Sigma Theta Tau International.

  15. Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint

    Science.gov (United States)

    Bartels, Robert E.; Stanford, Bret K.

    2017-01-01

    Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.

  16. Using High-Fidelity Simulation to Assess Knowledge, Skills, and Attitudes in Nurses Performing CRRT.

    Science.gov (United States)

    Przybyl, Heather; Androwich, Ida; Evans, Jill

    2015-01-01

    Continuous renal replacement therapy (CRRT) is an acute therapy for critically ill patients. There are many life-threatening complications that can occur; therefore, it is imperative that nurses are highly trained in the use and troubleshooting of CRRT. A structured simulation exercise was added to an existing CRRT education program by developing and implementing an annual assessment of knowledge, skills, and attitudes (KSAs) using high-fidelity simulation. The use of high-fidelity simulation as an intervention during annual evaluation of KSAs was shown to be effective in increasing nurse satisfaction, understanding of CRRT principles, and critical thinking skills with the operation of CRRT.

  17. Examining the impact of high and medium fidelity simulation experiences on nursing students' knowledge acquisition.

    Science.gov (United States)

    Levett-Jones, Tracy; Lapkin, Samuel; Hoffman, Kerry; Arthur, Carol; Roche, Jan

    2011-11-01

    This paper describes a study that measured and compared knowledge acquisition in nursing students exposed to medium or high fidelity human patient simulation manikins. In Australia and internationally the use of simulated learning environments has escalated. Simulation requires a significant investment of time and money and in a period of economic rationalisation this investment must be justified. Assessment of knowledge acquisition with multiple choice questions is the most common approach used to determine the effectiveness of simulation experiences. This study was conducted in an Australian school of nursing; 84 third year nursing students participated. A quasi-experimental design was used to evaluate the effect of the level of manikin fidelity on knowledge acquisition. Data were collected at three points in time: prior to the simulation, immediately following and two weeks later. Differences in mean scores between the control (medium fidelity) and experimental (high fidelity) groups for Tests 1, 2 and 3 were calculated using independent t tests and were not statistically significant. Analysis of covariance (ANCOVA) was conducted to determine whether changes in knowledge scores occurred over time and, while an improvement in scores was observed, it was not statistically significant. The results of this study raise questions about the value of investing in expensive simulation modalities when the increased costs associated with high fidelity manikins may not be justified by a concomitant increase learning outcomes. This study also suggests that multiple choice questions may not be the most appropriate measure of simulation effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT

    Science.gov (United States)

    Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian

    2015-01-01

    Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.

  19. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation

    Science.gov (United States)

    Bowman, D.; Harte, T. L.; Chardonnet, V.; De Groot, C.; Denny, S. J.; Le Goc, G.; Anderson, M.; Ireland, P.; Cassettari, D.; Bruce, G. D.

    2017-05-01

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function which incorporates the inner product of the light field with a chosen target field within a defined measure region is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of $F=0.999997$ is achieved for a pattern resembling an $LG^{0}_{1}$ mode with a calculated light-usage efficiency of $41.5\\%$. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with $F = 0.97$ and $7.8\\%$ light efficiency.

  20. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    Science.gov (United States)

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  1. High-fidelity quantum state evolution in imperfect photonic integrated circuits

    Science.gov (United States)

    Mower, Jacob; Harris, Nicholas C.; Steinbrecher, Gregory R.; Lahini, Yoav; Englund, Dirk

    2015-09-01

    We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics controlled-not and controlled-phase gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate an experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high-fidelity operation.

  2. Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study

    Science.gov (United States)

    Olson, Susan L.

    2013-01-01

    High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…

  3. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  4. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...

  5. A high-fidelity approach towards simulation of pool boiling

    Science.gov (United States)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  6. High-Fidelity Numerical Modeling of Compressible Flow

    Science.gov (United States)

    2015-11-01

    source of much of the aero-thermo- acoustic load that a high-speed vehicle must resist. In recent work, we have addressed several aspects of the...region is tiled with boxes of size r, and the number of boxes N that contain the boundary is counted. For a self-similar fractal, this number is N(r...resolution outside the boundary layer to accommodate acoustic disturbances as they travelled through the inviscid core flow and where reflected back into

  7. A New European High Fidelity Solar Array Simulator for Near Earth and Deep Space Applications

    Directory of Open Access Journals (Sweden)

    Thorvardarson Hjalti Pall

    2017-01-01

    Full Text Available Following an intensive design, development, and testing effort of almost 3 years, Rovsing with ESA assistance succeeded in the development of a new European high fidelity Solar Array Simulator (SAS for near Earth and deep space applications. ESA now has a versatile, highly modular and efficient SAS at its disposition that serves at simulating modern high power solar arrays for Earth observation, science or telecom satellites as well as for future deep space missions.

  8. Development of high-fidelity multiphysics system for light water reactor analysis

    Science.gov (United States)

    Magedanz, Jeffrey W.

    codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)

  9. Creation and Validation of a Novel Mobile Simulation Laboratory for High Fidelity, Prehospital, Difficult Airway Simulation.

    Science.gov (United States)

    Bischof, Jason J; Panchal, Ashish R; Finnegan, Geoffrey I; Terndrup, Thomas E

    2016-10-01

    Introduction Endotracheal intubation (ETI) is a complex clinical skill complicated by the inherent challenge of providing care in the prehospital setting. Literature reports a low success rate of prehospital ETI attempts, partly due to the care environment and partly to the lack of consistent standardized training opportunities of prehospital providers in ETI. Hypothesis/Problem The availability of a mobile simulation laboratory (MSL) to study clinically critical interventions is needed in the prehospital setting to enhance instruction and maintain proficiency. This report is on the development and validation of a prehospital airway simulator and MSL that mimics in situ care provided in an ambulance. The MSL was a Type 3 ambulance with four cameras allowing audio-video recordings of observable behaviors. The prehospital airway simulator is a modified airway mannequin with increased static tongue pressure and a rigid cervical collar. Airway experts validated the model in a static setting through ETI at varying tongue pressures with a goal of a Grade 3 Cormack-Lehane (CL) laryngeal view. Following completion of this development, the MSL was launched with the prehospital airway simulator to distant communities utilizing a single facilitator/driver. Paramedics were recruited to perform ETI in the MSL, and the detailed airway management observations were stored for further analysis. Nineteen airway experts performed 57 ETI attempts at varying tongue pressures demonstrating increased CL views at higher tongue pressures. Tongue pressure of 60 mm Hg generated 31% Grade 3/4 CL view and was chosen for the prehospital trials. The MSL was launched and tested by 18 paramedics. First pass success was 33% with another 33% failing to intubate within three attempts. The MSL created was configured to deliver, record, and assess intubator behaviors with a difficult airway simulation. The MSL created a reproducible, high fidelity, mobile learning environment for assessment of

  10. Towards developing high-fidelity simulated learning environment training modules in audiology.

    Science.gov (United States)

    Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M

    2017-02-01

    This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  11. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  12. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  13. Single High Fidelity Geometric Data Sets for LCM - Model Requirements

    Science.gov (United States)

    2006-11-01

    la sécurité des navires et plus de certitude dans ce domaine. Les travaux proposés en vertu de ce contrat constitueront les premières étapes vers le... contrat constituent les premières étapes vers le développement d’une passerelle entre les outils d’analyse de GCVM et les données stockées dans une base...defects. Modification of a FEM would be an automatic procedure using information in the SID to adjust the model. The definition of the defect in the

  14. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  15. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  16. Low-cost PC-based high-fidelity infrared signature modelling and simulation

    OpenAIRE

    Baqar, S.

    2008-01-01

    In the light of the increasing terrorist SAMs threat to civil and military aircraft, the need of a high-fidelity, low-cost, IR signature scene modelling and simulation capability that could be used for development, testing and evaluation of IRCM systems cannot be overlooked. The performance evaluation, training and testing of IR missiles or other IR based weapon systems, is very expensive and is also dependent upon atmospheric factors. Whereas, the computer based non-destruc...

  17. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  18. A Method to Achieve High Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation

    Science.gov (United States)

    2012-08-01

    considered as the reference signal changing as a result of the ILC action. Thus, designing the learning function ( ),m mi if u e properly is...the advantage of not requiring a model of the system as part of the design process [45-54], which is particularly suitable for the ID-HIL paradigm...sequential turbochargers , and exhaust gas recirculation. A high-fidelity, AC electric dynamometer couples the physical engine with the simulation

  19. High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems

    Science.gov (United States)

    2017-05-01

    ER D C TR -1 7- 2 Military Engineering Applied Research High-Fidelity Simulations of Electromagnetic Propagation and RF Communication ...Propagation and RF Communication Systems T53 Final Report Samuel S. Streeter, Daniel J. Breton, and Michele L. Maxson U.S. Army Engineer Research...output in terms of received RF power, which is related to the likelihood of successful communication . Because the API is thread safe, multiple Tx-Rx

  20. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    Science.gov (United States)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  1. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  2. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    Science.gov (United States)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  3. Low vs. high fidelity: the importance of 'realism' in the simulation of a stone treatment procedure.

    Science.gov (United States)

    Sarmah, Piyush; Voss, Jim; Ho, Adrian; Veneziano, Domenico; Somani, Bhaskar

    2017-07-01

    Simulation training for stone surgery is now increasingly used as part of training curricula worldwide. A combination of low and high fidelity simulators has been used with varying degrees of 'realism' provided by them. In this review, we discuss low and high fidelity simulators used for ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL) stone procedures with their advantages, disadvantages and future direction for endourological simulation surgery. The final goal will be to understand whether or not 'realism' has to be considered as a critical element in simulation for this field. There is a wide range of simulators available for URS and PCNL training ranging from basic bench-type model to advanced virtual reality and cadaveric models, all providing various levels of realism. Although basic models might be more useful to novices, advanced models allow for complex and more realistic simulation training. With a wide variety of simulators now available and given the latest novelties in modular training curriculums, combination of low and high fidelity simulators that provide a realistic and cost-effective option seems to be the way forward. It is unavoidable that simulators will play an increasing role in endourological training.

  4. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...... fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...

  5. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  6. High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport

    Science.gov (United States)

    Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof

    2018-01-01

    A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a Yb171 + ion during ion transport in a microstructured Paul trap. Ramsey spectroscopy of the ion's internal state is interleaved with up to 4000 transport operations over a distance of 280 μ m each taking 12.8 μ s . We obtain a state fidelity of 99.9994 (-7+6) % per ion transport.

  7. Annual Report 2015: High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters

    Science.gov (United States)

    2016-06-01

    Field-Reversed Configuration ( FRC ) Thrusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin Koo 5d...simultaneously. The low‐fidelity simulation capability for the formation process in RMF  FRC  thrusters (based on  the Hugrass model) and a high...fidelity multifluid capability for both theta‐pinch and RMF  FRCs  provides us with  both an extremely rapid engineering‐level code to quickly simulate

  8. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  9. A study on the usefulness of high fidelity patient simulation in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Bikramjit Pal

    2018-01-01

    Full Text Available Introduction: Simulation is the imitation of the operation of a real-world process or system over time. Innovative simulation training solutions are now being used to train medical professionals in an attempt to reduce the number of safety concerns that have adverse effects on the patients. Objectives: (a To determine its usefulness as a teaching or learning tool for management of surgical emergencies, both in the short term and medium term by students’ perception. (b To plan future teaching methodology regarding hi-fidelity simulation based on the study outcomes and re-assessment of the current training modules. Methods: Quasi-experimental time series design with pretest-posttest interventional study. Quantitative data was analysed in terms of Mean, Standard Deviation and standard error of Mean. Statistical tests of significance like Repeated Measure of Analysis of Variance (ANOVA were used for comparisons. P value < 0.001 was considered to be statistically significant. Results: The students opined that the simulated sessions on high fidelity simulators had encouraged their active participation which was appropriate to their current level of learning. It helped them to think fast and the training sessions resembled a real life situation. The study showed that learning had progressively improved with each session of simulation with corresponding decrease in stress. Conclusion: Implementation of high fidelity simulation based learning in our Institute had been perceived favourably by a large number of students in enhancing their knowledge over time in management of trauma and surgical emergencies.

  10. Principal considerations for the contemporary high-fidelity endovascular simulator design used in training and evaluation.

    Science.gov (United States)

    Eslahpazir, Benjamin A; Goldstone, Jerry; Allemang, Matthew T; Wang, John C; Kashyap, Vikram S

    2014-04-01

    The simulation and rehearsal of virtual endovascular procedures are anticipated to improve the outcomes of actual procedures. Contemporary, high-fidelity simulation is based on feedback systems that combine concepts of mechanical, electrical, computer, and control systems engineering to reproduce an interactive endovascular case. These sophisticated devices also include psychometric instruments for objective surgical skill assessment. The goal of this report is to identify the design characteristics of commercially available simulators for endovascular procedures and to provide a cross-section comparison across all devices to aid in the simulator selection process. Data were obtained (1) by a standard questionnaire issued to four simulator companies prompting for relevant design details of each model for the expressed purpose of publication, (2) from each manufacturer's respective website including appended sales brochures and specification sheets, and (3) by an evaluation of peer-reviewed literature. Focus topics include haptic technology, vessel segmentation, physiologic feedback, performance feedback, and physical logistics (ie, weight, dimensions, and portability). All data sources were surveyed between January 1, 2012, and June 30, 2013. All of the commercially available, high-fidelity endovascular simulators use interactive virtual environments with preprogrammed physics and physiology models for accurate reproduction of surgical reality. The principal differences between devices are the number of access sites and haptic devices, the ability to reconstruct patient-specific anatomy for preprocedural rehearsal, and the available peripheral training modalities. Hardware and software options can also vary within the same device in comparing patient-specific with generic cases. Despite our limited knowledge about the potential of high-fidelity simulation within the endovascular world, today's currently available simulators successfully provide high-fidelity

  11. Development of a High Fidelity System Analysis Code for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hongbin Zhang; Vincent Mousseau; Haihua Zhao

    2008-06-01

    Traditional nuclear reactor system analysis codes such as RELAP and TRAC employ an operator split methodology. In this approach, each of the physics (fluid flow, heat conduction and neutron diffusion) is solved separately and the coupling terms are done explicitly. This approach limits accuracy (first order in time at best) and makes the codes slow in running since the explicit coupling imposes stability restrictions on the time step size. These codes have been extensively tested and validated for the existing LWRs. However, for GEN IV nuclear reactor designs which tend to have long lasting transients resulting from passive safety systems, the performance is questionable and modern high fidelity simulation tools will be required. The requirement for accurate predictability is the motivation for a large scale overhaul of all of the models and assumptions in transient nuclear reactor safety simulation software. At INL we have launched an effort with the long term goal of developing a high fidelity system analysis code that employs modern physical models, numerical methods, and computer science for transient safety analysis of GEN IV nuclear reactors. Modern parallel solution algorithms will be employed through utilizing the nonlinear solution software package PETSc developed by Argonne National Laboratory. The physical models to be developed will have physically realistic length scales and time scales. The solution algorithm will be based on the physics-based preconditioned Jacobian-free Newton-Krylov solution methods. In this approach all of the physical models are solved implicitly and simultaneously in a single nonlinear system. This includes the coolant flow, nonlinear heat conduction, neutron kinetics, and thermal radiation, etc. Including modern physical models and accurate space and time discretizations will allow the simulation capability to be second order accurate in space and in time. This paper presents the current status of the development efforts as

  12. Teaching elliptical excision skills to novice medical students: A randomized controlled study comparing low- and high-fidelity bench models

    Directory of Open Access Journals (Sweden)

    Rafael Denadai

    2014-01-01

    Full Text Available Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims : To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills′ training (n = 8: didactic materials (control; organic bench model (low-fidelity; ethylene-vinyl acetate bench model (low-fidelity; chicken legs′ skin bench model (high-fidelity; or pig foot skin bench model (high-fidelity. Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results : The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P 0.05 between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills′ training was considered large (>0.80 in all measurements. Conclusion : The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  13. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-fidelity bench models.

    Science.gov (United States)

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-03-01

    The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  14. High Fidelity Simulation of Liquid Jet in Cross-flow Using High Performance Computing

    Science.gov (United States)

    Soteriou, Marios; Li, Xiaoyi

    2011-11-01

    High fidelity, first principles simulation of atomization of a liquid jet by a fast cross-flowing gas can help reveal the controlling physics of this complicated two-phase flow of engineering interest. The turn-around execution time of such a simulation is prohibitively long using typically available computational resources today (i.e. parallel systems with ~O(100) CPUs). This is due to multiscale nature of the problem which requires the use of fine grids and time steps. In this work we present results from such a simulation performed on a state of the art massively parallel system available at Oakridge Leadership Computing Facility (OLCF). Scalability of the computational algorithm to ~2000 CPUs is demonstrated on grids of up to 200 million nodes. As a result, a simulation at intermediate Weber number becomes possible on this system. Results are in agreement with detailed experiment measurements of liquid column trajectory, breakup location, surface wavelength, onset of surface stripping as well as droplet size and velocity after primary breakup. Moreover, this uniform grid simulation is used as a base case for further code enhancement by evaluating the feasibility of employing Adaptive Mesh Refinement (AMR) near the liquid-gas interface as a means of mitigating computational cost.

  15. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  16. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    Science.gov (United States)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  17. High-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field

    Directory of Open Access Journals (Sweden)

    Carron PN

    2011-05-01

    Full Text Available Pierre-Nicolas Carron, Lionel Trueb, Bertrand YersinEmergency Service, University Hospital Center, Lausanne, SwitzerlandAbstract: Simulation is a promising pedagogical tool in the area of medical education. High-fidelity simulators can reproduce realistic environments or clinical situations. This allows for the practice of teamwork and communication skills, thereby enhancing reflective reasoning and experiential learning. Use of high-fidelity simulators is not limited to the medical and aeronautical fields, but has developed in a large number of nonmedical organizations as well. The techniques and pedagogical tools which have evolved through the use of nonmedical simulations serve not only as teaching examples but also as avenues which can help further the evolution of the concept of high-fidelity simulation in the field of medicine. This paper presents examples of high-fidelity simulations in the military, maritime, and aeronautical fields. We compare the implementation of high-fidelity simulation in the medical and nonmedical domains, and discuss the possibilities and limitations of simulators in medicine, based on recent nonmedical applications.Keywords: high-fidelity simulation, crew resource management, experiential learning

  18. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-03-01

    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.

  19. Research on characteristic spectrum extracting and matching for high-fidelity reproduction.

    Science.gov (United States)

    Yang, Sheng-wei; Liu, Zhen; Wu, Ming-guang; Zhang, Zhen-jie

    2014-06-01

    Reconstructing the spectrum rapidly and accurately is the key to the research on high-fidelity reproduction. A characteristic spectrum extracting and matching method for high-fidelity printing is proposed aiming at the problem of complex conversion between spectrum and ink combination caused by multi-color. The method filters and extracts feature bands of primary ink through derivative spectrum, and a characteristic spectrum multi-threshold coding method is proposed. Considering the problem of subarea judgment in hi-fi printing, an average derivative spectrum is taken as characteristic spectrum of each subarea and a spectrum matching method between target spectrum and average derivative spectrum of sub-spaces is proposed. The results show that the feature bands extracted can represent spectral characteristic of primary color significantly and the precision of color conversion model based on feature bands is higher than the model based on full bands. The spectrum matching method can achieve a high accuracy in sub-space judgments and greatly improve the efficiency of color convention. The spectrum extracting and matching method has the high practicability.

  20. From High Fidelity (1995 to Funny Girl (2014 or What Makes Nick Hornby’s Novels so Popular

    Directory of Open Access Journals (Sweden)

    Cristina Chifane

    2015-12-01

    Full Text Available From High Fidelity (1995 to Funny Girl (2014 or What Makes Nick Hornby’s Novels so Popular Abstract  The common and perhaps the most fascinating characteristic of all Nick Hornby’s novels is that they tackle contemporary problems of ordinary people. As a consequence, the readers will plunge into a world of failed relationships; fear of commitment; depression; lack of emotional stability; teenage anger and imbalance; frustration and obsession; invented maladies, sons or parties; disappointment and self-pity as well as useless single or group therapies. In spite of their dark problematic, Hornby’s novels have enjoyed popularity and continue to exert the sort of fascination that only brilliant literary pieces may produce. From such a point of view, this paper will try to solve the puzzle called Nick Hornby constructing and deconstructing the elements that make up his unique writing style.

  1. Applications of fidelity measures to complex quantum systems.

    Science.gov (United States)

    Wimberger, Sandro

    2016-06-13

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. © 2016 The Author(s).

  2. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  3. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  4. High-fidelity simulation as an experiential model for teaching root cause analysis.

    Science.gov (United States)

    Quraishi, Sadeq A; Kimatian, Stephen J; Murray, W Bosseau; Sinz, Elizabeth H

    2011-12-01

    The purpose of this study was to assess the effectiveness of high-fidelity simulation for teaching root cause analysis (RCA) in graduate medical education. Thirty clinical anesthesiology-1 through clinical anesthesiology-3 residents were randomly assigned to 2 groups: group A participants received a 10-minute lecture on RCA and participated in a simulation exercise where a medical error occurs, and group B participants received the 10-minute lecture on RCA only. Participants completed baseline, postintervention, and 6-month follow-up assessments, and they were evaluated on their attitude toward as well as understanding of RCA and "systems-based" care. All 30 residents completed the surveys. Baseline attitudes and knowledge scores were similar between groups. Postintervention knowledge scores were also similar between groups; however, group B was significantly more skeptical (P strategies. Six months later, group A demonstrated retained knowledge scores and unchanged attitude, whereas group B demonstrated significantly worse knowledge scores (P  =  .001) as well as continued skepticism toward a systems-based approach (P didactics is an effective strategy for teaching RCA and systems theory in graduate medical education. Our findings also suggest that there is greater retention of knowledge and increased positive attitude toward systems improvement when focused didactics are coupled with a high-fidelity simulation exercise.

  5. High-fidelity multiactor emergency preparedness training for patient care providers.

    Science.gov (United States)

    Scott, Lancer A; Maddux, P Tim; Schnellmann, Jennifer; Hayes, Lauren; Tolley, Jessica; Wahlquist, Amy E

    2012-01-01

    Providing comprehensive emergency preparedness training (EPT) for patient care providers is important to the future success of emergency preparedness operations in the United States. Disasters are rare, complex events involving many patients and environmental factors that are difficult to reproduce in a training environment. Few EPT programs possess both competency-driven goals and metrics to measure life-saving performance during a multiactor simulated disaster. The development of an EPT curriculum for patient care providers-provided first to medical students, then to a group of experienced disaster medical providers-that recreates a simulated clinical disaster using a combination of up to 15 live actors and six high-fidelity human simulators is described. Specifically, the authors detail the Center for Health Professional Training and Emergency Response's (CHPTER's) 1-day clinical EPT course including its organization, core competency development, medical student self-evaluation, and course assessment. Two 1-day courses hosted by CHPTER were conducted in a university simulation center. Students who completed the course improved their overall knowledge and comfort level with EPT skills. The authors believe this is the first published description of a curriculum method that combines high-fidelity, multiactor scenarios to measure the life-saving performance of patient care providers utilizing a clinical disaster scenario with > 10 patients at once. A larger scale study, or preferably a multicenter trial, is needed to further study the impact of this curriculum and its potential to protect provider and patient lives.

  6. A High-Fidelity Virtual Environment for the Study of Paranoia

    Directory of Open Access Journals (Sweden)

    Matthew R. Broome

    2013-01-01

    Full Text Available Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n=32 entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  7. A High-Fidelity Virtual Environment for the Study of Paranoia

    Science.gov (United States)

    Broome, Matthew R.; Zányi, Eva; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P.

    2013-01-01

    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists. PMID:24455255

  8. Improving the self-confidence level of medical undergraduates during emergencies using high fidelity simulation.

    Science.gov (United States)

    Muniandy, R K; Nyein, K K; Felly, M

    2015-10-01

    Medical practice involves routinely making critical decisions regarding patient care and management. Many factors influence the decision-making process, and self-confidence has been found to be an important factor in effective decision-making. With the proper transfer of knowledge during their undergraduate studies, selfconfidence levels can be improved. The purpose of this study was to evaluate the use of High Fidelity Simulation as a component of medical education to improve the confidence levels of medical undergraduates during emergencies. Study participants included a total of 60 final year medical undergraduates during their rotation in Medical Senior Posting. They participated in a simulation exercise using a high fidelity simulator, and their confidence level measured using a self-administered questionnaire. The results found that the confidence levels of 'Assessment of an Emergency Patient', 'Diagnosing Arrhythmias', 'Emergency Airway Management', 'Performing Cardio-pulmonary Resuscitation', 'Using the Defibrillator' and 'Using Emergency Drugs' showed a statistically significant increase in confidence levels after the simulation exercise. The mean confidence levels also rose from 2.85 to 3.83 (pundergraduates.

  9. High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.

    Science.gov (United States)

    Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H

    2017-10-11

    High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.

  10. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  11. The use of high-fidelity manikins for advanced life support training--A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Adam; Lockey, Andrew; Bhanji, Farhan; Lin, Yiqun; Hunt, Elizabeth A; Lang, Eddy

    2015-08-01

    The objective of this study was to evaluate the effectiveness of high versus low fidelity manikins in the context of advanced life support training for improving knowledge, skill performance at course conclusion, skill performance between course conclusion and one year, skill performance at one year, skill performance in actual resuscitations, and patient outcomes. A systematic search of Pubmed, Embase and Cochrane databases was conducted through January 31, 2014. We included two-group non-randomized and randomized studies in any language comparing high versus low fidelity manikins for advanced life support training. Reviewers worked in duplicate to extract data on learners, study design, and outcomes. The GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach was used to evaluate the overall quality of evidence for each outcome. 3840 papers were identified from the literature search of which 14 were included (13 randomized controlled trials; 1 non-randomized controlled trial). Meta-analysis of studies reporting skill performance at course conclusion demonstrated a moderate benefit for high fidelity manikins when compared with low fidelity manikins [Standardized Mean Difference 0.59; 95% CI 0.13-1.05]. Studies measuring skill performance at one year, skill performance between course conclusion and one year, and knowledge demonstrated no significant benefit for high fidelity manikins. The use of high fidelity manikins for advanced life support training is associated with moderate benefits for improving skills performance at course conclusion. Future research should define the optimal means of tailoring fidelity to enhance short and long term educational goals and clinical outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy

    CERN Document Server

    Xu, Zhongxiao; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-01-01

    Receiving a photonic qubit, storing it with long lifetime and retrieving it with high fidelity are crucial for constructing quantum networks. Photonic polarization qubits (PPQs) are extensively used for encoding and transmitting quantum information since they are easily manipulated and analyzed. Dynamic Electromagnetically induced transparency (EIT) in atoms is an efficient process to store PPQs which has been studied. However, due to the decoherence induced by magnetic field fluctuations, the lifetime of the qubit memory is limited and the achieved longest lifetime in EIT based system is only about 470us, so far. Here we present an EIT based millisecond storage in which a moderate magnetic field is applied on a cold atom cloud to lift Zeeman degeneracy. PPQ states can be stored as two magnetic field insensitive spin waves and the influence of magnetic field sensitive spin waves on the storage is almost totally avoided. The measured average fidelity of polarization states is 0.986 at 200us and 0.784 at 4.5ms.

  13. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  14. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    Science.gov (United States)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  15. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures

    Science.gov (United States)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.

    2011-01-01

    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  16. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  17. The centricity of presence in scenario-based high fidelity human patient simulation: a model.

    Science.gov (United States)

    Dunnington, Renee M

    2015-01-01

    Enhancing immersive presence has been shown to have influence on learning outcomes in virtual types of simulation. Scenario-based human patient simulation, a mixed reality form, may pose unique challenges for inducing the centricity of presence among participants in simulation. A model for enhancing the centricity of presence in scenario-based human patient simulation is presented here. The model represents a theoretical linkage among the interaction of pedagogical, individual, and group factors that influence the centricity of presence among participants in simulation. Presence may have an important influence on the learning experiences and learning outcomes in scenario-based high fidelity human patient simulation. This report is a follow-up to an article published in 2014 by the author where connections were made to the theoretical basis of presence as articulated by nurse scholars. © The Author(s) 2014.

  18. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    Science.gov (United States)

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  19. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-Fidelity Mannequins?

    Directory of Open Access Journals (Sweden)

    Steven J Warrington

    2013-05-01

    Full Text Available Introduction: Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Methods: Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1. Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Results: Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%. Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%, and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, P = 0.0007. Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, P = 0.04. There was no considerable difference in the total time taken per case

  20. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  1. A high-fidelity approach towards heat transfer prediction of pool boiling

    Science.gov (United States)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas

    2014-11-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change with an unprecedented fidelity and cost. The particular focus is to predict the heat transfer coefficient of pool-boiling regime and its transition to critical heat flux on surfaces of arbitrary shape and roughness distribution. The large-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf methods for interface tracking and interphase mass and energy transfer. The small-scale of the microlayer which forms at early stage of bubble nucleation is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the surface roughness and its role in bubble nucleation and growth is represented based on thermodynamics of nucleation process which allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the model's prediction of pool-boiling heat transfer coefficient is verified against reputable correlations for various roughness distributions and different surface alignment. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement features on thermal and hydrodynamic characteristics of these surfaces.

  2. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  3. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips

    Science.gov (United States)

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.

    2010-01-01

    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  4. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G., E-mail: aabarca@isirym.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@isirym.upv.es, E-mail: gverdu@iqn.upv.es [Universitat Politecnica de Valencia, (ISIRYM/UPV), (Spain). Institute for Industrial, Radiophysical and Environmental Safety; Concejal, A.; Melara, J.; Albendea, M., E-mail: acbe@iberdrola.es, E-mail: jls@iberdrola.es, E-mail: manuel.albendea@iberdrola.es [Iberdrola, Madrid (Spain); Soler, A., E-mail: asoler@iberdrola.es [SEA Propulsion SL, Madrid (Spain)

    2013-07-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  5. The Lived Experience of Nursing Students Participating in High-Fidelity Simulation at a School Grounded in Caring

    Science.gov (United States)

    Ward, Gail Dove

    2016-01-01

    The education of nursing students in traditional clinical settings has become increasing challenging because of a multitude of factors affecting healthcare delivery. A decreasing number of clinical sites has precipitated a corresponding increase in the use of high-fidelity simulation-based learning experiences (HFSLEs). Because HFSLEs are being…

  6. The Effect of High-Fidelity Cardiopulmonary Resuscitation (CPR) Simulation on Athletic Training Student Knowledge, Confidence, Emotions, and Experiences

    Science.gov (United States)

    Tivener, Kristin Ann; Gloe, Donna Sue

    2015-01-01

    Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…

  7. The effect of task load on the occurrence of cognitive lockup in a high-fidelity flight simulator

    NARCIS (Netherlands)

    Looije, R.; Mioch, T.

    2011-01-01

    Motivation To analyse human errors and determine the underlying reason for these errors, in particular by investigating the error production mechanism cognitive lockup. Research approach A within subjects experiment has been conducted with 16 pilots in a high-fidelity and realistic environment. The

  8. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  9. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students

    Science.gov (United States)

    Vieck, Jana

    2013-01-01

    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  10. Faculty and Student Perceptions of Preparation for and Implementation of High Fidelity Simulation Experiences in Associate Degree Nursing Programs

    Science.gov (United States)

    Conejo, Patricia E.

    2010-01-01

    High fidelity simulation technology is being used as an alternative way to expose students to complex patient care. Research has shown that simulation experiences can improve critical thinking skills and increase students' self-confidence (Jeffries & Rizzolo, 2006). The purpose of this study was to examine nurse educator and nursing student…

  11. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-03-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.

  12. High Fidelity Aeroelasticity Simulations of Aircraft and Turbomachinery with Fully-Coupled Fluid-Structure Interaction

    Science.gov (United States)

    Gan, Jiaye

    The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The

  13. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  14. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  15. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.

    Science.gov (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J

    2017-07-21

    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High Fidelity Solar and Heliospheric Imaging at Low Radio Frequencies: Progress and Future Prospects

    Science.gov (United States)

    Lonsdale, C.; Oberoi, D.; Kozarev, K. A.; Morgan, J.; Benkevitch, L. V.; Erickson, P. J.; Crowley, M.; McCauley, P.; Cairns, I.

    2016-12-01

    The latest generation of low frequency interferometric arrays is revolutionizing solar and heliospheric imaging capabilities. Via a combination of large numbers of independent antennas and greatly increased computing capacity, sufficient information can now be gathered and processed to generate high fidelity images at high time and frequency resolution. For the first time, it is possible to reconstruct spatially, temporally and spectrally complex solar emissions in detail, to measure interplanetary scintillation for many sources simultaneously over wide fields of view, and to track heliospheric disturbances via rapidly evolving propagation effects. These new and rapidly improving capabilities will help to address a range of long-standing scientific questions in the field. We review the current state of the art of low frequency imaging instruments, with particular emphasis on, and examples from, the Murchison Widefield Array (MWA). The limitations and challenges of such arrays are explored, and the prospects for next-generation ground and space based arrays yielding additional major advances in capability are reviewed.

  17. High-fidelity simulation among bachelor students in simulation groups and use of different roles.

    Science.gov (United States)

    Thidemann, Inger-Johanne; Söderhamn, Olle

    2013-12-01

    Cost limitations might challenge the use of high-fidelity simulation as a teaching-learning method. This article presents the results of a Norwegian project including two simulation studies in which simulation teaching and learning were studied among students in the second year of a three-year bachelor nursing programme. The students were organised into small simulation groups with different roles; nurse, physician, family member and observer. Based on experiences in different roles, the students evaluated the simulation design characteristics and educational practices used in the simulation. In addition, three simulation outcomes were measured; knowledge (learning), Student Satisfaction and Self-confidence in Learning. The simulation was evaluated to be a valuable teaching-learning method to develop professional understanding and insight independent of roles. Overall, the students rated the Student Satisfaction and Self-confidence in Learning as high. Knowledge about the specific patient focus increased after the simulation activity. Students can develop practical, communication and collaboration skills, through experiencing the nurse's role. Assuming the observer role, students have the potential for vicarious learning, which could increase the learning value. Both methods of learning (practical experience or vicarious learning) may bridge the gap between theory and practice and contribute to the development of skills in reflective and critical thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  19. Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge, Xiaodong [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands); Jinnai, Hiroshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Dunin-Borkowski, Rafal E.; Migunov, Vadim [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Cool, Pegie [Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Bons, Anton-Jan [European Technology Center, ExxonMobil Chemical Europe Inc., Hermeslaan 2, B-1831 Machelen (Belgium); Batenburg, Kees Joost [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands)

    2017-04-15

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. - Highlights: • Automated discrete electron tomography capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts and requires significantly

  20. High-Fidelity Simulation Use in Preparation of Physician Assistant Students for Neonatal and Obstetric Care.

    Science.gov (United States)

    Donkers, Kelly; Truscott, Judy; Garrubba, Carl; DeLong, Deborah

    2016-06-01

    The study attempts to determine whether a simulation experience would increase physician assistant (PA) students' comfort level in caring for obstetric patients and assessing a neonate with an Apgar score. First-year PA students who are in the didactic phase of their education were asked to complete a questionnaire before and after a hybrid simulation scenario, in which they aided in estimating cervical dilation, delivering a neonate, and assessing the Apgar score of a neonate. The simulation included high-fidelity simulation for 2 portions of the experience and task-trainer simulation for the remaining portion of the experience. The questionnaire asked students to rate their comfort level before and after the simulation and provide information regarding their clinical experience level with obstetrics, gynecology, or pediatrics. Comfort levels were significantly increased according to presession and postsession scores for each of the 3 portions of the simulation experience. Prior experience level did not affect the results of this group. Results indicate that regardless of experience, there was a statistically significant increase between presession and postsession comfort levels. Simulation training in obstetric and neonatal assessment increases students' comfort level to perform these difficult tasks. Physician assistant programs that are not performing simulation currently, or have not used it to train in these specialty areas should consider doing so as part of their curriculum.

  1. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  2. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models

    Science.gov (United States)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina

    2017-01-01

    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  3. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D.

    Science.gov (United States)

    Tong, J; Cao, W; Barany, F

    1999-01-01

    NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate. PMID:9889274

  4. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  5. High-fidelity simulation in Neonatology and the Italian experience of Nina

    Directory of Open Access Journals (Sweden)

    Armando Cuttano

    2012-10-01

    Full Text Available The modern methodology of simulation was born in the aeronautical field. In medicine, anesthetists showed great attention for technological advances and simulation, closely followed by surgeons with minimally invasive surgery. In Neonatology training in simulation is actually useful in order to face unexpected dramatic events, to minimize clinical risk preventing errors and to optimize team work. Critical issues in simulation are: teachers-learners relationship, focus on technical and non-technical skills, training coordination, adequate scenarios, effective debriefing. Therefore, the quality of a simulation training center is multi-factorial and is not only related to the mannequin equipment. High-fidelity simulation is the most effective method in education. In Italy simulation for education in Medicine has been used for a few years only. In Pisa we founded Nina (that is the acronymous for the Italian name of the Center, CeNtro di FormazIone e SimulazioNe NeonAtale, the first neonatal simulation center dedicated but integrated within a Hospital Unit in Italy. This paper describes how we manage education in Nina Center, in order to offer a model for other similar experiences.

  6. Effective gene editing by high-fidelity base editor 2 in mouse zygotes

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-06-01

    Full Text Available ABSTRACT Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE system built on cytidine (C deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2, and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.

  7. Client predictors of employment outcomes in high-fidelity supported employment: a regression analysis.

    Science.gov (United States)

    Campbell, Kikuko; Bond, Gary R; Drake, Robert E; McHugo, Gregory J; Xie, Haiyi

    2010-08-01

    Research on vocational rehabilitation for clients with severe mental illness over the past 2 decades has yielded inconsistent findings regarding client factors statistically related to employment. The present study aimed to elucidate the relationship between baseline client characteristics and competitive employment outcomes-job acquisition and total weeks worked during an 18-month follow-up-in Individual Placement and Support (IPS). Data from 4 recent randomized controlled trials of IPS were aggregated for within-group regression analyses. In the IPS sample (N = 307), work history was the only significant predictor for job acquisition, but receiving Supplemental Security Income-with or without Social Security Disability Insurance-was associated with fewer total weeks worked (2.0%-2.8% of the variance). In the comparison sample (N = 374), clients with a diagnosis of mood disorder or with less severe thought disorder symptoms were more likely to obtain competitive employment. The findings confirm that clients with severe mental illness interested in competitive work best benefit from high-fidelity supported employment regardless of their work history and sociodemographic and clinical background, and highlight the needs for changes in federal policies for disability income support and insurance regulations.

  8. Embedding Microethical Dilemmas in High-Fidelity Simulation Scenarios: Preparing Nursing Students for Ethical Practice.

    Science.gov (United States)

    Krautscheid, Lorretta C

    2017-01-01

    Despite the inclusion of ethics education in the formal curriculum, students felt ill-prepared to manage ethical issues and protect patients' health and well-being. Nursing students reported knowing what should be done to promote optimal patient care; however, they also reported an inability to act on their convictions due to fear of reprisal, powerlessness, and low confidence. Bloom's Taxonomy guided the development and implementation of experiential-applied ethics education via microethical dilemmas embedded in existing high-fidelity simulation (HFS) scenarios. Students were unaware that ethical dilemmas would be presented, replicating complex and spontaneous practice environments. Students reported that the educational strategy was powerful, increasing ethical decision-making confidence, empowering effective advocacy, and building courage to overcome fears and defend ethical practice. Simulation extends ethics education beyond the cognitive domain, ensuring the purposeful integration of affective and psychomotor learning, which promotes congruence between knowing what to do and acting on one's convictions. [J Nurs Educ. 2017;56(1):55-58.]. Copyright 2017, SLACK Incorporated.

  9. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  10. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  11. The Importance of Water for High Fidelity Information Processing and for Life

    Science.gov (United States)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  12. Advancing interprofessional education through the use of high fidelity human patient simulators

    Directory of Open Access Journals (Sweden)

    Kane-Gill SL

    2013-06-01

    Full Text Available Background: Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered.Objective: We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues.Methods: Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS Assessment by 2 independent evaluators external to the project.Results: The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01, 2 to 3 (p = 0.035, and overall from 1 to 4 (p = 0.001. The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99. Students perceived the HFS improved: their ability to communicate with other professionals (median =4; confidence in patient care in an IP team (median=4. It also stimulated student interest in IP work (median=4.5, and was an efficient use of student time (median=4.5Conclusion: The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the

  13. Factors affecting high school teacher adoption, sustainability, and fidelity to the "Youth@Work: Talking Safety" curriculum.

    Science.gov (United States)

    Rauscher, Kimberly J; Casteel, Carri; Bush, Diane; Myers, Douglas J

    2015-12-01

    Our objective was to identify individual- and organizational-level factors that affect high school teacher adoption, sustainability, and fidelity to the occupational safety and health curriculum, "Youth@Work: Talking Safety." We analyzed survey data collected from 104 high school teachers across the US who were trained in the curriculum since 2004. Linear and Cox regression were used to examine bivariate associations between individual and organizational-level factors and the outcomes of interest. Except for perceived complexity, all individual-level factors (acceptance, enthusiasm, teaching methods fit, and self-efficacy) were associated with one or more outcomes of interest (P-values ranged from sustainability and number of lessons delivered, respectively. Consistent with the literature, individual-level factors influenced teacher adoption and, to a lesser extent, sustainability, and fidelity to the Youth@Work: Talking Safety curriculum and should be considered in attempts to promote the curriculum's use in high schools. © 2015 Wiley Periodicals, Inc.

  14. Thermophysical properties of Almahata Sitta meteorites (asteroid 2008 TC3) for high-fidelity entry modeling

    Science.gov (United States)

    Loehle, Stefan; Jenniskens, Peter; Böhrk, Hannah; Bauer, Thomas; Elsäßer, Henning; Sears, Derek W.; Zolensky, Michael E.; Shaddad, Muawia H.

    2017-02-01

    Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high-fidelity re-entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (T 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat-faced ureilite suitably shaped for emissivity measurements and a thin flat-faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3-D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10-5 K-1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.

  15. High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion

    Science.gov (United States)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2013-10-01

    High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.

  16. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  17. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    Science.gov (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P Immunology. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of Heart Rate Assessment Timing, Communication, Accuracy, and Clinical Decision-Making during High Fidelity Simulation of Neonatal Resuscitation

    Directory of Open Access Journals (Sweden)

    Win Boon

    2014-01-01

    Full Text Available Objective. Accurate heart rate (HR determination during neonatal resuscitation (NR informs subsequent NR actions. This study’s objective was to evaluate HR determination timeliness, communication, and accuracy during high fidelity NR simulations that house officers completed during neonatal intensive care unit (NICU rotations. Methods. In 2010, house officers in NICU rotations completed high fidelity NR simulation. We reviewed 80 house officers’ videotaped performance on their initial high fidelity simulation session, prior to training and performance debriefing. We calculated the proportion of cases congruent with NR guidelines, using chi square analysis to evaluate performance across HR ranges relevant to NR decision-making: <60, 60–99, and ≥100 beats per minute (bpm. Results. 87% used umbilical cord palpation, 57% initiated HR assessment within 30 seconds, 70% were accurate, and 74% were communicated appropriately. HR determination accuracy varied significantly across HR ranges, with 87%, 57%, and 68% for HR <60, 60–99, and ≥100 bpm, respectively (P<0.001. Conclusions. Timeliness, communication, and accuracy of house officers’ HR determination are suboptimal, particularly for HR 60–100 bpm, which might lead to inappropriate decision-making and NR care. Training implications include emphasizing more accurate HR determination methods, better communication, and improved HR interpretation during NR.

  19. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  20. A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.

    Science.gov (United States)

    Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert

    2016-01-01

    Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.

  1. Web-Based versus High-Fidelity Simulation Training for Certified Registered Nurse Anesthetists in the Management of High Risk/Low Occurrence Anesthesia Events

    Science.gov (United States)

    Kimemia, Judy

    2017-01-01

    Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…

  2. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft

    Science.gov (United States)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  3. High Fidelity Computational and Wind Tunnel Models in Support of Certification Airworthiness of Control Surfaces with Freeplay and Other Nonlinear Features Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will establish high fidelity computational methods and wind tunnel test model in support of new freeplay criteria for the design, construction and...

  4. The effect of high-fidelity patient simulation on the critical thinking and clinical decision-making skills of new graduate nurses.

    Science.gov (United States)

    Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia

    2012-03-01

    This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.

  5. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  6. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  7. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    Science.gov (United States)

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  8. Cluster-State Quantum Computing Enhanced by High-Fidelity Generalized Measurements

    Science.gov (United States)

    Biggerstaff, D. N.; Kaltenbaek, R.; Hamel, D. R.; Weihs, G.; Rudolph, T.; Resch, K. J.

    2009-12-01

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832±0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10-3), less than some recent thresholds for fault-tolerant cluster computing.

  9. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  10. The effectiveness of high fidelity simulation on medical-surgical registered nurses' ability to recognise and respond to clinical emergencies.

    Science.gov (United States)

    Buckley, Thomas; Gordon, Christopher

    2011-10-01

    There is a paucity of evidence regarding the efficacy in preparing medical-surgical nurses to respond to patients with acutely deteriorating conditions. The aim of this study was to evaluate registered nurses' ability to respond to the deteriorating patient in clinical practise following training using immersive simulation and use of a high fidelity simulator. This study was a follow-up survey of medical-surgical graduate nurses following immersive high fidelity simulation training. Thirty eight registered nurses practising in medical-surgical areas completed the simulation as part of university graduate study. A follow-up survey of the graduate medical-surgical registered nurses conducted three months following completion of a high fidelity simulation-based learning experience. Outcomes consisted of the number of times skills were used in practise and the usefulness of simulation in preparing for actual emergency events. Participants reported a total of 164 clinical patient emergencies in the follow-up time period including: 46% cardiac, 32% respiratory, 10% neurological, 7% cardiac arrest and 5% related to electrolyte disturbances. The ability to respond in a systematic way, handover to the emergency team and airway management were identified as the skills most improved during patient emergencies following simulation. The most useful aspects of the simulation experience identified were scenario debriefing and assertiveness training. Participants with less years of clinical experience were more likely to report practising the team leader role and debriefing as the most useful aspects of simulation. The skills practised in simulation were highly relevant to participants practise in medical-surgical areas. Non-technical skills, including assertiveness skills should be considered in future emergency training courses for nurses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  12. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  13. Impact of high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students.

    Science.gov (United States)

    Fawaz, Mirna A; Hamdan-Mansour, Ayman M

    2016-11-01

    High-fidelity simulation (HFS) offers a strategy to facilitate cognitive, affective, and psychomotor outcomes and motivate the new generation of students. The purpose of this study was to examine the impact of using high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students. A post-test, quasi-experimental design was used. Two private universities in Lebanon were targeted to implement the intervention. A convenience sample of 56 nursing students from two private universities in Lebanon were recruited. Data were collected using the Lasater Clinical Judgment Rubric and the Motivated Strategies for Learning questionnaires. Nursing students exhibited significant improvement in clinical judgment and motivation due to exposure to HFS. There was a significant difference post HFS between the intervention group and the control group in clinical judgment intervention (t=5.23, pmotivation for academic achievement (t=-6.71, pmotivation (198.6, SD=10.5) in the intervention group than in the control group (161.6, SD=20). The analysis related to differences between the intervention and control groups in motivation and clinical judgment; controlling for previous experience in health care services, the analysis showed no significant difference (Wilk's lambda =0.77, F=1.09, p=0.374). There is a need for nursing educators to implement HFS in nursing curricula, where its integration can bridge the gap between theoretical knowledge and nursing practice and enhance critical thinking and motivation among nursing students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Learning advanced cardiac life support: a comparison study of the effects of low- and high-fidelity simulation.

    Science.gov (United States)

    Hoadley, Theresa A

    2009-01-01

    To increase cardiopulmonary arrest survival, the American Heart Association developed basic and advanced cardiac life support (ACLS) courses that expose participants to realistic learning situations. This experimental study compared results of two ACLS classes on measures of knowledge (content exam) and resuscitation skills (performance exam). Both the control and experimental groups consisted of physicians, nurses, emergency medical technicians, respiratory therapists, and advanced health care providers. The control group used low-fidelity simulation (LFS); the experimental group was exposed to enhanced realism via high-fidelity simulation (HFS). The findings showed a positive correlation between enhanced practice and learning but no significant correlation between posttest and skills test scores for the LFS and HFS groups. The HFS group did score higher on both cognitive and behavioral tests, but the difference was not statistically significant. Participants from both groups indicated satisfaction with their forms of simulation experience and course design. In addition, participants' self-confidence to care for a victim of cardiopulmonary arrest was increased after completing their course; profession and work experience had no effect on responses. The largest difference noted was in verbal responses to course satisfaction. The experimental group stated that learning using HFS was enjoyable and adamantly recommended that ACLS should only be taught using HFS. Further study is required to assess if practicing beyond the course enhances short- and long-term retention of ACLS techniques.

  15. [Evaluation of the impact and efficiency of high-fidelity simulation for neonatal resuscitation in midwifery education].

    Science.gov (United States)

    Coyer, C; Gascoin, G; Sentilhes, L; Savagner, C; Berton, J; Beringue, F

    2014-09-01

    Prompt initiation of appropriate neonatal resuscitation skills is critical for the neonate experiencing difficulty transitioning to extra-uterine life. Expertise in neonatal resuscitation is essential for personnel involved in the care of newborns, above all for midwives who are sometimes alone to initiate the first resuscitation. The use of simulation training is considered to be an indispensable tool to address these challenges, not only in continuing education but also in midwifery education. The aim of this study was to evaluate the impact and efficiency of high-fidelity simulation for neonatal resuscitation in midwifery education. This was a prospective monocentric study conducted in the Angers university hospital between October and December 2012 and included two groups of midwifery students (n=40) who received high-fidelity simulation as part of their basic midwifery education. Participants' perceptions of the knowledge, skills, and confidence gained following training in high-fidelity simulation for neonatal resuscitation were determined using a pre-/post-test questionnaire design completed during the training and also several months after the course, as well as after the students had begun working. A satisfaction survey to evaluate this training was also completed at the same time. With a good participation rate (67.5%), the survey showed a high degree of satisfaction among the participants. This training was described as facilitating their hire in one third of cases. A significant increase in self-assessment of skills scores was observed between the pre-test and post-test (Phigher than that obtained on the pre-test (P=0.03). The significant improvement in knowledge during the session and its preservation after a few months confirmed the efficacy of this teaching method. The simulation training increased the participants' perceptions of their knowledge, skills, and confidence in conducting neonatal resuscitation. These preliminary results are very

  16. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session?

    Science.gov (United States)

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás

    2018-02-12

    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in

  17. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures.

    Science.gov (United States)

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard

    2009-01-01

    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores.

  18. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  19. High-fidelity medical simulation training improves medical students' knowledge and confidence levels in septic shock resuscitation

    Directory of Open Access Journals (Sweden)

    Vattanavanit V

    2016-12-01

    Full Text Available Veerapong Vattanavanit, Jarernporn Kawla-ied, Rungsun Bhurayanontachai Division of Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand Background: Septic shock resuscitation bundles have poor compliance worldwide partly due to a lack of knowledge and clinical skills. High-fidelity simulation-based training is a new teaching technology in our faculty which may improve the performance of medical students in the resuscitation process. However, since the efficacy of this training method in our institute is limited, we organized an extra class for this evaluation.Purpose: The aim was to evaluate the effect on medical students’ knowledge and confidence levels after the high-fidelity medical simulation training in septic shock management.Methods: A retrospective study was performed in sixth year medical students during an internal medicine rotation between November 2015 and March 2016. The simulation class was a 2-hour session of a septic shock management scenario and post-training debriefing. Knowledge assessment was determined by a five-question pre-test and post-test examination. At the end of the class, the students completed their confidence evaluation questionnaire.Results: Of the 79 medical students, the mean percentage score ± standard deviation (SD of the post-test examination was statistically significantly higher than the pre-test (66.83%±19.7% vs 47.59%±19.7%, p<0.001. In addition, the student mean percentage confidence level ± SD in management of septic shock was significantly better after the simulation class (68.10%±12.2% vs 51.64%±13.1%, p<0.001. They also strongly suggested applying this simulation class to the current curriculum.Conclusion: High-fidelity medical simulation improved the students’ knowledge and confidence in septic shock resuscitation. This simulation class should be included in the curriculum of the sixth year medical students

  20. High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code or...

  1. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight

    Science.gov (United States)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.

    2012-01-01

    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  2. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    Science.gov (United States)

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  3. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns

    Science.gov (United States)

    Czaplewski, David A.; Holt, Martin V.; Ocola, Leonidas E.

    2013-08-01

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  4. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    Science.gov (United States)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  5. Fusion of psychiatric and medical high fidelity patient simulation scenarios: effect on nursing student knowledge, retention of knowledge, and perception.

    Science.gov (United States)

    Kameg, Kirstyn M; Englert, Nadine Cozzo; Howard, Valerie M; Perozzi, Katherine J

    2013-12-01

    High fidelity patient simulation (HFPS) has become an increasingly popular teaching methodology in nursing education. To date, there have not been any published studies investigating HFPS scenarios incorporating medical and psychiatric nursing content. This study utilized a quasi-experimental design to assess if HFPS improved student knowledge and retention of knowledge utilizing three parallel 30-item Elsevier HESI(TM) Custom Exams. A convenience sample of 37 senior level nursing students participated in the study. The results of the study revealed the mean HESI test scores decreased following the simulation intervention although an analysis of variance (ANOVA) determined the difference was not statistically significant (p = .297). Although this study did not reveal improved student knowledge following the HFPS experiences, the findings did provide preliminary evidence that HFPS may improve knowledge in students who are identified as "at-risk." Additionally, students responded favorably to the simulations and viewed them as a positive learning experience.

  6. Perceived benefits and challenges of repeated exposure to high fidelity simulation experiences of first degree accelerated bachelor nursing students.

    Science.gov (United States)

    Kaddoura, Mahmoud; Vandyke, Olga; Smallwood, Christopher; Gonzalez, Kristen Mathieu

    2016-01-01

    This study explored perceptions of first-degree entry-level accelerated bachelor nursing students regarding benefits and challenges of exposure to multiple high fidelity simulation (HFS) scenarios, which has not been studied to date. These perceptions conformed to some research findings among Associate Degree, traditional non-accelerated, and second-degree accelerated Bachelor of Science in Nursing (BSN) students faced with one to two simulations. However, first-degree accelerated BSN students faced with multiple complex simulations perceived improvements on all outcomes, including critical thinking, confidence, competence, and theory-practice integration. On the negative side, some reported feeling overwhelmed by the multiple HFS scenarios. Evidence from this study supports HFS as an effective teaching and learning method for nursing students, along with valuable implications for many other fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model

    Science.gov (United States)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

    2010-01-01

    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  8. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training.

    Science.gov (United States)

    Sharma, Mitesh; Horgan, Alan

    2012-08-01

    The aim of this study was to compare fresh-frozen cadavers (FFC) with a high-fidelity virtual reality simulator (VRS) as training tools in minimal access surgery for complex and relatively simple procedures. A prospective comparative face validity study between FFC and VRS (LAP Mentor(™)) was performed. Surgeons were recruited to perform tasks on both FFC and VRS appropriately paired to their experience level. Group A (senior) performed a laparoscopic sigmoid colectomy, Group B (intermediate) performed a laparoscopic incisional hernia repair, and Group C (junior) performed basic laparoscopic tasks (BLT) (camera manipulation, hand-eye coordination, tissue dissection and hand-transferring skills). Each subject completed a 5-point Likert-type questionnaire rating the training modalities in nine domains. Data were analysed using nonparametric tests. Forty-five surgeons were recruited to participate (15 per skill group). Median scores for subjects in Group A were significantly higher for evaluation of FFC in all nine domains compared to VRS (p < 0.01). Group B scored FFC significantly better (p < 0.05) in all domains except task replication (p = 0.06). Group C scored FFC significantly better (p < 0.01) in eight domains but not on performance feedback (p = 0.09). When compared across groups, juniors accepted VRS as a training model more than did intermediate and senior groups on most domains (p < 0.01) except team work. Fresh-frozen cadaver is perceived as a significantly overall better model for laparoscopic training than the high-fidelity VRS by all training grades, irrespective of the complexity of the operative procedure performed. VRS is still useful when training junior trainees in BLT.

  9. Diagnostic accuracy of GPs when using an early-intervention decision support system: a high-fidelity simulation.

    Science.gov (United States)

    Kostopoulou, Olga; Porat, Talya; Corrigan, Derek; Mahmoud, Samhar; Delaney, Brendan C

    2017-03-01

    Observational and experimental studies of the diagnostic task have demonstrated the importance of the first hypotheses that come to mind for accurate diagnosis. A prototype decision support system (DSS) designed to support GPs' first impressions has been integrated with a commercial electronic health record (EHR) system. To evaluate the prototype DSS in a high-fidelity simulation. Within-participant design: 34 GPs consulted with six standardised patients (actors) using their usual EHR. On a different day, GPs used the EHR with the integrated DSS to consult with six other patients, matched for difficulty and counterbalanced. Entering the reason for encounter triggered the DSS, which provided a patient-specific list of potential diagnoses, and supported coding of symptoms during the consultation. At each consultation, GPs recorded their diagnosis and management. At the end, they completed a usability questionnaire. The actors completed a satisfaction questionnaire after each consultation. There was an 8-9% absolute improvement in diagnostic accuracy when the DSS was used. This improvement was significant (odds ratio [OR] 1.41, 95% confidence interval [CI] = 1.13 to 1.77, P<0.01). There was no associated increase of investigations ordered or consultation length. GPs coded significantly more data when using the DSS (mean 12.35 with the DSS versus 1.64 without), and were generally satisfied with its usability. Patient satisfaction ratings were the same for consultations with and without the DSS. The DSS prototype was successfully employed in simulated consultations of high fidelity, with no measurable influences on patient satisfaction. The substantially increased data coding can operate as motivation for future DSS adoption. © British Journal of General Practice 2017.

  10. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    The use of molecular methods to investigate the community structure and diversity of microalgae has largely replaced the previous morphological methods that were routinely carried out by microscopy. Different DNA polymerases can lead to bias in PCR amplification and affect the downstream community...... and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  11. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    DEFF Research Database (Denmark)

    Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær

    2017-01-01

    surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple...

  12. A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons.

    Science.gov (United States)

    Py, Christophe; Denhoff, Mike W; Martina, Marzia; Monette, Robert; Comas, Tanya; Ahuja, Tarun; Martinez, Dolores; Wingar, Simon; Caballero, Juan; Laframboise, Sylvain; Mielke, John; Bogdanov, Alexei; Luk, Collin; Syed, Naweed; Mealing, Geoff

    2010-11-01

    We report on a simple and high-yield manufacturing process for silicon planar patch-clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high-quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high-impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high-fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole-cell current recordings obtained from a voltage-clamp stimulation protocol, and in current-clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch-clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high-information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. © 2010 Wiley Periodicals, Inc.

  13. Simple trapped-ion architecture for high-fidelity Toffoli gates

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Massimo [CM-DTC, SUPA, EPS/School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Mazzola, Laura [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto (Finland); School of Mathematics and Physics, Queen' s University, BT7 1NN Belfast (United Kingdom); Paternostro, Mauro [School of Mathematics and Physics, Queen' s University, BT7 1NN Belfast (United Kingdom); Maniscalco, Sabrina [CM-DTC, SUPA, EPS/School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto (Finland)

    2011-07-15

    We discuss a simple architecture for a quantum toffoli gate implemented using three trapped ions. The gate, which, in principle, can be implemented with a single laser-induced operation, is effective under rather general conditions and is strikingly robust (within any experimentally realistic range of values) against dephasing, heating, and random fluctuations of the Hamiltonian parameters. We provide a full characterization of the unitary and noise-affected gate using three-qubit quantum process tomography.

  14. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  15. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  16. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  17. Comparison of Satisfaction, Self-Confidence, and Engagement of Baccalaureate Nursing Students Using Defined Observational Roles and Expectations versus Traditional Role Assignments in High Fidelity Simulation and Debriefing

    Science.gov (United States)

    Howard, Sheri

    2017-01-01

    The purpose of this study is to compare satisfaction, self-confidence, and engagement of baccalaureate nursing students using defined observational roles and expectations versus traditional observer role assignments in high fidelity simulation and debriefing and to evaluate student perceptions of these constructs. The NLN/Jeffries Simulation…

  18. An Evaluation of Immediate Outcomes and Fidelity of a Drug Abuse Prevention Program in Continuation High Schools: Project towards No Drug Abuse (TND)

    Science.gov (United States)

    Lisha, Nadra E.; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna; Unger, Jennifer B.; Sussman, Steve

    2012-01-01

    The present study provides an implementation fidelity, process, and immediate outcomes evaluation of Project Towards No Drug Abuse (TND), a drug prevention program targeting continuation high school youth (n = 1426) at risk for drug abuse. A total of 24 schools participated in three randomized conditions: TND Only, TND and motivational…

  19. Physics and Psychophysics of High-Fidelity Sound. Part III: The Components of a Sound-Reproducing System: Amplifiers and Loudspeakers.

    Science.gov (United States)

    Rossing, Thomas D.

    1980-01-01

    Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…

  20. Rectification of artificial molecular recombination with the use of high fidelity enzyme in the amplification of 16S rDNA sequences from Stool sample

    Directory of Open Access Journals (Sweden)

    Vijay Nema

    2012-06-01

    Full Text Available Reliance on routinely used taq polymerases for amplification may generate spurious sequences, especially in metagenomic studies utilizing complex mixtures of various DNA templates. Use of high fidelity enzymes and verification of the sequences using various software tools before submission to the databases ensures better quality and confidence.

  1. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    Linear aeroelastic models used for stability analysis of wind turbines are commonly of very high order. These high-order models are generally not suitable for control analysis and synthesis. This paper presents a methodology to obtain a reduced-order linear parameter varying (LPV) model from a se...

  2. High Fidelity Measurement and Modeling of Interactions between Acoustics and Heat Release in Highly-Compact, High-Pressure Flames

    Science.gov (United States)

    2016-05-24

    systematic and rigorous means for comparison. Introduction The issue of combustion instability is a common recurring problem for bi- propellant rocket...the combustion of propellants to the acoustic energy field is the primary mechanism that creates acoustically coupled combustion instability. Chamber...T. and Sattelmayer, T., “On the Use of OH Radiation as a Marker for the Heat Release Rate in High- Pressure Hydrogen-Oxygen Liquid Rocket Combustion

  3. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Application

    Science.gov (United States)

    Gupta, Saurabh

    Computational singular perturbation (CSP) technique is applied as an automated diagnostic tool to classify ignition regimes, especially spontaneous ignition front and deflagration in low temperature combustion (LTC) engine environments. Various model problems representing LTC are simulated using high-fidelity computation with detailed chemistry for hydrogen-air, and the simulation data are then analyzed by CSP. The active reaction zones are first identified by the locus of minimum number of fast exhausted time scales. Subsequently, the relative importance of transport and chemistry is determined in the region ahead of the reaction zone. A new index IT, defined as the sum of the absolute values of the importance indices of diffusion and convection of temperature to the slow dynamics of temperature, serves as a criterion to differentiate spontaneous ignition from deflagration regimes. The same strategy is then used to gain insights into classification of ignition regimes in n-heptane air mixtures. Parametric studies are conducted using high-fidelity simulations with detailed chemistry and transport. The mixture at non-NTC conditions shows initially a deflagration front which is subsequently transitioned into a spontaneous ignition front. For the mixtures at the NTC conditions which exhibit two-stage ignition behavior, the 1 st stage ignition front is found to be more likely in the deflagration regime. On the other hand, the 2nd stage ignition front occurs almost always in the spontaneous regime because the upstream mixture contains active radical species produced by the preceding 1st stage ignition front. The effects of differently correlated equivalence ratio stratification are also considered and the results are shown to be consistent with previous findings. 2D turbulent auto-ignition problems corresponding to NTC and non-NTC chemistry yield similar qualitative results. Finally, we look into the modeling of turbulent mixing, in particular, the scalar dissipation

  4. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    Science.gov (United States)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical

  5. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  6. Effects of the Use of High-Fidelity Human Simulation in Nursing Education: A Meta-Analysis.

    Science.gov (United States)

    Lee, Jin; Oh, Pok-Ja

    2015-09-01

    This study was conducted to evaluate the effects of high-fidelity human simulation (HFHS) on cognitive, affective, and psychomotor outcomes of learning. PubMed, Cochrane Library, EMBASE, CINAHL, and Korean databases were searched. The RevMan program was used for analysis. A meta-analysis was conducted of 26 controlled trials, with a total of 2,031 nursing students. The use of HFHS tended to have beneficial effects on cognitive and psychomotor domains of learning. In analysis of cognitive outcomes, the weighted average effect size across studies was -0.97 for problem-solving competency, -0.67 for critical thinking, and -2.15 for clinical judgment. The effect size for clinical competence of the psychomotor domain was -0.81. Use of HFHS might positively impact a high level of cognitive skill and clinical skill acquisition. Further research is required to determine the effectiveness of use of HFHS as an educational strategy to improve knowledge acquisition and communication skills. Copyright 2015, SLACK Incorporated.

  7. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    Science.gov (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  8. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    Science.gov (United States)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  9. Geodetic Inversion Analysis Method of Coseismic Slip Distribution Using a Three-dimensional Finite Element High-fidelity Model

    Science.gov (United States)

    Agata, R.; Ichimura, T.; Hirahara, K.; Hori, T.; Hyodo, M.; Hori, M.

    2013-12-01

    -spline function is used (Yabuki and Matu'ura, 1992). However in our method, if the trench axis and unit fault slip overlap each other, the value of unit slip displacement whose location is beyond the trench axis are made 0. This method enables estimation of coseismic slip distribution which is discontinuous in the location of the trench axis. The proposed method is applied to Tohoku region. We perform two comparisons between the proposed method and conventional methods; comparison between the case with a high-fidelity model and a simplified model; comparison between the case with discontinuous unit slip and without it. Both of the comparisons show a large difference in the estimation results. It indicates the importance of using higher fidelity models and considering fault slip near the trench axis by using the proposed method. For future work, we are planning to improve the regularization method of the kernel matrix in the inversion method to enhance the estimation result. Also, more complex material heterogeneity will be introduced in the shallower layers of crustal structure.

  10. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials

    Science.gov (United States)

    2015-01-07

    and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...Geometric Modeling and Mesh Generation. Springer Publisher. Editor: Yongjie (Jessica) Zhang, 2013. (Review Article ) 4. J. Leng, G. Xu, Y. Zhang, J. Qian...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality

  11. Using High-Fidelity Simulation and Video-Assisted Debriefing to Enhance Obstetrical Hemorrhage Mock Code Training.

    Science.gov (United States)

    Jacobs, Peggy J

    The purpose of this descriptive, one-group posttest study was to explore the nursing staff's perception of the benefits of using high-fidelity simulation during mandated obstetrical hemorrhage mock code training. In addition, the use of video-assisted debriefing was used to enhance the nursing staff's evaluation of their communication and teamwork processes during a simulated obstetrical crisis. The convenience sample of 84 members of the nursing staff consented to completing data collection forms and being videotaped during the simulation. Quantitative results for the postsimulation survey showed that 93% of participants agreed or totally agreed that the use of SimMan made the simulation more realistic and enhanced learning and that debriefing and the use of videotaped playback improved their evaluation of team communication. Participants derived greatest benefit from reviewing their performance on videotape and discussing it during postsimulation debriefing. Simulation with video-assisted debriefing offers hospital educators the ability to evaluate team processes and offer support to improve teamwork with the ultimate goal of improving patient outcomes during obstetrical hemorrhage.

  12. The Effects of High-Fidelity Simulation on Salivary Cortisol Levels in SRNA Students: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Terri Jones

    2011-01-01

    Full Text Available The use of clinical simulation in graduate level nursing education provides the opportunity for students to learn and apply theoretical practices of nursing care in a safe and controlled environment. It was postulated that laboratory simulation would mimic the stress levels of a real clinical situation as measured by the stress hormone cortisol. The purpose of this study was to determine whether high-fidelity simulation approximates the stress experienced by nurse anesthesia students in the operating room. Participants (n = 21 were recruited from an accredited nurse anesthesia program in the southern U.S. Saliva was collected for 3 days under controlled conditions for baseline data. Next, saliva was collected for 3 days: the day before, the day of, and the day after simulation. The same process was repeated for the first clinical day in the operating room. The participants acted as their own control. There was a significant (p 0.05, and levels were lower than levels during simulation. Laboratory simulation of patient scenarios raised the stress hormone cortisol level threefold above baseline levels in nurse anesthesia students, while actual clinical experience did not.

  13. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  14. Developing and Testing a High-Fidelity Simulation Scenario for an Uncommon Life-Threatening Disease: Severe Malaria

    Directory of Open Access Journals (Sweden)

    Andrew Kestler

    2011-01-01

    Full Text Available Background. Severe malaria is prevalent globally, yet it is an uncommon disease posing a challenge to education in nonendemic countries. High-fidelity simulation (sim may be well suited to teaching its management. Objective. To develop and evaluate a teaching tool for severe malaria, using sim. Methods. A severe malaria sim scenario was developed based on 5 learning objectives. Sim sessions, conducted at an academic center, utilized METI ECS mannequin. After sim, participants received standardized debriefing and completed a test assessing learning and a survey assessing views on sim efficacy. Results. 29 participants included 3rd year medical students (65%, 3rd year EM residents (28%, and EM nurses (7%. Participants scored average 85% on questions related to learning objectives. 93% felt that sim was effective or very effective in teaching severe malaria, and 83% rated it most effective. All respondents felt that sim increased their knowledge on malaria. Conclusion. Sim is an effective tool for teaching severe malaria in and may be superior to other modalities.

  15. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    Science.gov (United States)

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-09-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  16. [Team dynamics and clinical performance of medical students in web-based and high-fidelity simulations].

    Science.gov (United States)

    Bang, Jae Beum; Yoon, Yoo Sang; Lee, Young Hwan; Lee, Sam Beom

    2014-12-01

    The importance of team dynamics with regard to clinical performance is being emphasized to improve patient safety and the quality of health care. The aim of this study was to examine the correlation and differences in team dynamics and team clinical performance in a web-based simulation (WS) and high-fidelity simulation (HS) in the medical students. The simulations were held for 15 teams of fourth year medical students (n=52). They were given two clinical cases, dyspnea (case 1) and chest pain (case 2) by WS and then HS. The scores on the team dynamics and the team's clinical performance were analyzed by paired t-test and multiple regression using SPSS version 21.0 (IBM Corp.). The teamwork scores on case 2 (22.67 ± 6.58) were higher than for case 1 in the HS (20.47 ± 7.22). Team clinical performance scores were the same the WS and HS. Team clinical performances were significantly associated with team dynamics in both cases by HS. Teamwork scores of team dynamics were each explanation on case 1 (74.9%), case 2 (63.4%) in the HS. The team dynamics and clinical performance can improve if undergraduate medical students have more opportunities. They should be trained in these endeavors to become future doctors for which scenario-based simulations could be valuable.

  17. Hybrid High Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete Event, and Time Step Simulation

    Science.gov (United States)

    2016-12-01

    McDonald, who gave me guidance on using the data analysis application created by JMP Pro software. A special thank you is owed to NPS Hamming High...by the "Referee". Figure 2.18 shows the event graph of the cookie-cutter sensor mediator. The mediator determines tD , the time to schedule the...model, the "Detect" event gets scheduled with time delay tD = 0. The "UnDetect" event gets scheduled when the "ExitRange" event is scheduled by the

  18. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Keven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, Donald K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schultz, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In this project we developed t he atomistic models needed to predict how graphene grows when carbon is deposited on metal and semiconductor surfaces. We first calculated energies of many carbon configurations using first principles electronic structure calculations and then used these energies to construct an empirical bond order potentials that enable s comprehensive molecular dynamics simulation of growth. We validated our approach by comparing our predictions to experiments of graphene growth on Ir, Cu and Ge. The robustness of ou r understanding of graphene growth will enable high quality graphene to be grown on novel substrates which will expand the number of potential types of graphene electronic devices.

  19. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  20. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  1. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    Science.gov (United States)

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids

    Science.gov (United States)

    Garwood, Russell; Dunlop, Jason A.; Sutton, Mark D.

    2009-01-01

    A new approach to maximize data recovery from siderite-hosted fossils is presented. Late Carboniferous trigonotarbids (Arachnida: Trigonotarbida) from Coseley, UK, were chosen to assess the potential of high-resolution X-ray micro-tomography (XMT). Three-dimensional computer reconstruction visualizes the animals at 20 µm or better resolution, resolving subtle and previously unseen details. Novel data recovered includes (possibly plesiomorphic) retention of endites on leg coxae of Cryptomartus hindi (Anthracomartidae) and highlights further similarities between this family and the Devonian Palaeocharinidae. Also revealed is a flattened body with robust anterior limbs, implying a hunting stance similar to modern crab spiders (Thomisidae). Eophrynus prestvicii (Eophrynidae) had more gracile limbs but a heavily ornamented body, with newly identified upward-pointing marginal spines on the opisthosoma. Its habitus is comparable with certain modern laniatorid harvestmen (Opiliones). These findings demonstrate the potential of XMT to revolutionize the study of siderite-hosted Coal Measures fossils. PMID:19656861

  3. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids.

    Science.gov (United States)

    Garwood, Russell; Dunlop, Jason A; Sutton, Mark D

    2009-12-23

    A new approach to maximize data recovery from siderite-hosted fossils is presented. Late Carboniferous trigonotarbids (Arachnida: Trigonotarbida) from Coseley, UK, were chosen to assess the potential of high-resolution X-ray micro-tomography (XMT). Three-dimensional computer reconstruction visualizes the animals at 20 microm or better resolution, resolving subtle and previously unseen details. Novel data recovered includes (possibly plesiomorphic) retention of endites on leg coxae of Cryptomartus hindi (Anthracomartidae) and highlights further similarities between this family and the Devonian Palaeocharinidae. Also revealed is a flattened body with robust anterior limbs, implying a hunting stance similar to modern crab spiders (Thomisidae). Eophrynus prestvicii (Eophrynidae) had more gracile limbs but a heavily ornamented body, with newly identified upward-pointing marginal spines on the opisthosoma. Its habitus is comparable with certain modern laniatorid harvestmen (Opiliones). These findings demonstrate the potential of XMT to revolutionize the study of siderite-hosted Coal Measures fossils.

  4. Future space-based direct imaging platforms: high fidelity simulations and instrument testbed development

    Science.gov (United States)

    Hicks, Brian A.; Eberhardt, Andrew; SAINT, VNC, LUVOIR

    2017-06-01

    The direct detection and characterization of habitable zone (HZ) Earth-like exoplanets is predicated on light gathering power of a large telescope operating with tens of millicarcsecond angular resolution, and at contrast scales on the order of 0.1 ppb. Accessing a statistically significant sample of planets to search for habitable worlds will likely build on the knowledge and insfrastructure gained through JWST, later advancing to assembly in space or formation flying approaches that may eventually be used to achieve even greater photometric sensitivity or resolution. in order to address contrast, a means of starlight suppression is needed that contends with complex aperture diffraction. The Visible Nulling Coronagraph (VNC) is one such approach that destructively interferes starlight to enable detection and characterization of extrasolar objects.The VNC is being incorporated into an end-to-end telescope-coronagraph system demonstrator called the Segmented Aperture Interferometric Nulling Testbed (SAINT). Development of the VNC has a rich legacy, and successfully demonstrating its capability with SAINT will mark milestones towards meeting the high-contrast direct imaging needs of future large space telescopes. SAINT merges the VNC with an actively-controlled segmented aperture telescope via a fine pointing system and aims to demonstrate 1e-8 contrast nulling of a segmented aperture at an inner working angle of four diffraction radii over a 20 nm visible bandpass. The system comprises four detectors for wavefront sensing, one of which is the high-contrast focal plane. The detectors provide feedback to control the segmented telescope primary mirror, a fast steering mirror, a segmented deformable mirror, and a delay stage. All of these components must work in concert with passive optical elements that are designed, fabricated, and aligned pairwise to achieve the requisite wavefront symmetry needed to push the state of the art in broadband destructive interferometric

  5. [High fidelity simulation : a new tool for learning and research in pediatrics].

    Science.gov (United States)

    Bragard, I; Farhat, N; Seghaye, M-C; Schumacher, K

    2016-10-01

    Caring for a sick child represents a high risk activity that requires technical and non-technical skills related to several factors such as the rarity of certain events or the stress of caring for a child. As regard these conditions, medi¬cal simulation provides a learning environment without risk, the control of variables, the reproducibility of situations, and the confrontation with rare events. In this article, we des¬cribe the steps of a simulation session and outline the current knowledge of the use of simulation in paediatrics. A session of simulation includes seven phases following the model of Peter Dieckmann, particularly the scenario and the debriefing that form the heart of the learning experience. Several studies have shown the advantages of simulation for paediatric trai¬ning in terms of changes in attitudes, skills and knowledge. Some studies have demonstrated a beneficial transfer to prac¬tice. In conclusion, simulation provides great potential for training and research in paediatrics. The establishment of a collaborative research program by the whole simulation com¬munity would help ensure that this type of training improves the quality of care.

  6. High fidelity--no evidence for extra-pair paternity in Siberian jays (Perisoreus infaustus).

    Science.gov (United States)

    Gienapp, Phillip; Merilä, Juha

    2010-08-09

    Extra-pair paternity (EPP) in birds is related to a number of ecological and social factors. For example, it has been found to be positively related with breeding density, negatively with the amount of paternal care and especially high rates have been observed in group-living species. Siberian jays (Perisoreous infaustus) breed at low densities and have extended parental care, which leads to the expectation of low rates of EPP. On the other hand, Siberian jays live in groups which can include also unrelated individuals, and provide opportunities for extra-pair matings. To assess the potential occurrence of EPP in Siberian jays, we analysed a large data pool (n=1029 offspring) covering ca. 30 years of samples from a Finnish Siberian jay population. Paternities were assigned based on up to 21 polymorphic microsatellite markers with the additional information from field observations. We were unable to find any evidence for occurrence of EPP in this species. Our findings are in line with earlier studies and confirm the generally low rates of EPP in related Corvid species. These results suggest that ecological factors may be more important than social factors (group living) in determining costs and benefits of extra-pair paternity.

  7. High fidelity--no evidence for extra-pair paternity in Siberian jays (Perisoreus infaustus.

    Directory of Open Access Journals (Sweden)

    Phillip Gienapp

    Full Text Available Extra-pair paternity (EPP in birds is related to a number of ecological and social factors. For example, it has been found to be positively related with breeding density, negatively with the amount of paternal care and especially high rates have been observed in group-living species. Siberian jays (Perisoreous infaustus breed at low densities and have extended parental care, which leads to the expectation of low rates of EPP. On the other hand, Siberian jays live in groups which can include also unrelated individuals, and provide opportunities for extra-pair matings. To assess the potential occurrence of EPP in Siberian jays, we analysed a large data pool (n=1029 offspring covering ca. 30 years of samples from a Finnish Siberian jay population. Paternities were assigned based on up to 21 polymorphic microsatellite markers with the additional information from field observations. We were unable to find any evidence for occurrence of EPP in this species. Our findings are in line with earlier studies and confirm the generally low rates of EPP in related Corvid species. These results suggest that ecological factors may be more important than social factors (group living in determining costs and benefits of extra-pair paternity.

  8. High Fidelity – No Evidence for Extra-Pair Paternity in Siberian Jays (Perisoreus infaustus)

    Science.gov (United States)

    Gienapp, Phillip; Merilä, Juha

    2010-01-01

    Extra-pair paternity (EPP) in birds is related to a number of ecological and social factors. For example, it has been found to be positively related with breeding density, negatively with the amount of paternal care and especially high rates have been observed in group-living species. Siberian jays (Perisoreous infaustus) breed at low densities and have extended parental care, which leads to the expectation of low rates of EPP. On the other hand, Siberian jays live in groups which can include also unrelated individuals, and provide opportunities for extra-pair matings. To assess the potential occurrence of EPP in Siberian jays, we analysed a large data pool (n = 1029 offspring) covering ca. 30 years of samples from a Finnish Siberian jay population. Paternities were assigned based on up to 21 polymorphic microsatellite markers with the additional information from field observations. We were unable to find any evidence for occurrence of EPP in this species. Our findings are in line with earlier studies and confirm the generally low rates of EPP in related Corvid species. These results suggest that ecological factors may be more important than social factors (group living) in determining costs and benefits of extra-pair paternity. PMID:20711255

  9. High-fidelity simulation of compressible flows for hypersonic propulsion applications

    Science.gov (United States)

    Otis, Collin C.

    In the first part of this dissertation, the scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. The SFMDF is a sub-grid scale closure and is simulated via a Lagrangian Monte Carlo solver. US3D is an Eulerian finite volume code and has proven very effective for compressible flow simulations. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) of compressible turbulent flows on unstructured meshes. Simulations are conducted of subsonic and supersonic flows. The consistency and accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. In the second part of this dissertation, a new methodology is developed for accurate capturing of discontinuities in multi-block finite difference simulations of hyperbolic partial differential equations. The fourth-order energy-stable weighted essentially non-oscillatory (ESWENO) scheme on closed domains is combined with simultaneous approximation term (SAT) weak interface and boundary conditions. The capability of the methodology is demonstrated for accurate simulations in the presence of significant and abrupt changes in grid resolution between neighboring subdomains. Results are presented for the solutions of linear scalar hyperbolic wave equations and the Euler equations in one and two dimensions. Strong discontinuities are passed across subdomain interfaces without significant distortions. It is demonstrated that the methodology provides stable and accurate solutions even when large differences in the grid-spacing exist, whereas strong imposition of the interface conditions causes noticeable oscillations. Keywords: Large eddy simulation, filtered density function, turbulent reacting flows, multi-block finite difference schemes, high-order numerical methods, WENO shock-capturing, computational fluid dynamics.

  10. High-Fidelity Microwave Control of Single-Atom Spin Qubits in Silicon

    Science.gov (United States)

    2014-07-08

    skin-depth δ = √ ρ/(πfµ) where ρ and µ are the resistivity and permittivity of the metal particles respectively. Therefore, the dissipation increases...computing research, and in the next few decades to come, the excitement will surely carry on. We hope that this thesis will serve as incentive to fuel and

  11. High Fidelity Down-Conversion Source for Secure Communications using On-Demand Single Photons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To provide reliably secure communications, development of quantum optical devices for encrypted ground-to-space communications is a necessity. The overall goal of...

  12. High Fidelity Down-Conversion Source for Secure Communications using On-Demand Single Photons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase II effort, AdvR will design and build an efficient, fully integrated, waveguide based, source of spectrally uncorrelated photon pairs that...

  13. VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications.

    Science.gov (United States)

    Mu, John C; Mohiyuddin, Marghoob; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B; Abyzov, Alexej; Wong, Wing H; Lam, Hugo Y K

    2015-05-01

    VarSim is a framework for assessing alignment and variant calling accuracy in high-throughput genome sequencing through simulation or real data. In contrast to simulating a random mutation spectrum, it synthesizes diploid genomes with germline and somatic mutations based on a realistic model. This model leverages information such as previously reported mutations to make the synthetic genomes biologically relevant. VarSim simulates and validates a wide range of variants, including single nucleotide variants, small indels and large structural variants. It is an automated, comprehensive compute framework supporting parallel computation and multiple read simulators. Furthermore, we developed a novel map data structure to validate read alignments, a strategy to compare variants binned in size ranges and a lightweight, interactive, graphical report to visualize validation results with detailed statistics. Thus far, it is the most comprehensive validation tool for secondary analysis in next generation sequencing. Code in Java and Python along with instructions to download the reads and variants is at http://bioinform.github.io/varsim. rd@bina.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  14. Comparison of recidivism rates for a teenage trauma prevention program after the addition of high-fidelity patient simulation.

    Science.gov (United States)

    White, Marjorie Lee; Zinkan, J Lynn; Smith, Geni; Peterson, Dawn Taylor; Youngblood, Amber Q; Dodd, Ashley; Parker, Walter; Strachan, Samuel; Sloane, Peter; Tofil, Nancy

    2017-11-29

    We evaluated the benefits of adding high-fidelity simulation to a teenage trauma prevention program to decrease recidivism rates and encourage teens to discuss actionable steps toward safe driving. A simulated pediatric trauma scenario was integrated into an established trauma prevention program. Participants were recruited because they were court-ordered to attend this program after misdemeanor convictions for moving violations. The teenage participants viewed this simulation from the emergency medical services (EMS) handoff to complete trauma care. Participants completed a postsimulation knowledge assessment and care evaluation, which included narrative data about the experience. Qualitative analysis of color-coded responses identified common themes and experiences in participants' answers. Court records were reviewed 6 years after course completion to determine short- and long-term recidivism rates, which were then compared to our program's historical rate. One hundred twenty-four students aged 16-20 years participated over a 2-year study period. Narrative responses included general reflection, impressions, and thoughts about what they might change as a result of the course. Participants reported that they would decrease speed (30%), wear seat belts (15%), decrease cell phone use (11%), and increase caution (28%). The recidivism rate was 55% within 6 years. At 6 months it was 8.4%, at 1 year it was 20%, and it increased approximately 5-8% per year after the first year. Compared with our programs, for historical 6-month and 2-year recidivism rates, no significant difference was seen with or without simulation. Adding simulation is well received by participants and leads to positive reflections regarding changes in risk-taking behaviors but resulted in no changes to the high recidivism rates This may be due to the often ineffectiveness of fear appeals.

  15. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A

    2006-01-01

    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  16. Basic critical care echocardiography: How many studies equate to competence? A pilot study using high fidelity echocardiography simulation.

    Science.gov (United States)

    Bowcock, Emma M; Morris, Idunn S; Mclean, Anthony S; Orde, Sam R

    2017-08-01

    Assessment of competence in basic critical care echocardiography is complex. Competence relies on not only imaging accuracy but also interpretation and appropriate management decisions. The experience to achieve these skills, real-time, is likely more than required for imaging accuracy alone. We aimed to assess the feasibility of using simulation to assess number of studies required to attain competence in basic critical care echocardiography. This is a prospective pilot study recruiting trainees at various degrees of experience in basic critical care echocardiography using experts as reference standard. We used high fidelity simulation to assess speed and accuracy using total time taken, total position difference and total angle difference across the basic acoustic windows. Interpretation and clinical application skills were assessed using a clinical scenario. 'Cut-off' values for number of studies required for competence were estimated. Twenty-seven trainees and eight experts were included. The subcostal view was achieved quickest by trainees (median 23 s, IQR 19-37). Eighty-seven percent of trainees did not achieve accuracy across all views; 81% achieved accuracy with the parasternal long axis and the least accurate was the parasternal short axis (44% of trainees). Fewer studies were required to be considered competent with imaging acquisition compared with competence in correct interpretation and integration (15 vs. 40 vs. 50, respectively). The use of echocardiography simulation to determine competence in basic critical care echocardiography is feasible. Competence in image acquisition appears to be achieved with less experience than correct interpretation and correct management decisions. Further studies are required.

  17. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    Science.gov (United States)

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessment of a high-fidelity mobile simulator for intrauterine contraception training in ambulatory reproductive health centres

    Directory of Open Access Journals (Sweden)

    Laura E. Dodge

    2016-02-01

    Full Text Available Objectives. Little is known about the utility of simulation-based training in office gynaecology. The objective of this cross-sectional study was to evaluate the self-reported effectiveness and acceptability of the PelvicSim™ (VirtaMed, a high-fidelity mobile simulator, to train clinicians in intrauterine device (IUD insertion. Methods. Clinicians at ambulatory healthcare centres participated in a PelvicSim IUD training programme and completed a self-administered survey. The survey assessed prior experience with IUD insertion, pre- and post-training competency and comfort and opinions regarding the acceptability of the PelvicSim. Results. The 237 participants were primarily female (97.5% nurse practitioners (71.3%. Most had experience inserting the levonorgestrel LNG20 IUD and the copper T380A device, but only 4.1% had ever inserted the LNG14 IUD. For all three devices, participants felt more competent following training, with the most striking change reported for insertion of the LNG14 IUD. The majority of participants reported increased comfort with uterine sounding (57.7%, IUD insertion on a live patient (69.8%, and minimizing patient pain (72.8% following training. Of the respondents, 89.6% reported the PelvicSim IUD insertion activities as “valuable” or “very valuable.” All participants would recommend the PelvicSim for IUD training, and nearly all (97.2% reported that the PelvicSim was a better method to teach IUD insertion than the simple plastic models supplied by IUD manufacturers. Conclusions. These findings support the use of the PelvicSim for IUD training, though whether it is superior to traditional methods and improves patient outcomes requires evaluation.

  19. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    Science.gov (United States)

    Allen, John M; Elbasiouny, Sherif M

    2017-11-28

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: 1) Generic cell models to simulate different motoneuron types, 2) discrete property ranges for different motoneuron types, and 3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are

  20. A Secure and High-Fidelity Live Animal Model for Off-Pump Coronary Bypass Surgery Training.

    Science.gov (United States)

    Liu, Xiaopeng; Yang, Yan; Meng, Qiang; Sun, Jiakang; Luo, Fuliang; Cui, Yongchun; Zhang, Hong; Zhang, Dong; Tang, Yue

    2016-01-01

    Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training. The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA. Animal Experiment Center in Fuwai Hospital. In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed. Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure). This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA. Copyright © 2016. Published by Elsevier Inc.

  1. Using High-Fidelity Analysis Methods and Experimental Results to Account for the Effects of Imperfections on the Buckling Response of Composite Shell Structures

    Science.gov (United States)

    Starnes, James H., Jr.; Hilburger, Mark W.

    2003-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The analytical results include the effects of traditional and nontraditional initial imperfections and uncertainties in the values of selected shell parameters on the buckling loads of the shells. The nonlinear structural analysis results correlate very well with the experimental results. The high-fidelity nonlinear analysis procedure used to generate the analytical results can also be used to form the basis of a new shell design procedure that could reduce the traditional dependence on empirical results in the shell design process. KEYWORDS: high-fidelity nonlinear structural analysis, composite shells, shell stability, initial imperfections

  2. Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Greta A Van Slyke

    2015-06-01

    Full Text Available High rates of error-prone replication result in the rapid accumulation of genetic diversity of RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fitness and that modest variations in replicase fidelity may be associated with viral attenuation. Arthropod-borne viruses (arboviruses are unique in their requirement for host cycling and may necessitate substantial genetic and phenotypic plasticity. In order to more thoroughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus utilizing selection in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent RNA polymerase associated with increased fidelity, V793I and G806R, and a single mutation in the WNV methyltransferase, T248I, associated with decreased fidelity. Both deep-sequencing and in vitro biochemical assays confirmed strain-specific differences in both fidelity and mutational bias. WNV fidelity variants demonstrated host-specific alterations to replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell culture. Experimental infections of colonized and field populations of Cx. quinquefaciatus demonstrated that WNV fidelity alterations are associated with a significantly impaired capacity to establish viable infections in mosquitoes. Taken together, these studies (i demonstrate the importance of allosteric interactions in regulating mutation rates, (ii establish that mutational spectra can be both sequence and strain-dependent, and (iii display the profound phenotypic consequences associated with altered replication complex function of flaviviruses.

  3. Nursing students' perceptions of learning after high fidelity simulation: Effects of a Three-step Post-simulation Reflection Model.

    Science.gov (United States)

    Lestander, Örjan; Lehto, Niklas; Engström, Åsa

    2016-05-01

    High-fidelity simulation (HFS) has become a bridge between theoretical knowledge and practical skills. A safe and realistic environment is commonly used in nursing education to improve cognitive, affective and psychomotor abilities. Debriefing following a simulation experience provides opportunities for students to analyze and begin to reflect upon their decisions, actions and results. The nursing literature highlights the need to promote the concept of reflective practice and to assist students in reflection, and research indicates the need to refine and develop debriefing strategies, which is the focus of the current paper. To explore the value of reflections after HFS by investigating nursing students' perceptions of their learning when a Three-step Post-simulation Reflection Model is used. A qualitative descriptive research approach was applied. A Three-step Post-simulation Reflection Model that combined written and verbal reflections was used after an HFS experience in a second-year course in the Bachelor Program in Nursing at Luleå University of Technology, Sweden. Reflective texts written before and after a verbal group reflection were subjected to qualitative content analysis. The main theme in the first written reflections was identified as "Starting to act as a nurse", with the following categories: feeling stressed, inadequate and inexperienced; developing an awareness of the importance of never compromising patient safety; planning the work and prioritizing; and beginning to understand and implement nursing knowledge. The main theme in the second written reflections was identified to be "Maturing in the profession", with the following categories: appreciating colleagues, good communication and thoughtfulness; gaining increased self-awareness and confidence; and beginning to understand the profession. The Three-step Post-simulation Reflection Model fostered an appreciation of clear and effective communication. Having time for thoughtfulness and

  4. Effect of High-Fidelity Simulation on Medical Students' Knowledge about Advanced Life Support: A Randomized Study.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available High-fidelity simulation (HFS is a learning method which has proven effective in medical education for technical and non-technical skills. However, its effectiveness for knowledge acquisition is less validated. We performed a randomized study with the primary aim of investigating whether HFS, in association with frontal lessons, would improve knowledge about advanced life support (ALS, in comparison to frontal lessons only among medical students. The secondary aims were to evaluate the effect of HFS on knowledge acquisition of different sections of ALS and personal knowledge perception. Participants answered a pre-test questionnaire consisting of a subjective (evaluating personal perception of knowledge and an objective section (measuring level of knowledge containing 100 questions about algorithms, technical skills, team working/early warning scores/communication strategies according to ALS guidelines. All students participated in 3 frontal lessons before being randomized in group S, undergoing a HFS session, and group C, receiving no further interventions. After 10 days from the end of each intervention, both groups answered a questionnaire (post-test with the same subjective section but a different objective one. The overall number of correct answers of the post-test was significantly higher in group S (mean 74.1, SD 11.2 than in group C (mean 65.5, SD 14.3, p = 0.0017, 95% C.I. 3.34 - 13.9. A significantly higher number of correct answers was reported in group S than in group C for questions investigating knowledge of algorithms (p = 0.0001; 95% C.I 2.22-5.99 and team working/early warning scores/communication strategies (p = 0.0060; 95% C.I 1.13-6.53. Students in group S showed a significantly higher score in the post-test subjective section (p = 0.0074. A lower proportion of students in group S confirmed their perception of knowledge compared to group C (p = 0.0079. HFS showed a beneficial effect on knowledge of ALS among medical students

  5. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  6. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    Science.gov (United States)

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  7. A comparison of live tissue training and high-fidelity patient simulator: A pilot study in battlefield trauma training.

    Science.gov (United States)

    Savage, Erin C; Tenn, Catherine; Vartanian, Oshin; Blackler, Kristen; Sullivan-Kwantes, Wendy; Garrett, Michelle; Blais, Ann-Renee; Jarmasz, Jerzy; Peng, Henry; Pannell, Dylan; Tien, Homer C

    2015-10-01

    Trauma procedural and management skills are often learned on live tissue. However, there is increasing pressure to use simulators because their fidelity improves and as ethical concerns increase. We randomized military medical technicians (medics) to training on either simulators or live tissue to learn combat casualty care skills to determine if the choice of modality was associated with differences in skill uptake. Twenty medics were randomized to trauma training using either simulators or live tissue. Medics were trained to perform five combat casualty care tasks (surgical airway, needle decompression, tourniquet application, wound packing, and intraosseous line insertion). We measured skill uptake using a structured assessment tool. The medics also completed exit questionnaires and interviews to determine which modality they preferred. We found no difference between groups trained with live tissue versus simulators in how they completed each combat casualty care skill. However, we did find that the modality of assessment affected the assessment score. Finally, we found that medics preferred trauma training on live tissue because of the fidelity of tissue handling in live tissue models. However, they also felt that training on simulators also provided additional training value. We found no difference in performance between medics trained on simulators versus live tissue models. Even so, medics preferred live tissue training over simulation. However, more studies are required, and future studies need to address the measurement bias of measuring outcomes in the same model on which the study participants are trained. Therapeutic/care management study, level II.

  8. The effects of using high-fidelity simulators and standardized patients on the thorax, lung, and cardiac examination skills of undergraduate nursing students.

    Science.gov (United States)

    Tuzer, Hilal; Dinc, Leyla; Elcin, Melih

    2016-10-01

    Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (pthorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of standardized patients with high-fidelity simulators for managing stress and improving performance in clinical deterioration: A mixed methods study.

    Science.gov (United States)

    Ignacio, Jeanette; Dolmans, Diana; Scherpbier, Albert; Rethans, Jan-Joost; Chan, Sally; Liaw, Sok Ying

    2015-12-01

    The use of standardized patients in deteriorating patient simulations adds realism that can be valuable for preparing nurse trainees for stress and enhancing their performance during actual patient deterioration. Emotional engagement resulting from increased fidelity can provide additional stress for student nurses with limited exposure to real patients. To determine the presence of increased stress with the standardized patient modality, this study compared the use of standardized patients (SP) with the use of high-fidelity simulators (HFS) during deteriorating patient simulations. Performance in managing deteriorating patients was also compared. It also explored student nurses' insights on the use of standardized patients and patient simulators in deteriorating patient simulations as preparation for clinical placement. Fifty-seven student nurses participated in a randomized controlled design study with pre- and post-tests to evaluate stress and performance in deteriorating patient simulations. Performance was assessed using the Rescuing A Patient in Deteriorating Situations (RAPIDS) rating tool. Stress was measured using salivary alpha-amylase levels. Fourteen participants who joined the randomized controlled component then participated in focus group discussions that elicited their insights on SP use in patient deterioration simulations. Analysis of covariance (ANCOVA) results showed no significant difference (p=0.744) between the performance scores of the SP and HFS groups in managing deteriorating patients. Amylase levels were also not significantly different (p=0.317) between the two groups. Stress in simulation, awareness of patient interactions, and realism were the main themes that resulted from the thematic analysis. Performance and stress in deteriorating patient simulations with standardized patients did not vary from similar simulations using high-fidelity patient simulators. Data from focus group interviews, however, suggested that the use of

  10. The effect of clinical experience, judgment task difficulty and time pressure on nurses’ confidence calibration in a high fidelity clinical simulation

    Directory of Open Access Journals (Sweden)

    Yang Huiqin

    2012-10-01

    Full Text Available Abstract Background Misplaced or poorly calibrated confidence in healthcare professionals’ judgments compromises the quality of health care. Using higher fidelity clinical simulations to elicit clinicians’ confidence 'calibration' (i.e. overconfidence or underconfidence in more realistic settings is a promising but underutilized tactic. In this study we examine nurses’ calibration of confidence with judgment accuracy for critical event risk assessment judgments in a high fidelity simulated clinical environment. The study also explores the effects of clinical experience, task difficulty and time pressure on the relationship between confidence and accuracy. Methods 63 student and 34 experienced nurses made dichotomous risk assessments on 25 scenarios simulated in a high fidelity clinical environment. Each nurse also assigned a score (0–100 reflecting the level of confidence in their judgments. Scenarios were derived from real patient cases and classified as easy or difficult judgment tasks. Nurses made half of their judgments under time pressure. Confidence calibration statistics were calculated and calibration curves generated. Results Nurse students were underconfident (mean over/underconfidence score −1.05 and experienced nurses overconfident (mean over/underconfidence score 6.56, P = 0.01. No significant differences in calibration and resolution were found between the two groups (P = 0.80 and P = 0.51, respectively. There was a significant interaction between time pressure and task difficulty on confidence (P = 0.008; time pressure increased confidence in easy cases but reduced confidence in difficult cases. Time pressure had no effect on confidence or accuracy. Judgment task difficulty impacted significantly on nurses’ judgmental accuracy and confidence. A 'hard-easy' effect was observed: nurses were overconfident in difficult judgments and underconfident in easy judgments. Conclusion Nurses were poorly calibrated

  11. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.

    Science.gov (United States)

    Okamoto, Itaru; Miyatake, Yuya; Kimoto, Michiko; Hirao, Ichiro

    2016-11-18

    Genetic alphabet expansion of DNA using an artificial extra base pair (unnatural base pair) could augment nucleic acid and protein functionalities by increasing their components. We previously developed an unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px), which exhibits high fidelity as a third base pair in PCR amplification. Here, the fidelity and efficiency of Ds-Px pairing using modified Px bases with functional groups, such as diol, azide, ethynyl and biotin, were evaluated by an improved method with optimized PCR conditions. The results revealed that all of the base pairs between Ds and either one of the modified Px bases functioned with high amplification efficiency (0.76-0.81), high selectivity (≥99.96% per doubling), and less sequence dependency, in PCR using 3'-exonuclease-proficient Deep Vent DNA polymerase. We also demonstrated that the azide-Px in PCR-amplified DNA was efficiently modified with any functional groups by copper-free click reaction. This genetic alphabet expansion system could endow nucleic acids with a wide variety of increased functionalities by the site-specific incorporation of modified Px bases at desired positions in DNA.

  12. Comparing the effectiveness of video-assisted oral debriefing and oral debriefing alone on behaviors by undergraduate nursing students during high-fidelity simulation.

    Science.gov (United States)

    Grant, Joan S; Dawkins, Denise; Molhook, Lori; Keltner, Norman L; Vance, David E

    2014-09-01

    Complex healthcare, less resources, high-level medical equipment, and fewer available clinical settings have led many health professionals to use simulation as a method to further augment educational experiences for nursing students. While debriefing is recommended in the literature as a key component of simulation, the optimal format in which to conduct debriefing is unknown. This pre- and posttest two-group randomized quasi-experimental design compared the effectiveness of video-assisted oral debriefing (VAOD) and oral debriefing alone (ODA) on behaviors of 48 undergraduate nursing students during high-fidelity simulation. Further, this study examined whether roles (e.g., team leader, medication nurse), type of scenarios (i.e., pulmonary and cardiac scenarios), and student simulation team membership (i.e., VAOD and ODA groups) influenced these behaviors. Behaviors observed in this study related to patient safety, communication among team members, basic- and problem-focused assessment, prioritization of care, appropriate interventions, and delegation to healthcare team members. Both human patient simulator practice and guidance using video-assisted oral debriefing and oral debriefing alone appeared to be comparable regarding behaviors, regardless of roles, type of scenarios, and student simulation team membership. These findings suggest that nurse educators may use either video-assisted oral debriefing or oral debriefing alone to debrief undergraduate nursing students during high-fidelity simulation. Copyright © 2014. Published by Elsevier Ltd.

  13. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  14. Observed improvements in an intern's ability to initiate critical emergency skills in different cardiac arrest scenarios using high-fidelity simulation.

    Science.gov (United States)

    Starmer, David J; Duquette, Sean A; Guiliano, Dominic; Tibbles, Anthony; Miners, Andrew; Finn, Kevin; Stainsby, Brynne E

    2014-10-01

    Objective : The objective of this study was to report observed changes in an intern's ability to initiate critical emergency skills in different cardiac arrest scenarios with high-fidelity simulation over a 10-month period. Methods : One intern's performance was retrospectively analyzed using video recordings of 4 simulations at different stages in the training program. The key outcome was the duration of time expired for 4 critical skills, including activating the emergency response system, initiating cardiopulmonary resuscitation (CPR), using an automated external defibrillator (AED), and passively administrating oxygen. Results : The intern became more efficient in each subsequent simulation for activating the emergency response system and initiating CPR. The time to use the AED stayed relatively constant. The administration of oxygen was inconsistent. Conclusion : An improvement in the speed of applying emergency critical skills was observed with this intern. These improvements in skill may improve patient outcomes and survival rates. We propose further educational research with high-fidelity simulation in the area of assessing emergency skills.

  15. Modeling for Fidelity: virtual mentorship by scientists fosters teacher self-efficacy and promotes implementation of novel high school biomedical curricula.

    Science.gov (United States)

    Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F

    2014-01-01

    This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. 'Modeling for Fidelity' (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p1.5, pteachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula.

  16. Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

    Directory of Open Access Journals (Sweden)

    Michael Hirtz

    2013-06-01

    Full Text Available We explored the potentials of microarray printing using quill-like microcantilevers onto solid supports that are typically used in microspot printing, including paper, polymeric nitrocellulose and nylon membranes. We compared these membranes with a novel porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate support (HEMA with narrow pore size distribution in the 150 nm range, which demonstrated advantages in pattern definition, spot homogeneity, and consistent spot delivery of different dyes (phloxine B and bromophenol blue with diameters of several micrometres. The bromophenol blue arrays on HEMA support were used to detect the presence of bovine serum albumin (BSA. In the presence of BSA, the fluorescence spectrum observed from the bromophenol blue microarray exhibited a significant red shift of the maximum emission wavelength. Our results show that the porous HEMA substrates can improve the fidelity and quality of microarrays prepared by using the quill-like microcantilevers. The presented method sets the stage for further studies using chemical and biochemical recognition elements, along with colorimetric and fluorometric sensors that can be spotted by this method onto flat porous polymer substrates.

  17. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation

    Science.gov (United States)

    McLeod, Claire M.; Mauck, Robert L.

    2016-01-01

    Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level. PMID:27941914

  18. Finding the Needles in the Haystacks: High-fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    Science.gov (United States)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; Nesvold, Erika R.; Meadows, Victoria S.; Turnbull, Margaret C.

    2017-12-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 μm. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  19. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments

    Science.gov (United States)

    Amplification and sequencing of the complete M- and S-RNA segments of Tomato spotted wilt virus and Impatiens necrotic spot virus as a single fragment is useful for whole genome sequencing of tospoviruses co-infecting a single host plant. It avoids issues associated with overlapping amplicon-based ...

  20. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  1. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  2. Fidelity in clinical simulation

    DEFF Research Database (Denmark)

    Jensen, Sanne; Nøhr, Christian; Rasmussen, Stine Loft

    2013-01-01

    Clinical simulation may be used to identify user needs for context sensitive functionalities in e-Health. The objective with this paper is to describe how user requirements and use cases in a large EHR-platform procurement may be validated by clinical simulation using a very low-fidelity prototype...... without any existing test data. Instead of using test scenarios and use cases, the healthcare professionals who are participating in the clinical simulation are generating both scenario and patient data themselves. We found that this approach allows for an imaginative discussion, not restricted by known...... functionalities and limitations, of the ideal EHR-platform. Subsequently, we discuss benefits and challenges of using an extremely low fidelity environment and discuss the degree of fidelity necessary for conducting clinical simulation....

  3. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  4. An exploration of the relationship between knowledge and performance-related variables in high-fidelity simulation: designing instruction that promotes expertise in practice.

    Science.gov (United States)

    Hauber, Roxanne P; Cormier, Eileen; Whyte, James

    2010-01-01

    Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.

  5. A metric-based analysis of structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation.

    Science.gov (United States)

    Henn, Patrick; Power, David; Smith, Simon D; Power, Theresa; Hynes, Helen; Gaffney, Robert; McAdoo, John D

    2012-01-01

    In this study we aimed to analyse the structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation. The purpose was to identify any areas of deficiency within structure and content in the effective transfer of clinical information via the telephone of final-year medical students. An educational study. Simulation centre in a medical school. 113 final-year medical students. The primary outcome was to analyse the structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation. The secondary outcome was to identify any areas of deficiency within structure and content in the effective transfer of clinical information via the telephone of final-year medical students. During phone calls to a senior colleague 30% of students did not positively identify themselves, 29% did not identify their role, 32% did not positively identify the recipient of the phone call, 59% failed to positively identify the patient, 49% did not read back the recommendations of their senior colleague and 97% did not write down the recommendations of their senior colleague. We identified a deficiency in our students skills to communicate relevant information via the telephone, particularly failure to repeat back and write down instructions. We suggest that this reflects a paucity of opportunities to practice this skill in context during the undergraduate years. The assumption that this skill will be acquired following qualification constitutes a latent error within the healthcare system. The function of undergraduate medical education is to produce graduates who are fit for purpose at the point of graduation.

  6. Effects of Low- Versus High-Fidelity Simulations on the Cognitive Burden and Performance of Entry-Level Paramedicine Students: A Mixed-Methods Comparison Trial Using Eye-Tracking, Continuous Heart Rate, Difficulty Rating Scales, Video Observation and Interviews.

    Science.gov (United States)

    Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A

    2016-02-01

    High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P students who ultimately revived the patient (58% vs. 30%, P students did so significantly more quickly (P students had low immersion resulting in greater assessment anxiety. High-environmental fidelity simulation engendered immersion and a sense of urgency in students, whereas LF(en)S created assessment anxiety and slower performance. We conclude that once early-stage students have learned the basics of a clinical skill, throwing them in the "deep end" of high-fidelity simulation creates significant additional cognitive burden but this has considerable educational merit.

  7. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.

    Science.gov (United States)

    Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth

    2017-08-01

    Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity

  8. Fidelity susceptibility in the quantum Rabi model

    Science.gov (United States)

    Wei, Bo-Bo; Lv, Xiao-Chen

    2018-01-01

    Quantum criticality usually occurs in many-body systems. Recently it was shown that the quantum Rabi model, which describes a two-level atom coupled to a single model cavity field, presents quantum phase transitions from a normal phase to a superradiate phase when the ratio between the frequency of the two-level atom and the frequency of the cavity field extends to infinity. In this work, we study quantum phase transitions in the quantum Rabi model from the fidelity susceptibility perspective. We found that the fidelity susceptibility and the generalized adiabatic susceptibility present universal finite-size scaling behaviors near the quantum critical point of the Rabi model if the ratio between frequency of the two-level atom and frequency of the cavity field is finite. From the finite-size scaling analysis of the fidelity susceptibility, we found that the adiabatic dimension of the fidelity susceptibility and the generalized adiabatic susceptibility of fourth order in the Rabi model are 4 /3 and 2, respectively. Meanwhile, the correlation length critical exponent and the dynamical critical exponent in the quantum critical point of the Rabi model are found to be 3 /2 and 1 /3 , respectively. Since the fidelity susceptibility and the generalized adiabatic susceptibility are the moments of the quantum noise spectrum which are directly measurable by experiments in linear response regime, the scaling behavior of the fidelity susceptibility in the Rabi model could be tested experimentally. The simple structure of the quantum Rabi model paves the way for experimentally observing the universal scaling behavior of the fidelity susceptibility at a quantum phase transition.

  9. High heat flux single phase heat exchanger

    Science.gov (United States)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  10. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    Science.gov (United States)

    Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  11. Facet engineering of high power single emitters

    Science.gov (United States)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey

    2011-03-01

    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/sq.cm (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  12. Implantation and Recovery of Long-Term Archival Transceivers in a Migratory Shark with High Site Fidelity.

    Directory of Open Access Journals (Sweden)

    Danielle E Haulsee

    Full Text Available We developed a long-term tagging method that can be used to understand species assemblages and social groupings associated with large marine fishes such as the Sand Tiger shark Carcharias taurus. We deployed internally implanted archival VEMCO Mobile Transceivers (VMTs; VEMCO Ltd. Nova Scotia, Canada in 20 adult Sand Tigers, of which two tags were successfully recovered (10%. The recovered VMTs recorded 29,646 and 44,210 detections of telemetered animals respectively. To our knowledge, this is the first study to demonstrate a method for long-term (~ 1 year archival acoustic transceiver tag implantation, retention, and recovery in a highly migratory marine fish. Results show low presumed mortality (n = 1, 5%, high VMT retention, and that non-lethal recovery after almost a year at liberty can be achieved for archival acoustic transceivers. This method can be applied to study the social interactions and behavioral ecology of large marine fishes.

  13. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations.

    Science.gov (United States)

    Nguyen, Khoa; Ben Khallouq, Bertha; Schuster, Amanda; Beevers, Christopher; Dil, Nyla; Kay, Denise; Kibble, Jonathan D; Harris, David M

    2017-12-01

    Most assessments of physiology in medical school use multiple choice tests that may not provide information about a student's critical thinking (CT) process. There are limited performance assessments, but high-fidelity patient simulations (HFPS) may be a feasible platform. The purpose of this pilot study was to determine whether a group's CT process could be observed over a series of HFPS. An instrument [Critical Thinking Skills Rating Instrument CTSRI)] was designed with the IDEAS framework. Fifteen groups of students participated in three HFPS that consisted of a basic knowledge quiz and introduction, HFPS session, and debriefing. HFPS were video recorded, and two raters reviewed and scored all HFPS encounters with the CTSRI independently. Interrater analysis suggested good reliability. There was a correlation between basic knowledge scores and three of the six observations on the CTSRI providing support for construct validity. The median CT ratings significantly increased for all observations between the groups' first and last simulation. However, there were still large percentages of video ratings that indicated students needed substantial prompting during the HFPS. The data from this pilot study suggest that it is feasible to observe CT skills in HFPS using the CTSRI. Based on the findings from this study, we strongly recommend that first-year medical students be competent in basic knowledge of the relevant physiology of the HFPS before participating, to minimize the risk of a poor learning experience. Copyright © 2017 the American Physiological Society.

  14. Effects of high-fidelity patient simulation led clinical reasoning course: Focused on nursing core competencies, problem solving, and academic self-efficacy.

    Science.gov (United States)

    Lee, JuHee; Lee, Yoonju; Lee, Senah; Bae, Juyeon

    2016-01-01

    To examine the effects of high-fidelity patient simulation (HFPS) led clinical reasoning course among undergraduate nursing students. A quasi-experimental study of non-equivalent control group pretest-post test design was applied. A total of 49 senior nursing students participated in this study. The experimental group consisted of the students who took the "clinical reasoning" course (n = 23) while the control group consisted of students who did not (n = 26). Self-administered scales including the nursing core competencies, problem solving, academic self-efficacy, and Kolb learning style inventory were analyzed quantitatively using SPSS version 20.0. Data analysis was conducted using one-way ancova due to a significant difference in nursing core competencies between the experimental group and control group. There was a significant improvement in nursing core competencies in the experimental group (F = 7.747, P = 0.008). The scores of problem solving and academic self-efficacy were higher in the experimental group after the HFPS led clinical reasoning course without statistical difference. There is a need for the development of effective instructional methods to improve learning outcomes in nursing education. Future research is needed related to simulation education as well as management strategies so that learning outcomes can be achieved within different students' learning style. © 2015 The Authors. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  15. Communication during handover in the pre-hospital/hospital interface in Italy: from evaluation to implementation of multidisciplinary training through high-fidelity simulation.

    Science.gov (United States)

    Dojmi Di Delupis, Francesco; Pisanelli, Paolo; Di Luccio, Giovanni; Kennedy, Maura; Tellini, Sabrina; Nenci, Nadia; Guerrini, Elisa; Pini, Riccardo; Franco Gensini, Gian

    2014-08-01

    Communication failures in the pre-hospital/hospital interface have been identified as a major preventable cause of patient harm. This interface has not adequately been studied in Italy. In this study, we: (1) evaluated the communication of pre-hospital and hospital providers during handover through the analysis of simulation sessions; (2) identified the critical information that should be routinely communicated during handover with a survey administered to emergency triage nurses; (3) measured communication within this interface through the adaptation of an existing tool from a multidisciplinary focus group; (4) validated the adapted tool with the inter-rater agreement of physicians who reviewed video recordings from multidisciplinary simulations sessions; and (5) developed a handover training for pre-hospital providers and evaluated the communication improvement between pre- and post-training. In our simulations we found an absence of standardization of the handover communication process, marked variability in information communicated, and a lack of formal transfer of responsibility of patient care. We adapted existing handover communication tools for local use and developed a checklist for the evaluation of handover communication that had good inter-rater reliability. Lectures coupled with high-fidelity simulation exercises on handover did result in a statistically significant improvement in handover communication.

  16. A New View on Interstellar Dust - High Fidelity Studies of Interstellar Dust Analogue Tracks in Stardust Flight Spare Aerogel

    Science.gov (United States)

    Zolensky, Michael E.; Postberg F.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Bugiel, S.; hide

    2011-01-01

    In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days to the stream of interstellar grains sweeping through the solar system. The material was brought back to Earth in 2006. The goal of this work is the laboratory calibration of the collection process by shooting high speed [5 - 30km/s] interstellar dust (ISD) analogues onto Stardust aerogel flight spares. This enables an investigation into both the morphology of impact tracks as well as any structural and chemical modification of projectile and collector material. First results indicate a different ISD flux than previously assumed for the Stardust collection period.

  17. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  18. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    Science.gov (United States)

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Toward high fidelity spectral sensing and RF signal processing in silicon photonic and nano-opto-mechanical platforms

    Science.gov (United States)

    Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter

    2017-05-01

    The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric

  20. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  1. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    Science.gov (United States)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    , robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.

  2. Multi-fidelity stochastic collocation method for computation of statistical moments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu [Department of Mathematics, University of Iowa, Iowa City, IA 52242 (United States); Linebarger, Erin M., E-mail: aerinline@sci.utah.edu [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Xiu, Dongbin, E-mail: xiu.16@osu.edu [Department of Mathematics, The Ohio State University, Columbus, OH 43210 (United States)

    2017-07-15

    We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.

  3. Site fidelity and longevity of the Karoo Thrush Turdus smithi ...

    African Journals Online (AJOL)

    The present study investigated site fidelity and longevity of an urban T. smithi population at the University of Pretoria main campus in Gauteng. Thrushes were ringed with unique colour ring combinations and identified by resighting them later. We found that T. smithi individuals have high site fidelity, with some thrushes ...

  4. Intervention Fidelity in Special and General Education Research Journals

    Science.gov (United States)

    Swanson, Elizabeth; Wanzek, Jeanne; Haring, Christa; Ciullo, Stephen; McCulley, Lisa

    2013-01-01

    Treatment fidelity reporting practices are described for journals that published general and special education intervention research with high impact factors from 2005 through 2009. The authors reviewed research articles, reported the proportion of intervention studies that described fidelity measurement, detailed the components of fidelity…

  5. Relaxation before Debriefing during High-fidelity Simulation Improves Memory Retention of Residents at Three Months: A Prospective Randomized Controlled Study.

    Science.gov (United States)

    Lilot, Marc; Evain, Jean-Noel; Bauer, Christian; Cejka, Jean-Christophe; Faure, Alexandre; Balança, Baptiste; Vassal, Olivia; Payet, Cécile; Bui Xuan, Bernard; Duclos, Antoine; Lehot, Jean-Jacques; Rimmelé, Thomas

    2018-03-01

    High-fidelity simulation is known to improve participant learning and behavioral performance. Simulation scenarios generate stress that affects memory retention and may impact future performance. The authors hypothesized that more participants would recall three or more critical key messages at three months when a relaxation break was performed before debriefing of critical event scenarios. Each resident actively participated in one scenario and observed another. Residents were randomized in two parallel-arms. The intervention was a 5-min standardized relaxation break immediately before debriefing; controls had no break before debriefing. Five scenario-specific messages were read aloud by instructors during debriefings. Residents were asked by telephone three months later to recall the five messages from their two scenarios, and were scored for each scenario by blinded investigators. The primary endpoint was the number of residents participating actively who recalled three or more messages. Secondary endpoints included: number of residents observing who recalled three or more messages, anxiety level, and debriefing quality. In total, 149 residents were randomized and included. There were 52 of 73 (71%) residents participating actively who recalled three or more messages at three months in the intervention group versus 35 of 76 (46%) among controls (difference: 25% [95% CI, 10 to 40%], P = 0.004). No significant difference was found between groups for observers, anxiety or debriefing quality. There was an additional 25% of active participants who recalled the critical messages at three months when a relaxation break was performed before debriefing of scenarios. Benefits of relaxation to enhance learning should be considered for medical education.

  6. Fidelity in Archaeal Information Processing

    NARCIS (Netherlands)

    Koning, de B.; Blombach, F.; Brouns, S.J.J.; Oost, van der J.

    2010-01-01

    A key element during the flow of genetic information in living systems is fidelity. The accuracy of DNA replication influences the genome size as well as the rate of genome evolution. The large amount of energy invested in gene expression implies that fidelity plays a major role in fitness. On the

  7. RTI Fidelity of Implementation Rubric

    Science.gov (United States)

    National Center on Response to Intervention, 2014

    2014-01-01

    The Response to Intervention (RTI) Fidelity Rubric is for use by individuals who are responsible for monitoring school-level fidelity of RTI implementation. The rubric is aligned with the essential components of RTI and the infrastructure that is necessary for successful implementation. It is accompanied by a worksheet with guiding questions and…

  8. Fidelity in Archaeal Information Processing

    Directory of Open Access Journals (Sweden)

    Bart de Koning

    2010-01-01

    Full Text Available A key element during the flow of genetic information in living systems is fidelity. The accuracy of DNA replication influences the genome size as well as the rate of genome evolution. The large amount of energy invested in gene expression implies that fidelity plays a major role in fitness. On the other hand, an increase in fidelity generally coincides with a decrease in velocity. Hence, an important determinant of the evolution of life has been the establishment of a delicate balance between fidelity and variability. This paper reviews the current knowledge on quality control in archaeal information processing. While the majority of these processes are homologous in Archaea, Bacteria, and Eukaryotes, examples are provided of nonorthologous factors and processes operating in the archaeal domain. In some instances, evidence for the existence of certain fidelity mechanisms has been provided, but the factors involved still remain to be identified.

  9. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy.

    Science.gov (United States)

    Abdelshehid, Corollos S; Quach, Stephen; Nelson, Corey; Graversen, Joseph; Lusch, Achim; Zarraga, Jerome; Alipanah, Reza; Landman, Jaime; McDougall, Elspeth M

    2013-01-01

    The use of low-risk simulation training for resident education is rapidly expanding as teaching centers integrate simulation-based team training (SBTT) sessions into their education curriculum. SBTT is a valuable tool in technical and communication skills training and assessment for residents. We created a unique SBTT scenario for urology residents involving a laparoscopic partial nephrectomy procedure. Urology residents were randomly paired with a certified registered nurse anesthetists or an anesthesia resident. The scenario incorporated a laparoscopic right partial nephrectomy utilizing a unique polyvinyl alcohol kidney model with an embedded 3cm lower pole exophytic tumor and the high-fidelity SimMan3G mannequin. The Urology residents were instructed to pay particular attention to the patient's identifying information provided at the beginning of the case. Two scripted events occurred, the patient had an anaphylactic reaction to a drug and, after tumor specimen was sent for a frozen section, the confederate pathologist called into the operating room (OR) twice, first with the wrong patient name and subsequently with the wrong specimen. After the scenario was complete, technical performance and nontechnical performance were evaluated and assessed. A debriefing session followed the scenario to discuss and assess technical performance and interdisciplinary nontechnical communication between the team. All Urology residents (n = 9) rated the SBTT scenario as a useful tool in developing communication skills among the OR team and 88% rated the model as useful for technical skills training. Despite cuing to note patient identification, only 3 of 9 (33%) participants identified that the wrong patient information was presented when the confederate "pathologist" called in to report pathology results. All urology residents rated SBTT sessions as useful for the development of communication skills between different team members and making residents aware of unlikely but

  10. Development of High Fidelity Mobility Simulation of an Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics

    Science.gov (United States)

    2011-08-01

    rather than for training or other real-time applications. TARDEC is interested in using this capability as a design tool that can efficiently improve...traffic scenarios using a database of road sections, infrastructure components (trees, buildings, traffic signs) and road users (cars, trucks, cyclists ...fidelity simulation, running in real time, may be used for additional testing and training of operators. ACKNOWLEDGEMENTS The authors of this paper

  11. Site fidelity and individual variation in winter location in partially migratory European shags

    OpenAIRE

    Hannah Grist; Francis Daunt; Sarah Wanless; Nelson, Emily J.; Harris, Mike P.; Mark Newell; Sarah Burthe; Reid, Jane M.

    2014-01-01

    In partially migratory populations, individuals from a single breeding area experience a range of environments during the non-breeding season. If individuals show high within- and among- year fidelity to specific locations, any annual environmental effect on individual life histories could be reinforced, causing substantial demographic heterogeneity. Quantifying within- and among- individual variation and repeatability in non-breeding season location is therefore key to predicting broad-scale...

  12. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  13. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  14. High-performance single nanowire tunnel diodes.

    Science.gov (United States)

    Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T

    2010-03-10

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.

  15. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenologica...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure.......The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...... Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...

  16. Detecting phase transitions and crossovers in Hubbard models using the fidelity susceptibility

    CERN Document Server

    Huang, Li; Wang, Lei; Werner, Philipp

    2016-01-01

    A generalized version of the fidelity susceptibility of single-band and multi-orbital Hubbard models is systematically studied using single-site dynamical mean-field theory in combination with a hybridization expansion continuous-time quantum Monte Carlo impurity solver. We find that the fidelity susceptibility is extremely sensitive to changes in the state of the system. It can be used as a numerically inexpensive tool to detect and characterize a broad range of phase transitions and crossovers in Hubbard models, including (orbital-selective) Mott metal-insulator transitions, high-spin to low-spin transitions, Fermi-liquid to non-Fermi-liquid crossovers, and spin-freezing crossovers.

  17. Multi-fidelity wake modelling based on Co-Kriging method

    DEFF Research Database (Denmark)

    Wang, Y. M.; Réthoré, Pierre-Elouan; van der Laan, Paul

    2016-01-01

    The article presents an approach to combine wake models of multiple levels of fidelity, which is capable of giving accurate predictions with only a small number of high fidelity samples. The G. C. Larsen and k-ε-fP based RANS models are adopted as ensemble members of low fidelity and high fidelity...... models, respectively. Both the univariate and multivariate based surrogate models are established by taking the local wind speed and wind direction as variables of the wind farm power efficiency function. Various multi-fidelity surrogate models are compared and different sampling schemes are discussed....... The analysis shows that the multi-fidelity wake models could tremendously reduce the high fidelity model evaluations needed in building an accurate surrogate....

  18. Inquir into concepts of flight simulation fidelity

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhi-Gang [China Flight Test Establishment, Xian (China)

    1994-12-31

    In this paper, the author points that just considering the accuracy of aerodynamic characteristics is not enough to define flight simulation fidelity. According to his experience, the definition of fidelity ought to be based on the analysis of pilot-aircraft controlling loop. Both the controlling loops in real flight and in simulation are introduced here. Comparing the two loops, it is find that a certain degree of infidelity is unavoidable for an aircraft simulator, so that some compromises have to be made between the need and possibility. Some definitions of fidelity, Open Loop fidelity and Close Loop fidelity, White Box fidelity and Black Box fidelity, Original fidelity and Final fidelity, and the approaches of verifying and improving flight simulation fidelity are also described.

  19. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.

    2013-01-01

    The emergence of catalytically active RNA enzymes (ribozymes) is widely believed to have been an important transition in the origin of life. In the context of a likely heterogeneous chemical environment, substrate specificity and selectivity of these primordial enzymes would have been critical...... for function. Here we have explored the chemical fidelity, i.e. substrate selectivity and specificity for both single and multiple catalytic steps of the Z RNA polymerase ribozyme-a modern day analogue of the primordial RNA replicase. Using a wide range of nucleotide analogues and ionic conditions, we observe...

  20. Single Assignment C (SAC): High Productivity meets High Performance

    NARCIS (Netherlands)

    Grelck, C.; Zsók, V.; Horváth, Z.; Plasmeijer, R.

    2012-01-01

    We present the ins and outs of the purely functional, data parallel programming language SaC (Single Assignment C). SaC defines state- and side-effect-free semantics on top of a syntax resembling that of imperative languages like C/C++/C# or Java: functional programming with curly brackets. In

  1. Curriculum Fidelity and Factors Affecting Fidelity in the Turkish Context

    Science.gov (United States)

    Bumen, Nilay T.; Cakar, Esra; Yildiz, Derya G.

    2014-01-01

    Although a centralist education system is in place in Turkey, studies show that while implementing the curriculum developed by the Ministry of Education, teachers make changes based on their own preferences or depending on students. Curriculum fidelity can be defined as the degree to which teachers or stakeholders abide by a curriculum's original…

  2. Norovirus Polymerase Fidelity Contributes to Viral Transmission In Vivo

    DEFF Research Database (Denmark)

    Arias Esteban, Armando; Thorne, Lucy; Ghurburrun, Elsa

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences...... viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase...... fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates...

  3. Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

    OpenAIRE

    Gamm, B.; Popescu, R.; Blank, H.; Schneider, R; Beyer, A.; Gölzhäuser, A.; Gerthsen, D.

    2010-01-01

    Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weick...

  4. Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide.

    Science.gov (United States)

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-08-18

    We demonstrate a stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short periodically-poled lithium niobate (PPLN) waveguide. Full quantum state tomographic measurement performed on the photon-pairs has revealed a very high state purity of 0.94, and an entanglement fidelity exceeding 0.96 at the low-rate-regime. At higher rates, entanglement quality degrades due to emission of multiple-pairs. Using a new model, we have confirmed that the observed degradation is largely due to double- and triple-pair emissions.

  5. Process for Forming a High Temperature Single Crystal Canted Spring

    Science.gov (United States)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  6. First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization

    Science.gov (United States)

    Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.

    2000-01-01

    First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.

  7. Extending the Conceptualization of Listening Fidelity

    Science.gov (United States)

    Fitch-Hauser, Margaret; Powers, William G.; O'Brien, Kelley; Hanson, Scott

    2007-01-01

    An exploration of variables potentially related to Listening Fidelity (LF) was conducted through two separate studies. Study 1 indicated that when the potential fidelity of the stimulus message was varied as a function of the number of words and time length, the message with lowest potential fidelity produced significantly lower LF than either the…

  8. Multi-fidelity design optimization of Francis turbine runner blades

    Science.gov (United States)

    Bahrami, S.; Tribes, C.; von Fellenberg, S.; Vu, T. C.; Guibault, F.

    2014-03-01

    A robust multi-fidelity design algorithm has been developed, focusing to efficiently handle industrial hydraulic runner design considerations. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a derivative-free optimization method employs an inviscid flow solver to obtain the major desired characteristics of a good design in a relatively fast iterative process. A limited number of candidates are selected among feasible optimization solutions by a newly developed filtering process. The main function of the filtering process is to select some promising candidates to be sent into the high-fidelity phase, which have significantly different geometries, and also are dominant in their own territories. The high-fidelity phase aims to accurately evaluate those promising candidates in order to select the one which is closest to design targets. A low-head runner case study has shown the ability of this methodology to identify an optimized blade through a relatively low computational effort, which is significantly different from the base geometry.

  9. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  10. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  11. Objective fidelity evaluation in multisensory virtual environments: auditory cue fidelity in flight simulation.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues.

  12. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis ... produces crystals of superior quality, circumventing many of the problems associated with, for example, flux growth from the melt. .... In these materials, it is possible to control the electric polarization by the ...

  13. Rapid single flux quantum logic in high temperature superconductor technology

    NARCIS (Netherlands)

    Shunmugavel, K.

    2006-01-01

    A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible

  14. Single high scrotal incision orchidopexy for unilateral palpable testis ...

    African Journals Online (AJOL)

    Background: Bianchi and Squire introduced single high trans-scrotal incision for mobilisation of palpable undescended testes to decrease the potential morbidity of the traditional inguinal approach. This incision has not gained widespread acceptance and there is still a considerable debate about its efficacy. This study ...

  15. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    Theoretical and experimental studies of temporal dynamics of grazing incidence grating (GIG) cavity, single-mode dye laser pumped by high repetition rate copper vapour laser (CVL) are presented. Spectral chirp of the dye laser as they evolve in the cavity due to transient phase dynamics of the amplifier gain medium is ...

  16. Implementation fidelity trajectories of a health promotion program in multidisciplinary settings: managing tensions in rehabilitation care.

    Science.gov (United States)

    Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P

    2017-12-01

    Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary settings and the relationship with changes in patients' health behavior. This study used longitudinal data from the nationwide implementation of an evidence-informed physical activity promotion program in Dutch rehabilitation care. Fidelity scores were calculated based on annual surveys filled in by involved professionals (n = ± 70). Higher fidelity scores indicate a more complete implementation of the program's core components. A hierarchical cluster analysis was conducted on the implementation fidelity scores of 17 organizations at three different time points. Quantitative and qualitative data were used to explore organizational and professional differences between identified trajectories. Regression analyses were conducted to determine differences in patient outcomes. Three trajectories were identified as the following: 'stable high fidelity' (n = 9), 'moderate and improving fidelity' (n = 6), and 'unstable fidelity' (n = 2). The stable high fidelity organizations were generally smaller, started earlier, and implemented the program in a more structured way compared to moderate and improving fidelity organizations. At the implementation period's start and end, support from physicians and physiotherapists, professionals' appreciation, and program compatibility were rated more positively by professionals working in stable high fidelity organizations as compared to the moderate and improving fidelity organizations (p organizational-level implementation fidelity trajectories did not result in outcome differences at patient-level. This suggests that an effective implementation fidelity trajectory is contingent on the local organization's conditions. More

  17. Fidelity based measurement induced nonlocality

    Science.gov (United States)

    Muthuganesan, R.; Sankaranarayanan, R.

    2017-09-01

    In this paper, we propose measurement induced nonlocality (MIN) using a metric based on fidelity to capture global nonlocal effect of a quantum state due to locally invariant projective measurements. This quantity is a remedy for local ancilla problem in the original definition of MIN. We present an analytical expression of the proposed version of MIN for pure bipartite state and 2 × n dimensional mixed state. We also provide an upper bound of the MIN for general mixed state. Finally, we compare this quantity with MINs based on Hilbert-Schmidt norm and skew information for higher dimensional Werner and isotropic states.

  18. Single-shot fluctuations in waveguided high-harmonic generation.

    Science.gov (United States)

    Goh, S J; Tao, Y; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K-J

    2015-09-21

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

  19. Bulk magnetic domain stability controls paleointensity fidelity

    Science.gov (United States)

    Paterson, Greig A.; Muxworthy, Adrian R.; Yamamoto, Yuhji; Pan, Yongxin

    2017-12-01

    Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records—in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy.

  20. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  1. Quantitative high-resolution transmission electron microscopy of single atoms.

    Science.gov (United States)

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  2. High power and single mode quantum cascade lasers.

    Science.gov (United States)

    Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome

    2016-05-16

    We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

  3. Enhanced fidelity of an educational intervention on skin self-examination through surveillance and standardization.

    Science.gov (United States)

    Gaber, Rikki; Mallett, Kimberly A; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L; Martini, Mary C; Robinson, June K

    2014-01-01

    Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ2 (1, n = 199)= 96.31, p intervention with high fidelity (all scores >14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner.

  4. Single-stage electronic ballast with high-power factor

    Science.gov (United States)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  5. Integrated Variable Fidelity Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CADNexus proposes to develop an Integrated Variable Fidelity Conceptual Design tool. The application will enable design and analysis of unconventional and advanced...

  6. Fidelity analysis of topological quantum phase transitions

    Science.gov (United States)

    Abasto, Damian F.; Hamma, Alioscia; Zanardi, Paolo

    2008-07-01

    We apply the fidelity metric approach to analyze two recently introduced models that exhibit a quantum phase transition to a topologically ordered phase. These quantum models have a known connection to classical statistical mechanical models; we exploit this mapping to obtain the scaling of the fidelity metric tensor near criticality. The topological phase transitions manifest themselves in divergences of the fidelity metric across the phase boundaries. These results provide evidence that the fidelity approach is a valuable tool to investigate novel phases lacking a clear characterization in terms of local order parameters.

  7. Variable Fidelity Aeroelastic Toolkit - Structural Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  8. The Singapore high resolution single cell imaging facility

    Science.gov (United States)

    Watt, Frank; Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N. B.; Ren, M.; Kan, Jeroen A. van; Bettiol, Andrew A.

    2011-10-01

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 × 39 nm in the horizontal and vertical directions respectively, at beam currents of ∼10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  9. The Singapore high resolution single cell imaging facility

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Frank, E-mail: phywattf@nus.edu.sg [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore); Chen, Xiao; Vera, Armin Baysic De; Udalagama, Chammika N.B.; Ren, M.; Kan, Jeroen A van; Bettiol, Andrew A [Centre for Ion Beam Applications, Dept. of Physics, National University of Singapore, Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The Centre for Ion Beam Applications, National University of Singapore has recently expanded from three state-of-the-art beam lines to five. Two new beam lines have been constructed: A second generation proton beam writing line, and a high resolution single cell imaging facility. Both systems feature high demagnification lens systems based on compact Oxford Microbeams OM52 lenses, coupled with reduced lens/image distances. The single cell imaging facility is designed around OM52 compact lenses capable of operating in a variety of high demagnification configurations including the spaced Oxford triplet and the double crossover Russian quadruplet. The new facility has design specifications aimed at spatial resolutions below 50 nm, with a variety of techniques including STIM, secondary electron and fluorescence imaging, and an in-built optical and fluorescence microscope for sample imaging, identification and positioning. Preliminary tests using the single space Oxford triplet configuration have indicated a beam spot size of 31 x 39 nm in the horizontal and vertical directions respectively, at beam currents of {approx}10,000 protons per second. However, a weakness in the specifications of the electrostatic scanning system has been identified, and a more stable scanning system needs to be implemented before we can fully realize the optimum performance. A single whole fibroblast cell has been scanned using 1.5 MeV protons, and a median fit to the proton transmission energy loss data has shown that proton STIM gives excellent details of the cell structure despite the relatively poor contrast of proton STIM compared with alpha STIM.

  10. Fidelity of the representation of value in decision-making.

    Directory of Open Access Journals (Sweden)

    Paul M Bays

    2017-03-01

    Full Text Available The ability to make optimal decisions depends on evaluating the expected rewards associated with different potential actions. This process is critically dependent on the fidelity with which reward value information can be maintained in the nervous system. Here we directly probe the fidelity of value representation following a standard reinforcement learning task. The results demonstrate a previously-unrecognized bias in the representation of value: extreme reward values, both low and high, are stored significantly more accurately and precisely than intermediate rewards. The symmetry between low and high rewards pertained despite substantially higher frequency of exposure to high rewards, resulting from preferential exploitation of more rewarding options. The observed variation in fidelity of value representation retrospectively predicted performance on the reinforcement learning task, demonstrating that the bias in representation has an impact on decision-making. A second experiment in which one or other extreme-valued option was omitted from the learning sequence showed that representational fidelity is primarily determined by the relative position of an encoded value on the scale of rewards experienced during learning. Both variability and guessing decreased with the reduction in the number of options, consistent with allocation of a limited representational resource. These findings have implications for existing models of reward-based learning, which typically assume defectless representation of reward value.

  11. High pressure single crystal and powder XRD study for neighborite

    Science.gov (United States)

    Liu, H.

    2016-12-01

    After Murakami et al. (2004) identified the post-perovskite (ppv) phase transition in MgSiO3 perovskite (pv) at pressures and temperatures consistent with the onset of Earth's D" layer, lots of post-perovskite type phase transitions were founded in other similar systems. These discoveries provided a better understanding of heterogeneous structures and seismic anisotropy observed in the controversial region of the lower mantle. With previous experimental evidence showing the analogue system of neighborite NaMgF3 will transform from pv to ppv at 30 GPa, we performed high quality single crystal XRD experiment, which led to a more precise structure determination. Using helium as pressure medium, one metastable low symmetric phase before the pv-ppv structure transition was discovered, whose total energy was calculated as well. The comparison between single crystal and powder XRD data will be presented, and potential application will be discussed.

  12. High-resolution, single-molecule measurements of biomolecular motion.

    Science.gov (United States)

    Greenleaf, William J; Woodside, Michael T; Block, Steven M

    2007-01-01

    Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.

  13. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  14. Fidelity approach to the Hubbard model

    Science.gov (United States)

    Campos Venuti, L.; Cozzini, M.; Buonsante, P.; Massel, F.; Bray-Ali, N.; Zanardi, P.

    2008-09-01

    We use the fidelity approach to quantum critical points to study the zero-temperature phase diagram of the one-dimensional Hubbard model. Using a variety of analytical and numerical techniques, we analyze the fidelity metric in various regions of the phase diagram with particular care to the critical points. Specifically we show that close to the Mott transition, taking place at on-site repulsion U=0 and electron density n=1 , the fidelity metric satisfies an hyperscaling form which we calculate. This implies that in general, as one approaches the critical point U=0 , n=1 , the fidelity metric tends to a limit which depends on the path of approach. At half-filling, the fidelity metric is expected to diverge as U-4 when U is sent to zero.

  15. Advanced Metals and Ceramics for Armor and Anti-Armor Applications. High-Fidelity Design and Processing of Advanced Armor Ceramics

    Science.gov (United States)

    2007-06-01

    59 Figure 28. Particle size distributions of Superior Graphite 490 powder after beneficiation. .......59 Figure 29. SEM of a filter -pressed and...form a hydrated phase that acted as a cement, creating hard agglomerates. Ball milling in a high-density polyethylene jugs was also found to be an...results of these beneficiations are shown in figure 28. Green powder compacts were prepared by filter -pressing at 0.41 MPa and repressing the wet

  16. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  17. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  18. High-speed single-pixel digital holography

    Science.gov (United States)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  19. Single-bonded allotrope of nitrogen predicted at high pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Greschner, Michael J.; Majumdar, Arnab; Wan, Biao; Liu, Hanyu; Li, Zhiping; Gou, Huiyang; Yao, Yansun

    2017-12-01

    An allotrope of nitrogen formed solely by N-N single bonds is predicted to exist between 100 and 150 GPa. The crystal structure has the Pccn symmetry and is characterized by a distorted tetrahedral network consisting of fused N8, N10, and N12 rings. Stability of this structure is established by phonon and vibrational free energy calculations at 0 K and finite temperatures. The simulated x-ray diffraction pattern of the Pccn phase is compared to the pattern of a recently synthesized nitrogen phase at the same P -T conditions, which suggests that the Pccn phase is likely a minor component of the latter. The Pccn phase is expected to form above the stability field of the cubic gauche (cg) phase. The outstanding metastability of this phase is attributed to the intrinsic stability of the s p3 bonding as well as the energetically favorable dihedral angles between N-N single bonds, in either gauche or trans conformation. The prediction of another single-bonded phase of nitrogen after the lab-synthesized cg phase will stimulate research on metastable phases of nitrogen and their applications as high-energy-density materials.

  20. Measuring third year undergraduate nursing students' reflective thinking skills and critical reflection self-efficacy following high fidelity simulation: A pilot study.

    Science.gov (United States)

    Tutticci, Naomi; Lewis, Peter A; Coyer, Fiona

    2016-05-01

    Critical reflection underpins critical thinking, a highly desirable generic nursing graduate capability. To improve the likelihood of critical thinking transferring to clinical practice, reflective thinking needs to be measured within the learning space of simulation. This study was divided into two phases to address the reliability and validity measures of previously untested surveys. Phase One data was collected from individuals (n = 6) using a 'think aloud' approach and an expert panel to review content validity, and verbatim comment analysis was undertaken. The Reflective Thinking Instrument and Critical Reflection Self-Efficacy Visual Analogue Scale items were contextualised to simulation. The expert review confirmed these instruments exhibited content validity. Phase Two data was collected through an online survey (n = 58). Cronbach's alpha measured internal consistency and was demonstrated by all subscales and the Instrument as a whole (.849). There was a small to medium positive correlation between critical reflection self-efficacy and general self-efficacy (r = .324, n = 56, p = .048). Participant responses were positive regarding the simulation experience. The research findings demonstrated that the Reflective Thinking and Simulation Satisfaction survey is reliable. Further development of this survey to establish validity is recommended to make it viable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Bertram, Anna

    2017-01-01

    Cokriging is a variable-fidelity surrogate modeling technique which emulates a target process based on the spatial correlation of sampled data of different levels of fidelity. In this work, we address two theoretical questions associated with the so-called new Cokriging method for variable fidelity...... matrices for mutually distinct sample points. However, in applications, low-fidelity information is often available at high-fidelity sample points and the Cokriging predictor may benefit from the additional information provided by such an inclusive sampling. We investigate the positive definiteness...... by the method of maximum likelihood estimation. For standard Kriging, closed-form optima of the model parameters along hyper-parameter profile lines are known. Yet, these do not readily transfer to the setting of Cokriging, since additional parameters arise, which exhibit a mutual dependence. In previous work...

  2. Blending Qualitative and Computational Linguistics Methods for Fidelity Assessment: Experience with the Familias Unidas Preventive Intervention.

    Science.gov (United States)

    Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks

    2015-09-01

    Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.

  3. Blending Qualitative and Computational Linguistics Methods for Fidelity Assessment: Experience with the Familias Unidas Preventive Intervention

    Science.gov (United States)

    Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks

    2014-01-01

    Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald et al, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on “joining,” which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached .83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings. PMID:24500022

  4. Single-platelet nanomechanics measured by high-throughput cytometry

    Science.gov (United States)

    Myers, David R.; Qiu, Yongzhi; Fay, Meredith E.; Tennenbaum, Michael; Chester, Daniel; Cuadrado, Jonas; Sakurai, Yumiko; Baek, Jong; Tran, Reginald; Ciciliano, Jordan C.; Ahn, Byungwook; Mannino, Robert G.; Bunting, Silvia T.; Bennett, Carolyn; Briones, Michael; Fernandez-Nieves, Alberto; Smith, Michael L.; Brown, Ashley C.; Sulchek, Todd; Lam, Wilbur A.

    2017-02-01

    Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.

  5. Physiological Based Simulator Fidelity Design Guidance

    Science.gov (United States)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  6. Quantum simulation using fidelity-profile optimization

    Science.gov (United States)

    Manu, V. S.; Kumar, Anil

    2014-05-01

    Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U =exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U , termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. [Ann. Phys. (N.Y.) 327, 292 (2012), 10.1016/j.aop.2011.08.004] in a nuclear magnetic resonance quantum information processor.

  7. Manufacturing High-Fidelity Lunar Agglutinate Simulants

    Science.gov (United States)

    Gutafson, R. J.; Edmunson, J. E.; Rickman, D. L.

    2010-01-01

    The lunar regolith is very different from many naturally occurring material on Earth because it forms in the unique, impact-dominated environment of the lunar surface. Lunar regolith is composed of five basic particle types: mineral fragments, pristine crystalline rock fragments, breccia fragments, glasses of various kinds, and agglutinates (glass-bonded aggregates). Agglutinates are abundant in the lunar regolith, especially in mature regoliths where they can be the dominant component.This presentation will discuss the technical feasibility of manufacturing-simulated agglutinate particles that match many of the unique properties of lunar agglutinates.

  8. High Fidelity Simulations of Littoral Environments

    National Research Council Canada - National Science Library

    Allard, Richard

    2002-01-01

    .... With the end of the cold war, DoD's focus has shifted from a land/sea battle scenario with a monolithic global adversary to dealing with low-intensity conflicts in the near-coastal or littoral regions...

  9. High-Fidelity Lunar Dust Simulant Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  10. High fidelity imager emulator of measured systems

    Science.gov (United States)

    Haefner, David P.; Teaney, Brian P.

    2017-05-01

    Characterizing an imaging system through the use of linear transfer functions allows prediction of the output for an arbitrary input. Through careful measurement of the systems transfer function, imaging effects can then be applied to desired imagery in order to conduct subjective comparison, image based analysis, or evaluate algorithm performance. The Night Vision Integrated Performance Model (NV-IPM) currently utilizes a two-dimensional linear model of the systems transfer function to emulate the systems response and additive signal independent noise. In this correspondence, we describe how a two-dimensional MTF can be obtained through correct interpolation of one-dimensional measurements. We also present a model for the signal dependent noise (additive and multiplicative) and the details of its calculation from measurement. Through modeling of the experimental setup, we demonstrate how the emulated sensor replicates the observed objective performance in resolution, sampling, and noise. In support of the reproducible research effort, many of the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  11. Bridging communication gaps with High Fidelity prototypes

    DEFF Research Database (Denmark)

    Kramp, Gunnar

    2006-01-01

    As computer technology becomes more and more integrated in our daily life, the interface moves from the screen back into our physical surroundings. Also, design teams become more and more complex regarding professions and the cultural backgrounds of the people participating. This poses great...

  12. Development of a Single High Fat Meal Challenge to Unmask ...

    Science.gov (United States)

    Stress tests are used clinically to determine the presence of underlying disease and predict future cardiovascular risk. In previous studies, we used treadmill exercise stress in rats to unmask the priming effects of air pollution inhalation. Other day-to-day activities stress the cardiovascular system, and when modeled experimentally, may be useful in identifying latent effects of air pollution exposure. For example, a single high fat (HF) meal can cause transient vascular endothelial dysfunction and increases in LDL cholesterol, triglycerides (TG), oxidative stress, and inflammation. Given the prevalence of HF meals in western diets, the goal of this study was to develop a HF meal challenge in rats to see if air pollution primes the body for a subsequent stress-induced adverse response. Healthy male Wistar Kyoto rats were fasted for six hours and then administered a single oral gavage of isocaloric lard-based HF or low fat (LF) suspensions, or a water vehicle control. We hypothesized that rats given a HF load would elicit postprandial changes in cardiopulmonary function that were distinct from LF and vehicle controls. One to four hours after gavage, rats underwent whole body plethysmography to assess breathing patterns, cardiovascular ultrasounds, blood draws for measurements of systemic lipids and hormones and a test for sensitivity to aconitine-induced arrhythmia. HF gavage caused an increase in circulating TG relative to LF and vehicle controls and an incre

  13. Fiberoptic oral intubation: the effect of model fidelity on training for transfer to patient care.

    Science.gov (United States)

    Chandra, Deven B; Savoldelli, Georges L; Joo, Hwan S; Weiss, Israel D; Naik, Viren N

    2008-12-01

    Previous studies have indicated that fiberoptic orotracheal intubation (FOI) skills can be learned outside the operating room. The purpose of this study was to determine which of two educational interventions allows learners to gain greater capacity for performing the procedure. Respiratory therapists were randomly assigned to a low-fidelity or high-fidelity training model group. The low-fidelity group was guided by experts, on a nonanatomic model designed to refine fiberoptic manipulation skills. The high-fidelity group practiced their skills on a computerized virtual reality bronchoscopy simulator. After training, subjects performed two consecutive FOIs on healthy, anesthetized patients with predicted "easy" intubations. Each subject's FOI was evaluated by blinded examiners, using a validated global rating scale and checklist. Success and time were also measured. Data were analyzed using a two-way mixed design analysis of variance. There was no significant difference between the low-fidelity (n = 14) and high-fidelity (n = 14) model groups when compared with the global rating scale, checklist, time, and success at achieving tracheal intubation (all P = not significant). Second attempts in both groups were significantly better than first attempts (P reality model with respect to transfer of FOI skills to intraoperative patient care. Second attempts in both groups were significantly better than first attempts. Low-fidelity models for FOI training outside the operating room are an alternative for programs with budgetary constraints.

  14. High-Resolution Single-Grain Diffraction of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Lienert, Ulrich; Ribárik, Gábor; Ungar, Tamas

    2017-01-01

    . The microstructure usually influences the materials properties critically. It has been demonstrated that, by using high-energy synchrotron radiation, diffraction peaks off individual grains can be recorded in-situ during processing. Important information such as the orientation, average strain, and size...... of individual grains can be obtained, even if the peak shapes are commonly not analyzed. However, it is also well-known that the shape of diffraction peaks, if observed with sufficient resolution, contains significant information about the microstructure. While the intensity distribution in reciprocal space......). Conventional radial profile (line shape) analysis techniques average over many grains with possibly significantly different microstructure. Under conditions of single-grain diffraction, these limitations are overcome and the intensity distributions along all three directions of reciprocal space are accessible....

  15. High pressure Raman spectra of monoglycine nitrate single crystal

    Science.gov (United States)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  16. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  17. Single DNA molecule patterning for high-throughput epigenetic mapping.

    Science.gov (United States)

    Cerf, Aline; Cipriany, Benjamin R; Benítez, Jaime J; Craighead, Harold G

    2011-11-01

    We present a method for profiling the 5-methyl cytosine distribution on single DNA molecules. Our method combines soft-lithography and molecular elongation to form ordered arrays estimated to contain more than 250 000 individual DNA molecules immobilized on a solid substrate. The methylation state of the DNA is detected and mapped by binding of fluorescently labeled methyl-CpG binding domain peptides to the elongated dsDNA molecules and imaging of their distribution. The stretched molecules are fixed in their extended configuration by adsorption onto the substrate so analysis can be performed with high spatial resolution and signal averaging. We further prove this technique allows imaging of DNA molecules with different methylation states.

  18. A conceptual framework for implementation fidelity

    National Research Council Canada - National Science Library

    Carroll, Christopher; Patterson, Malcolm; Wood, Stephen; Booth, Andrew; Rick, Jo; Balain, Shashi

    2007-01-01

    ..., and the extent to which outcomes can be improved. The authors undertook a critical review of existing conceptualisations of implementation fidelity and developed a new conceptual framework for understanding and measuring the process...

  19. Right ventricular diastolic performance in children with pulmonary arterial hypertension associated with congenital heart disease: correlation of echocardiographic parameters with invasive reference standards by high-fidelity micromanometer catheter.

    Science.gov (United States)

    Okumura, Kenichi; Slorach, Cameron; Mroczek, Dariusz; Dragulescu, Andreea; Mertens, Luc; Redington, Andrew N; Friedberg, Mark K

    2014-05-01

    Right ventricular diastolic dysfunction influences outcomes in pulmonary arterial hypertension (PAH), but echocardiographic parameters have not been investigated in relation to invasive reference standards in pediatric PAH. We investigated echocardiographic parameters of right ventricular diastolic function in children with PAH in relation to simultaneously measured invasive reference measures. We prospectively recruited children undergoing a clinically indicated cardiac catheterization for evaluation of PAH and pulmonary vasoreactivity testing. Echocardiography was performed simultaneously with invasive reference measurements by high-fidelity micromanometer catheter. For analysis, patients were divided into shunt and nonshunt groups. Sixteen children were studied. In the group as a whole, significant correlations were found among τ and tricuspid deceleration time, E', E/E', TimeE-E', A wave velocity, and global early and late diastolic strain rate. dp/dt minimum correlated significantly with late diastolic tricuspid annular velocity (A'), tissue Doppler imaging-derived systolic:diastolic duration ratio, and global late diastolic strain rate. End-diastolic pressure correlated significantly with tissue Doppler imaging-derived systolic:diastolic duration ratio. On multivariate analysis, tricuspid deceleration time, TimeE-E', and global early diastolic strain rate were independent predictors of τ, whereas tissue Doppler imaging-derived systolic:diastolic duration ratio was an independent predictor of dp/dt minimum. In general, correlations between echocardiographic and invasive parameters were better in the shunt group than in the nonshunt group. Echocardiography correlates with invasive reference measures of right ventricular diastolic function in children with PAH, although it does not differentiate between early versus late diastolic abnormalities. Newer echocardiographic techniques may have added value to assess right ventricular diastolic dysfunction in this

  20. Effectiveness of simulation-based nursing education depending on fidelity: a meta-analysis.

    Science.gov (United States)

    Kim, Junghee; Park, Jin-Hwa; Shin, Sujin

    2016-05-23

    Simulation-based nursing education is an increasingly popular pedagogical approach. It provides students with opportunities to practice their clinical and decision-making skills through various real-life situational experiences. However, simulation approaches fall along a continuum ranging from low-fidelity to high-fidelity simulation. The purpose of this study was to determine the effect size of simulation-based educational interventions in nursing and compare effect sizes according to the fidelity level of the simulators through a meta-analysis. This study explores the quantitative evidence published in the electronic databases EBSCO, Medline, ScienceDirect, ERIC, RISS, and the National Assembly Library of Korea database. Using a search strategy including the search terms "nursing," "simulation," "human patient," and "simulator," we identified 2279 potentially relevant articles. Forty studies met the inclusion criteria and were retained in the analysis. This meta-analysis showed that simulation-based nursing education was effective in various learning domains, with a pooled random-effects standardized mean difference of 0.70. Subgroup analysis revealed that effect sizes were larger for high-fidelity simulation (0.86), medium-fidelity simulation (1.03), and standardized patients (0.86) than they were for low-fidelity and hybrid simulations. In terms of cognitive outcomes, the effect size was the largest for high-fidelity simulation (0.50). Regarding affective outcome, high-fidelity simulation (0.80) and standardized patients (0.73) had the largest effect sizes. These results suggest that simulation-based nursing educational interventions have strong educational effects, with particularly large effects in the psychomotor domain. Since the effect is not proportional to fidelity level, it is important to use a variety of educational interventions to meet all of the educational goals.

  1. A high efficiency superconducting nanowire single electron detector

    NARCIS (Netherlands)

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  2. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.

    Directory of Open Access Journals (Sweden)

    Samuel C Suarez

    Full Text Available DNA polymerase η (pol η synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS, is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA, when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD. We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.

  3. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  4. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2015-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.

  5. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  6. Single event effects in high-energy accelerators

    Science.gov (United States)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  7. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...... of GaAs and defined by reactive-ion etching....

  8. Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states

    Science.gov (United States)

    Killoran, N.; Biggerstaff, D. N.; Kaltenbaek, R.; Resch, K. J.; Lütkenhaus, N.

    2010-01-01

    Remote state preparation (RSP) is the act of preparing a quantum state at a remote location without actually transmitting the state itself. Using at most two classical bits and a single shared maximally entangled state, one can in theory remotely prepare any qubit state with certainty and with perfect fidelity. However, in any experimental implementation the average fidelity between the target and output states cannot be perfect. In order for an RSP experiment to demonstrate genuine quantum advantages, it must surpass the optimal threshold of a comparable classical protocol. Here we study the fidelity achievable by RSP protocols lacking shared entanglement and determine the optimal value for the average fidelity in several different cases. We implement an experimental scheme for deterministic remote preparation of arbitrary photon polarization qubits, preparing 178 different pure and mixed qubit states with an average fidelity of 0.995. Our experimentally achieved average fidelities surpass our derived classical thresholds whenever the classical protocol does not trivially allow for perfect RSP.

  9. Fidelity scorecard: evaluation of a caregiver-delivered symptom management intervention.

    Science.gov (United States)

    Frambes, Dawn; Lehto, Rebecca; Sikorskii, Alla; Tesnjak, Irena; Given, Barbara; Wyatt, Gwen

    2017-08-01

    To evaluate and quantify the intervention fidelity of a symptom management protocol through implementation of a scorecard, using an exemplar study of caregiver-delivered reflexology for people with breast cancer. Studies on caregiver-delivered symptom management interventions seldom include adequate information on protocol fidelity, contributing to potentially suboptimal provision of the therapeutic intervention, hindering reproducibility and generalizability of the results. Fidelity assessment of a 4-week intervention protocol in a randomized controlled trial (RCT) with data collection between 2012 - 2016. The National Institutes of Health Behaviour Change Consortium (NIH-BCC) conceptual model for intervention fidelity guided the study. The five NIH-BCC fidelity elements are: (1) dose; (2) provider training; (3) intervention delivery; (4) intervention receipt; and (5) enactment. To illustrate the elements, an intervention protocol was deconstructed and each element quantified using a newly developed fidelity scorecard. Mean scores and frequency distributions were derived for the scorecard elements. For dose, the mean number of sessions was 4·4, 96% used the correct intervention duration and 29% had 4 weeks with at least one session. Provider training was achieved at 80% of the maximum score, intervention delivery was 96%, intervention receipt was 99% and enactment indicated moderate adoption at 3·8 sessions per patient. The sample mean score was 15·4 out of 16, indicating the high overall fidelity. Research findings that include description of how fidelity is both addressed and evaluated are necessary for clinical translation. Clinicians can confidently recommend symptom management strategies to patients and caregivers when fidelity standards are explicitly reported and measured. © 2017 John Wiley & Sons Ltd.

  10. Investigating variations in implementation fidelity of an organizational-level occupational health intervention.

    Science.gov (United States)

    Augustsson, Hanna; von Thiele Schwarz, Ulrica; Stenfors-Hayes, Terese; Hasson, Henna

    2015-06-01

    The workplace has been suggested as an important arena for health promotion, but little is known about how the organizational setting influences the implementation of interventions. The aims of this study are to evaluate implementation fidelity in an organizational-level occupational health intervention and to investigate possible explanations for variations in fidelity between intervention units. The intervention consisted of an integration of health promotion, occupational health and safety, and a system for continuous improvements (Kaizen) and was conducted in a quasi-experimental design at a Swedish hospital. Implementation fidelity was evaluated with the Conceptual Framework for Implementation Fidelity and implementation factors used to investigate variations in fidelity with the Framework for Evaluating Organizational-level Interventions. A multi-method approach including interviews, Kaizen notes, and questionnaires was applied. Implementation fidelity differed between units even though the intervention was introduced and supported in the same way. Important differences in all elements proposed in the model for evaluating organizational-level interventions, i.e., context, intervention, and mental models, were found to explain the differences in fidelity. Implementation strategies may need to be adapted depending on the local context. Implementation fidelity, as well as pre-intervention implementation elements, is likely to affect the implementation success and needs to be assessed in intervention research. The high variation in fidelity across the units indicates the need for adjustments to the type of designs used to assess the effects of interventions. Thus, rather than using designs that aim to control variation, it may be necessary to use those that aim at exploring and explaining variation, such as adapted study designs.

  11. A Review of the Literature on Training Simulators: Translators: Transfer of Training and Simulator Fidelity.

    Science.gov (United States)

    1984-04-01

    400 high environmental fidelity degree of 5 imul at i oi equipment fidelity low procedure familia - skill training rization training training...depicted a venture in which a nuclear -power-plant malfunction analyzer was built by JO. q.400 * 56 using advanced graphics technology. Levin and Fletcher...Experiments with Computer Simulations, Humnn Fa s, Vol. 24, No. 3, pp. 271-276, June 1982. ... ’ - 43. Kaplan, G., Nuclear -power-plant Malfunction

  12. Fidelity in topological quantum phases of matter

    Science.gov (United States)

    Garnerone, Silvano; Abasto, Damian; Haas, Stephan; Zanardi, Paolo

    2009-03-01

    Quantum phase transitions that take place between two distinct topological phases remain an unexplored area for the applicability of the fidelity approach. Here, we apply this method to spin systems in two and three dimensions and show that the fidelity susceptibility can be used to determine the boundary between different topological phases particular to these models, while at the same time offer information about the critical exponent of the correlation length. The success of this approach relies on its independence on local-order parameters or breaking symmetry mechanisms, with which nontopological phases are usually characterized. We also consider a topological insulator-superconducting phase transition in three dimensions and point out the relevant features of fidelity susceptibility at the boundary between these phases.

  13. Single-Molecule High-Resolution Imaging with Photobleaching

    National Research Council Canada - National Science Library

    Matthew P. Gordon; Taekjip Ha; Paul R. Selvin; Gordon A. Baym

    2004-01-01

    ... of 1.5 nm with subsecond time resolution. Here we locate the position of two dyes and determine their separation with 5-nm precision, using the quantal photobleaching behavior of single fluorescent dye molecules...

  14. Interactive Effects of Growth Regulators, Carbon Sources, pH on Plant Regeneration and Assessment of Genetic Fidelity Using Single Primer Amplification Reaction (SPARS) Techniques in Withania somnifera L.

    Science.gov (United States)

    Fatima, Nigar; Ahmad, Naseem; Ahmad, Iqbal; Anis, Mohammad

    2015-09-01

    An improved and methodical in vitro shoot morphogenic approach through axillary bud multiplication was established in a drug yielding plant, Withania somnifera L. Effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 2-isopentenyladenine (2iP), and thidiazuron (TDZ)] either singly or in combination with α-napthalene acetic acid (NAA), indole-3-butyric acid (IBA), and indole-3-acetic acid (IAA) in Murashige and Skoog (MS) medium were tested. The highest regeneration frequency (90 %) with optimum number of shoots (32 ± 0.00)/explant were obtained on MS medium fortified with 2.5 μM 6-benzyladenine (BA) and 0.5 μM NAA and 30 g/l sucrose at pH 5.8. Among the tried TDZ concentrations, 0.5 μM resulted in maximum number of shoots (20.4 ± 0.40)/explant after 4 weeks of exposure. The proliferating shoot cultures established by repeated subculturing of the mother explants on the hormone-free medium produced the highest shoot number (29.4 ± 0.40) with shoot length (6.80 ± 0.12 cm)/explant at fourth subculture passage, which a decline in shoot proliferation was recorded. Different concentrations of NAA were tested for ex vitro rooting of microshoots. The maximum percentage of rooting 100 % with maximum roots (18.3 ± 0.1) was achieved in soilrite when basal portion of the microshoots were treated with 200 μM (NAA) for 15 min per shoot. The plantlets went through hardening phase in a growth chamber, prior to ex vitro transfer. The PCR-based single primer amplification reaction (SPAR) methods which include random amplified polymorphic DNA (RAPD) and direct amplification of minisatellite DNA (DAMD) markers has been used for assessment of genetic stability of micropropagated plantlets. No variation was observed in DNA fingerprinting patterns among the micropropagated and the donor plants illustrating their genetic uniformity.

  15. High-Performance Single-Photon Sources via Spatial Multiplexing

    Science.gov (United States)

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  16. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  17. Quantum chaos and operator fidelity metric

    Science.gov (United States)

    Giorda, Paolo; Zanardi, Paolo

    2010-01-01

    We show that the recently introduced operator fidelity metric provides a natural tool to investigate the crossover to quantum chaotic behavior. This metric is an information-theoretic measure of the global stability of a unitary evolution against perturbations. We use random matrix theory arguments to conjecture that the operator fidelity metric can be used to discriminate phases with regular behavior from quantum chaotic ones. A numerical study of the onset of chaotic in the Dicke model is given in order to support the conjecture.

  18. Operator fidelity susceptibility, decoherence, and quantum criticality

    Science.gov (United States)

    Lu, Xiao-Ming; Sun, Zhe; Wang, Xiaoguang; Zanardi, Paolo

    2008-09-01

    The extension of the notion of quantum fidelity from the state-space to the operator level can be used to study environment-induced decoherence. The state-dependent operator fidelity susceptibility (OFS), the leading-order term for slightly different operator parameters, is shown to have a nontrivial behavior when the environment is at critical points. Two different contributions to the OFS are identified which have distinct physical origins and temporal dependence. Exact results are obtained for the finite-temperature decoherence caused by a bath described by the Ising model in a transverse field.

  19. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Science.gov (United States)

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  20. Exploring the Relationship between Classroom Type and Teacher Intervention Fidelity

    Directory of Open Access Journals (Sweden)

    Jessica SUHRHEINRICH

    2016-12-01

    Full Text Available As special education enrollment for children with autism spectrum disorders (ASD has increased, school-based programs and providers have been challenged to expand the scope and quality of services. Researchers and school-based providers are aligned in the goal of providing high-quality services to students with ASD, however current literature does not address how training and implementation needs may differ by the age of children served. The current study evaluates variability in teacher fidelity of Classroom Pivotal Response Teaching (CPRT, an evidence-based naturalistic behavioral intervention based on the principals of applied behavior analysis. Data included 479 individual video units collected from 101 teacher and 221 student participants. Videos were coded using behavioral coding definitions and student demographic information was collected from parents of participating children. Analyses explored differences in fidelity of CPRT by age of students. Results indicate a significant relationship between classroom type (preschool/elementary and teachers’ fidelity of CPRT, suggesting the possibility of targeted training based on student age.

  1. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  2. Single-photon interference experiment for high schools

    Science.gov (United States)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  3. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    tion dynamics closely affects both spectral and temporal behaviour of the dye laser. The frequency chirp of the dye laser during the evolution due to pulsation of population is studied for our cavity and the results are presented. 2. Experimental method. Figure 1 shows the schematic of the single longitudinal mode (SLM) dye ...

  4. Cheap arbitrary high order methods for single integrand SDEs

    DEFF Research Database (Denmark)

    Debrabant, Kristian; Kværnø, Anne

    2017-01-01

    -series of the exact solution and numerical approximation are, due to the single integrand and the usual rules of calculus holding for Stratonovich integration, similar to the ODE case. The only difference is that integration with respect to time is replaced by integration with respect to the measure induced...

  5. Information, entropy and fidelity in visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  6. A new universal colour image fidelity metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image

  7. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  8. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  9. Single atom doping for quantum device development in diamond and silicon

    NARCIS (Netherlands)

    Weis, C.D.; Schuh, A.; Batra, A.; Persaud, A.; Rangelow, I.W.; Bokor, J.; Lo, C.C.; Cabrini, S.; Sideras-Haddad, E.; Fuchs, G.D.; Hanson, R.; Awschalom, D.D.; Schenkel, T.

    2008-01-01

    The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species, and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in

  10. High resolution adaptive imaging of a single atom

    CERN Document Server

    Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2015-01-01

    We report the optical imaging of a single atom with nanometer resolution using an adaptive optical alignment technique that is applicable to general optical microscopy. By decomposing the image of a single laser-cooled atom, we identify and correct optical aberrations in the system and realize an atomic position sensitivity of $\\approx$ 0.5 nm/$\\sqrt{\\text{Hz}}$ with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom, and opens up the possibility of performing out-of-focus 3D particle tracking, imaging of atoms in 3D optical lattices or sensing forces at the yoctonewton (10$^{-24}$ N) scale.

  11. Working alliance and treatment fidelity as predictors of externalizing problem behaviors in parent management training.

    Science.gov (United States)

    Hukkelberg, Silje S; Ogden, Terje

    2013-12-01

    The study investigated treatment fidelity and working alliance in the Parent Management Training-Oregon model (PMTO) and investigated how these relate to children's externalizing problem behaviors, as reported by parents and teachers. Participants were 331 Norwegian parents who rated the client-therapist working alliance at 3 time points (Sessions 3, 12, and 20). Competent adherence to the PMTO treatment protocol was assessed by PMTO specialists from evaluations of videotaped therapy sessions using the Fidelity of Implementation (FIMP) system (Knutson, Forgatch, & Rains, 2003). Parents and teachers reported children's problem behaviors at baseline and at the end of therapy. Structural equation modeling was used to analyze the repeated measures data. Parents reported high and stable levels of alliance and fidelity from Time 1 to Time 3, with no correlational or direct relations between the 2. Treatment fidelity predicted reductions in parent-reported externalizing behavior, whereas working alliance was related to less change in problem behavior. Alliance and fidelity were unrelated to teacher-reported behavior problems. The findings point to treatment fidelity as an active ingredient in PMTO and working alliance as a negative predictor of postassessment parent-reported externalizing behavior. More research is needed to investigate whether these findings can be replicated and extended beyond PMTO.

  12. ARC Code TI: Multi-Fidelity Simulator (MFSim)

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-Fidelity Simulator, MFSim is a pluggable framework for creating an air traffic flow simulator at multiple levels of fidelity. The framework is designed to...

  13. Route Fidelity during Marine Megafauna Migration

    Directory of Open Access Journals (Sweden)

    Travis W. Horton

    2017-12-01

    Full Text Available The conservation and protection of marine megafauna require robust knowledge of where and when animals are located. Yet, our ability to predict animal distributions in space and time remains limited due to difficulties associated with studying elusive animals with large home ranges. The widespread deployment of satellite telemetry technology creates unprecedented opportunities to remotely monitor animal movements and to analyse the spatial and temporal trajectories of these movements from a variety of geophysical perspectives. Reproducible patterns in movement trajectories can help elucidate the potential mechanisms by which marine megafauna navigate across vast expanses of open-ocean. Here, we present an empirical analysis of humpback whale (Megaptera novaeangliae, great white shark (Carcharodon carcharias, and northern elephant seal (Mirounga angustirostris satellite telemetry-derived route fidelity movements in magnetic and gravitational coordinates. Our analyses demonstrate that: (1 humpback whales, great white sharks and northern elephant seals are capable of performing route fidelity movements across millions of square kilometers of open ocean with a spatial accuracy of better than 150 km despite temporal separations as long as 7 years between individual movements; (2 route fidelity movements include significant (p < 0.05 periodicities that are comparable in duration to the lunar cycles and semi-cycles; (3 latitude and bedrock-dependent gravitational cues are stronger predictors of route fidelity movements than spherical magnetic coordinate cues when analyzed with respect to the temporally dependent moon illumination cycle. We further show that both route fidelity and non-route fidelity movement trajectories, for all three species, describe overlapping in-phase or antiphase sinusoids when individual movements are normalized to the gravitational acceleration present at migratory departure sites. Although these empirical results provide an

  14. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  15. Single sensor processing to obtain high resolution color component signals

    Science.gov (United States)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  16. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    OpenAIRE

    Jian Chen; Chengcheng Xue; Yang Zhao; Deyong Chen; Min-Hsien Wu; Junbo Wang

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance ...

  17. Physics Of Eclipsing Binaries. II. Toward the Increased Model Fidelity

    Science.gov (United States)

    Prša, A.; Conroy, K. E.; Horvat, M.; Pablo, H.; Kochoska, A.; Bloemen, S.; Giammarco, J.; Hambleton, K. M.; Degroote, P.

    2016-12-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.

  18. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  19. High-throughput single-cell PCR using microfluidic emulsions

    Science.gov (United States)

    Guo, Mira; Mazutis, Linas; Agresti, Jeremy; Sommer, Morten; Dantas, Gautam; Church, George; Turnbaugh, Peter; Weitz, David

    2012-02-01

    The human gut and other environmental samples contain large populations of diverse bacteria that are poorly characterized and unculturable, yet have many functions relevant to human health. Our goal is to identify exactly which species carry some gene of interest, such as a carbohydrate metabolism gene. Conventional metagenomic assays sequence DNA extracted in bulk from populations of mixed cell types, and are therefore unable to associate a gene of interest with a species-identifying 16S gene, to determine that the two genes originated from the same cell. We solve this problem by microfluidically encapsulating single bacteria cells in drops, using PCR to amplify the two genes inside any drop whose encapsulated cell contains both genes, and sequencing the DNA from those drops that contain both amplification products.

  20. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis

    Directory of Open Access Journals (Sweden)

    Na Wen

    2016-07-01

    Full Text Available This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1 prototype demonstration of single-cell encapsulation in microfluidic droplets; (2 technical improvements of single-cell encapsulation in microfluidic droplets; (3 microfluidic droplets enabling single-cell proteomic analysis; (4 microfluidic droplets enabling single-cell genomic analysis; and (5 integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  1. Fidel Castro: the word that unites

    Directory of Open Access Journals (Sweden)

    Grisel Veloz-Fernández

    2016-09-01

    Full Text Available The present work carries out a boarding of Fidel Castro's political speech, leaving of an understanding of its renovating character inside the most complex historical segment in the revolutionary process that is the period 1959 - 1961. It is during the same one that in Cuba a consent arms to the socialism. That achievement relapses fundamentally in Fidel's leadership and its capacity to negotiate the nucleus of ideas and values of that process through the political speech. Analyzed around 72 documents a characterization of that speech it has been achieved in benefit of their current utility. Presently work takes as starting point the conditions that existed in our country to the revolutionary victory that were the material base of an authentic revolution of the political speech in Cuba and the world like interaction form and transmission of political ideas as regards talkative resources.

  2. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  3. Vascular effects of a single high salt meal

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Kader Abdel Wahab

    2016-09-01

    Conclusion: High salt intake may acutely impair vascular function in different vascular beds independent of the increase of blood pressure. Plasma sodium increase may be one of the underlying mechanisms.

  4. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  5. High-precision force sensing using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.; Singer, Kilian

    2016-06-01

    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10-27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High purity, low dislocation GaAs single crystals

    Science.gov (United States)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  8. Single Grain TFTs for High Speed Flexible Electronics

    NARCIS (Netherlands)

    Baiano, A.

    2009-01-01

    SG-TFTs fabricated by the ?-Czochralski process have already reached a performance as high as that of SOI MOSFET devices. However, one of the most important and challenging goals is extending SG-TFT technology to reach a higher level of performance than that achieved with SOI technology. This thesis

  9. Rapid isolation of high molecular weight DNA from single dry ...

    African Journals Online (AJOL)

    For studying genetic diversity in populations of predatory coccinellid, Cryptolaemus montrouzieri Mulsant (Coccinellidae: Coleoptera), our attempts to isolate high quality DNA from individual adult beetle using several previously reported protocols and even modifications were quite unsuccessful as the insect size was small ...

  10. Single phase forced convection cooling of high power leds

    NARCIS (Netherlands)

    Ozdemir, M.Z.; Chestakov, D.; Frijns, A.J.H.

    2011-01-01

    LEDs are strong candidates for future illumination applications dueto their much lower consumption of energy compared to conventional lighting options. One of key problems in development of LEDs is successful thermal management during illumination. Therefore, current research ongoing related to high

  11. Rapid isolation of high molecular weight DNA from single dried ...

    African Journals Online (AJOL)

    ANAND

    For studying genetic diversity in populations of predatory coccinellid, Cryptolaemus montrouzieri. Mulsant (Coccinellidae: Coleoptera), our attempts to isolate high quality DNA from individual adult beetle using several previously reported protocols and even modifications were quite unsuccessful as the insect size was small ...

  12. High frequency ultrasound imaging of a single-species biofilm

    NARCIS (Netherlands)

    Shemesh, H.; Goertz, D. E.; van der Sluis, L. W. M.; de Jong, N.; Wu, M. K.; Wesselink, P. R.

    Objective: This study evaluated the feasibility of a high frequency ultrasound scan to examine the 3D morphology of Streptococcus mutans biofilms grown in vitro. Methods: Six 2-day S. mutans biofilms and six 7-day biofilms were grown on tissue culture membranes and on bovine dentine discs. A sterile

  13. Site fidelity and homing behaviour of intertidal sculpins revisited.

    Science.gov (United States)

    Knope, M L; Tice, K A; Rypkema, D C

    2017-01-01

    To assess the repeatability of an ecological study, this study both partially replicates and extends a previous study on the site fidelity and homing ability of two abundant and ecologically important species of rocky intertidal sculpin fishes, Oligocottus maculosus and Oligocottus snyderi. A traditional mark and recapture approach was utilized and found that both of these species display high site fidelity to a home range of tidepools and homing ability to these pools, confirming the findings of previous work. Unlike the previous study, however, there was no effect of body size on homing ability and a modelling approach that incorporates encounter probability provided evidence for a sex effect on homing ability. In addition, this study extends the maximum homing ability of O. snyderi to 179 m and O. maculosus to 218 m, which were the maximum displacement distances for each species in this study, suggesting they may be capable of even greater homing distances. This work, however, finds that homing success was negatively related to displacement distance. These findings suggest adult sculpin populations are likely to be highly sub-structured geographically, possibly contributing to the exceptionally high species richness of the group. © 2016 The Fisheries Society of the British Isles.

  14. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  15. Preliminary methodology investigation of mask pattern fidelity for 250-nm design rules

    Science.gov (United States)

    Coleman, Thomas P.; Sauer, Charles A.; Naber, Robert J.; Hamaker, Henry Chris

    1995-07-01

    Techniques have been developed that can quickly and accurately measure corner rounding and contact fill as key indicators of pattern fidelity. Using these techniques, we have examined writing variables for their effect on the lithographic quality of 1.0 micrometers contact. A small contact is perhaps the most demanding figure to achieve, so the results shown can be considered the worst case for 4X radicle manufacturing at 250 nm design rules. A MEBES 4500 was used as the writing tool, using PBS resist on quartz masks. Standard printing methods, single-phase printing (SPP) and multiphase printing (2X MPP) were examined. Results indicate that excellent corner rounding results can be achieved with small address sizes, regardless of the writing strategy or the dose used. As expected, larger spot sizes increase the amount of corner rounding, regardless of the address. As the pattern address is increased, judicious choices of spot size reduce potential pattern fidelity loss when imaging small contracts and other fine features. Multiphase printing is a technique that offers advantages to the user. Its use of offset scan voting (OSV) is a significant factor in reducing placement errors. MPP (2X) has an additional advantage of providing higher dosages. This provides flexibility in resist choices and in the selection of a process window. With 2X MPP, the user has a wide range of addresses and spot sizes that will give excellent results. The dynamic range of operating conditions possible with 2X MPP when writing 1.0 micrometers contacts is a reduced subset of those available using SPP, due to the 2X writing grid (output address). Implementation of 2X MPP has been limited on previous MEBES models due to increased write times of multipass writing. The MEBES 4500 data path supports 2X MPP with write times that approximate SPP. The practical operating envelope of both writing strategies are detailed in this paper. Overall, the MEBES 4500 has a large dynamic operating range. When

  16. Accelerated Simulation of Discrete Event Dynamic Systems via a Multi-Fidelity Modeling Framework

    Directory of Open Access Journals (Sweden)

    Seon Han Choi

    2017-10-01

    Full Text Available Simulation analysis has been performed for simulation experiments of all possible input combinations as a “what-if” analysis, which causes the simulation to be extremely time-consuming. To resolve this problem, this paper proposes a multi-fidelity modeling framework for enhancing simulation speed while minimizing simulation accuracy loss. A target system for this framework is a discrete event dynamic system. The dynamic property of the system facilitates the development of variable fidelity models for the target system due to its high computational cost; and the discrete event property allows for determining when to change the fidelity within a simulation scenario. For formal representation, the paper defines several key concepts such as an interest region, a fidelity change condition, and a selection model. These concepts are integrated into the framework to allow for the achievement of a condition-based disjunction of high- and low-fidelity simulations within a scenario. The proposed framework is applied to two case studies: unmanned underwater and urban transportation vehicles. The results show that simulation speed increases at least 1.21 times with a 5% accuracy loss. We expect that the proposed framework will resolve a computationally expensive problem in the simulation analysis of discrete event dynamic systems.

  17. Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron

    Science.gov (United States)

    Binder, Thomas; Riley, Stephen C.; Holbrook, Christopher; Hansen, Michael J.; Bergstedt, Roger A.; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2016-01-01

    Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning.

  18. Site fidelity and condition metrics suggest sequential habitat use by early juvenile snook

    Science.gov (United States)

    Brame, Adam B.; McIvor, Carole; Peebles, Ernst B; Hollander, David J.

    2014-01-01

    The common snook Centropomus undecimalis is an estuarine-dependent fish that relies on landward wetlands as nursery habitat. Despite its economic importance, portions of the snook's early life history are poorly understood. We compared habitat use of young-of-the-year (YOY) snook in 2 geomorphic mesohabitats (tidal pond and tidal creek) along an estuarine gradient (upstream vs. downstream) within a single wetland during fall recruitment. We used abundance, length, condition indices, and stable isotopes to assess ontogenetic mesohabitat use and site fidelity. We found that (1) YOY snook were more abundant within the upstream creek and ponds; (2) the smallest snook were found only in ponds; (3) snook from ponds had lower condition (Fulton's K and hepatosomatic index); (4) snook began moving from ponds to the creek at ~40 mm standard length; and (5) snook from the 2 mesohabitats were isotopically distinct, indicating high site fidelity at rather small spatial scales. Collectively, these data identified sequential use of mesohabitats, wherein seaward-spawned YOY snook moved landward and recruited to pond habitats, where they dedicated energy to growth (as length) before making an ontogenetic habitat shift to the creek. Once in the creek, YOY snook condition improved as they approached maturity and started the downstream return towards seaward locations. The wetland network that was previously viewed as generalized nursery habitat instead consists of mesohabitats that support different life stages in sequence. This represents ontogenetic habitat complementation, in which lower availability of a required mesohabitat type may limit the entire wetland's contribution to the adult population.

  19. Information processing, specificity of practice, and the transfer of learning: considerations for reconsidering fidelity.

    Science.gov (United States)

    Grierson, Lawrence E M

    2014-05-01

    Much has been made in the recent medical education literature of the incorrect characterization of simulation along a continuum of low to high fidelity (Cook et al. JAMA 306(9): 978-988, 2011; Norman et al. Med Educ 46(7): 636-647, 2012; Teteris et al. Adv Health Sci Educ 17(1): 137-144, 2012). For the most part, the common definition within the medical education community has been that simulations that present highly realistic performance characteristics, contexts, and scenarios are referred to as high-fidelity, while simulations that reduce to-be-learned skills to simpler constructs or constituent parts are referred to as low-fidelity. The issue with this is that highly-realistic has tended to mean the degree to which the simulation looks like the criterion context with little regard for what features of the simulation are in fact relevant to the skill that the educator hopes to teach. The inherent assumption that high fidelity simulations lead to better learning-an assumption for which there is a lack of supporting evidence (Norman et al. Med Educ 46(7): 636-647, 2012)-only exacerbates the problem. So much so that some have suggested that the term be abandoned all together (Hamstra et al. Acad Med J Assoc Am Med Coll 2014). While, it is true that fidelity and its importance are misconstrued in the medical education literature, the construct, defined classically as the degree of faithfulness that exists between two entities, is still fundamental to understanding the effectiveness that any one simulation might have in preparing learners for clinical performance. However, the concept of simulation fidelity must be recast in terms of the fundamental information processing events that underpin human performance.

  20. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    Science.gov (United States)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and

  1. Female mate fidelity in a Lek mating system and its implications for the evolution of cooperative lekking behavior.

    Science.gov (United States)

    DuVal, E H

    2013-02-01

    The extent and importance of female mate fidelity in polygynous mating systems are poorly known. Fidelity may contribute to high variance in male reproductive success when it favors attractive mates or may stabilize social interactions if females are faithful to mating sites rather than males. Using 12 years of data on genetic mate choice in the cooperatively lekking lance-tailed manakin (Chiroxiphia lanceolata), I investigated the frequency of fidelity within and between years, whether females were faithful to individual males or to mating sites across years, and whether fidelity favored attractive males. Mate fidelity occurred in 41.7% of 120 between-year comparisons and was observed for 41.1% of 73 individual females that had the opportunity to mate faithfully. Females were not more likely to mate at prior mating sites when previous mates were replaced. Faithful females mated with the same male in up to four consecutive years but were not disproportionately faithful to attractive partners. Mating history influences current mate choice, and fidelity in this lekking system apparently represents active mate choice by females but little is not cited in the text. Please provide a citation or mark this reference for deletion.consensus in mate choices among faithful females. This study underscores the prevalence of mate fidelity in polygynous mating systems and emphasizes the need to consider the larger context of lifetime reproductive behavior when interpreting patterns of female choice.

  2. Implementation fidelity of a computer-assisted intervention for children with speech sound disorders.

    Science.gov (United States)

    McCormack, Jane; Baker, Elise; Masso, Sarah; Crowe, Kathryn; McLeod, Sharynne; Wren, Yvonne; Roulstone, Sue

    2017-06-01

    Implementation fidelity refers to the degree to which an intervention or programme adheres to its original design. This paper examines implementation fidelity in the Sound Start Study, a clustered randomised controlled trial of computer-assisted support for children with speech sound disorders (SSD). Sixty-three children with SSD in 19 early childhood centres received computer-assisted support (Phoneme Factory Sound Sorter [PFSS] - Australian version). Educators facilitated the delivery of PFSS targeting phonological error patterns identified by a speech-language pathologist. Implementation data were gathered via (1) the computer software, which recorded when and how much intervention was completed over 9 weeks; (2) educators' records of practice sessions; and (3) scoring of fidelity (intervention procedure, competence and quality of delivery) from videos of intervention sessions. Less than one-third of children received the prescribed number of days of intervention, while approximately one-half participated in the prescribed number of intervention plays. Computer data differed from educators' data for total number of days and plays in which children participated; the degree of match was lower as data became more specific. Fidelity to intervention procedures, competency and quality of delivery was high. Implementation fidelity may impact intervention outcomes and so needs to be measured in intervention research; however, the way in which it is measured may impact on data.

  3. Image gathering and digital restoration for fidelity and visual quality

    Science.gov (United States)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  4. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  5. Adoption, adaptation, and fidelity of implementation of sexual violence prevention programs.

    Science.gov (United States)

    Noonan, Rita K; Emshoff, James G; Mooss, Angela; Armstrong, Michael; Weinberg, Joanna; Ball, Barbara

    2009-01-01

    Little research examines the organizational and contextual dynamics that affect decisions to adopt evidence-based programs as well as the feasibility of implementation with fidelity to the original model when new users adopt established programs. To understand how promising strategies can be disseminated widely, this study examines the adoption and implementation of two sexual violence prevention programs in new settings. Interviews were conducted with stake-holders to investigate the factors and dynamics related to the adoption and implementation of these programs. Additionally, the research team worked with the program developers to create measures of the fidelity of implementation, which were then administered at each site. The findings suggest that adoption decisions were based on perceived fit between the program and the adopting organization's values, goals, and local setting. After adoption, new sites were able to implement the program with fairly high levels of fidelity, given moderate investments in training and technical assistance.

  6. Fidelity considerations for simulation-based usability assessments of mobile ICT for hospitals

    DEFF Research Database (Denmark)

    Dahl, Yngve; Alsos, Ole A; Svanæs, Dag

    2010-01-01

    Controlled laboratory-based usability assessments of mobile information and communications technologies (ICT) for hospitals have been conducted. As part of these assessments, clinicians have acted out mobile work scenarios and used the systems to solve related tasks. The evaluations show...... that relevant usability issues go beyond those of graphical user interfaces. Many of these usability issues only show up when the real-world context of use is replicated in the laboratory to a high degree of fidelity. The complexity of the context of use for mobile ICT in hospitals has motivated us to explore...... for hospitals. Our argument is substantiated by using the identified set of fidelity dimensions in a retrospective analysis of two usability assessments. The analysis explains how the configuration of fidelity dimensions, each reflecting various degrees of realism vis-à-vis the actual performance context...

  7. Study fidelity spatial contours of industrial robots

    Directory of Open Access Journals (Sweden)

    A. V. Ivanova

    2014-01-01

    Full Text Available The purpose of this paper to identify deviations fidelity spatial contours of industrial robots, determine the error pattern detected, and define the ways to solve the problem.The paper presents the research results of fidelity spatial contours done by Fanuc M- 710iC/50 industrial robot when moving along a predetermined path. The proposed method uses a QC20-W ballbar wireless system of Renishaw company, designed to diagnose the state of the measurement and playback linear and angular displacements of the CNC.The solutions to adapt the QC20-W ballbar system to the constructive peculiarities of industrial robots with five or more independently controlled axes are given. The stages of the preparation of diagnostic systems and software robot movements are described.According to study results of errors that arise while playing back the programmed motions of a fixed point of robot capture in three mutually perpendicular planes its practical accuracy has been defined when performing movements in a given region of the working area, thereby allowing us, eventually, to draw a conclusion on the possibility to use a robot in one technological process or another.The study has resulted in emerging the guidelines for the operation of industrial robots with five or more independently controlled axes. Using these guidelines enables us to increase the playback accuracy of the industrial robot to 0.01 mm.

  8. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  9. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-04-29

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  10. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...... dots in ultrathin photonic wires 2) the control of the linear polarization of the single photons by photonic wires with an elliptical section, 3) the joint observation (unlike-cavity-based devices) of a record high efficiency and pure single photon emission process in a photonic wire single photon...

  11. High Fidelity, High Volume Agglutinate Manufacturing Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Up to 65% of the lunar soils are comprised of agglutinates. Although the importance of agglutinate in simulants is often debated, the fact is that agglutinates...

  12. A power analysis for fidelity measurement sample size determination.

    Science.gov (United States)

    Stokes, Lynne; Allor, Jill H

    2016-03-01

    The importance of assessing fidelity has been emphasized recently with increasingly sophisticated definitions, assessment procedures, and integration of fidelity data into analyses of outcomes. Fidelity is often measured through observation and coding of instructional sessions either live or by video. However, little guidance has been provided about how to determine the number of observations needed to precisely measure fidelity. We propose a practical method for determining a reasonable sample size for fidelity data collection when fidelity assessment requires observation. The proposed methodology is based on consideration of the power of tests of the treatment effect of outcome itself, as well as of the relationship between fidelity and outcome. It makes use of the methodology of probability sampling from a finite population, because the fidelity parameters of interest are estimated over a specific, limited time frame using a sample. For example, consider a fidelity measure defined as the number of minutes of exposure to a treatment curriculum during the 36 weeks of the study. In this case, the finite population is the 36 sessions, the parameter (number of minutes over the entire 36 sessions) is a total, and the sample is the observed sessions. Software for the sample size calculation is provided. (c) 2016 APA, all rights reserved).

  13. Single Crystal Piezoelectric Deformable Mirrors with High Actuator Density and Large Stroke Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...

  14. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  15. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  16. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possibl...

  17. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system operating at low repetition rate of 10 Hz to 1 kHz for coherent Lidar systems...

  18. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  19. Health Insurance without Single Crossing : Why Healthy People have High Coverage

    NARCIS (Netherlands)

    Boone, J.; Schottmuller, C.

    2011-01-01

    Standard insurance models predict that people with high (health) risks have high insurance coverage. It is empirically documented that people with high income have lower health risks and are better insured. We show that income differences between risk types lead to a violation of single crossing in

  20. Attenuation of foot-and-mouth disease virus by engineered viral polymerase fidelity

    Science.gov (United States)

    The foot-and-mouth disease virus (FMDV) RNA dependent RNA polymerase (RdRp or 3Dpol) catalyzes viral RNA synthesis. The 3Dpol is a low fidelity enzyme incapable of proofreading which results in a high mutation frequencies that allow the virus to rapidly adapt to different environments. In this study...

  1. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations

    Science.gov (United States)

    Chan, Lap Ki; Cheng, Maurice M. W.

    2011-01-01

    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  2. Developing effective serious games: the effect of background sound on visual fidelity perception with varying texture resolution.

    Science.gov (United States)

    Rojas, David; Kapralos, Bill; Cristancho, Sayra; Collins, Karen; Hogue, Andrew; Conati, Cristina; Dubrowski, Adam

    2012-01-01

    Despite the benefits associated with virtual learning environments and serious games, there are open, fundamental issues regarding simulation fidelity and multi-modal cue interaction and their effect on immersion, transfer of knowledge, and retention. Here we describe the results of a study that examined the effect of ambient (background) sound on the perception of visual fidelity (defined with respect to texture resolution). Results suggest that the perception of visual fidelity is dependent on ambient sound and more specifically, white noise can have detrimental effects on our perception of high quality visuals. The results of this study will guide future studies that will ultimately aid in developing an understanding of the role that fidelity, and multi-modal interactions play with respect to knowledge transfer and retention for users of virtual simulations and serious games.

  3. Visual communication - Information and fidelity. [of images

    Science.gov (United States)

    Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1993-01-01

    This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.

  4. Comparison of intervention fidelity between COPE TEEN and an attention-control program in a randomized controlled trial.

    Science.gov (United States)

    Kelly, Stephanie A; Oswalt, Krista; Melnyk, Bernadette Mazurek; Jacobson, Diana

    2015-04-01

    Fidelity in implementing an intervention is critical to accurately determine and interpret the effects of an intervention. It is important to monitor the manner in which the behavioral intervention is implemented (e.g. adaptations, delivery as intended and dose). Few interventions are implemented with 100% fidelity. In this study, high school health teachers implemented the intervention. To attribute study findings to the intervention, it was vital to know to what degree the intervention was implemented. Therefore, the purposes of this study were to evaluate intervention fidelity and to compare implementation fidelity between the creating opportunities for personal empowerment (COPE) Healthy Lifestyles TEEN (thinking, emotions, exercise, and nutrition) program, the experimental intervention and Healthy Teens, an attention-control intervention, in a randomized controlled trial with 779 adolescents from 11 high schools in the southwest region of the United States. Thirty teachers participated in this study. Findings indicated that the attention-control teachers implemented their intervention with greater fidelity than COPE TEEN teachers. It is possible due to the novel intervention and the teachers' unfamiliarity with cognitive-behavioral skills building, COPE TEEN teachers had less fidelity. It is important to assess novel skill development prior to the commencement of experimental interventions and to provide corrective feedback during the course of implementation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  6. AFFECT: Altered-Fidelity Framework for Enhancing Cognition and Training

    Directory of Open Access Journals (Sweden)

    Ryan Patrick McMahan

    2016-11-01

    Full Text Available In this paper, we present a new framework for analyzing and designing virtual reality (VR techniques. This framework is based on two concepts—system fidelity (i.e., the degree with which real-world experiences are reproduced by a system and memory (i.e., the formation and activation of perceptual, cognitive, and motor networks of neurons. The premise of the framework is to manipulate an aspect of system fidelity in order to assist a stage of memory. We call it the Altered-Fidelity Framework for Enhancing Cognition and Training (AFFECT. AFFECT provides nine categories of approaches to altering system fidelity to positively affect learning or training. These categories are based on the intersections of three aspects of system fidelity (interaction fidelity, scenario fidelity, and display fidelity and three stages of memory (encoding, implicit retrieval, and explicit retrieval. In addition to discussing the details of our new framework, we show how AFFECT can be used as a tool for analyzing and categorizing VR techniques designed to facilitate learning or training. We also demonstrate how AFFECT can be used as a design space for creating new VR techniques intended for educational and training systems.

  7. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    Science.gov (United States)

    2016-02-03

    Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole...technical development is to achieve fast loading and qubit manipulation in the single- atom traps, which will enable our scientific investigation. The...goal of our scientific investigation is to demonstrate high fidelity and fast atom - atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4

  8. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  9. Mismatch repair balances leading and lagging strand DNA replication fidelity.

    Directory of Open Access Journals (Sweden)

    Scott A Lujan

    Full Text Available The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to > 95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.

  10. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Science.gov (United States)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  11. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis.

    Science.gov (United States)

    Su, Yapeng; Shi, Qihui; Wei, Wei

    2017-02-01

    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2011-01-01

    On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule......On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule...

  13. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...

  14. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    Science.gov (United States)

    Qi, Meng; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Zhao, Yuning; Protasenko, Vladimir; Song, Bo; Yan, Xiaodong; Li, Guowang; Verma, Jai; Bader, Samuel; Fay, Patrick; Xing, Huili Grace; Jena, Debdeep

    2015-12-01

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  15. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    OpenAIRE

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early time T cell signaling. I show usin...

  16. Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies.

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio Della Pia

    Full Text Available Single domain antibodies are recombinantly expressed functional antibodies devoid of light chains. These binding elements are derived from heavy chain antibodies found in camelids and offer several distinctive properties for applications in biotechnology such as small size, stability, solubility, and expression in high yields. In this study we demonstrated the potential of using single domain antibodies as capturing molecules in biosensing applications. Single domain antibodies raised against green fluorescent protein were anchored onto biosensor surfaces by using several immobilization strategies based on Ni2+:nitrilotriacetic acid-polyhistidine tag, antibody-antigen, biotin-streptavidin interactions and amine-coupling chemistry. The interaction with the specific target of the single domain antibodies was characterized by surface plasmon resonance. The immobilized single domain antibodies show high affinities for their antigens with KD = 3-6 nM and outperform other antibody partners as capturing molecules facilitating also the data analysis. Furthermore they offer high resistance and stability to a wide range of denaturing agents. These unique biophysical properties and the production of novel single domain antibodies against affinity tags make them particularly attractive for use in biosensing and diagnostic assays.

  17. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  18. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.

    2017-01-11

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.

  19. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    Science.gov (United States)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  20. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  1. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Magnusson, Peter

    2004-01-01

    No studies to date have reported activation of satellite cells in vivo in human muscle after a single bout of high intensity exercise. In this investigation, eight individuals performed a single bout of high intensity exercise with one leg, the contralateral leg being the control. A significant...... increase in mononuclear cells staining for the neural cell adhesion molecule (N-CAM) and fetal antigen 1 (FA1) were observed within the exercised human vastus lateralis muscle on days 4 and 8 post exercise. In addition, a significant increase in the concentration of the FA1 protein was determined...

  2. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    Science.gov (United States)

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  3. Factors contributing to intervention fidelity in a multi-site chronic disease self-management program

    Directory of Open Access Journals (Sweden)

    Pitt Seraphine

    2006-10-01

    Full Text Available Abstract Background and objectives Disease self-management programs have been a popular approach to reducing morbidity and mortality from chronic disease. Replicating an evidence-based disease management program successfully requires practitioners to ensure fidelity to the original program design. Methods The Florida Health Literacy Study (FHLS was conducted to investigate the implementation impact of the Pfizer, Inc. Diabetes Mellitus and Hypertension Disease Self-Management Program based on health literacy principles in 14 community health centers in Florida. The intervention components discussed include health educator recruitment and training, patient recruitment, class sessions, utilization of program materials, translation of program manuals, patient retention and follow-up, and technical assistance. Results This report describes challenges associated with achieving a balance between adaptation for cultural relevance and fidelity when implementing the health education program across clinic sites. This balance was necessary to achieve effectiveness of the disease self-management program. The FHLS program was implemented with a high degree of fidelity to the original design and used original program materials. Adaptations identified as advantageous to program participation are discussed, such as implementing alternate methods for recruiting patients and developing staff incentives for participation. Conclusion Effective program implementation depends on the talent, skill and willing participation of clinic staff. Program adaptations that conserve staff time and resources and recognize their contribution can increase program effectiveness without jeopardizing its fidelity.

  4. The fidelity of dynamic signaling by noisy biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Clive G Bowsher

    Full Text Available Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.

  5. Storing single photons emitted by a quantum memory on a highly excited Rydberg state.

    Science.gov (United States)

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-19

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.

  6. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    Science.gov (United States)

    Das, Jayajit

    2016-03-08

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    Science.gov (United States)

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  8. Assessing the fidelity of predictability estimates

    Science.gov (United States)

    Pegion, Kathy; DelSole, Timothy; Becker, Emily; Cicerone, Teresa

    2017-09-01

    Predictability is an intrinsic limit of the climate system due to uncertainty in initial conditions and the chaotic nature of the atmosphere. Estimates of predictability together with calculations of current prediction skill are used to define the gaps in our prediction capabilities, inform future model developments, and indicate to stakeholders the potential for making forecasts that can inform their decisions. The true predictability of the climate system is not known and must be estimated, typically using a perfect model estimate from an ensemble prediction system. However, different prediction systems can give different estimates of predictability. Can we determine which estimate of predictability is most representative of the true predictability of the climate system? We test three metrics as potential indicators of the fidelity of predictability estimates in an idealized framework—the spread-error relationship, autocorrelation and skill. Using the North American multi-model ensemble re-forecast database, we quantify whether these metrics accurately indicate a model's ability to properly estimate predictability. It is found that none of these metrics is a robust measure for determining whether a predictability estimate is realistic for El Nino-Southern oscillation events. For temperature and precipitation over land, errors in the spread-error ratio are related to errors in estimating predictability at the shortest lead-times, while skill is not related to predictability errors. The relationship between errors in the autocorrelation and errors in estimating predictability varies by lead-time and region.

  9. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.

    Science.gov (United States)

    Moon, Hui-Sung; Je, Kwanghwi; Min, Jae-Woong; Park, Donghyun; Han, Kyung-Yeon; Shin, Seung-Ho; Park, Woong-Yang; Yoo, Chang Eun; Kim, Shin-Hyun

    2018-02-27

    Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 μl -1 , which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.

  10. Single high scrotal incision orchidopexy for unilateral palpable testis: A randomised controlled study

    Directory of Open Access Journals (Sweden)

    Almoutaz A. Eltayeb

    2014-01-01

    Full Text Available Background: Bianchi and Squire introduced single high trans-scrotal incision for mobilisation of palpable undescended testes to decrease the potential morbidity of the traditional inguinal approach. This incision has not gained widespread acceptance and there is still a considerable debate about its efficacy. This study evaluated the outcome of high single scrotal incision in comparison to the classic inguinal exploration for unilateral palpable testes regardless to its pre-operative location to assure its validity and safety. Patients and Methods: This was a randomised controlled study conducted on seventy males with palpable unilateral undescended testicles from November 2009 to October 2013. They were divided into two equal groups; group I had high single scrotal incision and group II had the classic inguinal approach. The comparative parameters between both groups were the operative time, intra-and post-operative complications, post-operative pain and scar. Results: There was statistical significant difference between both groups regarding the operative time (P < 0.001. The high scrotal approach (Group I was not completed in three cases and were converted to the classic inguinal approach. No statistical significant difference between both groups regarding the post-operative complications. Conclusions: Single high scrotal incision orchidopexy for palpable undescended testis is safe, has shorter operative time but may not be suitable for proximally lying testis.

  11. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; La Cava, W.; Austin, J.; Nejad, A. R.; Halse, C.; Bastard, L.; Helsen, J.

    2015-01-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential design parameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  12. Consideration of treatment fidelity to improve manual therapy research.

    Science.gov (United States)

    Karas, Steve; Plankis, Laura

    2016-09-01

    The purpose of this paper was to define treatment fidelity, review its use in health care research and suggest how it may be utilized in manual therapy research to improve the reliability and validity of the literature. We offer an outline and a table of how manual therapy research may benefit from the concept of treatment fidelity. While treatment fidelity is a newer concept, and has not been integrated into Physical Therapy or Manual Therapy research, when utilized, it can have positive effects on the reliability and validity of the techniques we evaluate.

  13. An automated system for high-throughput single cell-based breeding

    Science.gov (United States)

    Yoshimoto, Nobuo; Kida, Akiko; Jie, Xu; Kurokawa, Masaya; Iijima, Masumi; Niimi, Tomoaki; Maturana, Andrés D.; Nikaido, Itoshi; Ueda, Hiroki R.; Tatematsu, Kenji; Tanizawa, Katsuyuki; Kondo, Akihiko; Fujii, Ikuo; Kuroda, Shun'ichi

    2013-01-01

    When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms. PMID:23378922

  14. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    CERN Document Server

    Wang, Jieying; He, Jun; Wang, Junmin

    2016-01-01

    We report the generation of narrow-linewidth 637.2 nm laser by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding conversion efficiency is 38%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  15. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers

    NARCIS (Netherlands)

    Farré, Arnau; van der Horst, Astrid; Blab, Gerhard A.; Downing, Benjamin P. B.; Forde, Nancy R.

    2010-01-01

    The well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected,

  16. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  17. A simple and rapid method for high-resolution visualization of single-ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Masaaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017 (Japan); Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Tsukuda, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Sugimoto, Masaki [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Gunma, Gunma 370-1292 (Japan)

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  18. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  19. A 5 cm single-discharge CO2 laser having high power output

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    A single-discharge self-sustained CO2 laser has been constructed with a gap distance of 5 cm. The system has a very simple construction; it produces a very uniform discharge with an output power of 50 Joules per liter for a CO2 : N2 : He = 1 : 1 : 3 mixture. The efficiency can be as high as 19%.

  20. Raman study of bromine-doped single-walled carbon nanotubes under high pressure

    CERN Document Server

    Liu Bing Bing; Yu Miao; Zou Guang Tian; Carlsten, J; Wagberg, T; Sundqvist, B

    2002-01-01

    Raman results for different single-walled carbon nanotube bundles doped with Br sub 2 were studied both at ambient pressure and under high pressure up to 6 GPa. Our study indicates that bromine resides in the interstitial channel of nanotube bundles as a form of polymer.

  1. Achievement, School Integration, and Self-Efficacy in Single-Sex and Coeducational Parochial High Schools

    Science.gov (United States)

    Micucci, Kara Hanson

    2014-01-01

    A structural model for prior achievement, school integration, and self-efficacy was developed using Tinto's theory of student attrition and Bandura's self-efficacy theory. The model was tested and revised using a sample of 1,452 males and females from single-sex and coeducational parochial high schools. Results indicated that the theoretically…

  2. Challenging Stereotypes: Sexual Functioning of Single Adults with High Functioning Autism Spectrum Disorder

    Science.gov (United States)

    Byers, E. Sandra; Nichols, Shana; Voyer, Susan D.

    2013-01-01

    This study examined the sexual functioning of single adults (61 men, 68 women) with high functioning autism and Asperger syndrome living in the community with and without prior relationship experience. Participants completed an on-line questionnaire assessing autism symptoms, psychological functioning, and various aspects of sexual functioning. In…

  3. Simultaneous regeneration of two 160 Gbit/s WDM channels in a single highly nonlinear fiber

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao

    2013-01-01

    We experimentally demonstrate simultaneous all-optical regeneration of two 160-Gbit/s wavelength-division multiplexed (WDM) channels in a single highly nonlinear fiber (HNLF). The multi-channel regeneration performance is confirmed by bit-error rate (BER) measurements. The receiver powers at a BER...

  4. Advantages of Single-Molecule Real-Time Sequencing in High-GC Content Genomes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available Next-generation sequencing has become the most widely used sequencing technology in genomics research, but it has inherent drawbacks when dealing with high-GC content genomes. Recently, single-molecule real-time sequencing technology (SMRT was introduced as a third-generation sequencing strategy to compensate for this drawback. Here, we report that the unbiased and longer read length of SMRT sequencing markedly improved genome assembly with high GC content via gap filling and repeat resolution.

  5. High-field magnetisation measurements on R sub 2 Fe sub 14 B single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, R.; Franse, J.J.M.; Menovsky, A.A.; Radwanski, R.J. (Amsterdam Univ. (NL). Natuurkundig Lab.); Song-quan, J.; Fu-ming, Y. (Academia Sinica, Beijing (CN). Inst. of Physics); Li, H.S.; Gavigan, J.P. (Trinity Coll. Dublin (IE). Dept. of Pure and Applied Physics)

    1988-12-01

    High-field magnetisation measurements on single crystalline samples of Pr{sub 2}Fe{sub 14}B, Nd{sub 2}Fe{sub 14}B and Dy{sub 2}Fe{sub 14}B are presented and discussed within a two-sublattice model. Special attention is given to the high-field part of the curves (B{sub o} > 20 T).

  6. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    OpenAIRE

    S. Arumugam S. Ramareddy M. Sridhar

    2011-01-01

    This paper presents a novel soft-switching pulse width modulation (PWM) utility frequency AC to high frequency (HF) AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which ...

  7. Structure determination from a single high-pressure-frozen virus crystal.

    Science.gov (United States)

    Burkhardt, Anja; Wagner, Armin; Warmer, Martin; Reimer, Rudolph; Hohenberg, Heinrich; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Meents, Alke

    2013-02-01

    Successful cryogenic X-ray structure determination from a single high-pressure-frozen bovine enterovirus 2 crystal is reported. The presented high-pressure-freezing procedure is based on a commercially available device and allows the cryocooling of macromolecular crystals directly in their mother liquor without the time- and crystal-consuming search for optimal cryoconditions. The method is generally applicable and will allow cryogenic data collection from all types of macromolecular crystals.

  8. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.

    Science.gov (United States)

    Gansauge, Marie-Theres; Gerber, Tobias; Glocke, Isabelle; Korlevic, Petra; Lippik, Laurin; Nagel, Sarah; Riehl, Lara Maria; Schmidt, Anna; Meyer, Matthias

    2017-06-02

    DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3΄ biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  10. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  11. Site fidelity and individual variation in winter location in partially migratory European shags.

    Directory of Open Access Journals (Sweden)

    Hannah Grist

    Full Text Available In partially migratory populations, individuals from a single breeding area experience a range of environments during the non-breeding season. If individuals show high within- and among- year fidelity to specific locations, any annual environmental effect on individual life histories could be reinforced, causing substantial demographic heterogeneity. Quantifying within- and among- individual variation and repeatability in non-breeding season location is therefore key to predicting broad-scale environmental impacts on the dynamics of partially migratory populations. We used field resightings of colour-ringed adult European shags known to have bred on the Isle of May, Scotland, to quantify individual variation and repeatability in winter location within and among three consecutive winters. In total, 3797 resightings of 882 individuals were recorded over 622 km of coastline, including the Isle of May. These individuals comprised over 50% of the known breeding population, and encompassed representative distributions of ages and sexes. The distances from the Isle of May at which individuals were resighted during winter varied substantially, up to 486 km and 136 km north and south respectively and including the breeding colony on the Isle of May. However, resighting distances were highly repeatable within individuals; within- and among-winter repeatabilities were >0.72 and >0.59 respectively across the full September-March observation period, and >0.95 and >0.79 respectively across more restricted mid-winter periods. Repeatability did not differ significantly between males and females or among different age classes, either within or among winters. These data demonstrate that the focal shag population is partially migratory, and moreover that individuals show highly repeatable variation in winter location and hence migration strategy across consecutive winters. Such high among-individual variation and within-individual repeatability, both within and

  12. Norovirus Polymerase Fidelity Contributes to Viral Transmission In Vivo

    DEFF Research Database (Denmark)

    Arias Esteban, Armando; Thorne, Lucy; Ghurburrun, Elsa

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences v...... and that maintaining diversity is important for the establishment of infection. This work supports the hypothesis that the reduced polymerase fidelity of the pandemic GII.4 human norovirus isolates may contribute to their global dominance.......Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences...... viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase...

  13. USA luure : Fidel Castro on suremas / Allan Espenberg

    Index Scriptorium Estoniae

    Espenberg, Allan

    2006-01-01

    Kuuba president Fidel Castro, Haiti president Rene Preval, Filipiinide president Gloria Macapagal-Arroyo, Türkmenistani president Saparmurat Nijazov, Guinea president Lansana Conte ja Itaalia ekspeaminister Silvio Berlusconi, Sambia ekspresident Frederick Chilubaga võitlevad terviseprobleemidega

  14. Consideration of treatment fidelity to improve manual therapy research

    National Research Council Canada - National Science Library

    Karas, Steve; Plankis, Laura

    2016-01-01

    The purpose of this paper was to define treatment fidelity, review its use in health care research and suggest how it may be utilized in manual therapy research to improve the reliability and validity of the literature...

  15. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  16. Fidelity Approach to the Disordered Quantum XY Model

    Science.gov (United States)

    Garnerone, Silvano; Jacobson, N. Tobias; Haas, Stephan; Zanardi, Paolo

    2009-02-01

    We study the random XY spin chain in a transverse field by analyzing the susceptibility of the ground state fidelity, numerically evaluated through a standard mapping of the model onto quasifree fermions. It is found that the fidelity susceptibility and its scaling properties provide useful information about the phase diagram. In particular it is possible to determine the Ising critical line and the Griffiths phase regions, in agreement with previous analytical and numerical results.

  17. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  18. Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores.

    Science.gov (United States)

    Price, Gavin R; Mazzocco, Michèle M M; Ansari, Daniel

    2013-01-02

    Do individual differences in the brain mechanisms for arithmetic underlie variability in high school mathematical competence? Using functional magnetic resonance imaging, we correlated brain responses to single digit calculation with standard scores on the Preliminary Scholastic Aptitude Test (PSAT) math subtest in high school seniors. PSAT math scores, while controlling for PSAT Critical Reading scores, correlated positively with calculation activation in the left supramarginal gyrus and bilateral anterior cingulate cortex, brain regions known to be engaged during arithmetic fact retrieval. At the same time, greater activation in the right intraparietal sulcus during calculation, a region established to be involved in numerical quantity processing, was related to lower PSAT math scores. These data reveal that the relative engagement of brain mechanisms associated with procedural versus memory-based calculation of single-digit arithmetic problems is related to high school level mathematical competence, highlighting the fundamental role that mental arithmetic fluency plays in the acquisition of higher-level mathematical competence.

  19. Fidelity and Game-based Technology in Management Education

    Directory of Open Access Journals (Sweden)

    Edgard B. Cornacchione Jr.

    2012-04-01

    Full Text Available This study explores educational technology and management education by analyzing fidelity in game-basedmanagement education interventions. A sample of 31 MBA students was selected to help answer the researchquestion: To what extent do MBA students tend to recognize specific game-based academic experiences, interms of fidelity, as relevant to their managerial performance? Two distinct game-based interventions (BG1 andBG2 with key differences in fidelity levels were explored: BG1 presented higher physical and functional fidelitylevels and lower psychological fidelity levels. Hypotheses were tested with data from the participants, collectedshortly after their experiences, related to the overall perceived quality of game-based interventions. The findingsreveal a higher overall perception of quality towards BG1: (a better for testing strategies, (b offering betterbusiness and market models, (c based on a pace that better stimulates learning, and (d presenting a fidelity levelthat better supports real world performance. This study fosters the conclusion that MBA students tend torecognize, to a large extent, that specific game-based academic experiences are relevant and meaningful to theirmanagerial development, mostly with heightened fidelity levels of adopted artifacts. Agents must be ready andmotivated to explore the new, to try and err, and to learn collaboratively in order to perform.

  20. High-yield self-limiting single-nanowire assembly with dielectrophoresis.

    Science.gov (United States)

    Freer, Erik M; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P

    2010-07-01

    Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.