WorldWideScience

Sample records for high fidelity simulations

  1. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  2. RELAP5: Applications to high fidelity simulation

    International Nuclear Information System (INIS)

    Johnsen, G.W.; Chen, Y.S.

    1988-01-01

    RELAP5 is a pressurized water reactor system transient simulation code for use in nuclear power plant safety analysis. The latest version, MOD2, may be used to simulate and study a wide variety of abnormal events, including loss-of-coolant accidents, operational transients, and transients in which the entire secondary system must be modeled. In this paper, a basic overview of the code is given, its assessment and application illustrated, and progress toward its use as a high fidelity simulator described. 7 refs., 7 figs

  3. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  4. High Fidelity In Situ Shoulder Dystocia Simulation

    Directory of Open Access Journals (Sweden)

    Andrew Pelikan, MD

    2018-04-01

    Full Text Available Audience: Resident physicians, emergency department (ED staff Introduction: Precipitous deliveries are high acuity, low occurrence in most emergency departments. Shoulder dystocia is a rare but potentially fatal complication of labor that can be relieved by specific maneuvers that must be implemented in a timely manner. This simulation is designed to educate resident learners on the critical management steps in a shoulder dystocia presenting to the emergency department. A special aspect of this simulation is the unique utilization of the “Noelle” model with an instructing physician at bedside maneuvering the fetus through the stations of labor and providing subtle adjustments to fetal positioning not possible though a mechanized model. A literature search of “shoulder dystocia simulation” consists primarily of obstetrics and mid-wife journals, many of which utilize various mannequin models. None of the reviewed articles utilized a bedside provider maneuvering the fetus with the Noelle model, making this method unique. While the Noelle model is equipped with a remote-controlled motor that automatically rotates and delivers the baby either to the head or to the shoulders and can produce a turtle sign and which will prevent delivery of the baby until signaled to do so by the instructor, using the bedside instructor method allows this simulation to be reproduced with less mechanistically advanced and lower cost models.1-5 Objectives: At the end of this simulation, learners will: 1 Recognize impending delivery and mobilize appropriate resources (ie, both obstetrics [OB] and NICU/pediatrics; 2 Identify risk factors for shoulder dystocia based on history and physical; 3 Recognize shoulder dystocia during delivery; 4 Demonstrate maneuvers to relieve shoulder dystocia; 5 Communicate with team members and nursing staff during resuscitation of a critically ill patient. Method: High-fidelity simulation. Topics: High fidelity, in situ, Noelle model

  5. Status report on high fidelity reactor simulation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere, M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-01-01

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool

  6. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    state Figure 5. Q criterion isosurface colored by streamwise velocity in the diesel spray injector as viewed from the nozzle exit. Figure 6. U contour...fidelity simulation approach was adopted to study the atom- ization physics of a diesel injector with detailed nozzle internal geometry. The nozzle flow...26; Stanford, CA 14. ABSTRACT A high fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector has been

  7. Interprofessional education in pharmacology using high-fidelity simulation.

    Science.gov (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  9. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  10. Patterns of communication in high-fidelity simulation.

    Science.gov (United States)

    Anderson, Judy K; Nelson, Kimberly

    2015-01-01

    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.

  11. Importance of debriefing in high-fidelity simulations

    Directory of Open Access Journals (Sweden)

    Igor Karnjuš

    2014-04-01

    Full Text Available Debriefing has been identified as one of the most important parts of a high-fidelity simulation learning process. During debriefing, the mentor invites learners to critically assess the knowledge and skills used during the execution of a scenario. Regardless of the abundance of studies that have examined simulation-based education, debriefing is still poorly defined.The present article examines the essential features of debriefing, its phases, techniques and methods with a systematic review of recent publications. It emphasizes the mentor’s role, since the effectiveness of debriefing largely depends on the mentor’s skills to conduct it. The guidelines that allow the mentor to evaluate his performance in conducting debriefing are also presented. We underline the importance of debriefing in clinical settings as part of continuous learning process. Debriefing allows the medical teams to assess their performance and develop new strategies to achieve higher competencies.Although the debriefing is the cornerstone of high-fidelity simulation learning process, it also represents an important learning strategy in the clinical setting. Many important aspects of debriefing are still poorly explored and understood, therefore this part of the learning process should be given greater attention in the future.

  12. High fidelity simulation effectiveness in nursing students' transfer of learning.

    Science.gov (United States)

    Kirkman, Tera R

    2013-07-13

    Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.

  13. Teaching Palatoplasty Using a High-Fidelity Cleft Palate Simulator.

    Science.gov (United States)

    Cheng, Homan; Podolsky, Dale J; Fisher, David M; Wong, Karen W; Lorenz, H Peter; Khosla, Rohit K; Drake, James M; Forrest, Christopher R

    2018-01-01

    Cleft palate repair is a challenging procedure for cleft surgeons to teach. A novel high-fidelity cleft palate simulator has been described for surgeon training. This study evaluates the simulator's effect on surgeon procedural confidence and palatoplasty knowledge among learners. Plastic surgery trainees attended a palatoplasty workshop consisting of a didactic session on cleft palate anatomy and repair followed by a simulation session. Participants completed a procedural confidence questionnaire and palatoplasty knowledge test immediately before and after the workshop. All participants reported significantly higher procedural confidence following the workshop (p cleft palate surgery experience had higher procedural confidence before (p cleft palate experience did not have higher mean baseline test scores than those with no experience (30 percent versus 28 percent; p > 0.05), but did have significantly higher scores after the workshop (61 percent versus 35 percent; p cleft palate simulator as a training tool to teach palatoplasty. Improved procedural confidence and knowledge were observed after a single session, with benefits seen among trainees both with and without previous cleft experience.

  14. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  15. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios.

    Science.gov (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer

    2018-02-01

    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  16. Effect on High versus Low Fidelity Haptic Feedback in a Virtual Reality Baseball Simulation

    DEFF Research Database (Denmark)

    Ryge, Andreas Nicolaj; Thomsen, Lui Albæk; Berthelsen, Theis

    2017-01-01

    In this paper we present a within-subjects study (n=26) comparing participants' experience of three kinds of haptic feedback (no haptic feedback, low fidelity haptic feedback and high fidelity haptic feedback) simulating the impact between a virtual baseball bat and ball. We noticed some minor ef...

  17. High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.

    Science.gov (United States)

    Cooper, Allyson

    2015-01-01

    The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.

  18. The effect of high fidelity simulated learning methods on physiotherapy pre-registration education: a systematic review protocol.

    Science.gov (United States)

    Roberts, Fiona; Cooper, Kay

    2017-11-01

    The objective of this review is to identify if high fidelity simulated learning methods are effective in enhancing clinical/practical skills compared to usual, low fidelity simulated learning methods in pre-registration physiotherapy education.

  19. High Fidelity Simulation of Littoral Environments: Applications and Coupling of Participating Models

    National Research Council Canada - National Science Library

    Allard, Richard

    2003-01-01

    The High Fidelity Simulation of Littoral Environments (HFSoLE) Challenge Project (C75) encompasses a suite of seven oceanographic models capable of exchanging information in a physically meaningful sense across the littoral environment...

  20. Advanced High and Low Fidelity HPC Simulations of FCS Concept Designs for Dynamic Systems

    National Research Council Canada - National Science Library

    Sandhu, S. S; Kanapady, R; Tamma, K. K

    2004-01-01

    ...) resources of many Army initiatives. In this paper we present a new and advanced HPC based rigid and flexible modeling and simulation technology capable of adaptive high/low fidelity modeling that is useful in the initial design concept...

  1. Fidelity in clinical simulation

    DEFF Research Database (Denmark)

    Jensen, Sanne; Nøhr, Christian; Rasmussen, Stine Loft

    2013-01-01

    Clinical simulation may be used to identify user needs for context sensitive functionalities in e-Health. The objective with this paper is to describe how user requirements and use cases in a large EHR-platform procurement may be validated by clinical simulation using a very low-fidelity prototype...... without any existing test data. Instead of using test scenarios and use cases, the healthcare professionals who are participating in the clinical simulation are generating both scenario and patient data themselves. We found that this approach allows for an imaginative discussion, not restricted by known...... functionalities and limitations, of the ideal EHR-platform. Subsequently, we discuss benefits and challenges of using an extremely low fidelity environment and discuss the degree of fidelity necessary for conducting clinical simulation....

  2. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    Science.gov (United States)

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  3. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  4. Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals

    Science.gov (United States)

    Alinier, Guillaume

    2011-01-01

    The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…

  5. High-fidelity simulation among bachelor students in simulation groups and use of different roles.

    Science.gov (United States)

    Thidemann, Inger-Johanne; Söderhamn, Olle

    2013-12-01

    Cost limitations might challenge the use of high-fidelity simulation as a teaching-learning method. This article presents the results of a Norwegian project including two simulation studies in which simulation teaching and learning were studied among students in the second year of a three-year bachelor nursing programme. The students were organised into small simulation groups with different roles; nurse, physician, family member and observer. Based on experiences in different roles, the students evaluated the simulation design characteristics and educational practices used in the simulation. In addition, three simulation outcomes were measured; knowledge (learning), Student Satisfaction and Self-confidence in Learning. The simulation was evaluated to be a valuable teaching-learning method to develop professional understanding and insight independent of roles. Overall, the students rated the Student Satisfaction and Self-confidence in Learning as high. Knowledge about the specific patient focus increased after the simulation activity. Students can develop practical, communication and collaboration skills, through experiencing the nurse's role. Assuming the observer role, students have the potential for vicarious learning, which could increase the learning value. Both methods of learning (practical experience or vicarious learning) may bridge the gap between theory and practice and contribute to the development of skills in reflective and critical thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    Science.gov (United States)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  7. Low vs. high fidelity: the importance of 'realism' in the simulation of a stone treatment procedure.

    Science.gov (United States)

    Sarmah, Piyush; Voss, Jim; Ho, Adrian; Veneziano, Domenico; Somani, Bhaskar

    2017-07-01

    Simulation training for stone surgery is now increasingly used as part of training curricula worldwide. A combination of low and high fidelity simulators has been used with varying degrees of 'realism' provided by them. In this review, we discuss low and high fidelity simulators used for ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL) stone procedures with their advantages, disadvantages and future direction for endourological simulation surgery. The final goal will be to understand whether or not 'realism' has to be considered as a critical element in simulation for this field. There is a wide range of simulators available for URS and PCNL training ranging from basic bench-type model to advanced virtual reality and cadaveric models, all providing various levels of realism. Although basic models might be more useful to novices, advanced models allow for complex and more realistic simulation training. With a wide variety of simulators now available and given the latest novelties in modular training curriculums, combination of low and high fidelity simulators that provide a realistic and cost-effective option seems to be the way forward. It is unavoidable that simulators will play an increasing role in endourological training.

  8. Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study

    Science.gov (United States)

    Olson, Susan L.

    2013-01-01

    High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…

  9. Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program

    Science.gov (United States)

    Denlea, Gregory Richard

    2017-01-01

    This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…

  10. High Fidelity Regolith Simulation Tool for ISRU Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  11. The Validity and Incremental Validity of Knowledge Tests, Low-Fidelity Simulations, and High-Fidelity Simulations for Predicting Job Performance in Advanced-Level High-Stakes Selection

    Science.gov (United States)

    Lievens, Filip; Patterson, Fiona

    2011-01-01

    In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…

  12. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  13. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    Science.gov (United States)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  14. Pharmacy Students' Learning and Satisfaction With High-Fidelity Simulation to Teach Drug-Induced Dyspepsia

    Science.gov (United States)

    2013-01-01

    Objective. To assess second-year pharmacy students’ acquisition of pharmacotherapy knowledge and clinical competence from participation in a high-fidelity simulation, and to determine the impact on the simulation experience of implementing feedback from previous students. Design. A high-fidelity simulation was used to present a patient case scenario of drug-induced dyspepsia with gastrointestinal bleeding. The simulation was revised based on feedback from a previous class of students to include a smaller group size, provision of session material to students in advance, and an improved learning environment. Assessment. Student performance on pre- and post-simulation knowledge and clinical competence tests documented significant improvements in students' knowledge of dyspepsia and associated symptoms, with the greatest improvement on questions relating to the hemodynamic effects of gastrointestinal bleeding. Students were more satisfied with the simulation experience compared to students in the earlier study. Conclusion. Participation in a high-fidelity simulation allowed pharmacy students to apply knowledge and skills learned in the classroom. Improved student satisfaction with the simulation suggests that implementing feedback obtained through student course evaluations can be an effective means of improving the curriculum. PMID:23519773

  15. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  16. A high fidelity model and code generator for the simulation of BOP systems

    International Nuclear Information System (INIS)

    Galen, S.; Vinay, M.

    1993-01-01

    TOPMERET represents a significant advance in the modelling fidelity of Balance of Plant systems (BOP). It is extremely flexible and can accommodate a variety of systems, including main steam, feedwater, turbine, condenser, offgas, large volumes, such as the containment, and water systems such as service water. It handles both normal and abnormal operating scenarios, including pipe break accidents. It was tested successfully on various simulators, and meets the fidelity required of BOP system models so as to successfully integrate with the high level of control automation of European designs. (Z.S.) 1 ref

  17. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  18. A high-fidelity approach towards simulation of pool boiling

    International Nuclear Information System (INIS)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces

  19. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  20. Self-Reflection of Video-Recorded High-Fidelity Simulations and Development of Clinical Judgment.

    Science.gov (United States)

    Bussard, Michelle E

    2016-09-01

    Nurse educators are increasingly using high-fidelity simulators to improve prelicensure nursing students' ability to develop clinical judgment. Traditionally, oral debriefing sessions have immediately followed the simulation scenarios as a method for students to connect theory to practice and therefore develop clinical judgment. Recently, video recording of the simulation scenarios is being incorporated. This qualitative, interpretive description study was conducted to identify whether self-reflection on video-recorded high-fidelity simulation (HFS) scenarios helped prelicensure nursing students to develop clinical judgment. Tanner's clinical judgment model was the framework for this study. Four themes emerged from this study: Confidence, Communication, Decision Making, and Change in Clinical Practice. This study indicated that self-reflection of video-recorded HFS scenarios is beneficial for prelicensure nursing students to develop clinical judgment. [J Nurs Educ. 2016;55(9):522-527.]. Copyright 2016, SLACK Incorporated.

  1. A study on the usefulness of high fidelity patient simulation in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Bikramjit Pal

    2018-01-01

    Full Text Available Introduction: Simulation is the imitation of the operation of a real-world process or system over time. Innovative simulation training solutions are now being used to train medical professionals in an attempt to reduce the number of safety concerns that have adverse effects on the patients. Objectives: (a To determine its usefulness as a teaching or learning tool for management of surgical emergencies, both in the short term and medium term by students’ perception. (b To plan future teaching methodology regarding hi-fidelity simulation based on the study outcomes and re-assessment of the current training modules. Methods: Quasi-experimental time series design with pretest-posttest interventional study. Quantitative data was analysed in terms of Mean, Standard Deviation and standard error of Mean. Statistical tests of significance like Repeated Measure of Analysis of Variance (ANOVA were used for comparisons. P value < 0.001 was considered to be statistically significant. Results: The students opined that the simulated sessions on high fidelity simulators had encouraged their active participation which was appropriate to their current level of learning. It helped them to think fast and the training sessions resembled a real life situation. The study showed that learning had progressively improved with each session of simulation with corresponding decrease in stress. Conclusion: Implementation of high fidelity simulation based learning in our Institute had been perceived favourably by a large number of students in enhancing their knowledge over time in management of trauma and surgical emergencies.

  2. Simulation Learning PC Screen-Based vs. High Fidelity

    Science.gov (United States)

    2011-08-01

    agency or compliance inspection by the HHS or Food and Drug Administration (FDA) or other outside governmental agency concerning clinical investigation...patient wearing BDUs, four different cervical collars (long, regular, short, no neck), litter, dog tags 1 Attachment G. C-Spine Pilot algorithm Personnel...PMH: healthy male, history of fracture right humerus playing rugby in high-school. No known allergies . Last medical clinic VS: 120/78, HR

  3. High-Fidelity Simulation: Preparing Dental Hygiene Students for Managing Medical Emergencies.

    Science.gov (United States)

    Bilich, Lisa A; Jackson, Sarah C; Bray, Brenda S; Willson, Megan N

    2015-09-01

    Medical emergencies can occur at any time in the dental office, so being prepared to properly manage the situation can be the difference between life and death. The entire dental team must be properly trained regarding all aspects of emergency management in the dental clinic. The aim of this study was to evaluate a new educational approach using a high-fidelity simulator to prepare dental hygiene students for medical emergencies. This study utilized high-fidelity simulation (HFS) to evaluate the abilities of junior dental hygiene students at Eastern Washington University to handle a medical emergency in the dental hygiene clinic. Students were given a medical emergency scenario requiring them to assess the emergency and implement life-saving protocols in a simulated "real-life" situation using a high-fidelity manikin. Retrospective data were collected for four years from the classes of 2010 through 2013 (N=114). The results indicated that learning with simulation was effective in helping the students identify the medical emergency in a timely manner, implement emergency procedures correctly, locate and correctly utilize contents of the emergency kit, administer appropriate intervention/treatment for a specific patient, and provide the patient with appropriate follow-up instructions. For dental hygiene programs seeking to enhance their curricula in the area of medical emergencies, this study suggests that HFS is an effective tool to prepare students to appropriately handle medical emergencies. Faculty calibration is essential to standardize simulation.

  4. First experiences of high-fidelity simulation training in junior nursing students in Korea.

    Science.gov (United States)

    Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi

    2015-07-01

    This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  5. Towards developing high-fidelity simulated learning environment training modules in audiology.

    Science.gov (United States)

    Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M

    2017-02-01

    This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  6. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  7. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-fidelity Mannequins?

    Science.gov (United States)

    Warrington, Steven J; Beeson, Michael S; Fire, Frank L

    2013-05-01

    Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes) have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1). Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%). Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%), and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, p=0.0007). Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, p=0.04). There was no considerable difference in the total time taken per case. A simulation stethoscope may be a useful adjunct to

  8. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-Fidelity Mannequins?

    Directory of Open Access Journals (Sweden)

    Steven J Warrington

    2013-05-01

    Full Text Available Introduction: Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Methods: Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1. Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Results: Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%. Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%, and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, P = 0.0007. Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, P = 0.04. There was no considerable difference in the total time taken per case

  9. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  10. High-Fidelity Contrast Reaction Simulation Training: Performance Comparison of Faculty, Fellows, and Residents.

    Science.gov (United States)

    Pfeifer, Kyle; Staib, Lawrence; Arango, Jennifer; Kirsch, John; Arici, Mel; Kappus, Liana; Pahade, Jay

    2016-01-01

    Reactions to contrast material are uncommon in diagnostic radiology, and vary in clinical presentation from urticaria to life-threatening anaphylaxis. Prior studies have demonstrated a high error rate in contrast reaction management, with smaller studies using simulation demonstrating variable data on effectiveness. We sought to assess the effectiveness of high-fidelity simulation in teaching contrast reaction management for residents, fellows, and attendings. A 20-question multiple-choice test assessing contrast reaction knowledge, with Likert-scale questions assessing subjective comfort levels of management of contrast reactions, was created. Three simulation scenarios that represented a moderate reaction, a severe reaction, and a contrast reaction mimic were completed in a one-hour period in a simulation laboratory. All participants completed a pretest and a posttest at one month. A six-month delayed posttest was given, but was optional for all participants. A total of 150 radiologists participated (residents = 52; fellows = 24; faculty = 74) in the pretest and posttest; and 105 participants completed the delayed posttest (residents = 31; fellows = 17; faculty = 57). A statistically significant increase was found in the one-month posttest (P < .00001) and the six-month posttest scores (P < .00001) and Likert scores (P < .001) assessing comfort level in managing all contrast reactions, compared with the pretest. Test scores and comfort level for moderate and severe reactions significantly decreased at six months, compared with the one-month posttest (P < .05). High-fidelity simulation is an effective learning tool, allowing practice of "high-acuity" situation management in a nonthreatening environment; the simulation training resulted in significant improvement in test scores, as well as an increase in subjective comfort in management of reactions, across all levels of training. A six-month refresher course is suggested, to maintain knowledge and comfort level in

  11. Using "The Burns Suite" as a Novel High Fidelity Simulation Tool for Interprofessional and Teamwork Training.

    Science.gov (United States)

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2016-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide

  12. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation

    Science.gov (United States)

    2016-12-01

    10 Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart . 15 Figure 1.9...Methodology roadmaps: experimental-design flowchart showing hybrid sensor models integrated from three simulation categories, followed by overall...simulation display and output produced by Java Simkit program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 4.5 Hybrid

  13. Collective efficacy in a high-fidelity simulation of an airline operations center

    Science.gov (United States)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  14. Evaluation of high-fidelity simulation training in radiation oncology using an outcomes logic model

    International Nuclear Information System (INIS)

    Giuliani, Meredith; Gillan, Caitlin; Wong, Olive; Harnett, Nicole; Milne, Emily; Moseley, Doug; Thompson, Robert; Catton, Pamela; Bissonnette, Jean-Pierre

    2014-01-01

    To evaluate the feasibility and educational value of high-fidelity, interprofessional team-based simulation in radiation oncology. The simulation event was conducted in a radiation oncology department during a non-clinical day. It involved 5 simulation scenarios that were run over three 105 minute timeslots in a single day. High-acuity, low-frequency clinical situations were selected and included HDR brachytherapy emergency, 4D CT artifact management, pediatric emergency clinical mark-up, electron scalp trial set-up and a cone beam CT misregistration incident. A purposive sample of a minimum of 20 trainees was required to assess recruitment feasibility. A faculty radiation oncologist (RO), medical physicist (MP) or radiation therapist (RTT), facilitated each case. Participants completed a pre event survey of demographic data and motivation for participation. A post event survey collected perceptions of familiarity with the clinical content, comfort with interprofessional practice, and event satisfaction, scored on a 1–10 scale in terms of clinical knowledge, clinical decision making, clinical skills, exposure to other trainees and interprofessional communication. Means and standard deviations were calculated. Twenty-one trainees participated including 6 ROs (29%), 6 MPs (29%), and 9 RTTs (43%). All 12 cases (100%) were completed within the allocated 105 minutes. Nine faculty facilitators, (3MP, 2 RO, 4 RTTs) were required for 405 minutes each. Additional costs associated with this event were 154 hours to build the high fidelity scenarios, 2 standardized patients (SPs) for a total of 15.5 hours, and consumables.The mean (±SD) educational value score reported by participants with respect to clinical knowledge was 8.9 (1.1), clinical decision making 8.9 (1.3), clinical skills 8.9 (1.1), exposure to other trainees 9.1 (2.3) and interprofessional communication 9.1 (1.0). Fifteen (71%) participants reported the cases were of an appropriate complexity. The importance

  15. High-fidelity simulation in Neonatology and the Italian experience of Nina

    Directory of Open Access Journals (Sweden)

    Armando Cuttano

    2012-10-01

    Full Text Available The modern methodology of simulation was born in the aeronautical field. In medicine, anesthetists showed great attention for technological advances and simulation, closely followed by surgeons with minimally invasive surgery. In Neonatology training in simulation is actually useful in order to face unexpected dramatic events, to minimize clinical risk preventing errors and to optimize team work. Critical issues in simulation are: teachers-learners relationship, focus on technical and non-technical skills, training coordination, adequate scenarios, effective debriefing. Therefore, the quality of a simulation training center is multi-factorial and is not only related to the mannequin equipment. High-fidelity simulation is the most effective method in education. In Italy simulation for education in Medicine has been used for a few years only. In Pisa we founded Nina (that is the acronymous for the Italian name of the Center, CeNtro di FormazIone e SimulazioNe NeonAtale, the first neonatal simulation center dedicated but integrated within a Hospital Unit in Italy. This paper describes how we manage education in Nina Center, in order to offer a model for other similar experiences.

  16. Exploring the use of high-fidelity simulation training to enhance clinical skills.

    Science.gov (United States)

    Ann Kirkham, Lucy

    2018-02-07

    The use of interprofessional simulation training to enhance nursing students' performance of technical and non-technical clinical skills is becoming increasingly common. Simulation training can involve the use of role play, virtual reality or patient simulator manikins to replicate clinical scenarios and assess the nursing student's ability to, for example, undertake clinical observations or work as part of a team. Simulation training enables nursing students to practise clinical skills in a safe environment. Effective simulation training requires extensive preparation, and debriefing is necessary following a simulated training session to review any positive or negative aspects of the learning experience. This article discusses a high-fidelity simulated training session that was used to assess a group of third-year nursing students and foundation level 1 medical students. This involved the use of a patient simulator manikin in a scenario that required the collaborative management of a deteriorating patient. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  17. Proof-of-principle of high-fidelity coupled CRUD deposition and cycle depletion simulation

    International Nuclear Information System (INIS)

    Walter, Daniel J.; Kendrick, Brian K.; Petrov, Victor; Manera, Annalisa; Collins, Benjamin; Downar, Thomas

    2015-01-01

    A multiphysics framework for the high-fidelity simulation of CRUD deposition is developed to better understand the coupled physics and their respective feedback mechanisms. This framework includes the primary physics of lattice depletion, computational fluid dynamics, and CRUD chemistry. The three physics are coupled together via the operator-splitting technique, where predictor–corrector and fixed-point iteration schemes are utilized to converge the nonlinear solution. High-fidelity simulations may provide a means to predict and assess potential operating issues, including CRUD induced power shift and CRUD induced localized corrosion, known as CIPS and CILC, respectively. As a proof-of-principle, a coupled 500-day cycle depletion simulation of a pressurized water reactor fuel pin cell was performed using the coupled code suite; a burnup of 31 MWd/kgHM was reached. The simulation recreated the classic striped CRUD pattern often seen on pulled fuel rods containing CRUD. It is concluded that the striping is caused by the flow swirl induced by spacer grid mixing vanes. Two anti-correlated effects contribute to the striping: (1) the flow swirl yields significant azimuthal temperature variations, which impact the locations where CRUD deposits, and (2) the flow swirl is correlated to increased shear stress along the cladding surface and subsequent erosion of the CRUD layer. The CIPS condition of the core is concluded to be primarily controlled by lithium tetraborate precipitation, referred to as boron hideout, which occurs in regions experiencing subcooled nucleate boiling as soluble boron and lithium species reach their solubility limit within the CRUD layer. Subsequently, a localized reduction in power occurs due to the high neutron absorption cross section of boron-10

  18. High fidelity case-based simulation debriefing: everything you need to know.

    Science.gov (United States)

    Hart, Danielle; McNeil, Mary Ann; Griswold-Theodorson, Sharon; Bhatia, Kriti; Joing, Scott

    2012-09-01

    In this 30-minute talk, the authors take an in-depth look at how to debrief high-fidelity case-based simulation sessions, including discussion on debriefing theory, goals, approaches, and structure, as well as ways to create a supportive and safe learning environment, resulting in successful small group learning and self-reflection. Emphasis is placed on the "debriefing with good judgment" approach. Video clips of sample debriefing attempts, highlighting the "dos and don'ts" of simulation debriefing, are included. The goal of this talk is to provide you with the necessary tools and information to develop a successful and effective debriefing approach. There is a bibliography and a quick reference guide in Data Supplements S1 and S2 (available as supporting information in the online version of this paper). © 2012 by the Society for Academic Emergency Medicine.

  19. ROSE: A realtime object oriented software environment for high fidelity replica simulation

    International Nuclear Information System (INIS)

    Abramovitch, A.

    1994-01-01

    An object oriented software environment used for the production testing and documentation of real time models for high fidelity training simulators encompasses a wide variety of software constructs including code generators for various classes of physical systems, model executive control programs, a high resolution graphics editor, as well as databases and associated access routines used to store and control information transfer among the various software entities. CAE Electronics' newly developed ROSE allows for the generation and integrated test of thermalhydraulic, analog control, digital control and electrical system models. Based on an iconical/standard subroutine representation of standard plant components along with an admittance matrix solution governed by the topology of the system under consideration, the ROSE blends together network solution algorithms and standard component models, both previously time tested via manual implementation into a single integrated automated software environment. The methodology employed to construct the ROSE, along with a synopsis of the various CASE tools integrated together to form a complete graphics based system for high fidelity real time code generation and validation is described in the presentation. (1 fig.)

  20. The experiences of last-year student midwives with High-Fidelity Perinatal Simulation training: A qualitative descriptive study.

    Science.gov (United States)

    Vermeulen, Joeri; Beeckman, Katrien; Turcksin, Rivka; Van Winkel, Lies; Gucciardo, Léonardo; Laubach, Monika; Peersman, Wim; Swinnen, Eva

    2017-06-01

    Simulation training is a powerful and evidence-based teaching method in healthcare. It allows students to develop essential competences that are often difficult to achieve during internships. High-Fidelity Perinatal Simulation exposes them to real-life scenarios in a safe environment. Although student midwives' experiences need to be considered to make the simulation training work, these have been overlooked so far. To explore the experiences of last-year student midwives with High-Fidelity Perinatal Simulation training. A qualitative descriptive study, using three focus group conversations with last-year student midwives (n=24). Audio tapes were transcribed and a thematic content analysis was performed. The entire data set was coded according to recurrent or common themes. To achieve investigator triangulation and confirm themes, discussions among the researchers was incorporated in the analysis. Students found High-Fidelity Perinatal Simulation training to be a positive learning method that increased both their competence and confidence. Their experiences varied over the different phases of the High-Fidelity Perinatal Simulation training. Although uncertainty, tension, confusion and disappointment were experienced throughout the simulation trajectory, they reported that this did not affect their learning and confidence-building. As High-Fidelity Perinatal Simulation training constitutes a helpful learning experience in midwifery education, it could have a positive influence on maternal and neonatal outcomes. In the long term, it could therefore enhance the midwifery profession in several ways. The present study is an important first step in opening up the debate about the pedagogical use of High-Fidelity Perinatal Simulation training within midwifery education. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  1. High-Fidelity Simulation in Occupational Therapy Curriculum: Impact on Level II Fieldwork Performance

    Directory of Open Access Journals (Sweden)

    Rebecca Ozelie

    2016-10-01

    Full Text Available Simulation experiences provide experiential learning opportunities during artificially produced real-life medical situations in a safe environment. Evidence supports using simulation in health care education yet limited quantitative evidence exists in occupational therapy. This study aimed to evaluate the differences in scores on the AOTA Fieldwork Performance Evaluation for the Occupational Therapy Student of Level II occupational therapy students who received high-fidelity simulation training and students who did not. A retrospective analysis of 180 students from a private university was used. Independent samples nonparametric t tests examined mean differences between Fieldwork Performance Evaluation scores of those who did and did not receive simulation experiences in the curriculum. Mean ranks were also analyzed for subsection scores and practice settings. Results of this study found no significant difference in overall Fieldwork Performance Evaluation scores between the two groups. The students who completed simulation and had fieldwork in inpatient rehabilitation had the greatest increase in mean rank scores and increases in several subsections. The outcome measure used in this study was found to have limited discriminatory capability and may have affected the results; however, this study finds that using simulation may be a beneficial supplement to didactic coursework in occupational therapy curriculums.

  2. High-fidelity simulations for clean and efficient combustion of alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oefelein, J C; Chen, J H [Reacting Flow Research Department, Sandia National Laboratories, Livermore, CA 94550 (United States); Sankaran, R, E-mail: oefelei@sandia.go [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2009-07-01

    There is an urgent and growing demand for high-fidelity simulations that capture complex turbulence-chemistry interactions in propulsion and power systems, and in particular, that capture and discriminate the effects of fuel variability. This project addresses this demand using the Large Eddy Simulation (LES) technique (led by Oefelein) and the Direct Numerical Simulation (DNS) technique (led by Chen). In particular, we are conducting research under the INCITE program that is tightly coupled with funded projects established under the DOE Basic Energy Sciences and Energy Efficiency and Renewable Energy programs that will provide the foundational science required to develop a predictive modeling capability for design of advanced engines for transportation. Application of LES provides the formal ability to treat the full range of multidimensional time and length scales that exist in turbulent reacting flows in a computationally feasible manner and thus provides a way to simulate reacting flow phenomena in complex internal-combustion engine geometries at device relevant conditions. Application of DNS provides a way to study fundamental issues related to small-scale combustion processes in canonical configurations to understand dynamics that occur over a range of reactive-diffusive scales. Here we describe the challenges and present representative examples of the types of simulations each respective tool has been used for as part of the INCITE program. We focus on recent experiences on the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS) Cray-XT Platform (i.e., Jaguar).

  3. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  4. Embedding High-Fidelity Simulation Into a Foundations of Nursing Course.

    Science.gov (United States)

    Talbot, Megan Sary

    2015-01-01

    Delay in recognizing the need for and initiating lifesaving measures is unacceptable in health care. It is never too early to teach novice nursing students to recognize and respond to early warning signs of patient deterioration. The rapid response system was developed to expedite recognition of and response to changes in a patient's condition. Use of high-fidelity simulation by beginning nursing students to practice recognizing and responding to patient deterioration is vital to both the welfare of patients and the edification of students. Recognizing and responding quickly to patients' early warning signs of deterioration can determine a patient's outcome. This article discusses the importance of instructing beginning nursing students in identifying and reacting appropriately to early signs of patient deterioration and in following the chain of command to activate the rapid response team.

  5. Prospective randomized comparison of standard didactic lecture versus high-fidelity simulation for radiology resident contrast reaction management training.

    Science.gov (United States)

    Wang, Carolyn L; Schopp, Jennifer G; Petscavage, Jonelle M; Paladin, Angelisa M; Richardson, Michael L; Bush, William H

    2011-06-01

    The objective of our study was to assess whether high-fidelity simulation-based training is more effective than traditional didactic lecture to train radiology residents in the management of contrast reactions. This was a prospective study of 44 radiology residents randomized into a simulation group versus a lecture group. All residents attended a contrast reaction didactic lecture. Four months later, baseline knowledge was assessed with a written test, which we refer to as the "pretest." After the pretest, the 21 residents in the lecture group attended a repeat didactic lecture and the 23 residents in the simulation group underwent high-fidelity simulation-based training with five contrast reaction scenarios. Next, all residents took a second written test, which we refer to as the "posttest." Two months after the posttest, both groups took a third written test, which we refer to as the "delayed posttest," and underwent performance testing with a high-fidelity severe contrast reaction scenario graded on predefined critical actions. There was no statistically significant difference between the simulation and lecture group pretest, immediate posttest, or delayed posttest scores. The simulation group performed better than the lecture group on the severe contrast reaction simulation scenario (p = 0.001). The simulation group reported improved comfort in identifying and managing contrast reactions and administering medications after the simulation training (p ≤ 0.04) and was more comfortable than the control group (p = 0.03), which reported no change in comfort level after the repeat didactic lecture. When compared with didactic lecture, high-fidelity simulation-based training of contrast reaction management shows equal results on written test scores but improved performance during a high-fidelity severe contrast reaction simulation scenario.

  6. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    Science.gov (United States)

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights

  7. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    Full Text Available Abstract Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents.

  8. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen

    2009-02-02

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  9. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  10. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  11. High-Fidelity Simulation of Pediatric Emergency Care: An Eye-Opening Experience for Baccalaureate Nursing Students.

    Science.gov (United States)

    Small, Sandra P; Colbourne, Peggy A; Murray, Cynthia L

    2018-01-01

    Background Little attention has been given to in-depth examination of what high-fidelity simulation is like for nursing students within the context of a pediatric emergency, such as a cardiopulmonary arrest. It is possible that such high-fidelity simulation could provoke in nursing students intense psychological reactions. Purpose The purpose of this study was to learn about baccalaureate nursing students' lived experience of high-fidelity simulation of pediatric cardiopulmonary arrest. Method Phenomenological methods were used. Twenty-four interviews were conducted with 12 students and were analyzed for themes. Results The essence of the experience is that it was eye-opening. The students found the simulation to be a surprisingly realistic nursing experience as reflected in their perceiving the manikin as a real patient, thinking that they were saving their patient's life, feeling like a real nurse, and feeling relief after mounting stress. It was a surprisingly valuable learning experience in that the students had an increased awareness of the art and science of nursing and increased understanding of the importance of teamwork and were feeling more prepared for clinical practice and wanting more simulation experiences. Conclusion Educators should capitalize on the benefits of high-fidelity simulation as a pedagogy, while endeavoring to provide psychologically safe learning.

  12. Bridging burn care education with modern technology, an integration with high fidelity human patient simulation.

    Science.gov (United States)

    Reeves, Patrick T; Borgman, Matthew A; Caldwell, Nicole W; Patel, Leela; Aden, James; Duggan, John P; Serio-Melvin, Maria L; Mann-Salinas, Elizabeth A

    2018-08-01

    The Advanced Burn Life Support (ABLS) program is a burn-education curriculum nearly 30 years in the making, focusing on the unique challenges of the first 24h of care after burn injury. Our team applied high fidelity human patient simulation (HFHPS) to the established ABLS curriculum. Our hypothesis was that HFHPS would be a feasible, easily replicable, and valuable adjunct to the current curriculum that would enhance learner experience. This prospective, evidenced-based practice project was conducted in a single simulation center employing the American Burn Association's ABLS curriculum using HFHPS. Participants managed 7 separate simulated polytrauma and burn scenarios with resultant clinical complications. After training, participants completed written and practical examinations as well as satisfaction surveys. From 2012 to 2013, 71 students participated in this training. Simulation (ABLS-Sim) participants demonstrated a 2.5% increase in written post-test scores compared to traditional ABLS Provider Course (ABLS Live) (p=0.0016). There was no difference in the practical examination when comparing ABLS-Sim versus ABLS Live. Subjectively, 60 (85%) participants completed surveys. The Educational Practice Questionnaire showed best practices rating of 4.5±0.7; with importance of learning rated at 4.4±0.8. The Simulation Design Scale rating for design was 4.6±0.6 with an importance rating of 4.4±0.8. Overall Satisfaction and Self-Confidence with Learning were 4.4±0.7 and 4.5±0.7, respectfully. Integrating HFHPS with the current ABLS curriculum led to higher written exam scores, high levels of confidence, satisfaction, and active learning, and presented an evidenced-based model for education that is easily employable for other facilities nationwide. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  13. The Effect of High-Fidelity Cardiopulmonary Resuscitation (CPR) Simulation on Athletic Training Student Knowledge, Confidence, Emotions, and Experiences

    Science.gov (United States)

    Tivener, Kristin Ann; Gloe, Donna Sue

    2015-01-01

    Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…

  14. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students

    Science.gov (United States)

    Vieck, Jana

    2013-01-01

    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  15. Embedding Microethical Dilemmas in High-Fidelity Simulation Scenarios: Preparing Nursing Students for Ethical Practice.

    Science.gov (United States)

    Krautscheid, Lorretta C

    2017-01-01

    Despite the inclusion of ethics education in the formal curriculum, students felt ill-prepared to manage ethical issues and protect patients' health and well-being. Nursing students reported knowing what should be done to promote optimal patient care; however, they also reported an inability to act on their convictions due to fear of reprisal, powerlessness, and low confidence. Bloom's Taxonomy guided the development and implementation of experiential-applied ethics education via microethical dilemmas embedded in existing high-fidelity simulation (HFS) scenarios. Students were unaware that ethical dilemmas would be presented, replicating complex and spontaneous practice environments. Students reported that the educational strategy was powerful, increasing ethical decision-making confidence, empowering effective advocacy, and building courage to overcome fears and defend ethical practice. Simulation extends ethics education beyond the cognitive domain, ensuring the purposeful integration of affective and psychomotor learning, which promotes congruence between knowing what to do and acting on one's convictions. [J Nurs Educ. 2017;56(1):55-58.]. Copyright 2017, SLACK Incorporated.

  16. Barriers and enablers to the use of high-fidelity patient simulation manikins in nurse education: an integrative review.

    Science.gov (United States)

    Al-Ghareeb, Amal Z; Cooper, Simon J

    2016-01-01

    This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Science.gov (United States)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  18. Nuclear power plant training simulator fidelity assessment

    International Nuclear Information System (INIS)

    Carter, R.J.; Laughery, K.R.

    1985-01-01

    The fidelity assessment portion of a methodology for evaluating nuclear power plant simulation facilities in regard to their appropriateness for conducting the Nuclear Regulatory Commission's operating test was described. The need for fidelity assessment, data sources, and fidelity data to be collected are addressed. Fidelity data recording, collection, and analysis are discussed. The processes for drawing conclusions from the fidelity assessment and evaluating the adequacy of the simulator control-room layout were presented. 3 refs

  19. Advancing interprofessional education through the use of high fidelity human patient simulators

    Directory of Open Access Journals (Sweden)

    Kane-Gill SL

    2013-06-01

    Full Text Available Background: Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered.Objective: We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues.Methods: Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS Assessment by 2 independent evaluators external to the project.Results: The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01, 2 to 3 (p = 0.035, and overall from 1 to 4 (p = 0.001. The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99. Students perceived the HFS improved: their ability to communicate with other professionals (median =4; confidence in patient care in an IP team (median=4. It also stimulated student interest in IP work (median=4.5, and was an efficient use of student time (median=4.5Conclusion: The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the

  20. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  1. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    International Nuclear Information System (INIS)

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-01-01

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  2. A High Fidelity Approach to Data Simulation for Space Situational Awareness Missions

    Science.gov (United States)

    Hagerty, S.; Ellis, H., Jr.

    2016-09-01

    Space Situational Awareness (SSA) is vital to maintaining our Space Superiority. A high fidelity, time-based simulation tool, PROXOR™ (Proximity Operations and Rendering), supports SSA by generating realistic mission scenarios including sensor frame data with corresponding truth. This is a unique and critical tool for supporting mission architecture studies, new capability (algorithm) development, current/future capability performance analysis, and mission performance prediction. PROXOR™ provides a flexible architecture for sensor and resident space object (RSO) orbital motion and attitude control that simulates SSA, rendezvous and proximity operations scenarios. The major elements of interest are based on the ability to accurately simulate all aspects of the RSO model, viewing geometry, imaging optics, sensor detector, and environmental conditions. These capabilities enhance the realism of mission scenario models and generated mission image data. As an input, PROXOR™ uses a library of 3-D satellite models containing 10+ satellites, including low-earth orbit (e.g., DMSP) and geostationary (e.g., Intelsat) spacecraft, where the spacecraft surface properties are those of actual materials and include Phong and Maxwell-Beard bidirectional reflectance distribution function (BRDF) coefficients for accurate radiometric modeling. We calculate the inertial attitude, the changing solar and Earth illumination angles of the satellite, and the viewing angles from the sensor as we propagate the RSO in its orbit. The synthetic satellite image is rendered at high resolution and aggregated to the focal plane resolution resulting in accurate radiometry even when the RSO is a point source. The sensor model includes optical effects from the imaging system [point spread function (PSF) includes aberrations, obscurations, support structures, defocus], detector effects (CCD blooming, left/right bias, fixed pattern noise, image persistence, shot noise, read noise, and quantization

  3. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review.

    Science.gov (United States)

    Issenberg, S Barry; McGaghie, William C; Petrusa, Emil R; Lee Gordon, David; Scalese, Ross J

    2005-01-01

    1969 to 2003, 34 years. Simulations are now in widespread use in medical education and medical personnel evaluation. Outcomes research on the use and effectiveness of simulation technology in medical education is scattered, inconsistent and varies widely in methodological rigor and substantive focus. Review and synthesize existing evidence in educational science that addresses the question, 'What are the features and uses of high-fidelity medical simulations that lead to most effective learning?'. The search covered five literature databases (ERIC, MEDLINE, PsycINFO, Web of Science and Timelit) and employed 91 single search terms and concepts and their Boolean combinations. Hand searching, Internet searches and attention to the 'grey literature' were also used. The aim was to perform the most thorough literature search possible of peer-reviewed publications and reports in the unpublished literature that have been judged for academic quality. Four screening criteria were used to reduce the initial pool of 670 journal articles to a focused set of 109 studies: (a) elimination of review articles in favor of empirical studies; (b) use of a simulator as an educational assessment or intervention with learner outcomes measured quantitatively; (c) comparative research, either experimental or quasi-experimental; and (d) research that involves simulation as an educational intervention. Data were extracted systematically from the 109 eligible journal articles by independent coders. Each coder used a standardized data extraction protocol. Qualitative data synthesis and tabular presentation of research methods and outcomes were used. Heterogeneity of research designs, educational interventions, outcome measures and timeframe precluded data synthesis using meta-analysis. Coding accuracy for features of the journal articles is high. The extant quality of the published research is generally weak. The weight of the best available evidence suggests that high-fidelity medical

  4. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  5. Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)

    Science.gov (United States)

    2013-08-01

    1.00 (0.00) Score Change (mean change and sd) Assemble Equipment (Yes/No) 1. Water soluble lubricant 2. Suction equipment 3. Selecting correct...0.92 (0.25) 0.64 (0.31) 0.86 (0.22) 0.98 (0.07) Mean score change and sd Procedural Steps (Yes/No) 1. Lubricate tube with water -soluble...w., Johnson, C., Hsu, E. and  Wasser , T. (2006). Using innovative  simulation modalities for civilian based, chemical, biological, radiological

  6. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    DEFF Research Database (Denmark)

    Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær

    2017-01-01

    surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple......Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review...

  7. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    Science.gov (United States)

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  8. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  9. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  10. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session?

    Science.gov (United States)

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás

    2018-02-12

    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in

  11. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  12. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    Science.gov (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The effect of high-fidelity patient simulation on the critical thinking and clinical decision-making skills of new graduate nurses.

    Science.gov (United States)

    Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia

    2012-03-01

    This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.

  14. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  15. Web-Based versus High-Fidelity Simulation Training for Certified Registered Nurse Anesthetists in the Management of High Risk/Low Occurrence Anesthesia Events

    Science.gov (United States)

    Kimemia, Judy

    2017-01-01

    Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…

  16. Assessing Technical Performance and Determining the Learning Curve in Cleft Palate Surgery Using a High-Fidelity Cleft Palate Simulator.

    Science.gov (United States)

    Podolsky, Dale J; Fisher, David M; Wong Riff, Karen W; Szasz, Peter; Looi, Thomas; Drake, James M; Forrest, Christopher R

    2018-06-01

    This study assessed technical performance in cleft palate repair using a newly developed assessment tool and high-fidelity cleft palate simulator through a longitudinal simulation training exercise. Three residents performed five and one resident performed nine consecutive endoscopically recorded cleft palate repairs using a cleft palate simulator. Two fellows in pediatric plastic surgery and two expert cleft surgeons also performed recorded simulated repairs. The Cleft Palate Objective Structured Assessment of Technical Skill (CLOSATS) and end-product scales were developed to assess performance. Two blinded cleft surgeons assessed the recordings and the final repairs using the CLOSATS, end-product scale, and a previously developed global rating scale. The average procedure-specific (CLOSATS), global rating, and end-product scores increased logarithmically after each successive simulation session for the residents. Reliability of the CLOSATS (average item intraclass correlation coefficient (ICC), 0.85 ± 0.093) and global ratings (average item ICC, 0.91 ± 0.02) among the raters was high. Reliability of the end-product assessments was lower (average item ICC, 0.66 ± 0.15). Standard setting linear regression using an overall cutoff score of 7 of 10 corresponded to a pass score for the CLOSATS and the global score of 44 (maximum, 60) and 23 (maximum, 30), respectively. Using logarithmic best-fit curves, 6.3 simulation sessions are required to reach the minimum standard. A high-fidelity cleft palate simulator has been developed that improves technical performance in cleft palate repair. The simulator and technical assessment scores can be used to determine performance before operating on patients.

  17. Benefits of a Unified LaSRS++ Simulation for NAS-Wide and High-Fidelity Modeling

    Science.gov (United States)

    Glaab, Patricia; Madden, Michael

    2014-01-01

    The LaSRS++ high-fidelity vehicle simulation was extended in 2012 to support a NAS-wide simulation mode. Since the initial proof-of-concept, the LaSRS++ NAS-wide simulation is maturing into a research-ready tool. A primary benefit of this new capability is the consolidation of the two modeling paradigms under a single framework to save cost, facilitate iterative concept testing between the two tools, and to promote communication and model sharing between user communities at Langley. Specific benefits of each type of modeling are discussed along with the expected benefits of the unified framework. Current capability details of the LaSRS++ NAS-wide simulations are provided, including the visualization tool, live data interface, trajectory generators, terminal routing for arrivals and departures, maneuvering, re-routing, navigation, winds, and turbulence. The plan for future development is also described.

  18. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    Science.gov (United States)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  19. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the

  20. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  1. [High fidelity simulation : a new tool for learning and research in pediatrics].

    Science.gov (United States)

    Bragard, I; Farhat, N; Seghaye, M-C; Schumacher, K

    2016-10-01

    Caring for a sick child represents a high risk activity that requires technical and non-technical skills related to several factors such as the rarity of certain events or the stress of caring for a child. As regard these conditions, medi¬cal simulation provides a learning environment without risk, the control of variables, the reproducibility of situations, and the confrontation with rare events. In this article, we des¬cribe the steps of a simulation session and outline the current knowledge of the use of simulation in paediatrics. A session of simulation includes seven phases following the model of Peter Dieckmann, particularly the scenario and the debriefing that form the heart of the learning experience. Several studies have shown the advantages of simulation for paediatric trai¬ning in terms of changes in attitudes, skills and knowledge. Some studies have demonstrated a beneficial transfer to prac¬tice. In conclusion, simulation provides great potential for training and research in paediatrics. The establishment of a collaborative research program by the whole simulation com¬munity would help ensure that this type of training improves the quality of care.

  2. Use of high fidelity operating room simulation to assess and teach communication, teamwork and laparoscopic skills: initial experience.

    Science.gov (United States)

    Gettman, Matthew T; Pereira, Claudio W; Lipsky, Katja; Wilson, Torrence; Arnold, Jacqueline J; Leibovich, Bradley C; Karnes, R Jeffrey; Dong, Yue

    2009-03-01

    Structured opportunities for learning communication, teamwork and laparoscopic principles are limited for urology residents. We evaluated and taught teamwork, communication and laparoscopic skills to urology residents in a simulated operating room. Scenarios related to laparoscopy (insufflator failure, carbon dioxide embolism) were developed using mannequins, urology residents and nurses. These scenarios were developed based on Accreditation Council for Graduate Medical Education core competencies and performed in a simulation center. Between the pretest scenario (insufflation failure) and the posttest scenario (carbon dioxide embolism) instruction was given on teamwork, communication and laparoscopic skills. A total of 19 urology residents participated in the training that involved participation in at least 2 scenarios. Performance was evaluated using validated teamwork instruments, questionnaires and videotape analysis. Significant improvement was noted on validated teamwork instruments between scenarios based on resident (pretest 24, posttest 27, p = 0.01) and expert (pretest 16, posttest 25, p = 0.008) evaluation. Increased teamwork and team performance were also noted between scenarios on videotape analysis with significant improvement for adherence to best practice (p = 0.01) and maintenance of positive rapport among team members (p = 0.02). Significant improvement in the setup of the laparoscopic procedure was observed (p = 0.01). Favorable face and content validity was noted for both scenarios. Teamwork, intraoperative communication and laparoscopic skills of urology residents improved during the high fidelity simulation course. Face and content validity of the individual sessions was favorable. In this study high fidelity simulation was effective for assessing and teaching Accreditation Council for Graduate Medical Education core competencies related to intraoperative communication, teamwork and laparoscopic skills.

  3. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  4. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    Science.gov (United States)

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    Science.gov (United States)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  6. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    Science.gov (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  7. High-fidelity quantum driving

    DEFF Research Database (Denmark)

    Bason, Mark George; Viteau, Matthieu; Malossi, Nicola

    2011-01-01

    Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources...... and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose–Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible...

  8. Severe Trauma Stress Inoculation Training for Combat Medics using High Fidelity Simulation

    Science.gov (United States)

    2013-12-01

    expressions; and improved sensors and communication systems for current medical training simulators. He has prior experience in software development for DoD...the "look and feel" of such injuries by providing the highly realistic visual, auditory, and haptic (touch) stimuli necessary to elicit stress...addressed during development included the following: • Microcontroller-based control system for monitoring sensors and automating the actions of the

  9. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    2018-05-01

    Full Text Available Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects’ performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Resumo: Introdução: O objetivo prim

  10. High-fidelity large eddy simulation for supersonic jet noise prediction

    Science.gov (United States)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the

  11. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    International Nuclear Information System (INIS)

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; TechX Corp.; Fermilab

    2008-01-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES)

  12. Design and optimization of large accelerator systems through high-fidelity electromagnetic simulations

    International Nuclear Information System (INIS)

    Ng, C; Akcelik, V; Candel, A; Chen, S; Ge, L; Kabel, A; Lee, Lie-Quan; Li, Z; Prudencio, E; Schussman, G; Uplenchwar, R; Xiao, L; Ko, K; Austin, T; Cary, J R; Ovtchinnikov, S; Smith, D N; Werner, G R; Bellantoni, L

    2008-01-01

    SciDAC-1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC Centers and Insitutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider and the Large Hadron Collider in high energy physics, the JLab 12-GeV Upgrade in nuclear physics, and the Spallation Neutron Source and the Linac Coherent Light Source in basic energy sciences

  13. Getting a head start: high-fidelity, simulation-based operating room team training of interprofessional students.

    Science.gov (United States)

    Paige, John T; Garbee, Deborah D; Kozmenko, Valeriy; Yu, Qingzhao; Kozmenko, Lyubov; Yang, Tong; Bonanno, Laura; Swartz, William

    2014-01-01

    Effective teamwork in the operating room (OR) is often undermined by the "silo mentality" of the differing professions. Such thinking is formed early in one's professional experience and is fostered by undergraduate medical and nursing curricula lacking interprofessional education. We investigated the immediate impact of conducting interprofessional student OR team training using high-fidelity simulation (HFS) on students' team-related attitudes and behaviors. Ten HFS OR interprofessional student team training sessions were conducted involving 2 standardized HFS scenarios, each of which was followed by a structured debriefing that targeted team-based competencies. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using the t-test. Additionally, mean scores of observer ratings of team performance after each scenario and participant ratings after the second scenario for an 11-item Likert-type teamwork scale were calculated and analyzed using one-way ANOVA and t-test. Eighteen nursing students, 20 nurse anesthetist students, and 28 medical students participated in the training. Statistically significant gains from mean pre- to post-training scores occurred on 11 of the 15 self-efficacy items. Statistically significant gains in mean observer performance scores were present on all 3 subscales of the teamwork scale from the first scenario to the second. A statistically significant difference was found in comparisons of mean observer scores with mean participant scores for the team-based behaviors subscale. High-fidelity simulation OR interprofessional student team training improves students' team-based attitudes and behaviors. Students tend to overestimate their team-based behaviors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Impact of high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students.

    Science.gov (United States)

    Fawaz, Mirna A; Hamdan-Mansour, Ayman M

    2016-11-01

    High-fidelity simulation (HFS) offers a strategy to facilitate cognitive, affective, and psychomotor outcomes and motivate the new generation of students. The purpose of this study was to examine the impact of using high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students. A post-test, quasi-experimental design was used. Two private universities in Lebanon were targeted to implement the intervention. A convenience sample of 56 nursing students from two private universities in Lebanon were recruited. Data were collected using the Lasater Clinical Judgment Rubric and the Motivated Strategies for Learning questionnaires. Nursing students exhibited significant improvement in clinical judgment and motivation due to exposure to HFS. There was a significant difference post HFS between the intervention group and the control group in clinical judgment intervention (t=5.23, pmotivation for academic achievement (t=-6.71, pstudents had higher mean scores of motivation (198.6, SD=10.5) in the intervention group than in the control group (161.6, SD=20). The analysis related to differences between the intervention and control groups in motivation and clinical judgment; controlling for previous experience in health care services, the analysis showed no significant difference (Wilk's lambda =0.77, F=1.09, p=0.374). There is a need for nursing educators to implement HFS in nursing curricula, where its integration can bridge the gap between theoretical knowledge and nursing practice and enhance critical thinking and motivation among nursing students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simulation-based rhomboid flap skills training during medical education: comparing low- and high-fidelity bench models.

    Science.gov (United States)

    Denadai, Rafael; Saad-Hossne, Rogerio; Raposo-Amaral, Cassio Eduardo

    2014-11-01

    To assess if the bench model fidelity interferes in the acquisition of rhomboid flap skills by medical students. Sixty novice medical students were randomly assigned to 5 practice conditions with instructor-directed Limberg rhomboid flap skills training: didactic materials (control group 1), low-fidelity rubberized line (group 2) or ethylene-vinyl acetate (group 3) bench models; high-fidelity chicken leg skin (group 4) or pig foot skin (group 5) bench models. Pretests and posttests were applied, and Global Rating Scale, effect size, and self-perceived confidence were used to evaluate all flap performances. Medical students from groups 2 to 5 showed better flap performances based on the Global Rating Scale (all P 0.05). The magnitude of the effect was considered large (>0.80) in all measurements. There was acquisition of rhomboid flap skills regardless of bench model fidelity.

  16. Utilizing Three-Dimensional Printing Technology to Assess the Feasibility of High-Fidelity Synthetic Ventricular Septal Defect Models for Simulation in Medical Education.

    Science.gov (United States)

    Costello, John P; Olivieri, Laura J; Krieger, Axel; Thabit, Omar; Marshall, M Blair; Yoo, Shi-Joon; Kim, Peter C; Jonas, Richard A; Nath, Dilip S

    2014-07-01

    The current educational approach for teaching congenital heart disease (CHD) anatomy to students involves instructional tools and techniques that have significant limitations. This study sought to assess the feasibility of utilizing present-day three-dimensional (3D) printing technology to create high-fidelity synthetic heart models with ventricular septal defect (VSD) lesions and applying these models to a novel, simulation-based educational curriculum for premedical and medical students. Archived, de-identified magnetic resonance images of five common VSD subtypes were obtained. These cardiac images were then segmented and built into 3D computer-aided design models using Mimics Innovation Suite software. An Objet500 Connex 3D printer was subsequently utilized to print a high-fidelity heart model for each VSD subtype. Next, a simulation-based educational curriculum using these heart models was developed and implemented in the instruction of 29 premedical and medical students. Assessment of this curriculum was undertaken with Likert-type questionnaires. High-fidelity VSD models were successfully created utilizing magnetic resonance imaging data and 3D printing. Following instruction with these high-fidelity models, all students reported significant improvement in knowledge acquisition (P 3D printing technology to create high-fidelity heart models with complex intracardiac defects. Furthermore, this tool forms the foundation for an innovative, simulation-based educational approach to teach students about CHD and creates a novel opportunity to stimulate their interest in this field. © The Author(s) 2014.

  17. Physiological Based Simulator Fidelity Design Guidance

    Science.gov (United States)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  18. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training.

    Science.gov (United States)

    Sharma, Mitesh; Horgan, Alan

    2012-08-01

    The aim of this study was to compare fresh-frozen cadavers (FFC) with a high-fidelity virtual reality simulator (VRS) as training tools in minimal access surgery for complex and relatively simple procedures. A prospective comparative face validity study between FFC and VRS (LAP Mentor(™)) was performed. Surgeons were recruited to perform tasks on both FFC and VRS appropriately paired to their experience level. Group A (senior) performed a laparoscopic sigmoid colectomy, Group B (intermediate) performed a laparoscopic incisional hernia repair, and Group C (junior) performed basic laparoscopic tasks (BLT) (camera manipulation, hand-eye coordination, tissue dissection and hand-transferring skills). Each subject completed a 5-point Likert-type questionnaire rating the training modalities in nine domains. Data were analysed using nonparametric tests. Forty-five surgeons were recruited to participate (15 per skill group). Median scores for subjects in Group A were significantly higher for evaluation of FFC in all nine domains compared to VRS (p < 0.01). Group B scored FFC significantly better (p < 0.05) in all domains except task replication (p = 0.06). Group C scored FFC significantly better (p < 0.01) in eight domains but not on performance feedback (p = 0.09). When compared across groups, juniors accepted VRS as a training model more than did intermediate and senior groups on most domains (p < 0.01) except team work. Fresh-frozen cadaver is perceived as a significantly overall better model for laparoscopic training than the high-fidelity VRS by all training grades, irrespective of the complexity of the operative procedure performed. VRS is still useful when training junior trainees in BLT.

  19. Implementation of a novel synchronous multi-site all day high-fidelity simulation.

    Science.gov (United States)

    Abraham, Paul; Verdonk, Franck; Buleon, Clement; Tesniere, Antoine; Lilot, Marc

    2018-01-01

    Integration of simulation in educational curricula for anesthesia and intensive care residents is a hot topic. There is a great interest for simulation centers to share their experiences through multi-site synchronous simulation sessions. The present study results from an experience conducted at three sites in France (Paris, Lyon, and Caen), which involved 16 instructors and 25 residents facing the same scenario across 1 day. Synchronous simulations were performed at each site with local and shared debriefing via teleconference. This innovative approach to simulation was found to be feasible, although certain difficulties were encountered with connectivity.

  20. Ventilator caregiver education through the use of high-fidelity pediatric simulators: a pilot study.

    Science.gov (United States)

    Tofil, Nancy M; Rutledge, Chrystal; Zinkan, J Lynn; Youngblood, Amber Q; Stone, Julie; Peterson, Dawn Taylor; Slayton, Donna; Makris, Chris; Magruder, Terri; White, Marjorie Lee

    2013-11-01

    Introduction. Home ventilator programs (HVP) have been developed to train parents of critically ill children. Simulators are used in health care, but not often for parents. We added simulation to our HVP and assessed parents' response. Methods. In July 2008, the HVP at Children's of Alabama added simulation to parent training. Debriefing was provided after the training session to reinforce correct skills and critical thinking. Follow-up surveys were completed after training. Results. Fifteen families participated. All parents were confident in changing tracheostomies, knowing signs of breathing difficulties, and responding to alarms. 71% strongly agree that simulation resulted in feeling better prepared to care for their child. 86% felt simulation improved their confidence in taking care of their child. Conclusion. Simulators provide a crucial transition between learned skills and application. This novel use of simulation-based education improves parents' confidence in emergencies and may lead to shortened training resulting in cost savings.

  1. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Solin, Pavel [Univ. of Reno, NV (United States); Ragusa, Jean [Texas A & M Univ., College Station, TX (United States)

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  2. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    International Nuclear Information System (INIS)

    Solin, Pavel; Ragusa, Jean

    2014-01-01

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  3. Virtual reality simulation training in a high-fidelity procedure suite

    DEFF Research Database (Denmark)

    Lönn, Lars; Edmond, John J; Marco, Jean

    2012-01-01

    To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite.......To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite....

  4. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    Science.gov (United States)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model

  5. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  6. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...

  7. High Fidelity Multi-Scale Regolith Simulation Tool for ISRU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  8. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    Science.gov (United States)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  9. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    International Nuclear Information System (INIS)

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-01-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un-SCRAM-ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role

  10. Pulse contour analysis of arterial waveform in a high fidelity human patient simulator.

    Science.gov (United States)

    Persona, Paolo; Saraceni, Elisabetta; Facchin, Francesca; Petranzan, Enrico; Parotto, Matteo; Baratto, Fabio; Ori, Carlo; Rossi, Sandra

    2017-10-03

    The measurement of cardiac output (CO) may be useful to improve the assessment of hemodynamics during simulated scenarios. The purpose of this study was to evaluate the feasibility of introducing an uncalibrated pulse contour device (MostCare, Vytech, Vygon, Padova, Italy) into the simulation environment. MostCare device was plugged to a clinical monitor and connected to the METI human patient simulator (HPS) to obtain a continuous arterial waveform analysis and CO calculation. In six different simulated clinical scenarios (baseline, ventricular failure, vasoplegic shock, hypertensive crisis, hypovolemic shock and aortic stenosis), the HPS-CO and the MostCare-CO were simultaneously recorded. The level of concordance between the two methods was assessed by the Bland and Altman analysis. 150-paired CO values were obtained. The HPS-CO values ranged from 2.3 to 6.6 L min -1 and the MostCare-CO values from 2.8 to 6.4 L min -1 . The mean difference between HPS-CO and MostCare-CO was - 0.3 L min -1 and the limits of agreement were - 1.5 and 0.9 L min -1 . The percentage of error was 23%. A good correlation between HPS-CO and MostCare-CO was observed in each scenario of the study (r = 0.88). Although MostCare-CO tended to underestimate the CO over the study period, good agreements were found between the two methods. Therefore, a pulse contour device can be integrated into the simulation environment, offering the opportunity to create new simulated clinical settings.

  11. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Smith, Ralph [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Williams, Brian [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Figueroa, Victor [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2016-11-01

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is to employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.

  12. Effects of the Use of High-Fidelity Human Simulation in Nursing Education: A Meta-Analysis.

    Science.gov (United States)

    Lee, Jin; Oh, Pok-Ja

    2015-09-01

    This study was conducted to evaluate the effects of high-fidelity human simulation (HFHS) on cognitive, affective, and psychomotor outcomes of learning. PubMed, Cochrane Library, EMBASE, CINAHL, and Korean databases were searched. The RevMan program was used for analysis. A meta-analysis was conducted of 26 controlled trials, with a total of 2,031 nursing students. The use of HFHS tended to have beneficial effects on cognitive and psychomotor domains of learning. In analysis of cognitive outcomes, the weighted average effect size across studies was -0.97 for problem-solving competency, -0.67 for critical thinking, and -2.15 for clinical judgment. The effect size for clinical competence of the psychomotor domain was -0.81. Use of HFHS might positively impact a high level of cognitive skill and clinical skill acquisition. Further research is required to determine the effectiveness of use of HFHS as an educational strategy to improve knowledge acquisition and communication skills. Copyright 2015, SLACK Incorporated.

  13. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    Science.gov (United States)

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  14. Enhancing nurse and physician collaboration in clinical decision making through high-fidelity interdisciplinary simulation training.

    Science.gov (United States)

    Maxson, Pamela M; Dozois, Eric J; Holubar, Stefan D; Wrobleski, Diane M; Dube, Joyce A Overman; Klipfel, Janee M; Arnold, Jacqueline J

    2011-01-01

    To determine whether interdisciplinary simulation team training can positively affect registered nurse and/or physician perceptions of collaboration in clinical decision making. Between March 1 and April 21, 2009, a convenience sample of volunteer nurses and physicians was recruited to undergo simulation training consisting of a team response to 3 clinical scenarios. Participants completed the Collaboration and Satisfaction About Care Decisions (CSACD) survey before training and at 2 weeks and 2 months after training. Differences in CSACD summary scores between the time points were assessed with paired t tests. Twenty-eight health care professionals (19 nurses, 9 physicians) underwent simulation training. Nurses were of similar age to physicians (27.3 vs 34.5 years; p = .82), were more likely to be women (95.0% vs 12.5%; p nurses and physicians (p = .04) and that both medical and nursing concerns influence the decision-making process (p = .02). Pretest CSACD analysis revealed that most participants were dissatisfied with the decision-making process. The CSACD summary score showed significant improvement from baseline to 2 weeks (4.2 to 5.1; p nurses and physicians and enhanced the patient care decision-making process.

  15. Implementation of high fidelity models for the conditions of operation in stop in PWR simulators

    International Nuclear Information System (INIS)

    Gonzalez Sevillano, I.; Jimenez Bogarin, R.; Ortega Pascual, F.

    2014-01-01

    The operation in stop cold conditions and in particular the States of operation with reduced inventory, the call of half loop or half nozzle, is becoming increasingly more important. These States of operation are characterized by having the coolant level approximately on the generatrix of the branches, so that any deviation in the level or malfunction of the system for the disposal of waste heat could lead to compromising situations. The importance of this type of situation is reflected in the APS in other modes (APSOM), which show that the risk in these conditions may be comparable to the power. Hence the importance that the simulator training programmes include scenarios that cover these States of operation. The article describes on the one hand, the difficulties encountered in the simulation of situations characterized by low pressure and presence of Non-Condensable and, on the other hand, its implementation, not only in the field of training of plant personnel, but also in the field of review/validation of operating procedures. (Author)

  16. An Evaluation of Navy En Route Care Training Using a High-Fidelity Medical Simulation Scenario of Interfacility Patient Transport.

    Science.gov (United States)

    DeForest, Christine A; Blackman, Virginia; Alex, John E; Reeves, Lauren; Mora, Alejandra; Perez, Crystal; Maddry, Joseph; Selby, Domenique; Walrath, Benjamin

    2018-03-14

    Military prehospital and en route care (ERC) directly impacts patient morbidity and mortality. Provider knowledge and skills are critical variables in the effectiveness of ERC. No Navy doctrine defines provider choice for patient transport or requires standardized provider training. Frequently, Search and Rescue Medical Technicians (SMTs) and Navy Nurses (ERC RNs) are tasked with this mission though physicians have also been used. Navy ERC provider training varies greatly by professional role. Historically, evaluations of ERC and patient outcomes have been based on retrospective analyses of incomplete data sets that provide limited insight on ERC practices. Little evidence exists to determine if current training is adequate to care for the most common injuries seen in combat trauma patients. Simulation technology facilitates a standardized patient encounter to enable complete, prospective data collection while studying provider type as the independent variable. Information acquired through skill performance observation can be used to make evidence-based recommendations to improve ERC training. This IRB approved multi-center study funded through a Congressionally Directed Medical Research Program grant from the Combat Casualty Care Intramural Research Joint En Route Care portfolio evaluated Navy ERC providers. The study evaluated 84 SMT, ERC RN, and physician participants in the performance of critical and secondary actions during an immersive, high-fidelity, patient transport simulation scenario focused on the care during an interfacility transfer. Simulation evaluators with military ERC expertise, blinded to participant training and background, graded each participant's performance. Inter-rater reliability was calculated using Cohen's Kappa to evaluate concordance between evaluator assessments. Categorical data were reported as frequencies and percentages. Performance attempt and accuracy rates were compared with likelihood ratio chi-square or Fisher's exact test

  17. Developing and Testing a High-Fidelity Simulation Scenario for an Uncommon Life-Threatening Disease: Severe Malaria

    Directory of Open Access Journals (Sweden)

    Andrew Kestler

    2011-01-01

    Full Text Available Background. Severe malaria is prevalent globally, yet it is an uncommon disease posing a challenge to education in nonendemic countries. High-fidelity simulation (sim may be well suited to teaching its management. Objective. To develop and evaluate a teaching tool for severe malaria, using sim. Methods. A severe malaria sim scenario was developed based on 5 learning objectives. Sim sessions, conducted at an academic center, utilized METI ECS mannequin. After sim, participants received standardized debriefing and completed a test assessing learning and a survey assessing views on sim efficacy. Results. 29 participants included 3rd year medical students (65%, 3rd year EM residents (28%, and EM nurses (7%. Participants scored average 85% on questions related to learning objectives. 93% felt that sim was effective or very effective in teaching severe malaria, and 83% rated it most effective. All respondents felt that sim increased their knowledge on malaria. Conclusion. Sim is an effective tool for teaching severe malaria in and may be superior to other modalities.

  18. Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves.

    Science.gov (United States)

    Harris, David M; Ryan, Kathleen; Rabuck, Cynthia

    2012-09-01

    Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.

  19. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  20. Incomplete adherence to the ASA difficult airway algorithm is unchanged after a high-fidelity simulation session.

    Science.gov (United States)

    Borges, Bruno C R; Boet, Sylvain; Siu, Lyndon W; Bruppacher, Heinz R; Naik, Viren N; Riem, Nicole; Joo, Hwan S

    2010-07-01

    Although guidelines for difficult airway management have been published, the extent to which consultant anesthesiologists follow these guidelines has not been determined. The purpose of this study is to observe how consultant anesthesiologists manage a "cannot intubate, cannot ventilate" (CICV) scenario in a high-fidelity simulator and to evaluate whether a simulation teaching session improves their adherence to the American Society of Anesthesiologists (ASA) difficult airway algorithm. With Ethics Board approval and informed consent, all staff anesthesiologists in a single tertiary care institution were invited to enrol in this study where they managed a simulated unanticipated CICV scenario in a high-fidelity simulator. The scenario involved a patient with a difficult airway whose trachea could not be intubated and where it was impossible to ventilate the patient's lungs. Airway management options, including laryngeal mask airway, a fibreoptic bronchoscope, and a Glidescope were available for use but scripted to fail. A percutaneous cricothyroidotomy was required to re-establish adequate ventilation. Following the scenario, there was a personalized one-hour video-assisted expert debriefing focusing on the ASA difficult airway guidelines and "hands-on" cricothyroidotomy teaching. The second scenario followed immediately with an identical CICV scenario. The content to either scenario was not revealed beforehand. Outcome measures included: 1) major deviations from the ASA difficult airway guidelines; 2) time to start cricothyroidotomy; and 3) time to achieve ventilation. Thirty-eight anesthesiologists agreed to participate. The number of major deviations from the ASA algorithm was similar in the first and second sessions. These deviations included: multiple laryngoscopies (0 vs 2 pre-post; P = 0.49), use of fibreoptic bronchoscope (8 vs 7 pre-post; P = 1.0), bypass of laryngeal mask airway attempt (7 vs 13 pre-post; P = 0.19), and failure to call for anesthetic help

  1. Self vs expert assessment of technical and non-technical skills in high fidelity simulation.

    Science.gov (United States)

    Arora, Sonal; Miskovic, Danilo; Hull, Louise; Moorthy, Krishna; Aggarwal, Rajesh; Johannsson, Helgi; Gautama, Sanjay; Kneebone, Roger; Sevdalis, Nick

    2011-10-01

    Accurate assessment is imperative for learning, feedback and progression. The aim of this study was to examine whether surgeons can accurately self-assess their technical and nontechnical skills compared with expert faculty members' assessments. Twenty-five surgeons performed a laparoscopic cholecystectomy (LC) in a simulated operating room. Technical and nontechnical performance was assessed by participants and faculty members using the validated Objective Structured Assessment of Technical Skills (OSATS) and the Non-Technical Skills for Surgeons scale (NOTSS). Assessment of technical performance correlated between self and faculty members' ratings for experienced (median score, 30.0 vs 31.0; ρ = .831; P = .001) and inexperienced (median score, 22.0 vs 28.0; ρ = .761; P = .003) surgeons. Assessment of nontechnical skills between self and faculty members did not correlate for experienced surgeons (median score, 8.0 vs 10.5; ρ = -.375; P = .229) or their more inexperienced counterparts (median score, 9.0 vs 7.0; ρ = -.018; P = .953). Surgeons can accurately self-assess their technical skills in virtual reality LC. Conversely, formal assessment with faculty members' input is required for nontechnical skills, for which surgeons lack insight into their behaviours. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Assessment of a high-fidelity mobile simulator for intrauterine contraception training in ambulatory reproductive health centres

    Directory of Open Access Journals (Sweden)

    Laura E. Dodge

    2016-02-01

    Full Text Available Objectives. Little is known about the utility of simulation-based training in office gynaecology. The objective of this cross-sectional study was to evaluate the self-reported effectiveness and acceptability of the PelvicSim™ (VirtaMed, a high-fidelity mobile simulator, to train clinicians in intrauterine device (IUD insertion. Methods. Clinicians at ambulatory healthcare centres participated in a PelvicSim IUD training programme and completed a self-administered survey. The survey assessed prior experience with IUD insertion, pre- and post-training competency and comfort and opinions regarding the acceptability of the PelvicSim. Results. The 237 participants were primarily female (97.5% nurse practitioners (71.3%. Most had experience inserting the levonorgestrel LNG20 IUD and the copper T380A device, but only 4.1% had ever inserted the LNG14 IUD. For all three devices, participants felt more competent following training, with the most striking change reported for insertion of the LNG14 IUD. The majority of participants reported increased comfort with uterine sounding (57.7%, IUD insertion on a live patient (69.8%, and minimizing patient pain (72.8% following training. Of the respondents, 89.6% reported the PelvicSim IUD insertion activities as “valuable” or “very valuable.” All participants would recommend the PelvicSim for IUD training, and nearly all (97.2% reported that the PelvicSim was a better method to teach IUD insertion than the simple plastic models supplied by IUD manufacturers. Conclusions. These findings support the use of the PelvicSim for IUD training, though whether it is superior to traditional methods and improves patient outcomes requires evaluation.

  3. Future space-based direct imaging platforms: high fidelity simulations and instrument testbed development

    Science.gov (United States)

    Hicks, Brian A.; Eberhardt, Andrew; SAINT, VNC, LUVOIR

    2017-06-01

    The direct detection and characterization of habitable zone (HZ) Earth-like exoplanets is predicated on light gathering power of a large telescope operating with tens of millicarcsecond angular resolution, and at contrast scales on the order of 0.1 ppb. Accessing a statistically significant sample of planets to search for habitable worlds will likely build on the knowledge and insfrastructure gained through JWST, later advancing to assembly in space or formation flying approaches that may eventually be used to achieve even greater photometric sensitivity or resolution. in order to address contrast, a means of starlight suppression is needed that contends with complex aperture diffraction. The Visible Nulling Coronagraph (VNC) is one such approach that destructively interferes starlight to enable detection and characterization of extrasolar objects.The VNC is being incorporated into an end-to-end telescope-coronagraph system demonstrator called the Segmented Aperture Interferometric Nulling Testbed (SAINT). Development of the VNC has a rich legacy, and successfully demonstrating its capability with SAINT will mark milestones towards meeting the high-contrast direct imaging needs of future large space telescopes. SAINT merges the VNC with an actively-controlled segmented aperture telescope via a fine pointing system and aims to demonstrate 1e-8 contrast nulling of a segmented aperture at an inner working angle of four diffraction radii over a 20 nm visible bandpass. The system comprises four detectors for wavefront sensing, one of which is the high-contrast focal plane. The detectors provide feedback to control the segmented telescope primary mirror, a fast steering mirror, a segmented deformable mirror, and a delay stage. All of these components must work in concert with passive optical elements that are designed, fabricated, and aligned pairwise to achieve the requisite wavefront symmetry needed to push the state of the art in broadband destructive interferometric

  4. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyi, E-mail: lixy2@utrc.utc.com; Soteriou, Marios C. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-08-15

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  5. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  6. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    International Nuclear Information System (INIS)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-01

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well

  7. The effects of using high-fidelity simulators and standardized patients on the thorax, lung, and cardiac examination skills of undergraduate nursing students.

    Science.gov (United States)

    Tuzer, Hilal; Dinc, Leyla; Elcin, Melih

    2016-10-01

    Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (psimulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Perceived Barriers to the Use of High-Fidelity Hands-On Simulation Training for Contrast Reaction Management: Why Programs are Not Using It.

    Science.gov (United States)

    Chinnugounder, Sankar; Hippe, Daniel S; Maximin, Suresh; O'Malley, Ryan B; Wang, Carolyn L

    2015-01-01

    Although subjective and objective benefits of high-fidelity simulation have been reported in medicine, there has been slow adoption in radiology. The purpose of our study was to identify the perceived barriers in the use of high-fidelity hands-on simulation for contrast reaction management training. An IRB exempt 32 questions online web survey was sent to 179 non-military radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database Access system (FREIDA). Survey questions included the type of contrast reaction management training, cost, time commitment of residents and faculty, and the reasons for not using simulation training. Responses from the survey were summarized as count (percentage), mean ± standard deviation (SD), or median (range). 84 (47%) of 179 programs responded, of which 88% offered CRM training. Most (72%) conducted the CRM training annually while only 4% conducted it more frequently. Didactic lecture was the most frequently used training modality (97%), followed by HFS (30%) and computer-based simulation (CBS) (19%); 5.5% used both HFS and CBS. Of the 51 programs that offer CRM training but do not use HFS, the most common reason reported was insufficient availability (41%). Other reported reasons included cost (33%), no access to simulation centers (33%), lack of trained faculty (27%) and time constraints (27%). Although high-fidelity hands-on simulation training is the best way to reproduce real-life contrast reaction scenarios, many institutions do not provide this training due to constraints such as cost, lack of access or insufficient availability of simulation labs, and lack of trained faculty. As a specialty, radiology needs to better address these barriers at both an institutional and national level. Copyright © 2015 Mosby, Inc. All rights reserved.

  9. Effect of High-Fidelity Simulation on Medical Students' Knowledge about Advanced Life Support: A Randomized Study.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available High-fidelity simulation (HFS is a learning method which has proven effective in medical education for technical and non-technical skills. However, its effectiveness for knowledge acquisition is less validated. We performed a randomized study with the primary aim of investigating whether HFS, in association with frontal lessons, would improve knowledge about advanced life support (ALS, in comparison to frontal lessons only among medical students. The secondary aims were to evaluate the effect of HFS on knowledge acquisition of different sections of ALS and personal knowledge perception. Participants answered a pre-test questionnaire consisting of a subjective (evaluating personal perception of knowledge and an objective section (measuring level of knowledge containing 100 questions about algorithms, technical skills, team working/early warning scores/communication strategies according to ALS guidelines. All students participated in 3 frontal lessons before being randomized in group S, undergoing a HFS session, and group C, receiving no further interventions. After 10 days from the end of each intervention, both groups answered a questionnaire (post-test with the same subjective section but a different objective one. The overall number of correct answers of the post-test was significantly higher in group S (mean 74.1, SD 11.2 than in group C (mean 65.5, SD 14.3, p = 0.0017, 95% C.I. 3.34 - 13.9. A significantly higher number of correct answers was reported in group S than in group C for questions investigating knowledge of algorithms (p = 0.0001; 95% C.I 2.22-5.99 and team working/early warning scores/communication strategies (p = 0.0060; 95% C.I 1.13-6.53. Students in group S showed a significantly higher score in the post-test subjective section (p = 0.0074. A lower proportion of students in group S confirmed their perception of knowledge compared to group C (p = 0.0079. HFS showed a beneficial effect on knowledge of ALS among medical students

  10. Impact of High-Fidelity Simulation and Pharmacist-Specific Didactic Lectures in Addition to ACLS Provider Certification on Pharmacy Resident ACLS Performance.

    Science.gov (United States)

    Bartel, Billie J

    2014-08-01

    This pilot study explored the use of multidisciplinary high-fidelity simulation and additional pharmacist-focused training methods in training postgraduate year 1 (PGY1) pharmacy residents to provide Advanced Cardiovascular Life Support (ACLS) care. Pharmacy resident confidence and comfort level were assessed after completing these training requirements. The ACLS training requirements for pharmacy residents were revised to include didactic instruction on ACLS pharmacology and rhythm recognition and participation in multidisciplinary high-fidelity simulation ACLS experiences in addition to ACLS provider certification. Surveys were administered to participating residents to assess the impact of this additional education on resident confidence and comfort level in cardiopulmonary arrest situations. The new ACLS didactic and simulation training requirements resulted in increased resident confidence and comfort level in all assessed functions. Residents felt more confident in all areas except providing recommendations for dosing and administration of medications and rhythm recognition after completing the simulation scenarios than with ACLS certification training and the didactic components alone. All residents felt the addition of lectures and simulation experiences better prepared them to function as a pharmacist in the ACLS team. Additional ACLS training requirements for pharmacy residents increased overall awareness of pharmacist roles and responsibilities and greatly improved resident confidence and comfort level in performing most essential pharmacist functions during ACLS situations. © The Author(s) 2013.

  11. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system

    International Nuclear Information System (INIS)

    Yang, W.S.; Lee, C.H.

    2008-01-01

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC 2 -2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC 2 -2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC 2 -2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC 2 -2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC 2 -2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC 2 -2, VIM, and NJOY. For almost all nuclides considered, MC 2 -2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC 2 -2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC 2 -2/TWODANT calculations were in good agreement with MCNP solutions within ∼0.25% Δρ, except a few small LANL fast assemblies. Relative to the MCNP solution, the MC 2 -2/TWODANT

  12. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  13. High fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management.

    Science.gov (United States)

    Lee, Jason Y; Mucksavage, Phillip; Canales, Cecilia; McDougall, Elspeth M; Lin, Sharon

    2012-04-01

    Simulation based team training provides an opportunity to develop interdisciplinary communication skills and address potential medical errors in a high fidelity, low stakes environment. We evaluated the implementation of a novel simulation based team training scenario and assessed the technical and nontechnical performance of urology and anesthesiology residents. Urology residents were randomly paired with anesthesiology residents to participate in a simulation based team training scenario involving the management of 2 scripted critical events during laparoscopic radical nephrectomy, including the vasovagal response to pneumoperitoneum and renal vein injury during hilar dissection. A novel kidney surgical model and a high fidelity mannequin simulator were used for the simulation. A debriefing session followed each simulation based team training scenario. Assessments of technical and nontechnical performance were made using task specific checklists and global rating scales. A total of 16 residents participated, of whom 94% rated the simulation based team training scenario as useful for communication skill training. Also, 88% of urology residents believed that the kidney surgical model was useful for technical skill training. Urology resident training level correlated with technical performance (p=0.004) and blood loss during renal vein injury management (p=0.022) but not with nontechnical performance. Anesthesia resident training level correlated with nontechnical performance (p=0.036). Urology residents consistently rated themselves higher on nontechnical performance than did faculty (p=0.033). Anesthesia residents did not differ in the self-assessment of nontechnical performance compared to faculty assessments. Residents rated the simulation based team training scenario as useful for interdisciplinary communication skill training. Urology resident training level correlated with technical performance but not with nontechnical performance. Urology residents

  14. The effectiveness of and satisfaction with high-fidelity simulation to teach cardiac surgical resuscitation skills to nurses.

    Science.gov (United States)

    McRae, Marion E; Chan, Alice; Hulett, Renee; Lee, Ai Jin; Coleman, Bernice

    2017-06-01

    There are few reports of the effectiveness or satisfaction with simulation to learn cardiac surgical resuscitation skills. To test the effect of simulation on the self-confidence of nurses to perform cardiac surgical resuscitation simulation and nurses' satisfaction with the simulation experience. A convenience sample of sixty nurses rated their self-confidence to perform cardiac surgical resuscitation skills before and after two simulations. Simulation performance was assessed. Subjects completed the Satisfaction with Simulation Experience scale and demographics. Self-confidence scores to perform all cardiac surgical skills as measured by paired t-tests were significantly increased after the simulation (d=-0.50 to 1.78). Self-confidence and cardiac surgical work experience were not correlated with time to performance. Total satisfaction scores were high (mean 80.2, SD 1.06) indicating satisfaction with the simulation. There was no correlation of the satisfaction scores with cardiac surgical work experience (τ=-0.05, ns). Self-confidence scores to perform cardiac surgical resuscitation procedures were higher after the simulation. Nurses were highly satisfied with the simulation experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fidelity Witnesses for Fermionic Quantum Simulations

    Science.gov (United States)

    Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.

    2018-05-01

    The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

  16. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  17. An exploration of the relationship between knowledge and performance-related variables in high-fidelity simulation: designing instruction that promotes expertise in practice.

    Science.gov (United States)

    Hauber, Roxanne P; Cormier, Eileen; Whyte, James

    2010-01-01

    Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.

  18. Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    Science.gov (United States)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; hide

    2017-01-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  19. Undergraduate nursing students' performance in recognising and responding to sudden patient deterioration in high psychological fidelity simulated environments: an Australian multi-centre study.

    Science.gov (United States)

    Bogossian, Fiona; Cooper, Simon; Cant, Robyn; Beauchamp, Alison; Porter, Joanne; Kain, Victoria; Bucknall, Tracey; Phillips, Nicole M

    2014-05-01

    Early recognition and situation awareness of sudden patient deterioration, a timely appropriate clinical response, and teamwork are critical to patient outcomes. High fidelity simulated environments provide the opportunity for undergraduate nursing students to develop and refine recognition and response skills. This paper reports the quantitative findings of the first phase of a larger program of ongoing research: Feedback Incorporating Review and Simulation Techniques to Act on Clinical Trends (FIRST2ACTTM). It specifically aims to identify the characteristics that may predict primary outcome measures of clinical performance, teamwork and situation awareness in the management of deteriorating patients. Mixed-method multi-centre study. High fidelity simulated acute clinical environment in three Australian universities. A convenience sample of 97 final year nursing students enrolled in an undergraduate Bachelor of Nursing or combined Bachelor of Nursing degree were included in the study. In groups of three, participants proceeded through three phases: (i) pre-briefing and completion of a multi-choice question test, (ii) three video-recorded simulated clinical scenarios where actors substituted real patients with deteriorating conditions, and (iii) post-scenario debriefing. Clinical performance, teamwork and situation awareness were evaluated, using a validated standard checklist (OSCE), Team Emergency Assessment Measure (TEAM) score sheet and Situation Awareness Global Assessment Technique (SAGAT). A Modified Angoff technique was used to establish cut points for clinical performance. Student teams engaged in 97 simulation experiences across the three scenarios and achieved a level of clinical performance consistent with the experts' identified pass level point in only 9 (1%) of the simulation experiences. Knowledge was significantly associated with overall teamwork (p=.034), overall situation awareness (p=.05) and clinical performance in two of the three scenarios

  20. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations.

    Science.gov (United States)

    Nguyen, Khoa; Ben Khallouq, Bertha; Schuster, Amanda; Beevers, Christopher; Dil, Nyla; Kay, Denise; Kibble, Jonathan D; Harris, David M

    2017-12-01

    Most assessments of physiology in medical school use multiple choice tests that may not provide information about a student's critical thinking (CT) process. There are limited performance assessments, but high-fidelity patient simulations (HFPS) may be a feasible platform. The purpose of this pilot study was to determine whether a group's CT process could be observed over a series of HFPS. An instrument [Critical Thinking Skills Rating Instrument CTSRI)] was designed with the IDEAS framework. Fifteen groups of students participated in three HFPS that consisted of a basic knowledge quiz and introduction, HFPS session, and debriefing. HFPS were video recorded, and two raters reviewed and scored all HFPS encounters with the CTSRI independently. Interrater analysis suggested good reliability. There was a correlation between basic knowledge scores and three of the six observations on the CTSRI providing support for construct validity. The median CT ratings significantly increased for all observations between the groups' first and last simulation. However, there were still large percentages of video ratings that indicated students needed substantial prompting during the HFPS. The data from this pilot study suggest that it is feasible to observe CT skills in HFPS using the CTSRI. Based on the findings from this study, we strongly recommend that first-year medical students be competent in basic knowledge of the relevant physiology of the HFPS before participating, to minimize the risk of a poor learning experience. Copyright © 2017 the American Physiological Society.

  1. Fidelity of Simulation for Pilot Training

    Science.gov (United States)

    1980-12-01

    indicators of joint angles. The combination of all the pro- prioceptive senses permits subjects to perceive body accelerations based on the biomechanical ...constraints III. Controllers A. Flight controls 1. Center stick, column, side stick, collective 2. Pedals (yaw control, brakes) 3. Thrust controllers 4...the most sensitive elements in terms of fidelity require- ments. The force-generating systems associated with the stick or column and pedals are

  2. Effects of Low- Versus High-Fidelity Simulations on the Cognitive Burden and Performance of Entry-Level Paramedicine Students: A Mixed-Methods Comparison Trial Using Eye-Tracking, Continuous Heart Rate, Difficulty Rating Scales, Video Observation and Interviews.

    Science.gov (United States)

    Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A

    2016-02-01

    High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P cognitive burden but this has considerable educational merit.

  3. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  4. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; La Cava, W.; Austin, J.; Nejad, A. R.; Halse, C.; Bastard, L.; Helsen, J.

    2015-01-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential design parameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  5. Randomized Crossover Study of Training Benefits of High Fidelity ECMO Simulation versus Porcine Animal Model An Interim Report

    Science.gov (United States)

    2017-02-25

    59 MDW/SGVU SUBJECT: Professional Presentation Approval 24 FEB 2017 1. Your paper, entitled Randomized C rossover Study of T raining Benefits of...have been the gold -standard for ECMO training due to their ability to replicate complex physiology and anatomic variation . Recently ECMO simulation

  6. Effect of high-fidelity shoulder dystocia simulation on emergency obstetric skills and crew resource management skills among residents.

    Science.gov (United States)

    Mannella, Paolo; Palla, Giulia; Cuttano, Armando; Boldrini, Antonio; Simoncini, Tommaso

    2016-12-01

    To determine the effect of a simulation training program for residents in obstetrics and gynecology in terms of technical and nontechnical skills for the management of shoulder dystocia. A prospective study was performed at a center in Italy in April-May 2015. Thirty-two obstetrics and gynecology residents were divided into two groups. Residents in the control group were immediately exposed to an emergency shoulder dystocia scenario, whereas those in the simulation group completed a 2-hour training session with the simulator before being exposed to the scenario. After 8weeks, the residents were again exposed to the shoulder dystocia scenario and reassessed. Participants were scored on their demonstration of technical and nontechnical skills. In the first set of scenarios, the mean score was higher in the simulation group than the control group in terms of both technical skills (P=0.008) and nontechnical skills (Pdystocia. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  7. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training.

    Science.gov (United States)

    Failor, Erin; Bowdle, Andrew; Jelacic, Srdjan; Togashi, Kei

    2014-08-01

    Demonstrate the feasibility of using the AirSim Bronchi airway simulator to teach residents how to manage lung isolation with double-lumen endotracheal tubes and bronchial blockers and evaluate their performance with a detailed checklist. Prospective observational study. University anesthesiology residency training program. Anesthesiology residents taking a cardiothoracic anesthesiology rotation. Residents were instructed in 7 tasks using the AirSim Bronchi: The use of the fiberoptic bronchoscope, methods for placing left and right double-lumen endotracheal tubes and 3 bronchial blockers (Univent, Arndt, and Cohen), and application of continuous positive airway pressure (CPAP) to the unventilated lung. Two to 3 weeks later, checklists and a detailed scoring system were used to assess performance. Residents rated the curriculum and their own confidence in performing the tasks using a 5-point Likert scale. Thirteen residents completed the curriculum. Their median Likert scale ratings of the curriculum based on a questionnaire with 6 items ranged from 4 to 5 of 5. Resident confidence scores for each lung isolation technique improved after the simulation training, with the median gain ranging from 0.5 to 1.5 Likert levels depending on the task. The largest improvement occurred with the bronchial blockers (psimulator in a novel simulation curriculum to teach lung-isolation techniques to anesthesiology residents and evaluated performance using a detailed checklist scoring system. This curriculum is a promising educational tool. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    Science.gov (United States)

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  9. Can Telemedicine Improve Adherence to Resuscitation Guidelines for Critically Ill Children at Community Hospitals? A Randomized Controlled Trial Using High-Fidelity Simulation.

    Science.gov (United States)

    Yang, Chris P; Hunt, Elizabeth A; Shilkofski, Nicole; Dudas, Robert; Egbuta, Chinyere; Schwartz, Jamie M

    2017-07-01

    Children transferred from community hospitals lacking specialized pediatric care are more seriously ill than those presenting to pediatric centers. Pediatric consultation and adherence to management guidelines improve outcomes. The aims of the study were (1) to assess whether telemedicine consultation in critical situations is feasible and (2) to compare the impact of pediatric critical care medicine (PCCM) consultation via telemedicine versus telephone on community hospital adherence to resuscitation guidelines through a randomized controlled telemedicine trial. In situ, high-fidelity simulation scenarios of critically ill children presenting to a community hospital and progressing to cardiopulmonary arrest were performed. Scenarios were randomized to PCCM consultation via telephone (control) or telemedicine (intervention). Primary outcome measure was proportion of teams who successfully defibrillated in 180 seconds or less from presentation of pulseless ventricular tachycardia. The following 30 scenarios were completed: 15 control and 15 intervention. Only 11 (37%) of 30 teams, defibrillated in 180 seconds or less from presentation of pulseless ventricular tachycardia; control: 6 (40%) of 15 versus intervention: 5 (33%) of 15, P = 0.7. Request for or use of backboard during cardiopulmonary resuscitation occurred in 24 (80%) of 30 scenarios; control: 9 (60%) of 15 versus intervention: 15 (100%) of 15, P = 0.006. Request for or use of stepstool during cardiopulmonary resuscitation occurred in 6 (20%) of 30 scenarios; control: 1 (7%) of 15 versus intervention: 5 (33%) of 15, P = 0.07. This study demonstrates the feasibility of using telemedicine to support acute management of children who present to community hospitals. Neither study arm adhered to current resuscitation guidelines and telemedicine consultation with PCCM experts was not associated with improvement. However, further research on optimizing telemedicine impact on the quality of pediatric care at

  10. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy.

    Science.gov (United States)

    Abdelshehid, Corollos S; Quach, Stephen; Nelson, Corey; Graversen, Joseph; Lusch, Achim; Zarraga, Jerome; Alipanah, Reza; Landman, Jaime; McDougall, Elspeth M

    2013-01-01

    The use of low-risk simulation training for resident education is rapidly expanding as teaching centers integrate simulation-based team training (SBTT) sessions into their education curriculum. SBTT is a valuable tool in technical and communication skills training and assessment for residents. We created a unique SBTT scenario for urology residents involving a laparoscopic partial nephrectomy procedure. Urology residents were randomly paired with a certified registered nurse anesthetists or an anesthesia resident. The scenario incorporated a laparoscopic right partial nephrectomy utilizing a unique polyvinyl alcohol kidney model with an embedded 3cm lower pole exophytic tumor and the high-fidelity SimMan3G mannequin. The Urology residents were instructed to pay particular attention to the patient's identifying information provided at the beginning of the case. Two scripted events occurred, the patient had an anaphylactic reaction to a drug and, after tumor specimen was sent for a frozen section, the confederate pathologist called into the operating room (OR) twice, first with the wrong patient name and subsequently with the wrong specimen. After the scenario was complete, technical performance and nontechnical performance were evaluated and assessed. A debriefing session followed the scenario to discuss and assess technical performance and interdisciplinary nontechnical communication between the team. All Urology residents (n = 9) rated the SBTT scenario as a useful tool in developing communication skills among the OR team and 88% rated the model as useful for technical skills training. Despite cuing to note patient identification, only 3 of 9 (33%) participants identified that the wrong patient information was presented when the confederate "pathologist" called in to report pathology results. All urology residents rated SBTT sessions as useful for the development of communication skills between different team members and making residents aware of unlikely but

  11. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC): gap analysis for high fidelity and performance assessment code development

    International Nuclear Information System (INIS)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-01-01

    needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  13. An Investigation of the Impact of Aerodynamic Model Fidelity on Close-In Combat Effectiveness Prediction in Piloted Simulation

    Science.gov (United States)

    Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene

    2005-01-01

    Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.

  14. High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  15. Evaluation of a novel high-fidelity epistaxis task trainer.

    Science.gov (United States)

    Scott, Grace M; Roth, Kathryn; Rotenberg, Brian; Sommer, Doron D; Sowerby, Leigh; Fung, Kevin

    2016-07-01

    To assess the efficacy of a novel high-fidelity epistaxis simulator in teaching epistaxis management to junior otolaryngology head and neck surgery residents. Prospective cohort study. A novel high-fidelity epistaxis task trainer was developed using a cadaver head, intravenous tubing, and a food coloring-filled saline bag to emulate blood. Learners were instructed on two techniques of nasal packing (formal nasal pack and nasal tampon) for the management of epistaxis using the task trainer. Learners were videotaped attempting to pack the nose of the task trainer pre- and postintervention (verbal instruction, and practice time with task trainer). Five board-certified otolaryngologists (blinded to pre- and postintervention status) evaluated the packing technique using standardized subjective outcome measures. There were 13 junior otolaryngology residents enrolled in the study. This cohort showed a statistically significant increase in global rating scores (P epistaxis simulator has been successful in teaching and the practical application of various skills in epistaxis management. This task trainer appears to confer an educational benefit in technical skills acquisition in novice learners. Further studies are needed to determine long-term skill retention. Simulation is a promising educational adjunct that effectively enhances epistaxis management skills acquisition while maximizing patient safety. NA. Laryngoscope, 126:1501-1503, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  16. High Fidelity Raman Chemical Imaging of Materials

    Science.gov (United States)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  17. Hybrid High-Fidelity Auscultation Scope, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Johnson Space Center's need for a space auscultation capability, Physical Optics Corporation proposes to develop a Hybrid High-Fidelity...

  18. Comparison of High-Fidelity Simulation Versus Didactic Instruction as a Reinforcement Intervention in a Comprehensive Curriculum for Radiology Trainees in Learning Contrast Reaction Management: Does It Matter How We Refresh?

    Science.gov (United States)

    Picard, Melissa; Curry, Nancy; Collins, Heather; Soma, LaShonda; Hill, Jeanne

    2015-10-01

    Simulation-based training has been shown to be a useful adjunct to standard didactic lecture in teaching residents appropriate management of adverse contrast reactions. In addition, it has been suggested that a biannual refresher is needed; however, the type of refresher education has not been assessed. This was a prospective study involving 31 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by high-fidelity simulation-based training. At approximately 6 months, residents were randomized into a didactic versus simulation group for a refresher. At approximately 9 months, all residents returned to the simulation center for performance testing. Knowledge and confidence assessments were obtained from all participants before and after each phase. Performance testing was obtained at each simulation session and scored based on predefined critical actions. There was significant improvement in knowledge (P didactic and simulation-based training. There was no statistical difference between the simulation and didactic groups in knowledge or confidence at any phase of the study. There was no significant difference in tested performance between the groups in either performance testing session. This study suggests that a curriculum consisting of an annual didactic lecture combined with simulation-based training followed by a didactic refresher at 6 months is an effective and efficient (both cost-effective and time-effective) method of educating radiology residents in the management of adverse contrast reactions. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  19. Experimental quantum error correction with high fidelity

    International Nuclear Information System (INIS)

    Zhang Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond

    2011-01-01

    More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett. 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ε to ∼ε 2 . In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.

  20. The Effect of Model Fidelity on Learning Outcomes of a Simulation-Based Education Program for Central Venous Catheter Insertion.

    Science.gov (United States)

    Diederich, Emily; Mahnken, Jonathan D; Rigler, Sally K; Williamson, Timothy L; Tarver, Stephen; Sharpe, Matthew R

    2015-12-01

    Simulation-based education for central venous catheter (CVC) insertion has been repeatedly documented to improve performance, but the impact of simulation model fidelity has not been described. The aim of this study was to examine the impact of the physical fidelity of the simulation model on learning outcomes for a simulation-based education program for CVC insertion. Forty consecutive residents rotating through the medical intensive care unit of an academic medical center completed a simulation-based education program for CVC insertion. The curriculum was designed in accordance with the principles of deliberate practice and mastery learning. Each resident underwent baseline skills testing and was then randomized to training on a commercially available CVC model with high physical fidelity (High-Fi group) or a simply constructed model with low physical fidelity (Low-Fi group) in a noninferiority trial. Upon completion of their medical intensive care unit rotation 4 weeks later, residents returned for repeat skills testing on the high-fidelity model using a 26-item checklist. The mean (SD) posttraining score on the 26-item checklist for the Low-Fi group was 23.8 (2.2) (91.5%) and was not inferior to the mean (SD) score for the High-Fi group of 22.5 (2.6) (86.5%) (P Simulation-based education using equipment with low physical fidelity can achieve learning outcomes comparable with those with high-fidelity equipment, as long as other aspects of fidelity are maintained and robust educational principles are applied during the design of the curriculum.

  1. High-Fidelity Coding with Correlated Neurons

    Science.gov (United States)

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  2. Fidelity considerations for simulation-based usability assessments of mobile ICT for hospitals

    DEFF Research Database (Denmark)

    Dahl, Yngve; Alsos, Ole A; Svanæs, Dag

    2010-01-01

    training simulation fidelity theories. Based on a review of the training simulation literature, a set of fidelity dimensions through which training simulations are often adjusted to meet specific goals are identified. It is argued that the same mechanisms can be used in usability assessments of mobile ICT...... for hospitals. Our argument is substantiated by using the identified set of fidelity dimensions in a retrospective analysis of two usability assessments. The analysis explains how the configuration of fidelity dimensions, each reflecting various degrees of realism vis-à-vis the actual performance context...

  3. Measuring third year undergraduate nursing students' reflective thinking skills and critical reflection self-efficacy following high fidelity simulation: A pilot study.

    Science.gov (United States)

    Tutticci, Naomi; Lewis, Peter A; Coyer, Fiona

    2016-05-01

    Critical reflection underpins critical thinking, a highly desirable generic nursing graduate capability. To improve the likelihood of critical thinking transferring to clinical practice, reflective thinking needs to be measured within the learning space of simulation. This study was divided into two phases to address the reliability and validity measures of previously untested surveys. Phase One data was collected from individuals (n = 6) using a 'think aloud' approach and an expert panel to review content validity, and verbatim comment analysis was undertaken. The Reflective Thinking Instrument and Critical Reflection Self-Efficacy Visual Analogue Scale items were contextualised to simulation. The expert review confirmed these instruments exhibited content validity. Phase Two data was collected through an online survey (n = 58). Cronbach's alpha measured internal consistency and was demonstrated by all subscales and the Instrument as a whole (.849). There was a small to medium positive correlation between critical reflection self-efficacy and general self-efficacy (r = .324, n = 56, p = .048). Participant responses were positive regarding the simulation experience. The research findings demonstrated that the Reflective Thinking and Simulation Satisfaction survey is reliable. Further development of this survey to establish validity is recommended to make it viable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High-fidelity operations in microfabricated surface ion traps

    Science.gov (United States)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  5. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  6. Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow

    Science.gov (United States)

    Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca

    2017-11-01

    The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.

  7. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    Science.gov (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  8. Advanced Physical Models and Numerical Algorithms to Enable High-Fidelity Aerothermodynamic Simulations of Planetary Entry Vehicles on Emerging Distributed Heterogeneous Computing Architectures

    Data.gov (United States)

    National Aeronautics and Space Administration — The design and qualification of entry systems for planetary exploration largely rely on computational simulations. However, state-of-the-art modeling capabilities...

  9. Time to unravel the conceptual confusion of authenticity and fidelity and their contribution to learning within simulation-based nurse education. A discussion paper.

    Science.gov (United States)

    Bland, Andrew J; Topping, Annie; Tobbell, Jane

    2014-07-01

    High-fidelity patient simulation is a method of education increasingly utilised by educators of nursing to provide authentic learning experiences. Fidelity and authenticity, however, are not conceptually equivalent. Whilst fidelity is important when striving to replicate a life experience such as clinical practice, authenticity can be produced with low fidelity. A challenge for educators of undergraduate nursing is to ensure authentic representation of the clinical situation which is a core component for potential success. What is less clear is the relationship between fidelity and authenticity in the context of simulation based learning. Authenticity does not automatically follow fidelity and as a result, educators of nursing cannot assume that embracing the latest technology-based educational tools will in isolation provide a learning environment perceived authentic by the learner. As nursing education programmes increasingly adopt simulators that offer the possibility of representing authentic real world situations, there is an urgency to better articulate and understand the terms fidelity and authenticity. Without such understanding there is a real danger that simulation as a teaching and learning resource in nurse education will never reach its potential and be misunderstood, creating a potential barrier to learning. This paper examines current literature to promote discussion within nurse education, concluding that authenticity in the context of simulation-based learning is complex, relying on far more than engineered fidelity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.

  11. OB/GYN boot cAMP using high-fidelity human simulators: enhancing residents' perceived competency, confidence in taking a leadership role, and stress hardiness.

    Science.gov (United States)

    Pliego, Jose F; Wehbe-Janek, Hania; Rajab, M Hasan; Browning, Jeff L; Fothergill, Russell E

    2008-01-01

    To evaluate the effectiveness of an obstetrical and gynecologic (Ob/Gyn) Boot Camp simulation training on perceived technical competency, confidence in a leadership role, and stress hardiness of resident training. We conducted a prospective pilot study on the effectiveness of an Ob/Gyn Boot Camp on resident training. Residents participated in an intensive immersion in clinical simulation of common obstetrical emergencies including shoulder dystocia, neonatal resuscitation, postpartum hemorrhage, and ruptured ectopic pregnancy. After the training, residents completed a Web-based survey on their perceptions of how the Ob/Gyn Boot Camp affected their 1) technical competency in the assessment and management of their patients, 2) confidence in taking a leadership role, and 3) stress hardiness. Residents rated their perceptions on a Likert scale of 1 to 5, 1 = poor to 5 = excellent. Twenty-three (14 Ob/Gyn and 9 family medicine) residents participated in this pilot study. Eighteen (78%) residents completed the online survey; 4 Ob/Gyn and 1 family medicine resident did not complete the survey. The residents reported that the simulation training stimulated an interest in learning key skills for obstetrical and gynecologic emergencies. Ob/Gyn residents reported significant improvement in their perceived technical competence and stress hardiness after the Boot Camp. However both Ob/Gyn and family medicine residents reported no significant improvement of confidence in their leadership abilities during obstetrical emergencies after the Boot Camp. Boot Camp simulation training early in the curriculum has the potential for enhancing residents' self-assessments of confidence, competency, and stress hardiness in managing obstetrical emergencies.

  12. A Low Fidelity Simulation To Examine The Design Space For An Expendable Active Decoy

    Science.gov (United States)

    2017-12-01

    SIMULATIONS FOR ANALYSIS ................................11 C. BENEFITS OF MODELING AND SIMULATION IN THE SYSTEM ENGINEERING PROCESS ... simulation may be able to predict the performance parameters of the system of interest (SOI) accurately. The systems engineering process utilizes the low...fidelity simulation developed in this thesis during the early phases of the systems acquisition process : namely, the concept exploration, concept of

  13. Nursing students' evaluation of a new feedback and reflection tool for use in high-fidelity simulation - Formative assessment of clinical skills. A descriptive quantitative research design.

    Science.gov (United States)

    Solheim, Elisabeth; Plathe, Hilde Syvertsen; Eide, Hilde

    2017-11-01

    Clinical skills training is an important part of nurses' education programmes. Clinical skills are complex. A common understanding of what characterizes clinical skills and learning outcomes needs to be established. The aim of the study was to develop and evaluate a new reflection and feedback tool for formative assessment. The study has a descriptive quantitative design. 129 students participated who were at the end of the first year of a Bachelor degree in nursing. After highfidelity simulation, data were collected using a questionnaire with 19 closed-ended and 2 open-ended questions. The tool stimulated peer assessment, and enabled students to be more thorough in what to assess as an observer in clinical skills. The tool provided a structure for selfassessment and made visible items that are important to be aware of in clinical skills. This article adds to simulation literature and provides a tool that is useful in enhancing peer learning, which is essential for nurses in practice. The tool has potential for enabling students to learn about reflection and developing skills for guiding others in practice after they have graduated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Simulator fidelity and training effectiveness: a comprehensive bibliography with selected annotations

    International Nuclear Information System (INIS)

    Rankin, W.L.; Bolton, P.A.; Shikiar, R.; Saari, L.M.

    1984-05-01

    This document contains a comprehensive bibliography on the topic of simulator fidelity and training effectiveness, prepared during the preliminary phases of work on an NRC-sponsored project on the Role of Nuclear Power Plant Simulators in Operator Licensing and Training. Section A of the document is an annotated bibliography consisting of articles and reports with relevance to the psychological aspects of simulator fidelity and the effectiveness of training simulators in a variety of settings, including military. The annotated items are drawn from a more comprehensive bibliography, presented in Section B, listing documents treating the role of simulators in operator training both in the nuclear industry and elsewhere

  15. High Fidelity, Numerical Investigation of Cross Talk in a Multi-Qubit Xmon Processor

    Science.gov (United States)

    Najafi-Yazdi, Alireza; Kelly, Julian; Martinis, John

    Unwanted electromagnetic interference between qubits, transmission lines, flux lines and other elements of a superconducting quantum processor poses a challenge in engineering such devices. This problem is exacerbated with scaling up the number of qubits. High fidelity, massively parallel computational toolkits, which can simulate the 3D electromagnetic environment and all features of the device, are instrumental in addressing this challenge. In this work, we numerically investigated the crosstalk between various elements of a multi-qubit quantum processor designed and tested by the Google team. The processor consists of 6 superconducting Xmon qubits with flux lines and gatelines. The device also consists of a Purcell filter for readout. The simulations are carried out with a high fidelity, massively parallel EM solver. We will present our findings regarding the sources of crosstalk in the device, as well as numerical model setup, and a comparison with available experimental data.

  16. Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner

    Science.gov (United States)

    Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan

    2018-06-01

    The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.

  17. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Lacava, W.; Austin, J.; Nejad, A.; Halse, C.; Bastard, L.; Helsen, J.

    2015-02-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential designparameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  18. Comparison of the force applied on oral structures during intubation attempts by novice physicians between the Macintosh direct laryngoscope, Airway Scope and C-MAC PM: a high-fidelity simulator-based study.

    Science.gov (United States)

    Nakanishi, Taizo; Shiga, Takashi; Homma, Yosuke; Koyama, Yasuaki; Goto, Tadahiro

    2016-05-23

    We examined whether the use of Airway Scope (AWS) and C-MAC PM (C-MAC) decreased the force applied on oral structures during intubation attempts as compared with the force applied with the use of Macintosh direct laryngoscope (DL). Prospective cross-over study. A total of 35 novice physicians participated. We used 6 simulation scenarios based on the difficulty of intubation and intubation devices. Our primary outcome measures were the maximum force applied on the maxillary incisors and tongue during intubation attempts, measured by a high-fidelity simulator. The maximum force applied on maxillary incisors was higher with the use of the C-MAC than with the DL and AWS in the normal airway scenario (DL, 26 Newton (N); AWS, 18 N; C-MAC, 52 N; p<0.01) and the difficult airway scenario (DL, 42 N; AWS, 24 N; C-MAC, 68 N; p<0.01). In contrast, the maximum force applied on the tongue was higher with the use of the DL than with the AWS and C-MAC in both airway scenarios (DL, 16 N; AWS, 1 N; C-MAC, 7 N; p<0.01 in the normal airway scenario; DL, 12 N; AWS, 4 N; C-MAC, 7 N; p<0.01 in the difficult airway scenario). The use of C-MAC, compared with the DL and AWS, was associated with the higher maximum force applied on maxillary incisors during intubation attempts. In contrast, the use of video laryngoscopes was associated with the lower force applied on the tongue in both airway scenarios, compared with the DL. Our study was a simulation-based study, and further research on living patients would be warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  20. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  1. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  2. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  3. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  4. High-Fidelity Computational Aerodynamics of the Elytron 4S UAV

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan; Theodore, Colin R.

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) have been carried out for the Elytron 4S Unmanned Aerial Vehicle (UAV), also known as the converticopter "proto12". It is the scaled wind tunnel model of the Elytron 4S, an Urban Air Mobility (UAM) concept, a tilt-wing, box-wing rotorcraft capable of Vertical Take-Off and Landing (VTOL). The three-dimensional unsteady Navier-Stokes equations are solved on overset grids employing high-order accurate schemes, dual-time stepping, and a hybrid turbulence model using NASA's CFD code OVERFLOW. The Elytron 4S UAV has been simulated in airplane mode and in helicopter mode.

  5. High Fidelity, High Volume Agglutinate Manufacturing Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Up to 65% of the lunar soils are comprised of agglutinates. Although the importance of agglutinate in simulants is often debated, the fact is that agglutinates...

  6. Specification of Training Simulator Fidelity: A Research Plan

    Science.gov (United States)

    1982-02-01

    Knowlede --Dunnette (1976) has recently reviewed the literature in the areas of human skills, abilities, and knowledges. The establishment of what types... management 6. Other than rational user responses to R&D studies and to training simulators 7. Deficiencies in training simulator design 23...proficient at managing the introduction of training innovations by applying those factors that can be controlled to influence acceptance. (p. 19) The

  7. High-fidelity simulation of turbofan engine. ; Verification and improvement of model's dynamical characteristics in linear operating range. Turbofan engine no koseito simulation. ; Senkei sado han'i ni okeru model dotokusei no kensho to seido kojo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, H; Kagiyama, S [Defence Agency, Tokyo (Japan)

    1993-09-25

    This paper describes providing pulse inputs to a fuel supply in trial operation of a turbofan engine, measurement of its response, and calculation of the frequency characteristics and time constants to acquire dynamic characteristics of the engine on the ground. The resultant engine characteristics were compared with the model characteristics of numerically analyzing a mathematical simulation model, and corrected to develop a high-accuracy simulation model. An element model and a dynamics model were prepared in detail on the main engine components, such as fans, a compressor, a combustor, and a turbine, along a flow diagram from the air intake opening to the exhaust nozzle. The pulses were inputted into the fuel supply by opening and closing an electromagnetic valve. Closing of the illustrated electromagnetic valve for about 0.7 second caused a difference (of phase and trend) in both characteristics of high and low frequencies as a result of pulse-like change in the flow rate. To correct the model characteristics, the combustion delay tie was set to 0.02 second upon considering the combustion delay time relative to the heat capacity of the combustor. Improvement in the model was verified as the phase characteristics was approximated to the engine characteristics. 13 refs., 17 figs., 2 tabs.

  8. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  9. Simulation based medical education; teaching normal delivery on intermediate fidelity simulator to medical students.

    Science.gov (United States)

    Shah, Nighat; Baig, Lubna; Shah, Nusrat; Hussain, Riffat; Aly, Syed Moyn

    2017-10-01

    To assess the effectiveness of medium fidelity simulator in teaching normal vaginal delivery to medical students. The quasi-experimental study was conducted at the professional development centre of the Jinnah Sindh Medical University, Karachi, from June to December 2015, and comprised medical students. Third-year medical students were included. They were divided into two groups. Group A was taught normal delivery through traditional PowerPoint and group B through simulator. The instruments used for assessing knowledge were pre-test and post-test, for skills of labour/delivery checklist of performance was used, and perception forms were filled to evaluate workshops/learning environment by students. Of the 76 participants, there were 36(47.4%) in group A and 40(52.6%) in group B. The overall mean age of the participants was 20.86±0.76 years in group B and 20.60±0.95 years in group A (p=0.19). The mean grade point average of the participants was 2.89±0.47 in group A and 2.87±0.48 in group B (p=0.81).Group B performed much better in skill of delivery having a mean score of 8.91±3.20compared to group A which had mean of 5.67±1.84 (pSimulation-based skill learning showed significantly better results.

  10. Use of Low-Fidelity Simulation Laboratory Training for Teaching Radiology Residents CT-Guided Procedures.

    Science.gov (United States)

    Picard, Melissa; Nelson, Rachel; Roebel, John; Collins, Heather; Anderson, M Bret

    2016-11-01

    To determine the benefit of the addition of low-fidelity simulation-based training to the standard didactic-based training in teaching radiology residents common CT-guided procedures. This was a prospective study involving 24 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by low-fidelity simulation-based training on three common CT-guided procedures: random liver biopsy, lung nodule biopsy, and drain placement. Baseline knowledge, confidence, and performance assessments were obtained after the didactic session and before the simulation training session. Approximately 2 months later, all residents participated in a simulation-based training session covering all three of these procedures. Knowledge, confidence, and performance data were obtained afterward. These assessments covered topics related to preprocedure workup, intraprocedure steps, and postprocedure management. Knowledge data were collected based on a 15-question assessment. Confidence data were obtained based on a 5-point Likert-like scale. Performance data were obtained based on successful completion of predefined critical steps. There was significant improvement in knowledge (P = .005), confidence (P simulation-based training to the standard didactic curriculum for all procedures. This study suggests that the addition of low-fidelity simulation-based training to a standard didactic-based curriculum is beneficial in improving resident knowledge, confidence, and tested performance of common CT-guided procedures. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Creating NDA working standards through high-fidelity spent fuel modeling

    International Nuclear Information System (INIS)

    Skutnik, Steven E.; Gauld, Ian C.; Romano, Catherine E.; Trellue, Holly

    2012-01-01

    The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is being performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent

  12. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  13. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  14. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  15. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  16. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  17. High-fidelity gates in quantum dot spin qubits.

    Science.gov (United States)

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  18. High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow

    Science.gov (United States)

    Rashad, Ramy

    To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition

  19. Development of a high-fidelity numerical model for hazard prediction in the urban environment

    International Nuclear Information System (INIS)

    Lien, F.S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K.J.

    2005-01-01

    The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition, and contamination are emerging threats in an uncertain world. The transport, dispersion, deposition, and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities. The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN materials. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties, and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident based on a pre-determined decision making framework. (author)

  20. Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei

    2007-01-01

    Building on the previous results of the Weyl chamber steering method, we demonstrate how to generate high-fidelity controlled-NOT (CNOT) gates by direct application of certain physically relevant Hamiltonians with fixed coupling constants containing Rabi terms. Such Hamiltonians are often used to describe two superconducting qubits driven by local rf pulses. It is found that in order to achieve 100% fidelity in a system with capacitive coupling of strength g, one Rabi term suffices. We give the exact values of the physical parameters needed to implement such CNOT gates. The gate time and all possible Rabi frequencies are found to be t=π/(2g) and Ω 1 /g=√(64n 2 -1),n=1,2,3,.... Generation of a perfect CNOT gate in a system with inductive coupling, characterized by additional constant k, requires the presence of both Rabi terms. The gate time is again t=π/(2g), but now there is an infinite number of solutions, each of which is valid in a certain range of k and is characterized by a pair of integers (n,m), (Ω 1,2 /g)=√(16n 2 -((k-1/2)) 2 )±√(16m 2 -((k+1/2)) 2 ). We distinguish two cases, depending on the sign of the coupling constant: (i) the antiferromagnetic case (k≥0) with n≥m=0,1,2,... and (ii) the ferromagnetic case (k≤0) with n>m=0,1,2,.... We conclude with consideration of fidelity degradation by switching to resonance. Simulation of time evolution based on the fourth-order Magnus expansion reveals characteristics of the gate similar to those found in the exact case, with slightly shorter gate time and shifted values of the Rabi frequencies

  1. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  2. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    Science.gov (United States)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  3. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    International Nuclear Information System (INIS)

    England, D G; Michelberger, P S; Champion, T F M; Reim, K F; Lee, K C; Sprague, M R; Jin, X-M; Langford, N K; Kolthammer, W S; Nunn, J; Walmsley, I A

    2012-01-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks. (paper)

  4. High-fidelity state transfer over an unmodulated linear XY spin chain

    International Nuclear Information System (INIS)

    Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming

    2010-01-01

    We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.

  5. A Review of the Literature on Training Simulators: Translators: Transfer of Training and Simulator Fidelity.

    Science.gov (United States)

    1984-04-01

    Noise is distracting especially in complex tasks that require close attention and concentration (Finkelman 1975). Improper lighting (Tinker 1943...before coping with . the entire systemi. However, the functional fidelity may be affected due to the isolation of a £ articular subsystem. Curry (1981

  6. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  7. Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri; Shapiro, Harris; Goltsman, Eugene; McHardy, Alice C.; Rigoutsos, Isidore; Salamov, Asaf; Korzeniewski, Frank; Land, Miriam; Lapidus, Alla; Grigoriev, Igor; Richardson, Paul; Hugenholtz, Philip; Kyrpides, Nikos C.

    2006-12-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and two sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  8. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Shapiro, Harris [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; McHardy, Alice C. [IBM T. J. Watson Research Center; Rigoutsos, Isidore [IBM T. J. Watson Research Center; Salamov, Asaf [U.S. Department of Energy, Joint Genome Institute; Korzeniewski, Frank [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Grigoriev, Igor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2007-01-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and two sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  9. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.

  10. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.

    2013-01-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  11. Tracking Large Area Mangrove Deforestation with Time-Series of High Fidelity MODIS Imagery

    Science.gov (United States)

    Rahman, A. F.; Dragoni, D.; Didan, K.

    2011-12-01

    Mangrove forests are important coastal ecosystems of the tropical and subtropical regions. These forests provide critical ecosystem services, fulfill important socio-economic and environmental functions, and support coastal livelihoods. But these forest are also among the most vulnerable ecosystems, both to anthropogenic disturbance and climate change. Yet, there exists no map or published study showing detailed spatiotemporal trends of mangrove deforestation at local to regional scales. There is an immediate need of producing such detailed maps to further study the drivers, impacts and feedbacks of anthropogenic and climate factors on mangrove deforestation, and to develop local and regional scale adaptation/mitigation strategies. In this study we use a time-series of high fidelity imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) for tracking changes in the greenness of mangrove forests of Kalimantan Island of Indonesia. A novel method of filtering satellite data for cloud, aerosol, and view angle effects was used to produce high fidelity MODIS time-series images at 250-meter spatial resolution and three-month temporal resolution for the period of 2000-2010. Enhanced Vegetation Index 2 (EVI2), a measure of vegetation greenness, was calculated from these images for each pixel at each time interval. Temporal variations in the EVI2 of each pixel were tracked as a proxy to deforestaton of mangroves using the statistical method of change-point analysis. Results of these change detection were validated using Monte Carlo simulation, photographs from Google-Earth, finer spatial resolution images from Landsat satellite, and ground based GIS data.

  12. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    Science.gov (United States)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  13. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    Science.gov (United States)

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2014-03-03

    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.

  15. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    Science.gov (United States)

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  16. A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.

    Science.gov (United States)

    Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert

    2016-01-01

    Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.

  17. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  18. A comparison of color fidelity metrics for light sources using simulation of color samples under lighting conditions

    Science.gov (United States)

    Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo

    2017-09-01

    Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.

  19. High Versus Low Theoretical Fidelity Pedometer Intervention Using Social-Cognitive Theory on Steps and Self-Efficacy.

    Science.gov (United States)

    Raedeke, Thomas D; Dlugonski, Deirdre

    2017-12-01

    This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the high theoretical fidelity condition wore a pedometer and participated in a weekly group walk followed by a meeting to discuss cognitive-behavioral strategies targeting self-efficacy. Participants in the low theoretical fidelity condition met for a group walk and also used a pedometer as a motivational tool and to monitor steps. Step counts were assessed throughout the 10-week intervention and after a no-treatment follow-up (20 weeks and 30 weeks). Self-efficacy was measured preintervention and postintervention. Participants in the high theoretical fidelity condition increased daily steps by 2,283 from preintervention to postintervention, whereas participants in the low fidelity condition demonstrated minimal change during the same time period (p = .002). Individuals attending at least 80% of the sessions in the high theoretical fidelity condition showed an increase of 3,217 daily steps (d = 1.03), whereas low attenders increased by 925 (d = 0.40). Attendance had minimal impact in the low theoretical fidelity condition. Follow-up data revealed that step counts were at least somewhat maintained. For self-efficacy, participants in the high, compared with those in the low, theoretical fidelity condition showed greater improvements. Findings highlight the importance of basing activity promotion efforts on theory. The high theoretical fidelity intervention that included cognitive-behavioral strategies targeting self-efficacy was more effective than the low theoretical fidelity intervention, especially for those with high attendance.

  20. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...... computer....

  1. Interfacing high-fidelity core neutronics models to whole plant models

    International Nuclear Information System (INIS)

    McEllin, M.

    1999-01-01

    Until recently available computer power dictated that whole-plant models of nuclear power stations have typically employed simple models of the reactor core which can not match the fidelity of safety-qualified 2-group, 3D neutronics models. As a result the treatment of situations involving strong coupling between the core and the rest of the plant has inevitably been somewhat approximate, requiring conservative modelling assumptions, or manual iteration between cases, to bound worse case scenarios. Such techniques not only place heavy demands on the engineers involved, they may also result in potentially unnecessary operational constraints. Hardware is today no longer the limiting factor, but the cost of developing and validating high-quality software is now such that it appears attractive to build new systems with a wider simulation scope by using existing stand-alone codes as sub-components. This is not always as straightforward as it might at first appear. This paper illustrates some of the pitfalls, and discusses more sophisticated and robust strategies. (author)

  2. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  3. High versus Low Theoretical Fidelity Pedometer Intervention Using Social-Cognitive Theory on Steps and Self-Efficacy

    Science.gov (United States)

    Raedeke, Thomas D.; Dlugonski, Deirdre

    2017-01-01

    Purpose: This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Method: Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the…

  4. Band-selective shaped pulse for high fidelity quantum control in diamond

    International Nuclear Information System (INIS)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu

    2014-01-01

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14 N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13 C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  5. Band-selective shaped pulse for high fidelity quantum control in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Fei-Hao [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Gu, Chang-Zhi; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Long, Gui-Lu [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-30

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  6. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  7. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    Science.gov (United States)

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  8. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  9. Evaluating Multiple Levels of an Interaction Fidelity Continuum on Performance and Learning in Near-Field Training Simulations.

    Science.gov (United States)

    Bhargava, Ayush; Bertrand, Jeffrey W; Gramopadhye, Anand K; Madathil, Kapil C; Babu, Sabarish V

    2018-04-01

    With costs of head-mounted displays (HMDs) and tracking technology decreasing rapidly, various virtual reality applications are being widely adopted for education and training. Hardware advancements have enabled replication of real-world interactions in virtual environments to a large extent, paving the way for commercial grade applications that provide a safe and risk-free training environment at a fraction of the cost. But this also mandates the need to develop more intrinsic interaction techniques and to empirically evaluate them in a more comprehensive manner. Although there exists a body of previous research that examines the benefits of selected levels of interaction fidelity on performance, few studies have investigated the constituent components of fidelity in a Interaction Fidelity Continuum (IFC) with several system instances and their respective effects on performance and learning in the context of a real-world skills training application. Our work describes a large between-subjects investigation conducted over several years that utilizes bimanual interaction metaphors at six discrete levels of interaction fidelity to teach basic precision metrology concepts in a near-field spatial interaction task in VR. A combined analysis performed on the data compares and contrasts the six different conditions and their overall effects on performance and learning outcomes, eliciting patterns in the results between the discrete application points on the IFC. With respect to some performance variables, results indicate that simpler restrictive interaction metaphors and highest fidelity metaphors perform better than medium fidelity interaction metaphors. In light of these results, a set of general guidelines are created for developers of spatial interaction metaphors in immersive virtual environments for precise fine-motor skills training simulations.

  10. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    Science.gov (United States)

    2017-05-24

    THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA

  11. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    Science.gov (United States)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  12. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    Science.gov (United States)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  13. Analysis of precipitation teleconnections in CMIP models as a measure of model fidelity in simulating precipitation

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J.; Meyerson, J.

    2011-12-01

    The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.

  14. PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli

    DEFF Research Database (Denmark)

    Liu, Yilan; Yang, Maohua; Yan, Daojiang

    2016-01-01

    Efficiency and fidelity are the key obstacles for genome editing toolboxes. In the present study, a PCR-based tandem repeat assisted genome editing (TRAGE) method with high efficiency and fidelity was developed. The design of TRAGE is based on the mechanism of repair of spontaneous double...... for seamlessly deleting, substituting and inserting targeted genes using PCR products. The effects of different manipulations including sucrose addition time, subculture times in LB with sucrose and stages of inoculation on the efficiency were investigated. With our recommended procedure, seamless excision...... of cat-sacB cassette can be realized in 48 h efficiently. We believe that the developed method has great potential for seamless genome editing in E. coli....

  15. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  16. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  17. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  18. High fidelity thermal-hydraulic analysis using CFD and massively parallel computers

    International Nuclear Information System (INIS)

    Weber, D.P.; Wei, T.Y.C.; Brewster, R.A.; Rock, Daniel T.; Rizwan-uddin

    2000-01-01

    Thermal-hydraulic analyses play an important role in design and reload analysis of nuclear power plants. These analyses have historically relied on early generation computational fluid dynamics capabilities, originally developed in the 1960s and 1970s. Over the last twenty years, however, dramatic improvements in both computational fluid dynamics codes in the commercial sector and in computing power have taken place. These developments offer the possibility of performing large scale, high fidelity, core thermal hydraulics analysis. Such analyses will allow a determination of the conservatism employed in traditional design approaches and possibly justify the operation of nuclear power systems at higher powers without compromising safety margins. The objective of this work is to demonstrate such a large scale analysis approach using a state of the art CFD code, STAR-CD, and the computing power of massively parallel computers, provided by IBM. A high fidelity representation of a current generation PWR was analyzed with the STAR-CD CFD code and the results were compared to traditional analyses based on the VIPRE code. Current design methodology typically involves a simplified representation of the assemblies, where a single average pin is used in each assembly to determine the hot assembly from a whole core analysis. After determining this assembly, increased refinement is used in the hot assembly, and possibly some of its neighbors, to refine the analysis for purposes of calculating DNBR. This latter calculation is performed with sub-channel codes such as VIPRE. The modeling simplifications that are used involve the approximate treatment of surrounding assemblies and coarse representation of the hot assembly, where the subchannel is the lowest level of discretization. In the high fidelity analysis performed in this study, both restrictions have been removed. Within the hot assembly, several hundred thousand to several million computational zones have been used, to

  19. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  20. Multi-fidelity stochastic collocation method for computation of statistical moments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu [Department of Mathematics, University of Iowa, Iowa City, IA 52242 (United States); Linebarger, Erin M., E-mail: aerinline@sci.utah.edu [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Xiu, Dongbin, E-mail: xiu.16@osu.edu [Department of Mathematics, The Ohio State University, Columbus, OH 43210 (United States)

    2017-07-15

    We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.

  1. Multi-agent based simulator with high fidelity virtual sensors

    NARCIS (Netherlands)

    Papp, Z.; Thean, A.H.C.; Elk, M.G. van; Dorrepaal, M.

    2003-01-01

    Nowadays the distributed implementation of measurement/data processing/control systems is gaining importance. This process is driven by application domain needs. Wide variety of applications (e.g. mobile-robotic, intelligent vehicle, autonomous-guided-vehicle systems) can be modelled as a collection

  2. High-Fidelity Lunar Dust Simulant, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  3. High-Fidelity Lunar Dust Simulant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  4. High-Fidelity Simulation of Turbofan Noise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband fan noise -- closely tied to turbulent flow on and around the fan blades -- represents a key challenge to the noise reduction community due to the...

  5. Exploration of high-fidelity simulation: Nurse educators' perceptions ...

    African Journals Online (AJOL)

    Conclusion. The results indicated that nurse educators perceived HFS as a learning pedagogy that can improve students' learning outcomes if used effectively. They believed that to realise the potential of HFS, more support should be provided through training, the availability of necessary resources, and improved planning ...

  6. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  7. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.

    Science.gov (United States)

    Klewicki, J C; Chini, G P; Gibson, J F

    2017-03-13

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  8. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-01-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585

  9. Driving Simulator Development and Performance Study

    OpenAIRE

    Juto, Erik

    2010-01-01

    The driving simulator is a vital tool for much of the research performed at theSwedish National Road and Transport Institute (VTI). Currently VTI posses three driving simulators, two high fidelity simulators developed and constructed by VTI, and a medium fidelity simulator from the German company Dr.-Ing. Reiner Foerst GmbH. The two high fidelity simulators run the same simulation software, developed at VTI. The medium fidelity simulator runs a proprietary simulation software. At VTI there is...

  10. A high-fidelity virtual environment for the study of paranoia.

    Science.gov (United States)

    Broome, Matthew R; Zányi, Eva; Hamborg, Thomas; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P

    2013-01-01

    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  11. High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.

    Science.gov (United States)

    Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H

    2017-10-11

    High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.

  12. The use of high fidelity CAD models as the basis for training on complex systems

    Science.gov (United States)

    Miller, Kellie; Tanner, Steve

    1993-01-01

    During the design phases of large and complex systems such as NASA's Space Station Freedom (SSF), there are few, if any physical prototypes built. This is often due to their expense and the realization that the design is likely to change. This poses a problem for training, maintainability, and operations groups who are tasked to lay the foundation of plans for using these systems. The Virtual Reality and Visualization Laboratory at the Boeing Advanced Computing Group's Huntsville facility is supporting the use of high fidelity, detailed design models that are generated during the initial design phases, for use in training, maintainability and operations exercises. This capability was used in its non-immersive form to great effect at the SSF Critical Design Review (CDR) during February, 1993. Allowing the user to move about within a CAD design supports many efforts, including training and scenario study. We will demonstrate via a video of the Maintainability SSF CDR how this type of approach can be used and why it is so effective in conveying large amounts of information quickly and concisely. We will also demonstrate why high fidelity models are so important for this type of training system and how it's immersive aspects may be exploited as well.

  13. Coupled Tort-TD/CTF Capability for high-fidelity LWR core calculations - 321

    International Nuclear Information System (INIS)

    Christienne, M.; Avramova, M.; Perin, Y.; Seubert, A.

    2010-01-01

    This paper describes the developed coupling scheme between TORT-TD and CTF. TORT-TD is a time-dependent 3D discrete ordinates neutron transport code. TORT-TD is utilized for high-fidelity reactor core neutronics calculations while CTF is providing the thermal-hydraulics feedback information. CTF is an improved version of the advanced thermal-hydraulic sub-channel code COBRA-TF, which is widely used for best-estimate evaluations of LWR safety margins. CTF is a transient code based on a separated flow representation of the two-phase flow. The coupled code TORT-TD/CTF allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. Steady-state and transient test cases, based on the OECD/NRC PWR MOX/UO 2 Core Transient Benchmark, have been calculated. The steady state cases are based on a quarter core model while the transient test case models a control rod ejection transient in a small PWR mini-core fuel assembly arrangement. The obtained results with TORT-TD/CTF are verified by a code-to-code comparison with the previously developed NEM/CTF and TORT-TD/ATHLET coupled code systems. The performed comparative analysis indicates the applicability and high-fidelity potential of the TORT-TD/CTF coupling. (authors)

  14. A High-Fidelity Virtual Environment for the Study of Paranoia

    Directory of Open Access Journals (Sweden)

    Matthew R. Broome

    2013-01-01

    Full Text Available Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n=32 entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  15. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    Science.gov (United States)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  16. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  17. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  18. Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Samuel Temple; Strachan, Alejandro, E-mail: strachan@purdue.edu

    2017-04-01

    We use functional, Fréchet, derivatives to quantify how thermodynamic outputs of a molecular dynamics (MD) simulation depend on the potential used to compute atomic interactions. Our approach quantifies the sensitivity of the quantities of interest with respect to the input functions as opposed to its parameters as is done in typical uncertainty quantification methods. We show that the functional sensitivity of the average potential energy and pressure in isothermal, isochoric MD simulations using Lennard–Jones two-body interactions can be used to accurately predict those properties for other interatomic potentials (with different functional forms) without re-running the simulations. This is demonstrated under three different thermodynamic conditions, namely a crystal at room temperature, a liquid at ambient pressure, and a high pressure liquid. The method provides accurate predictions as long as the change in potential can be reasonably described to first order and does not significantly affect the region in phase space explored by the simulation. The functional uncertainty quantification approach can be used to estimate the uncertainties associated with constitutive models used in the simulation and to correct predictions if a more accurate representation becomes available.

  19. Efficient micropropagation and assessment of genetic fidelity of Boerhaavia diffusa L- High trade medicinal plant.

    Science.gov (United States)

    Patil, Kapil S; Bhalsing, Sanjivani R

    2015-07-01

    Boerhaavia diffusa L is a medicinal herb with immense pharmaceutical significance. The plant is used by many herbalist, Ayurvedic and pharmaceutical industries for production biopharmaceuticals. It is among the 46 medicinal plant species in high trade sourced mainly from wastelands and generally found in temperate regions of the world. However, the commercial bulk of this plant shows genetic variations which are the main constraint to use this plant as medicinal ingredient and to obtain high value products of pharmaceutical interest from this plant. In this study, we have regenerated the plant of Boerhaavia diffusa L through nodal explants and evaluated genetic fidelity of the micropropagated plants of Boerhaavia diffusa L with the help of random amplified polymorphic DNA (RAPD) markers. The results obtained using RAPD showed monomorphic banding pattern revealing genetic stability among the mother plant and in vitro regenerated plants of Boerhaavia diffusa L.

  20. Improvements of ModalMax High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodard, Stanley E.

    2005-01-01

    ModalMax audio speakers have been enhanced by innovative means of tailoring the vibration response of thin piezoelectric plates to produce a high-fidelity audio response. The ModalMax audio speakers are 1 mm in thickness. The device completely supplants the need to have a separate driver and speaker cone. ModalMax speakers can perform the same applications of cone speakers, but unlike cone speakers, ModalMax speakers can function in harsh environments such as high humidity or extreme wetness. New design features allow the speakers to be completely submersed in salt water, making them well suited for maritime applications. The sound produced from the ModalMax audio speakers has sound spatial resolution that is readily discernable for headset users.

  1. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    Science.gov (United States)

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  2. Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling

    Directory of Open Access Journals (Sweden)

    Baptiste Royer

    2017-05-01

    Full Text Available We investigate an approach to universal quantum computation based on the modulation of longitudinal qubit-oscillator coupling. We show how to realize a controlled-phase gate by simultaneously modulating the longitudinal coupling of two qubits to a common oscillator mode. In contrast to the more familiar transversal qubit-oscillator coupling, the magnitude of the effective qubit-qubit interaction does not rely on a small perturbative parameter. As a result, this effective interaction strength can be made large, leading to short gate times and high gate fidelities. We moreover show how the gate infidelity can be exponentially suppressed with squeezing and how the entangling gate can be generalized to qubits coupled to separate oscillators. Our proposal can be realized in multiple physical platforms for quantum computing, including superconducting and spin qubits.

  3. Development and test validation of a computational scheme for high-fidelity fluence estimations of the Swiss BWRs

    International Nuclear Information System (INIS)

    Vasiliev, A.; Wieselquist, W.; Ferroukhi, H.; Canepa, S.; Heldt, J.; Ledergerber, G.

    2011-01-01

    One of the current objectives within reactor analysis related projects at the Paul Scherrer Institut is the establishment of a comprehensive computational methodology for fast neutron fluence (FNF) estimations of reactor pressure vessels (RPV) and internals for both PWRs and BWRs. In the recent past, such an integral calculational methodology based on the CASMO-4/SIMULATE- 3/MCNPX system of codes was developed for PWRs and validated against RPV scraping tests. Based on the very satisfactory validation results, the methodology was recently applied for predictive FNF evaluations of a Swiss PWR to support the national nuclear safety inspectorate in the framework of life-time estimations. Today, focus is at PSI given to develop a corresponding advanced methodology for high-fidelity FNF estimations of BWR reactors. In this paper, the preliminary steps undertaken in that direction are presented. To start, the concepts of the PWR computational scheme and its transfer/adaptation to BWR are outlined. Then, the modelling of a Swiss BWR characterized by very heterogeneous core designs is presented along with preliminary sensitivity studies carried out to assess the sufficient level of details required for the complex core region. Finally, a first validation test case is presented on the basis of two dosimeter monitors irradiated during two recent cycles of the given BWR reactor. The achieved computational results show a satisfactory agreement with measured dosimeter data and illustrate thereby the feasibility of applying the PSI FNF computational scheme also for BWRs. Further sensitivity/optimization studies are nevertheless necessary in order to consolidate the scheme and to ensure increasing continuously, the fidelity and reliability of the BWR FNF estimations. (author)

  4. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  5. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    Science.gov (United States)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  6. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    Science.gov (United States)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  7. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    Science.gov (United States)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  8. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    Science.gov (United States)

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-fidelity teleportation of continuous-variable quantum States using delocalized single photons

    DEFF Research Database (Denmark)

    Andersen, Ulrik L; Ralph, Timothy C

    2013-01-01

    Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed...... states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...

  10. High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds

    Science.gov (United States)

    Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.

    2003-01-01

    We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985

  11. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  12. Effects of simulation fidelity on user experience in virtual fear of public speaking training - an experimental study.

    Science.gov (United States)

    Poeschl, Sandra; Doering, Nicola

    2014-01-01

    Realistic models in virtual reality training applications are considered to positively influence presence and performance. The experimental study presented, analyzed the effect of simulation fidelity (static vs. animated audience) on presence as a prerequisite for performance in a prototype virtual fear of public speaking application with a sample of N = 40 academic non-phobic users. Contrary to the state of research, no influence was shown on virtual presence and perceived realism, but an animated audience led to significantly higher effects in anxiety during giving a talk. Although these findings could be explained by an application that might not have been realistic enough, they still question the role of presence as a mediating factor in virtual exposure applications.

  13. Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.

    Science.gov (United States)

    Kim, Suhng Wook; Kim, Dong-Uk; Kim, Jin Kwang; Kang, Lin-Woo; Cho, Hyun-Soo

    2008-05-01

    We have determined a 2.6A resolution crystal structure of Pfu DNA polymerase, the most commonly used high fidelity PCR enzyme, from Pyrococcus furiosus. Although the structures of Pfu and KOD1 are highly similar, the structure of Pfu elucidates the electron density of the interface between the exonuclease and thumb domains, which has not been previously observed in the KOD1 structure. The interaction of these two domains is known to coordinate the proofreading and polymerization activity of DNA polymerases, especially via H147 that is present within the loop (residues 144-158) of the exonuclease domain. In our structure of Pfu, however, E148 rather than H147 is located at better position to interact with the thumb domain. In addition, the structural analysis of Pfu and KOD1 shows that both the Y-GG/A and beta-hairpin motifs of Pfu are found to differ with that of KOD1, and may explain differences in processivity. This information enables us to better understand the mechanisms of polymerization and proofreading of DNA polymerases.

  14. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  15. Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge, Xiaodong [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands); Jinnai, Hiroshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Dunin-Borkowski, Rafal E.; Migunov, Vadim [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Cool, Pegie [Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Bons, Anton-Jan [European Technology Center, ExxonMobil Chemical Europe Inc., Hermeslaan 2, B-1831 Machelen (Belgium); Batenburg, Kees Joost [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands)

    2017-04-15

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. - Highlights: • Automated discrete electron tomography capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts and requires significantly

  16. Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials

    International Nuclear Information System (INIS)

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E.; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-01-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. - Highlights: • Automated discrete electron tomography capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts and requires significantly

  17. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    International Nuclear Information System (INIS)

    Richards, Phillip W; Griffith, D Todd; Hodges, Dewey H

    2014-01-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy

  18. Accelerated high fidelity prion amplification within and across prion species barriers.

    Directory of Open Access Journals (Sweden)

    Kristi M Green

    2008-08-01

    Full Text Available Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP, as a substrate for in vitro generation of chronic wasting disease (CWD prions by protein misfolding cyclic amplification (PMCA. Characterization of this infectivity in Tg(CerPrP mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.

  19. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    Science.gov (United States)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  20. Effective gene editing by high-fidelity base editor 2 in mouse zygotes

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-06-01

    Full Text Available ABSTRACT Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE system built on cytidine (C deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2, and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.

  1. Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond

    Science.gov (United States)

    Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen

    2018-01-01

    The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.

  2. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  3. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  4. Low-Fidelity Haptic Simulation Versus Mental Imagery Training for Epidural Anesthesia Technical Achievement in Novice Anesthesiology Residents: A Randomized Comparative Study.

    Science.gov (United States)

    Lim, Grace; Krohner, Robert G; Metro, David G; Rosario, Bedda L; Jeong, Jong-Hyeon; Sakai, Tetsuro

    2016-05-01

    There are many teaching methods for epidural anesthesia skill acquisition. Previous work suggests that there is no difference in skill acquisition whether novice learners engage in low-fidelity (LF) versus high-fidelity haptic simulation for epidural anesthesia. No study, however, has compared the effect of LF haptic simulation for epidural anesthesia versus mental imagery (MI) training in which no physical practice is attempted. We tested the hypothesis that MI training is superior to LF haptic simulation training for epidural anesthesia skill acquisition. Twenty Post-Graduate Year 2 (PGY-2) anesthesiology residents were tested at the beginning of the training year. After a didactic lecture on epidural anesthesia, they were randomized into 2 groups. Group LF had LF simulation training for epidural anesthesia using a previously described banana simulation technique. Group MI had guided, scripted MI training in which they initially were oriented to the epidural kit components and epidural anesthesia was described stepwise in detail, followed by individual mental rehearsal; no physical practice was undertaken. Each resident then individually performed epidural anesthesia on a partial-human task trainer on 3 consecutive occasions under the direct observation of skilled evaluators who were blinded to group assignment. Technical achievement was assessed with the use of a modified validated skills checklist. Scores (0-21) and duration to task completion (minutes) were recorded. A linear mixed-effects model analysis was performed to determine the differences in scores and duration between groups and over time. There was no statistical difference between the 2 groups for scores and duration to task completion. Both groups showed similarly significant increases (P = 0.0015) in scores over time (estimated mean score [SE]: group MI, 15.9 [0.55] to 17.4 [0.55] to 18.6 [0.55]; group LF, 16.2 [0.55] to 17.7 [0.55] to 18.9 [0.55]). Time to complete the procedure decreased

  5. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  6. The Importance of Water for High Fidelity Information Processing and for Life

    Science.gov (United States)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  7. Improving the fidelity of electrically heated nuclear systems testing using simulated neutronic feedback

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Godfroy, Thomas J.; Webster, Kenny

    2010-01-01

    Nonnuclear test platforms and methodologies can be employed to reduce the overall cost, risk and complexity of testing nuclear systems while allowing one to evaluate the operation of an integrated nuclear system within a reasonable timeframe, providing valuable input to the overall system design. In a nonnuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard electric test techniques allow one to fully assess thermal, heat transfer, and stress related attributes of a given system, but these approaches fail to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and testing with nuclear fuel elements installed. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. This paper summarizes the results of initial system dynamic response testing for two electrically heated reactor concepts: a heat pipe-cooled reactor simulator with integrated heat exchanger and a gas-cooled reactor simulator with integrated Brayton power conversion system. Initial applications apply a simplified reactor kinetics model with either a single or an averaged measured state point. Preliminary results demonstrate the applicability of the dynamic test methodology to any reactor type, elucidating the variation in system response characteristics in different reactor concepts. These results suggest a need to further enhance the dynamic test approach by incorporating a more accurate model of the reactor dynamics and improved hardware instrumentation for better state estimation in application of the

  8. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Science.gov (United States)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  9. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  10. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  11. Simulations of High Speed Fragment Trajectories

    Science.gov (United States)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  12. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    Science.gov (United States)

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  13. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  14. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  15. Engineering description of the OMS/RCS/DAP modes used in the HP-9825A High Fidelity Relative Motion Program (HFRMP)

    Science.gov (United States)

    Wilson, S. W.

    1978-01-01

    Simplified mathematical models are reported for the space shuttle's Orbital Maneuvering System (OMS), Reaction Control System (RCS), and on-orbit Digital Autopilot (DAP) that have been incorporated in the High-Fidelity Relative Motion Program (HFRMP) for the HP-9825A desk-top calculator. Comparisons were made between data generated by the HFRMP and by the Space Shuttle Functional Simulator (SSFS), which models the cited shuttle systems in much greater detail. These data include propellant requirements for representative translational maneuvers, rotational maneuvers, and attitude maintenance options. Also included are data relating to on-orbit trajectory deviations induced by RCS translational cross coupling. Potential close-range stationkeeping problems that are suggested by HFRMP simulations of 80 millisecond (as opposed to 40 millisecond) DAP cycle effects are described. The principal function of the HFRMP is to serve as a flight design tool in the area of proximity operations.

  16. New high-fidelity terrain modeling method constrained by terrain semanteme.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available Production of higher-fidelity digital elevation models is important; as such models are indispensable components of space data infrastructure. However, loss of terrain features is a constant problem for grid digital elevation models, although these models have already been defined in such a way that their distinct usage as data sources in terrain modeling processing is prohibited. Therefore, in this study, the novel concept-terrain semanteme is proposed to define local space terrain features, and a new process for generating grid digital elevation models based on this new concept is designed. A prototype system is programmed to test the proposed approach; the results indicate that terrain semanteme can be applied in the process of grid digital elevation model generation, and that usage of this new concept improves the digital elevation model fidelity. Moreover, the terrain semanteme technique can be applied for recovery of distorted digital elevation model regions containing terrain semantemes, with good recovery efficiency indicated by experiments.

  17. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    Science.gov (United States)

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-05

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  18. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  19. Measurement and analysis of bubble behavior in subcooled nucleate boiling flow field with high fidelity imaging system

    International Nuclear Information System (INIS)

    Wu, W.; Jones, B.G.; Newell, T.A.

    2004-01-01

    Axial offset anomaly (AOA) is an unexpected deviation in the core axial power distribution from the predicted curve. AOA is a current major consideration for reactors operating at increased power levels and is becoming immediate threat to nuclear power's competitiveness in the market. Despite much effort focusing on this topic, a comprehensive understanding is far from being developed. However, previous research indicates first, that a close connection exists between subcooled nucleate boiling occurring in core region and the formation of crud, which directly results in AOA phenomena, secondly, that deposition is greater, and sometimes much greater, on heated than on unheated surfaces. A number of researchers have suggested that boiling promotes deposition, and several observed increased deposition in the subcooled boiling region. Limited detailed information is available on the interaction between heat and mass transfer in subcooled nucleate boiling (SNB) flow. Bubbles formed in SNB region play an important role in helping the formation of crud. This research examines bubble behavior under SNB condition from the dynamic point of view, using a high fidelity digital imaging apparatus. Freon R-134a is chosen as a simulant fluid due to its merit of having smaller surface tension and lower boiling temperature. The apparatus is operated at reduced pressure. Series of images at frame rates up to 4000 frames/s were obtained, showing different characteristics of bubble behavior with varying experimental parameters e.g. flow velocity, fluid subcooled level, etc. Analyses that combine the experimental results with analytical result on flow field in velocity boundary layer are considered. A tentative suggestion is that a rolling movement of a bubble accompanies its sliding along the heating surface in the flow channel. Numerical computations using FLUENT v5.5 have been performed to support this conclusion

  20. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses

  1. Robustness of high-fidelity Rydberg gates with single-site addressability

    Science.gov (United States)

    Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta

    2014-09-01

    Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.

  2. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  3. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  4. Nursing leadership competencies: low-fidelity simulation as a teaching strategy.

    Science.gov (United States)

    Pollard, Cheryl L; Wild, Carol

    2014-11-01

    Nurses must demonstrate leadership and followership competencies within complex adaptive team environments to ensure patient and staff safety, effective use of resources, and an adaptive health care system. These competencies are demonstrated through the use of communication strategies that are embedded within a relational practice. Health care professionals, regardless of formal position, need to assert their opinions and perspectives using a communication style that demonstrates value of all team members in open discussions about quality patient care, appropriate access, and stewardship. Challenges to effective communication and relational practice are the individual and organizational patterns of behavior, and the subsequent impact that these behaviors have on others. Students articulate situational awareness when they conduct a critical analysis of individual, team, and organizational functioning, and then use this information and evidence gained from a critical literature review to develop recommendations to improve individual, team, and/or organizational performance. Leadership and followership simulation exercises, inclusive of public feedback and debriefing, are used as a pedagogical/andragogical strategy in a nursing baccalaureate senior leadership course to facilitate learning of team communication skills and improve situational awareness. We view this strategy as an alternative to traditional classroom learning activities which provide little opportunity for recursive learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improvement of the NSSS T/H Module for Enhancing the Simulation Fidelity of KNPEC-2 Simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Lee, Seung Wook; Jeong, Jae Jun; Lee, Myung Soo

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) and KAERI (Korea Atomic Energy Research Institute) jointly developed and supplied a realistic NSSS (Nuclear Steam Supply System) T/H (Thermal-Hydraulic) module (named ARTS) based on the best-estimate code RETRAN-3D for the improvement of the KNPEC-2 full-scope simulator in 2001. Although ARTS can simulate the most transients in real-time, and its robustness is ensured, real-time calculation and robustness can fail for largebreak (LB) loss-of-coolant accident (LOCA) and longterm, two-phase transients. In order to improve its robustness, ARTS equipped with the backup calculation module to be used whenever a regular ARTS module fails to calculate. When the symptom for the failure of T/H module is detected, the main ARTS module is replaced with the backup module for the calculation of primary and secondary reactor system although most failures of ARTS occur in the calculation of the primary system especially for LB LOCA simulation. The sudden transition from the main ARTS module to the backup module can exhibit the discontinuity of simulation of secondary system on rare occasions. To mitigate the simulation discontinuity, we have improved the backup module of ARTS. The performance of a new approach has been illustrated by the non-integrated standalone test. The improved ARTS module will be incorporated into KNPEC-2 simulator and evaluated its performance in the real simulator environment. This paper presents the brief description of a new backup calculation strategy and the simulation results of LOCA to evaluate the performance of a new backup strategy in standalone test environment

  6. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    Science.gov (United States)

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  7. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    Science.gov (United States)

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  8. Optimization and parallelization of the thermal–hydraulic subchannel code CTF for high-fidelity multi-physics applications

    International Nuclear Information System (INIS)

    Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.

    2015-01-01

    Highlights: • COBRA-TF was adopted by the Consortium for Advanced Simulation of LWRs. • We have improved code performance to support running large-scale LWR simulations. • Code optimization has led to reductions in execution time and memory usage. • An MPI parallelization has reduced full-core simulation time from days to minutes. - Abstract: This paper describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations—including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices—are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a “single program multiple data” parallelization strategy targeting distributed memory “multiple instruction multiple data” platforms utilizing domain decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard Message-Passing Interface (MPI) calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pressurized water reactor (PWR) pre-processor utility that uses a greatly simplified set of user input compared with the traditional CTF input. To run CTF in

  9. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    Science.gov (United States)

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    Science.gov (United States)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  11. High color fidelity thin film multilayer systems for head-up display use

    Science.gov (United States)

    Tsou, Yi-Jen D.; Ho, Fang C.

    1996-09-01

    Head-up display is gaining increasing access in automotive vehicles for indication and position/navigation purposes. An optical combiner, which allows the driver to receive image information from outside and inside of the automobile, is the essential part of this display device. Two multilayer thin film combiner coating systems with distinctive polarization selectivity and broad band spectral neutrality are discussed. One of the coating systems was designed to be located at the lower portion of the windshield. The coating reduced the exterior glare by approximately 45% and provided about 70% average see-through transmittance in addition to the interior information display. The other coating system was designed to be integrated with the sunshield located at the upper portion of the windshield. The coating reflected the interior information display while reducing direct sunlight penetration to 25%. Color fidelity for both interior and exterior images were maintained in both systems. This facilitated the display of full-color maps. Both coating systems were absorptionless and environmentally durable. Designs, fabrication, and performance of these coating systems are addressed.

  12. Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.

    Science.gov (United States)

    Lee, Hayun; Zhou, Yi; Taylor, David W; Sashital, Dipali G

    2018-04-05

    CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  14. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  15. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake

    DEFF Research Database (Denmark)

    Churchfield, Matthew J.; Wang, Qi; Scholbrock, A.

    2016-01-01

    Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general...

  16. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    International Nuclear Information System (INIS)

    Churchfield, M; Wang, Q; Scholbrock, A; Herges, T; Mikkelsen, T; Sjöholm, M

    2016-01-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign. (paper)

  17. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Runbing [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhu, Chengjie [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Deng, L.; Hagley, E. W. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  18. Inspiring Careers in STEM and Healthcare Fields through Medical Simulation Embedded in High School Science Education

    Science.gov (United States)

    Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.

    2014-01-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…

  19. High-Fidelity Modeling of Ablation and Coupled CFD-Material Response

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposal seeks to improve the state of the art in the modeling and simulation of ablating thermal protection systems (TPS). It will accomplish the...

  20. High fidelity does not preclude colonization: range expansion of molting Black Brant on the Arctic coast of Alaska

    Science.gov (United States)

    Flint, Paul L.; Meixell, Brandt W.; Mallek, Edward J.

    2014-01-01

    High rates of site fidelity have been assumed to infer static distributions of molting geese in some cases. To test this assumption, we examined movements of individually marked birds to understand the underlying mechanisms of range expansion of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain (ACP) of Alaska. The Teshekpuk Lake Special Area (TLSA) on the ACP was created to protect the primary molting area of Brant. When established in 1977, the TLSA was thought to include most, if not all, wetlands used by molting Brant on the ACP. From 2010 to 2013, we surveyed areas outside the TLSA and counted an average of 9800 Brant per year, representing 29–37% of all molting Brant counted on the ACP. We captured and banded molting Brant in 2011 and 2012 both within the TLSA and outside the TLSA at the Piasuk River Delta and Cape Simpson to assess movements of birds among areas across years. Estimates of movement rates out of the TLSA exceeded those into the TLSA, demonstrating overall directional dispersal. We found differences in sex and age ratios and proportions of adult females with brood patches, but no differences in mass dynamics for birds captured within and outside the TLSA. Overall fidelity rates to specific lakes (0.81, range = 0.49–0.92) were unchanged from comparable estimates obtained in the early 1990s. We conclude that Brant are dispersing from the TLSA into new molting areas while simultaneously redistributing within the TLSA, likely as a consequence of changes in relative habitat quality. Shifts in distribution resulted from colonization of new areas by young birds as well as low levels of directional dispersal of birds that previously molted in the TLSA. Based on combined counts, the overall number of molting Brant across the ACP has increased substantially.

  1. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  2. Design of high-fidelity haptic display for one-dimensional force reflection applications

    Science.gov (United States)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  3. Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kramer, Richard Michael Jack [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

  4. High-Fidelity Aerothermal Engineering Analysis for Planetary Probes Using DOTNET Framework and OLAP Cubes Database

    Directory of Open Access Journals (Sweden)

    Prabhakar Subrahmanyam

    2009-01-01

    Full Text Available This publication presents the architecture integration and implementation of various modules in Sparta framework. Sparta is a trajectory engine that is hooked to an Online Analytical Processing (OLAP database for Multi-dimensional analysis capability. OLAP is an Online Analytical Processing database that has a comprehensive list of atmospheric entry probes and their vehicle dimensions, trajectory data, aero-thermal data and material properties like Carbon, Silicon and Carbon-Phenolic based Ablators. An approach is presented for dynamic TPS design. OLAP has the capability to run in one simulation several different trajectory conditions and the output is stored back into the database and can be queried for appropriate trajectory type. An OLAP simulation can be setup by spawning individual threads to run for three types of trajectory: Nominal, Undershoot and Overshoot trajectory. Sparta graphical user interface provides capabilities to choose from a list of flight vehicles or enter trajectory and geometry information of a vehicle in design. DOTNET framework acts as a middleware layer between the trajectory engine and the user interface and also between the web user interface and the OLAP database. Trajectory output can be obtained in TecPlot format, Excel output or in a KML (Keyhole Markup Language format. Framework employs an API (application programming interface to convert trajectory data into a formatted KML file that is used by Google Earth for simulating Earth-entry fly-by visualizations.

  5. Integrated defense system framework and high fidelity hardware-in-the-loop sensor stimulators

    Science.gov (United States)

    Buford, James A., Jr.; Barnett, Thomas C., Jr.; Vatz, Bernard W., II; Williams, M. Joshua; Van Bebber, James; Burson, Cliff

    2008-04-01

    The Strategic Defense Center of the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), System Simulation and Development Directorate (SS&DD) provides modeling and simulation (M&S) tools, providing medium and hi-fi sensor stimulation, and test control frameworks to evaluate performance of integrated defense systems. These systems include hardware and software representations provided by and operated by Service Program Offices or their representatives. The representations are geographically distributed, but linked together to provide a dynamic, real-time, interactive test environment that is centrally controlled and synchronized through Global Positioning System (GPS) sources. The distributed nodes and the central control facility communicate through the Single Stimulation Framework (SSF). Operation of the SSF provides characterization and assessment of the integrated defense systems. This paper will summarize the concept, features, and functions of the SSF. The complex communications will be discussed, as well as the philosophy of stimulating the participating system components externally with consistent scenarios and truth state data that will bypass the simulation of these events by the individual participants.

  6. High Performance and High-Fidelity Aeroelastic Simulation of Fixed Wing Aircraft with Deployable Control Surfaces

    National Research Council Canada - National Science Library

    Lesoinne, Michael

    2007-01-01

    .... One option to tackle this problem is the use of Chimera grids. However Chimera grid approaches are relatively expensive in geometric computation and introduce an interpolation error due to the overlap...

  7. An Evaluation of Immediate Outcomes and Fidelity of a Drug Abuse Prevention Program in Continuation High Schools: Project towards No Drug Abuse (TND)

    Science.gov (United States)

    Lisha, Nadra E.; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna; Unger, Jennifer B.; Sussman, Steve

    2012-01-01

    The present study provides an implementation fidelity, process, and immediate outcomes evaluation of Project Towards No Drug Abuse (TND), a drug prevention program targeting continuation high school youth (n = 1426) at risk for drug abuse. A total of 24 schools participated in three randomized conditions: TND Only, TND and motivational…

  8. Commitment to Classroom Model Philosophy and Burnout Symptoms among High Fidelity Teachers Implementing Preschool Programs for Children with Autism Spectrum Disorders

    Science.gov (United States)

    Coman, Drew; Alessandri, Michael; Gutierrez, Anibal; Novotny, Stephanie; Boyd, Brian; Hume, Kara; Sperry, Laurie; Odom, Samuel

    2013-01-01

    Teacher commitment to classroom model philosophy and burnout were explored in a sample of 53 teachers implementing three preschool models at high levels of fidelity for students with autism: Treatment and Education of Autistic and Related Communication Handicapped Children (TEACCH); Learning Experiences and Alternative Program for Preschoolers and…

  9. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  10. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    International Nuclear Information System (INIS)

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T; Heaven, Michael C

    2011-01-01

    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  11. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    Energy Technology Data Exchange (ETDEWEB)

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T [CU Aerospace, Champaign, IL 61820 (United States); Heaven, Michael C, E-mail: apalla@cuaerospace.com [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)

    2011-07-14

    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  12. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    of high-order linear time invariant (LTI) models. Firstly, the high-order LTI models are locally approximated using modal and balanced truncation and residualization. Then, an appropriate coordinate transformation is applied to allow interpolation of the model matrices between points on the parameter...

  13. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  14. An Innovative High Fidelity Multidisciplinary Computational Framework for Parachute Inflation Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — Current technology for decelerating a spacecraft from the high speed of atmospheric entry to the final stages of landing on Mars is based on parachute systems. It...

  15. Development and validation of the ASPIRE-VA coaching fidelity checklist (ACFC): a tool to help ensure delivery of high-quality weight management interventions.

    Science.gov (United States)

    Damschroder, Laura J; Goodrich, David E; Kim, Hyungjin Myra; Holleman, Robert; Gillon, Leah; Kirsh, Susan; Richardson, Caroline R; Lutes, Lesley D

    2016-09-01

    Practical and valid instruments are needed to assess fidelity of coaching for weight loss. The purpose of this study was to develop and validate the ASPIRE Coaching Fidelity Checklist (ACFC). Classical test theory guided ACFC development. Principal component analyses were used to determine item groupings. Psychometric properties, internal consistency, and inter-rater reliability were evaluated for each subscale. Criterion validity was tested by predicting weight loss as a function of coaching fidelity. The final 19-item ACFC consists of two domains (session process and session structure) and five subscales (sets goals and monitor progress, assess and personalize self-regulatory content, manages the session, creates a supportive and empathetic climate, and stays on track). Four of five subscales showed high internal consistency (Cronbach alphas > 0.70) for group-based coaching; only two of five subscales had high internal reliability for phone-based coaching. All five sub-scales were positively and significantly associated with weight loss for group- but not for phone-based coaching. The ACFC is a reliable and valid instrument that can be used to assess fidelity and guide skill-building for weight management interventionists.

  16. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    Science.gov (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  17. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    Science.gov (United States)

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  18. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  19. High fidelity information processing in folic acid chemotaxis of Dictyostelium amoebae.

    Science.gov (United States)

    Segota, Igor; Mong, Surin; Neidich, Eitan; Rachakonda, Archana; Lussenhop, Catherine J; Franck, Carl

    2013-11-06

    Living cells depend upon the detection of chemical signals for their existence. Eukaryotic cells can sense a concentration difference as low as a few per cent across their bodies. This process was previously suggested to be limited by the receptor-ligand binding fluctuations. Here, we first determine the chemotaxis response of Dictyostelium cells to static folic acid gradients and show that they can significantly exceed this sensitivity, responding to gradients as shallow as 0.2% across the cell body. Second, using a previously developed information theory framework, we compare the total information gained about the gradient (based on the cell response) to its upper limit: the information gained at the receptor-ligand binding step. We find that the model originally applied to cAMP sensing fails as demonstrated by the violation of the data processing inequality, i.e. the total information exceeds the information at the receptor-ligand binding step. We propose an extended model with multiple known receptor types and with cells allowed to perform several independent measurements of receptor occupancy. This does not violate the data processing inequality and implies the receptor-ligand binding noise dominates both for low- and high-chemoattractant concentrations. We also speculate that the interplay between exploration and exploitation is used as a strategy for accurate sensing of otherwise unmeasurable levels of a chemoattractant.

  20. High-Fidelity Visual Long-Term Memory within an Unattended Blink of an Eye.

    Science.gov (United States)

    Kuhbandner, Christof; Rosas-Corona, Elizabeth A; Spachtholz, Philipp

    2017-01-01

    What is stored in long-term memory from current sensations is a question that has attracted considerable interest. Over time, several prominent theories have consistently proposed that only attended sensory information leaves a durable memory trace whereas unattended information is not stored beyond the current moment, an assumption that seems to be supported by abundant empirical evidence. Here we show, by using a more sensitive memory test than in previous studies, that this is actually not true. Observers viewed a rapid stream of real-world object pictures overlapped by words (presentation duration per stimulus: 500 ms, interstimulus interval: 200 ms), with the instruction to attend to the words and detect word repetitions, without knowing that their memory would be tested later. In a surprise two-alternative forced-choice recognition test, memory for the unattended object pictures was tested. Memory performance was substantially above chance, even when detailed feature knowledge was necessary for correct recognition, even when tested 24 h later, and even although participants reported that they do not have any memories. These findings suggests that humans have the ability to store at high speed detailed copies of current visual stimulations in long-term memory independently of current intentions and the current attentional focus.

  1. High-Fidelity Visual Long-Term Memory within an Unattended Blink of an Eye

    Directory of Open Access Journals (Sweden)

    Christof Kuhbandner

    2017-10-01

    Full Text Available What is stored in long-term memory from current sensations is a question that has attracted considerable interest. Over time, several prominent theories have consistently proposed that only attended sensory information leaves a durable memory trace whereas unattended information is not stored beyond the current moment, an assumption that seems to be supported by abundant empirical evidence. Here we show, by using a more sensitive memory test than in previous studies, that this is actually not true. Observers viewed a rapid stream of real-world object pictures overlapped by words (presentation duration per stimulus: 500 ms, interstimulus interval: 200 ms, with the instruction to attend to the words and detect word repetitions, without knowing that their memory would be tested later. In a surprise two-alternative forced-choice recognition test, memory for the unattended object pictures was tested. Memory performance was substantially above chance, even when detailed feature knowledge was necessary for correct recognition, even when tested 24 h later, and even although participants reported that they do not have any memories. These findings suggests that humans have the ability to store at high speed detailed copies of current visual stimulations in long-term memory independently of current intentions and the current attentional focus.

  2. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A

    2006-01-01

    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  3. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities.

    Directory of Open Access Journals (Sweden)

    Alyssa J Reiffel

    Full Text Available Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions.Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months.Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months.We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both biomechanically and histologically, even after an extended

  4. Significant contribution of the 3′→5′ exonuclease activity to the high fidelity of nucleotide incorporation catalyzed by human DNA polymerase ϵ

    Science.gov (United States)

    Zahurancik, Walter J.; Klein, Seth J.; Suo, Zucai

    2014-01-01

    Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation. PMID:25414327

  5. Semiclassical approach to fidelity amplitude

    International Nuclear Information System (INIS)

    García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A

    2011-01-01

    The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)

  6. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  7. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  8. The Development of the Simulation Thinking Rubric

    Science.gov (United States)

    Doolen, Jessica

    2012-01-01

    High fidelity simulation has become a widespread and costly learning strategy in nursing education because it can fill the gap left by a shortage of clinical sites. In addition, high fidelity simulation is an active learning strategy that is thought to increase higher order thinking such as clinical reasoning and judgment skills in nursing…

  9. Site fidelity, mate fidelity, and breeding dispersal in American kestrels

    Science.gov (United States)

    Steenhof, K.; Peterson, B.E.

    2009-01-01

    We assessed mate fidelity, nest-box fidelity, and breeding dispersal distances of American Kestrels (falco sparverius) nesting in boxes in southwestern Idaho from 1990 through 2006. Seventy-seven percent of boxes had different males and 87% had different females where nest-box occupants were identified in consecutive years. High turnover rates were partly a result of box-switching. Forty-eight percent of males and 58% of females that nested within the study area in successive years used different boxes. The probability of changing boxes was unrelated to gender, nesting success in the prior year, or years of nesting experience. Breeding dispersal distances for birds that moved to different boxes averaged 2.2 km for males (max = 22 km) and 3.2 km for females (max = 32 km). Approximately 70% of birds that nested in consecutive years on the study area had a different mate in the second year. Mate fidelity was related to box fidelity but not to prior nesting success or years of nesting experience. Mate changes occurred 32% of the time when the previous mate was known to be alive and nesting in the area. Kestrels that switched mates and boxes did not improve or decrease their subsequent nesting success. Kestrels usually switched to mates with less experience and lower lifetime productivity than their previous mates. The costs of switching boxes and mates were low, and there were no obvious benefits to fidelity. The cost of "waiting" for a previous mate that might have died could be high in species with high annual mortality.

  10. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    Science.gov (United States)

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  11. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall technical objective of the Phase I effort is to develop a nonlinear aeroelastic solver utilizing the FUN3D generated nonlinear aerodynamic Reduced Order...

  12. High Fidelity Radar Stimulation For Distributed Hardware-in-the-Loop Simulations

    Science.gov (United States)

    2008-11-20

    I L J C-Series Driver Embedded Test CNIP ( ISTC -1) J R E A P - C Strategic ADSI (MDIOC) Dashed Lines indicate passive monitoring by MDSE TCS and...External Sensors Lab Azusa GFC ESI-MP GMD ( ISTC -1) Huntsville ESI-DB • SBX • CD • UEWR • IFICS • CLE • GBI C - S e r i e s C - S e r i e s RDSIS Closed

  13. Advanced Numerical Integration Techniques for HighFidelity SDE Spacecraft Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Classic numerical integration techniques, such as the ones at the heart of several NASA GSFC analysis tools, are known to work well for deterministic differential...

  14. The Effect of a High-Fidelity Home Health Simulations on Nursing Students' Clinical Performance

    Science.gov (United States)

    Crytzer, Michele Leigh

    2011-01-01

    With an increasing number of patients receiving nursing care in outpatient settings, it is the responsibility of nursing education programs to provide students with adequate training to enable them to develop the skills necessary to provide safe, effective care in diverse environments, including the home. Providing care to patients in their own…

  15. High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems

    Science.gov (United States)

    2017-05-01

    Systems T53 Final Report En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Samuel S. Streeter, Daniel J. Breton, Michele L. Maxson, and...Autonomous Navigation Environment ERDC TR-17-2 vii VPUP Vertical Plane Urban Propagation VTRPE Variable Terrain Radio Parabolic Equation WI...two-dimensional (2-D) vertical plane diffraction models (e.g., Longley-Rice, Terrain Integrated Rough Earth Model [TIREM], Variable Terrain Radio

  16. A Method to Achieve High Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation

    Science.gov (United States)

    2012-08-01

    Terrain Vehicle (M-ATV) Weight 14,403 kg Payload 1814 kg Frontal Area 5.72 m 2 Engine 6.4L V8 turbo - diesel : 260 kW Generator Permanent Magnet: 265 kW...6.4L V8 diesel engine with 260 kW rated power at 3000 rpm and a rated torque of 880 Nm at 2000 rpm. It is intended for a variety of medium-duty truck

  17. Utilizing High Fidelity Simulations in Multidisciplinary Optimization of Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  18. Integrated Variable-Fidelity Tool Set For Modeling and Simulation of Aeroservothermoelasticity -Propulsion (ASTE-P) Effects For Aerospace Vehicles Ranging From Subsonic to Hypersonic Flight, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research program aims at developing a variable-fidelity software tool set for aeroservothermoelastic-propulsive (ASTE-P) modeling that can be routinely...

  19. Do High Fidelity Wraparound Services for Youth with Serious Emotional Disturbances Save Money in the Long-Term?

    Science.gov (United States)

    Snyder, Angela; Marton, James; McLaren, Susan; Feng, Bo; Zhou, Mei

    2017-12-01

    Treating youth with serious emotional disturbances (SED) is expensive often requiring institutional care. A significant amount of recent federal and state funding has been dedicated to expanding home and community-based services for these youth as an alternative to institutional care. High Fidelity Wraparound (Wrap) is an evolving, evidence-informed practice to help sustain community-based placements for youth with an SED through the use of intensive, customized care coordination among parents, multiple child-serving agencies, and providers. While there is growing evidence on the benefits of Wrap, few studies have examined health care spending associated with Wrap participation and none have examined spending patterns after the completion of Wrap. Merging health care spending data from multiple agencies and programs allows for a more complete picture of the health care costs of treating these youth in a system-of-care framework. (i) To compare overall health care spending for youth who transitioned from institutional care into Wrap (the treatment group) versus youth not receiving Wrap (the control group) and (ii) to compare changes in health care spending, overall and by category, for both groups before (the pre-period) and after (the post-period) Wrap participation. The treatment group (N=161) is matched to the control group (N=324) temporally based on the month the youth entered institutional care. Both total health care spending and spending by category are compared for each group pre- and post-Wrap participation. The post-period includes the time in which the youth was receiving Wrap services and one year afterwards to capture long-term cost impacts. In the year before Wrap participation, the treatment group averaged USD 8,433 in monthly health care spending versus USD 4,599 for the control group. Wrap participation led to an additional reduction of USD 1,130 in monthly health care spending as compared to the control group in the post-period. For youth

  20. High-fidelity and low-latency mobile fronthaul based on segment-wise TDM and MIMO-interleaved arraying.

    Science.gov (United States)

    Li, Longsheng; Bi, Meihua; Miao, Xin; Fu, Yan; Hu, Weisheng

    2018-01-22

    In this paper, we firstly demonstrate an advanced arraying scheme in the TDM-based analog mobile fronthaul system to enhance the signal fidelity, in which the segment of the antenna carrier signal (AxC) with an appropriate length is served as the granularity for TDM aggregation. Without introducing extra processing, the entire system can be realized by simple DSP. The theoretical analysis is presented to verify the feasibility of this scheme, and to evaluate its effectiveness, the experiment with ~7-GHz bandwidth and 20 8 × 8 MIMO group signals are conducted. Results show that the segment-wise TDM is completely compatible with the MIMO-interleaved arraying, which is employed in an existing TDM scheme to improve the bandwidth efficiency. Moreover, compared to the existing TDM schemes, our scheme can not only satisfy the latency requirement of 5G but also significantly reduce the multiplexed signal bandwidth, hence providing higher signal fidelity in the bandwidth-limited fronthaul system. The experimental result of EVM verifies that 256-QAM is supportable using the segment-wise TDM arraying with only 250-ns latency, while with the ordinary TDM arraying, only 64-QAM is bearable.

  1. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  2. The DinB•RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions.

    Science.gov (United States)

    Cafarelli, Tiziana M; Rands, Thomas J; Godoy, Veronica G

    2014-03-01

    Alkylation DNA lesions are ubiquitous, and result from normal cellular metabolism as well as from treatment with methylating agents and chemotherapeutics. DNA damage tolerance by translesion synthesis DNA polymerases has an important role in cellular resistance to alkylating agents. However, it is not yet known whether Escherichia coli (E. coli) DNA Pol IV (DinB) alkylation lesion bypass efficiency and fidelity in vitro are similar to those inferred by genetic analyses. We hypothesized that DinB-mediated bypass of 3-deaza-3-methyladenine, a stable analog of 3-methyladenine, the primary replication fork-stalling alkylation lesion, would be of high fidelity. We performed here the first kinetic analyses of E. coli DinB•RecA binary complexes. Whether alone or in a binary complex, DinB inserted the correct deoxyribonucleoside triphosphate (dNTP) opposite either lesion-containing or undamaged template; the incorporation of other dNTPs was largely inefficient. DinB prefers undamaged DNA, but the DinB•RecA binary complex increases its catalytic efficiency on lesion-containing template, perhaps as part of a regulatory mechanism to better respond to alkylation damage. Notably, we find that a DinB derivative with enhanced affinity for RecA, either alone or in a binary complex, is less efficient and has a lower fidelity than DinB or DinB•RecA. This finding contrasts our previous genetic analyses. Therefore, mutagenesis resulting from alkylation lesions is likely limited in cells by the activity of DinB•RecA. These two highly conserved proteins play an important role in maintaining genomic stability when cells are faced with ubiquitous DNA damage. Kinetic analyses are important to gain insights into the mechanism(s) regulating TLS DNA polymerases. Copyright © 2013 Wiley Periodicals, Inc.

  3. CATCC/AATCC Simulator

    Data.gov (United States)

    Federal Laboratory Consortium — The 15G30 CATCC/AATCC simulator provides high fidelity training for Navy Air Traffic Control (ATC) trainees in a realistic shipboard air traffic control environment....

  4. Improvement of the NSSS T/H Module ARTS for Enhancing the Simulation Fidelity of YGN no 1/2 Simulator

    International Nuclear Information System (INIS)

    Seo, In Yong; Lee, Myung Soo; Lee, Yong Kwan; Suh, Jae Seung; Jeun, Gyoo Dong

    2006-01-01

    KEPRI(Korea Electric Power Research Institute) and KAERI(Korea Atomic Energy Research Institute) developed a NSSS (Nuclear Steam Supply System) T/H (Thermal-Hydraulic) module (named ARTS) based on the best-estimate code RETRAN-3D for the KNPEC-2 full-scope simulator in 2001. Although ARTS can simulate the most transients in real-time, and its robustness is ensured, real-time calculation and robustness can fail for large break loss-of-coolant accident (LBLOCA) and long term, two-phase transients. In order to improve its robustness, ARTS equipped with the backup calculation module to be used whenever a regular ARTS module fails to calculate. When the symptom for the failure of T/H module is detected, the main ARTS module is replaced with the backup module for the calculation of primary and secondary reactor system although most failures of ARTS occur in the calculation of the primary system especially for LBLOCA simulation. The sudden transition from the main ARTS module to the backup module can exhibit the discontinuity of simulation of secondary system on rare occasions. To mitigate the simulation discontinuity, we have improved the backup module of ARTS. The performance of a new approach has been illustrated by the non-integrated standalone test. The improved ARTS module will be incorporated into YGN no. 1/2 simulator and evaluated its performance in the real simulator environment. This paper presents the brief description of a new backup calculation strategy and the simulation results of LOCA to evaluate the performance of a new backup strategy in standalone test environment

  5. Simulator Fidelity: A Concept Paper

    Science.gov (United States)

    1980-11-01

    training programs, it should be possible to screen out those trainees who do not possess the required abilities to benefit from a given training program...PTZ!L-CAC-IM I USACAC ýITN:Z ArIL-CA(.-IA I IJSAC&%CUA ArrIN’ AT?D.--CAC-A 1 UiSA i.LICTHONIC WAqFAHk LAd CHILI INTLLLIGENCE MAYER nEVEL SUPP OFF I

  6. Teaching Veterinary Anesthesia: A Survey-Based Evaluation of Two High-Fidelity Models and Live-Animal Experience for Undergraduate Veterinary Students.

    Science.gov (United States)

    Musk, Gabrielle C; Collins, Teresa; Hosgood, Giselle

    In veterinary medical education, reduction, replacement, and refinement (the three Rs) must be considered. Three clinical skills in anesthesia were identified as challenging to students: endotracheal intubation, intravenous catheterization, and drug dose calculations. The aims of this project were to evaluate students' perception of their level of confidence in performing these three clinical skills in veterinary anesthesia, to document the extent of students' previous experience in performing these three tasks, and to describe students' emotional states during this training. Veterinary students completed a series of four surveys over the period of their pre-clinical training to evaluate the usefulness of high-fidelity models for skill acquisition in endotracheal intubation and intravenous catheterization. In addition, practice and ongoing assessment in drug dose calculations were performed. The curriculum during this period of training progressed from lectures and non-animal training, to anesthesia of pigs undergoing surgery from which they did not recover, and finally to anesthesia of dogs and cats in a neutering clinic. The level of confidence for each of the three clinical skills increased over the study period. For each skill, the number of students with no confidence decreased to zero and the proportion of students with higher levels of confidence increased. The high-fidelity models for endotracheal intubation and intravenous catheterization used to complement the live-animal teaching were considered a useful adjunct to the teaching of clinical skills in veterinary anesthesia. With practice, students became more confident performing drug dose calculations.

  7. Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

    Directory of Open Access Journals (Sweden)

    Michael Hirtz

    2013-06-01

    Full Text Available We explored the potentials of microarray printing using quill-like microcantilevers onto solid supports that are typically used in microspot printing, including paper, polymeric nitrocellulose and nylon membranes. We compared these membranes with a novel porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate support (HEMA with narrow pore size distribution in the 150 nm range, which demonstrated advantages in pattern definition, spot homogeneity, and consistent spot delivery of different dyes (phloxine B and bromophenol blue with diameters of several micrometres. The bromophenol blue arrays on HEMA support were used to detect the presence of bovine serum albumin (BSA. In the presence of BSA, the fluorescence spectrum observed from the bromophenol blue microarray exhibited a significant red shift of the maximum emission wavelength. Our results show that the porous HEMA substrates can improve the fidelity and quality of microarrays prepared by using the quill-like microcantilevers. The presented method sets the stage for further studies using chemical and biochemical recognition elements, along with colorimetric and fluorometric sensors that can be spotted by this method onto flat porous polymer substrates.

  8. Fidelity deviation in quantum teleportation

    OpenAIRE

    Bang, Jeongho; Ryu, Junghee; Kaszlikowski, Dagomir

    2018-01-01

    We analyze the performance of quantum teleportation in terms of average fidelity and fidelity deviation. The average fidelity is defined as the average value of the fidelities over all possible input states and the fidelity deviation is their standard deviation, which is referred to as a concept of fluctuation or universality. In the analysis, we find the condition to optimize both measures under a noisy quantum channel---we here consider the so-called Werner channel. To characterize our resu...

  9. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-01-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240 Pu . On the other hand, identification of shielded uranium requires active methods using neutron or photon sources . Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials . In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers . Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1x10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2x10 4 n/cm 2 s.

  10. Fidelity of quantum interferometers

    International Nuclear Information System (INIS)

    Bahder, Thomas B.; Lopata, Paul A.

    2006-01-01

    For a generic interferometer, the conditional probability density distribution p(φ|m), for the phase φ given measurement outcome m will generally have multiple peaks. Therefore, the phase sensitivity of an interferometer cannot be adequately characterized by the standard deviation, such as Δφ∼1/√(N) (the standard limit), or Δφ∼1/N (the Heisenberg limit). We propose an alternative measure of phase sensitivity--the fidelity of an interferometer--defined as the Shannon mutual information between the phase shift φ and the measurement outcomes m. As an example application of interferometer fidelity, we consider a generic optical Mach-Zehnder interferometer, used as a sensor of a classical field. For the case where there exists no a priori information on the phase shift, we find the surprising result that maximally entangled state input leads to a lower fidelity than Fock state input, for the same photon number

  11. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  12. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  13. The Effectiveness of the Human Patient Simulator in Teaching Anesthesia Pharmacology to First Year Nurse Anesthesia Students

    National Research Council Canada - National Science Library

    Hall, Annie

    2002-01-01

    .... There is no substitute for case-based experience; however, recent innovations in computer technology provide high fidelity, realistic simulators, which are being used in many anesthesia programs...

  14. Physiotherapy education and training prior to upper abdominal surgery is memorable and has high treatment fidelity: a nested mixed-methods randomised-controlled study.

    Science.gov (United States)

    Boden, Ianthe; El-Ansary, Doa; Zalucki, Nadia; Robertson, Iain K; Browning, Laura; Skinner, Elizabeth H; Denehy, Linda

    2018-06-01

    To (1) assess memorability and treatment fidelity of pre-operative physiotherapy education prior to elective upper abdominal surgery and, (2) to explore patient opinions on pre-operative education. Mixed-methods analysis of a convenience sample within a larger parallel-group, double-blinded, randomised controlled trial with concealed allocation and intention-to-treat analysis. Tertiary Australian hospital. Twenty-nine patients having upper abdominal surgery attending pre-admission clinic within six-weeks of surgery. The control group received an information booklet about preventing pulmonary complications with early ambulation and breathing exercises. The experimental group received an additional face-to-face 30-minute physiotherapy education and training session on pulmonary complications, early ambulation, and breathing exercises. Primary outcome was proportion of participants who remembered the taught breathing exercises following surgery. Secondary outcomes were recall of information sub-items and attainment of early ambulation goals. These were measured using standardised scoring of a semi-scripted digitally-recorded interview on the 5th postoperative day, and the attainment of early ambulation goals over the first two postoperative days. Experimental group participants were six-times more likely to remember the breathing exercises (95%CI 1.7 to 22) and 11-times more likely (95%CI 1.6 to 70) to report physiotherapy as the most memorable part of pre-admission clinic. Participants reported physiotherapy education content to be detailed, interesting, and of high value. Some participants reported not reading the booklet and professed a preference for face-to-face information delivery. Face-to-face pre-operative physiotherapy education and training prior to upper abdominal surgery is memorable and has high treatment fidelity. ACTRN-12613000664741. Copyright © 2017 Chartered Society of Physiotherapy. All rights reserved.

  15. Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver.

    Science.gov (United States)

    Guo, Lifang; Tian, Minggang; Feng, Ruiqing; Zhang, Ge; Zhang, Ruoyao; Li, Xuechen; Liu, Zhiqiang; He, Xiuquan; Sun, Jing Zhi; Yu, Xiaoqiang

    2018-04-04

    Lipid droplets (LDs) with unique interfacial architecture not only play crucial roles in protecting a cell from lipotoxicity and lipoapoptosis but also closely relate with many diseases such as fatty liver and diabetes. Thus, as one of the important applied biomaterials, fluorescent probes with ultrahigh selectivity for in situ and high-fidelity imaging of LDs in living cells and tissues are critical to elucidate relevant physiological and pathological events as well as detect related diseases. However, available probes only utilizing LDs' waterless neutral cores but ignoring the unique phospholipid monolayer interfaces exhibit low selectivity. They cannot differentiate neutral cores of LDs from intracellular other lipophilic microenvironments, which results in extensively cloud-like background noise and severely limited their bioapplications. Herein, to design LD probes with ultrahigh selectivity, the exceptional interfacial architecture of LDs is considered adequately and thus an interface-targeting strategy is proposed for the first time. According to the novel strategy, we have developed two amphipathic fluorescent probes (N-Cy and N-Py) by introducing different cations into a lipophilic fluorophore (nitrobenzoxadiazole (NBD)). Consequently, their cationic moiety precisely locates the interfaces through electrostatic interaction and simultaneously NBD entirely embeds into the waterless core via hydrophobic interaction. Thus, high-fidelity and background-free fluorescence imaging of LDs are expectably realized in living cells in situ. Moreover, LDs in turbid tissues like skeletal muscle slices have been clearly imaged (up to 82 μm depth) by a two-photon microscope. Importantly, using N-Cy, we not only intuitively monitored the variations of LDs in number, size, and morphology but also clearly revealed their abnormity in hepatic tissues resulting from fatty liver. Therefore, these unique probes provide excellent imaging tools for elucidating LD

  16. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    Science.gov (United States)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  17. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  18. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  19. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    International Nuclear Information System (INIS)

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor

  20. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    Science.gov (United States)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  1. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  2. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction.

    Science.gov (United States)

    Li, Aitao; Acevedo-Rocha, Carlos G; Sun, Zhoutong; Cox, Tony; Xu, Jia Lucy; Reetz, Manfred T

    2018-02-02

    Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  4. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  5. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation.

    Science.gov (United States)

    McLeod, Claire M; Mauck, Robert L

    2016-12-12

    Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level.

  6. A spectrum of power plant simulators for effective training

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1987-01-01

    This paper discusses the subject of training simulator fidelity and describes a spectrum of fidelity levels of power plant simulators to optimize training effectiveness. The body of knowledge about the relationship between power plant simulator fidelity and training effectiveness is reviewed, and a number of conjectures about this relationship are made based on the perspective of over 20 simulator-years of experience in training nuclear power plant operators. Developments are described for a new class of emerging simulator which utilize high resolution graphics to emphasize the visualization step of effective training

  7. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  8. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  9. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  10. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2017-03-01

    Full Text Available Objective: α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER “knock-in” mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreERT2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. Methods: We utilized CRISPR-Cas9 technology to insert an IRES-CreERT2 sequence into the 3′ UTR of the Glucagon (Gcg locus in mouse embryonic stem cells (ESCs. Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreERT2 mice. Recombination efficiency in GCG+ pancreatic α-cells and glucagon-like peptide 1 positive (GLP1+ enteroendocrine L-cells was measured in Gcg-CreERT2;Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Results: Tamoxifen injection of Gcg-CreERT2;Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively, as well as in first-wave fetal α-cells (36% and adult enteroendocrine L-cells (33%. Mice homozygous for the Gcg-CreERT2 allele were phenotypically normal. Conclusions: We successfully derived a Gcg-CreERT2 mouse line that expresses CreERT2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice

  11. Intervention Fidelity in Special and General Education Research Journals

    Science.gov (United States)

    Swanson, Elizabeth; Wanzek, Jeanne; Haring, Christa; Ciullo, Stephen; McCulley, Lisa

    2013-01-01

    Treatment fidelity reporting practices are described for journals that published general and special education intervention research with high impact factors from 2005 through 2009. The authors reviewed research articles, reported the proportion of intervention studies that described fidelity measurement, detailed the components of fidelity…

  12. Commentary: Learning from Variations in Fidelity of Implementation

    Science.gov (United States)

    Balu, Rekha; Doolittle, Fred

    2016-01-01

    The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if--and how--strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group…

  13. Transfer of training from a Full-Flight Simulator vs. a high level flight training device with a dynamic seat

    Science.gov (United States)

    2010-08-02

    This paper summarizes the most recent study conducted by the Federal Administration Administration/Volpe Center Flight Simulator Fidelity Requirements Program. For many smaller airlines, access to qualified simulators is limited due to the availabili...

  14. Virtual Learning Simulations in High School

    DEFF Research Database (Denmark)

    Thisgaard, Malene Warming; Makransky, Guido

    2017-01-01

    The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory....... The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between...... the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks...

  15. Fidelity deviation in quantum teleportation

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Kaszlikowski, Dagomir

    2018-04-01

    We analyze the performance of quantum teleportation in terms of average fidelity and fidelity deviation. The average fidelity is defined as the average value of the fidelities over all possible input states and the fidelity deviation is their standard deviation, which is referred to as a concept of fluctuation or universality. In the analysis, we find the condition to optimize both measures under a noisy quantum channel—we here consider the so-called Werner channel. To characterize our results, we introduce a 2D space defined by the aforementioned measures, in which the performance of the teleportation is represented as a point with the channel noise parameter. Through further analysis, we specify some regions drawn for different channel conditions, establishing the connection to the dissimilar contributions of the entanglement to the teleportation and the Bell inequality violation.

  16. Current Issues in the Use of Virtual Simulations for Dismounted Soldier Training

    National Research Council Canada - National Science Library

    Knerr, Bruce W

    2006-01-01

    Research on the use of virtual simulation to train Soldiers and leaders in small dismounted units has largely focused on the use of specially developed, relatively high-fidelity PC-based simulators...

  17. Nursing Simulation: A Review of the Past 40 Years

    Science.gov (United States)

    Nehring, Wendy M.; Lashley, Felissa R.

    2009-01-01

    Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the past 40 years, whereas anatomical models, partial task trainers, and role playing were used…

  18. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  19. The Effect of Learning Styles, Critical Thinking Disposition, and Critical Thinking on Clinical Judgment in Senior Baccalaureate Nursing Students during Human Patient Simulation

    Science.gov (United States)

    McCormick, Kiyan

    2014-01-01

    Simulated learning experiences using high-fidelity human patient simulators (HPS) are increasingly being integrated into baccalaureate nursing programs. Thus, the purpose of this study was to examine relationships among learning style, critical thinking disposition, critical thinking, and clinical judgment during high-fidelity human patient…

  20. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  1. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    Science.gov (United States)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  2. The effect of fidelity: how expert behavior changes in a virtual reality environment.

    Science.gov (United States)

    Ioannou, Ioanna; Avery, Alex; Zhou, Yun; Szudek, Jacek; Kennedy, Gregor; O'Leary, Stephen

    2014-09-01

    We compare the behavior of expert surgeons operating on the "gold standard" of simulation-the cadaveric temporal bone-against a high-fidelity virtual reality (VR) simulation. We aim to determine whether expert behavior changes within the virtual environment and to understand how the fidelity of simulation affects users' behavior. Five expert otologists performed cortical mastoidectomy and cochleostomy on a human cadaveric temporal bone and a VR temporal bone simulator. Hand movement and video recordings were used to derive a range of measures, to facilitate an analysis of surgical technique, and to compare expert behavior between the cadaveric and simulator environments. Drilling time was similar across the two environments. Some measures such as total time and burr change count differed predictably due to the ease of switching burrs within the simulator. Surgical strokes were generally longer in distance and duration in VR, but these measures changed proportionally to cadaveric measures across the stages of the procedure. Stroke shape metrics differed, which was attributed to the modeling of burr behavior within the simulator. This will be corrected in future versions. Slight differences in drill interaction between a virtual environment and the real world can have measurable effects on surgical technique, particularly in terms of stroke length, duration, and curvature. It is important to understand these effects when designing and implementing surgical training programs based on VR simulation--and when improving the fidelity of VR simulators to facilitate use of a similar technique in both real and simulated situations. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Fidelity for kicked atoms with gravity near a quantum resonance.

    Science.gov (United States)

    Dubertrand, Rémy; Guarneri, Italo; Wimberger, Sandro

    2012-03-01

    Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.

  4. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  5. Internal multi-scale multi-physics coupled system for high fidelity simulation of light water reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Stieglitz, R.; Ivanov, K.

    2014-01-01

    Highlights: • The current paper focuses on a optimized method for performing coupled Monte-Carlo/thermal–hydraulics calculations. • Innovative on-the-fly method for supplying the temperature and density distributions is presented. • Convergence acceleration method is presented. It is proven applicable by generalizing the Robbins-Monro theorem. • Tallying is optimized by using collision probability estimator for the power profile estimation. - Abstract: In order to increase the accuracy and the degree of spatial and energy resolution of core design studies, coupled 3D neutronic (multi-group deterministic and continuous energy Monte-Carlo) and 3D thermal–hydraulic (CFD and subchannel) codes are being developed worldwide. At KIT, both deterministic and Monte-Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as minimal critical power ratio (MCPR), maximal cladding and fuel temperature, departure from nuclide boiling ratio (DNBR). These coupling approaches were revised and considerably improved. Innovative method of internal on-the-fly thermal feedback interchange between the codes was implemented. It no longer relies on explicit material definitions and allows the modeling of temperature and density distributions based on the cell coordinates. In contrast to all existing coupled schemes, this method uses only standard MCNP geometry input and requires only proper definition of the geometrical dimensions. The initial material definition is arbitrary and is determined on-the-fly during the neutron transport by the thermal–hydraulic feedback. Another key issue addressed is the optimal application of parallel computing and the implementation of less time consuming tally estimators. Using multi-processor computer architectures and implementing collision density flux estimator, it is possible to reduce the Monte-Carlo running time and obtain converged results within reasonable time limit. The coupled calculation was accelerated further, by implementing stochastic approximation-based relaxation technique. Further, it is shown that large fuel assemblies can be analyzed on subchannel level

  6. Comparison of Student Outcomes before and after Introduction of High-Fidelity Simulation in a Nursing School Curriculum

    Science.gov (United States)

    Decker, Teresa Frances O'Hara

    2014-01-01

    Nursing profession accrediting agencies and associations, including the National League for Nursing, the American Association of Colleges of Nursing, the National Council of State Boards of Nursing, and the Institute of Medicine, have called for the implementation and evaluation of educational innovations. Many nursing schools have attempted to be…

  7. Task-Specific Asteroid Simulants for Ground Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will produce at least four asteroid simulants at high fidelity for mineral content and particle size, created through standardized inputs and documented...

  8. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-01-01

    of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models’ high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity......Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full......-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups’ high fidelity of room layout and affordance...

  9. Integrated Variable-Fidelity Tool Set for Modeling and Simulation of Aeroservothermoelasticity-Propulsion (ASTE-P) Effects for Aerospace Vehicles Ranging From Subsonic to Hypersonic Flight, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research program aims at developing a variable-fidelity software tool set for aeroservothermoelastic-propulsive (ASTE-P) modeling that can be routinely...

  10. Macrofilament simulation of high current beam transport

    International Nuclear Information System (INIS)

    Hayden, R.J.; Jakobson, M.J.

    1985-01-01

    Macrofilament simulation of high current beam transport through a series of solenoids has been used to investigate the sensitivity of such calculations to the initial beam distribution and to the number of filaments used in the simulation. The transport line was tuned to approximately 105 0 phase advance per cell at zero current with a tune depression of 65 0 due to the space charge. Input distributions with the filaments randomly uniform throughout a four dimensional ellipsoid and K-V input distributions have been studied. The behavior of the emittance is similar to that published for quadrupoles with like tune depression. The emittance demonstrated little growth in the first twelve solenoids, a rapid rate of growth for the next twenty, and a subsequent slow rate of growth. A few hundred filaments were sufficient to show the character of the instability. The number of filaments utilized is an order of magnitude fewer than has been utilized previously for similar instabilities. The previously published curves for simulations with less than a thousand particles show a rather constant emittance growth. If the solenoid transport line magnetic field is increased a few percent, emittance growth curves are obtained not unlike those curves. Collision growth effects are less important than indicated in the previously published results for quadrupoles

  11. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    Science.gov (United States)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  12. Inspiring careers in STEM and healthcare fields through medical simulation embedded in high school science education.

    Science.gov (United States)

    Berk, Louis J; Muret-Wagstaff, Sharon L; Goyal, Riya; Joyal, Julie A; Gordon, James A; Faux, Russell; Oriol, Nancy E

    2014-09-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. Copyright © 2014 The American Physiological Society.

  13. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  14. Fidelity Optimization of Microprocessor System Simulations.

    Science.gov (United States)

    1981-03-01

    effort feasible in terms of required CPU time would be to employ a separate clock with an artificially compressed time base in the serial...RETURN ILINCR -NU𔃾OPS D.% PROt.ESSING 900 IF IIERP2.NF.41 GO TO 1000 IFRCOD - L CALL VAIRCO 1A(61,NUMVALLEPCOOl IEPRZ -IEACCO IF hEARR .GT. 01 RETURN I

  15. Modeling and Simulation of Satellite Subsystems for End-to-End Spacecraft Modeling

    National Research Council Canada - National Science Library

    Schum, William K; Doolittle, Christina M; Boyarko, George A

    2006-01-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems...

  16. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    2017-02-01

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution of dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.

  17. Using Instrument Simulators and a Satellite Database to Evaluate Microphysical Assumptions in High-Resolution Simulations of Hurricane Rita

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chao, Y.; Chau, A. H.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Martin, J. M.; Poulsen, W. L.; Rodriguez, E.; Stiles, B. W.; Turk, J.; Vu, Q.

    2009-12-01

    Improving forecasting of hurricane intensity remains a significant challenge for the research and operational communities. Many factors determine a tropical cyclone’s intensity. Ultimately, though, intensity is dependent on the magnitude and distribution of the latent heating that accompanies the hydrometeor production during the convective process. Hence, the microphysical processes and their representation in hurricane models are of crucial importance for accurately simulating hurricane intensity and evolution. The accurate modeling of the microphysical processes becomes increasingly important when running high-resolution models that should properly reflect the convective processes in the hurricane eyewall. There are many microphysical parameterizations available today. However, evaluating their performance and selecting the most representative ones remains a challenge. Several field campaigns were focused on collecting in situ microphysical observations to help distinguish between different modeling approaches and improve on the most promising ones. However, these point measurements cannot adequately reflect the space and time correlations characteristic of the convective processes. An alternative approach to evaluating microphysical assumptions is to use multi-parameter remote sensing observations of the 3D storm structure and evolution. In doing so, we could compare modeled to retrieved geophysical parameters. The satellite retrievals, however, carry their own uncertainty. To increase the fidelity of the microphysical evaluation results, we can use instrument simulators to produce satellite observables from the model fields and compare to the observed. This presentation will illustrate how instrument simulators can be used to discriminate between different microphysical assumptions. We will compare and contrast the members of high-resolution ensemble WRF model simulations of Hurricane Rita (2005), each member reflecting different microphysical assumptions

  18. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  19. Multi-fidelity Gaussian process regression for prediction of random fields

    Energy Technology Data Exchange (ETDEWEB)

    Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)

    2017-05-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  20. Multi-fidelity Gaussian process regression for prediction of random fields

    International Nuclear Information System (INIS)

    Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.

    2017-01-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  1. A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mou Wu

    2014-12-01

    Full Text Available One of the most widespread and important applications in wireless sensor networks (WSNs is the continuous data collection, such as monitoring the variety of ambient temperature and humidity. Due to the sensor nodes with a limited energy supply, the reduction of energy consumed in the continuous observation of physical phenomenon plays a significant role in extending the lifetime of WSNs. However, the high redundancy of sensing data leads to great waste of energy as a result of over-deployed sensor nodes. In this paper, we develop a structure fidelity data collection (SFDC framework leveraging the spatial correlations between nodes to reduce the number of the active sensor nodes while maintaining the low structural distortion of the collected data. A structural distortion based on the image quality assessment approach is used to perform the nodes work/sleep scheduling, such that the number of the working nodes is reduced while the remainder of nodes can be put into the low-power sleep mode during the sampling period. The main contribution of SFDC is to provide a unique perspective on how to maintain the data fidelity in term of structural similarity in the continuous sensing applications for WSNs. The simulation results based on synthetic and real world datasets verify the effectiveness of SFDC framework both on energy saving and data fidelity.

  2. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  3. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  4. Testing cooperative systems with the MARS simulator

    NARCIS (Netherlands)

    Netten, B.D.; Wedemeijer, H.

    2010-01-01

    The complexity of cooperative systems makes the use of high fidelity simulation essential in the development and testing of cooperative applications and their interactions with other cooperative systems. In SAFESPOT a simulator test bench is setup to test the safety margin applications running on

  5. Developing, implementing and evaluating a simulation learning ...

    African Journals Online (AJOL)

    Hafaza Bibi Amod

    Research significance: To develop a simulation learning package that uses high fidelity simulation to ... common cause of maternal mortality in South Africa and ... Framework cited by Jeffries (2007). ... nario development toolkits and various best practice guide- ..... analysis in nursing research: Concepts, procedures, and.

  6. Simulator technology as a tool for education in cardiac care.

    Science.gov (United States)

    Hravnak, Marilyn; Beach, Michael; Tuite, Patricia

    2007-01-01

    Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.

  7. Implementation fidelity trajectories of a health promotion program in multidisciplinary settings: managing tensions in rehabilitation care.

    Science.gov (United States)

    Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P

    2017-12-01

    Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary settings and the relationship with changes in patients' health behavior. This study used longitudinal data from the nationwide implementation of an evidence-informed physical activity promotion program in Dutch rehabilitation care. Fidelity scores were calculated based on annual surveys filled in by involved professionals (n = ± 70). Higher fidelity scores indicate a more complete implementation of the program's core components. A hierarchical cluster analysis was conducted on the implementation fidelity scores of 17 organizations at three different time points. Quantitative and qualitative data were used to explore organizational and professional differences between identified trajectories. Regression analyses were conducted to determine differences in patient outcomes. Three trajectories were identified as the following: 'stable high fidelity' (n = 9), 'moderate and improving fidelity' (n = 6), and 'unstable fidelity' (n = 2). The stable high fidelity organizations were generally smaller, started earlier, and implemented the program in a more structured way compared to moderate and improving fidelity organizations. At the implementation period's start and end, support from physicians and physiotherapists, professionals' appreciation, and program compatibility were rated more positively by professionals working in stable high fidelity organizations as compared to the moderate and improving fidelity organizations (p organizations had often an explicit vision and strategy about the implementation of the program. Intriguingly, the trajectories were not associated with patients' self-reported physical activity outcomes (adjusted model β = - 651.6, t(613)

  8. Etablering, afprøvning, evaluering og implementering af High Fidelity patientsimulationsundervisning på Sygeplejerskeuddannelsen i Odense, University College Lillebælt, UCL, 2013

    DEFF Research Database (Denmark)

    Gram, Dorte Truelsen

    2013-01-01

    . Four students were active and four were observing. One teacher acted relative and one teacher made voices to both the mannequin and the doctor. Then we had a reflection-session using inspiration from the method: Advocacy and Inquiry. Finally four focus group interviews were used to examine students......' attitudes to the method. Methods: Four focus group interviews were used to examine students' attitudes to the method. The interviews took place at the end of the last simulation and all the students were active according to their attitudes and assessments’ of the simulation. The interviews were recorded......, transcribed and written down with respect for their pitches, breaks etc. and results were found. Results: Most of the students found that they learned a lot from patient simulation - they became more secure, they were able to fill in the gap between theory and practice and some of the students were convinced...

  9. THE CONCEPT OF FIDELITY IN COMICS TRANSLATION

    Directory of Open Access Journals (Sweden)

    Erico Assis

    2016-11-01

    Full Text Available The long-discussed – and frequently dismissed – concept of translation faithfulness or translation fidelity, though usually applied to literary texts, has its fair share of applications when considered for comics translation. In literary translation, non-linguistic portions such as illustrations are often considered addenda or “paratexts” relative to the main, linguistic text. Comics, by its turn, present a certain set of features which single them out as a form that demands a new concept of “text” and, therefore, of translation fidelity. The comic-reading process, as pertaining to cognitive apprehension, implies interpretative accords that differ from the ones in purely linguistic texts: each and every element of the comics page – non-linguistic (mainly imagetic signs, linguistic signs, panel borders, typography and such – are intertwined and should be perceived in regards to its spatial and topological relations. This approach to understanding comics is based on Groensteen (1999 and his concepts of arthrology, spatio-topia, page layout, breakdown and braiding. As for translation fidelity, we rely on authors such as Berman (1984, Guidere (2010 and Aubert (1993. On comics translation, Zanettin (2008, Rota (2008 and Yuste Frías (2010, 2011 are of particular interest. Based on various concepts of fidelity – supported by samples of translated comics with varied degrees of fidelity to the source text – we discuss the different grounds of source-text fidelity, target-reader fidelity and source-author fidelity in the following instances: linguistic sign fidelity, imagetic sign fidelity, spatio-topia fidelity, typographic fidelity and format fidelity.

  10. Cellular Scanning Strategy for Selective Laser Melting: Capturing Thermal Trends with a Low-Fidelity, Pseudo-Analytical Model

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Simulations of additivemanufacturing processes are known to be computationally expensive.The resulting large runtimes prohibit their application in secondary analysis requiring several complete simulations such as optimization studies, and sensitivity analysis. In this paper, a low-fidelity pseud...

  11. How Fidelity invests in service professionals.

    Science.gov (United States)

    McColgan, E A

    1997-01-01

    If you're in the business of service delivery, investment in the training and development of your staff is one of the keys to your company's success. But what's the best way to design and implement your investment? In 1994, Fidelity Institutional Retirement Services Company (FIRSCo) needed to ensure that its rapidly expanding staff maintained the company's high levels of customer satisfaction. The solution, according to Ellyn McColgan, formerly an executive vice president of FIRSCo and now the president of Fidelity Investments Tax-Exempt Services Company, was to reach out to its service associates with a powerful new model for training and development called Service Delivery University. SDU is a virtual university with a content-based core curriculum and five colleges that focus on business concepts and skills. It is driven by three principles. First, all training must be directly aligned with the company's strategic and financial objectives and focused on customer needs. Second, service delivery is a profession and should be taught as such. And finally, professional development should be the primary responsibility of line managers rather than the human resources department. McColgan explains how FIRSCo overcame resistance to this sweeping change in employee education. (Time was one obstacle: each associate receives 80 hours of training per year.) In addition, the author discusses the fine art of measuring the success of a program like SDU. She finds that the company's investment has paid dividends to the staff, to the organization as a whole, and to FIRSCo's customers.

  12. Simulation studies on high-gradient experiments

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1992-12-01

    Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length

  13. Simulant Basis for the Standard High Solids Vessel Design

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This document provides the requirements for a test simulant suitable for demonstrating the mixing requirements for the Single High Solids Vessel Design (SHSVD). This simulant has not been evaluated for other purposes such as gas retention and release or erosion. The objective of this work is to provide an underpinning for the simulant properties based on actual waste characterization.

  14. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  15. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  16. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative methodologies proposed in this STTR Phase 2 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being...

  17. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being...

  18. Initial Development of a Quadcopter Simulation Environment for Auralization

    Science.gov (United States)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  19. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  20. The effect of an olfactory and visual cue on realism and engagement in a health care simulation experience.

    Science.gov (United States)

    Nanji, Karen C; Baca, Kirsten; Raemer, Daniel B

    2013-06-01

    Fidelity has been identified as an important element in a subject's perception of realism and engagement in learning during a simulation experience. The purpose of this study was to determine whether an isolated visual and olfactory sensory change to the simulation environment affects the subjects' perceptions of realism during simulation cases. Using an electrosurgical unit applied to bovine muscle tissue, we created a model to simulate the characteristic operating room smoke and burning odor that occur during many procedures. Anesthesiologist subjects were randomly assigned to an intervention group that participated in a simulation involving the characteristic smoke and odor or a control group whose simulation involved no smoke or odor. Subjects completed a 7-question survey on the fidelity of the simulation, their perception of realism, and their learning engagement. We enrolled 103 subjects over 22 simulation courses in our study (intervention, n = 52; control, n = 51). The subjects' reactions to the physical (P = 0.73), conceptual (P = 0.34), and emotional (P = 0.12) fidelity and their perception of realism (P = 0.71) did not differ between the intervention and control groups. In a high-fidelity simulation environment, a visual and olfactory increment to physical fidelity did not affect subjects' overall ratings of fidelity, perceptions of realism, and engagement in the learning experience.

  1. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Simulation of High Quality Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kortbek, Jacob; Nikolov, Svetoslav Ivanov

    2010-01-01

    ), and at Full Width at One-Hundredth Maximum (FWOHM) of 9 points spread functions resulting from evenly distributed point targets at depths ranging from 10 mm to 90 mm. The results are documented for a 64 channel system, using a 192 element linear array transducer model. A physical BK Medical 8804 transducer...... amplitude and phase compensation, the LR at FWOHM improves from 6.3 mm to 4.7 mm and is a factor of 2.2 better than DRF. This study has shown that individual element impulse response, phase, and amplitude deviations are important to include in simulated system performance evaluations. Furthermore...

  3. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    International Nuclear Information System (INIS)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-01-01

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.

  4. Simulation of Oscillations in High Power Klystrons

    CERN Document Server

    Ko, K

    2003-01-01

    Spurious oscillations can seriously limit a klystron's performance from reaching its design specifications. These are modes with frequencies different from the drive frequency, and have been found to be localized in various regions of the tube. If left unsuppressed, such oscillations can be driven to large amplitudes by the beam. As a result, the main output signal may suffer from amplitude and phase instabilities which lead to pulse shortening or reduction in power generation efficiency, as observed during the testing of the first 150MW S-band klystron, which was designed and built at SLAC as a part of an international collaboration with DESY. We present efficient methods to identify suspicious modes and then test their possibility of oscillation. In difference to [3], where each beam-loaded quality-factor Qbl was calculated by time-consuming PIC simulations, now only tracking-simulations with much reduced cpu-time and less sensitivity against noise are applied. This enables the determination of Qbl for larg...

  5. High order dark wavefront sensing simulations

    Science.gov (United States)

    Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele

    2016-07-01

    Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.

  6. Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System

    Science.gov (United States)

    Pinero, Luis R.; Kamhawi, Hani; Shilo, Vlad

    2016-01-01

    The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster, power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions. The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive highlevel commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature limits and demonstrated total efficiencies a high as 95 percent. Integrated testing of the unit was performed with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.

  7. Blending Qualitative and Computational Linguistics Methods for Fidelity Assessment: Experience with the Familias Unidas Preventive Intervention.

    Science.gov (United States)

    Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks

    2015-09-01

    Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.

  8. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition.

    Science.gov (United States)

    Krishnan, Anuradha; Abdullah, Tasduq Sheikh; Mounajjed, Taofic; Hartono, Stella; McConico, Andrea; White, Thomas; LeBrasseur, Nathan; Lanza, Ian; Nair, Sreekumaran; Gores, Gregory; Charlton, Michael

    2017-06-01

    The sequence of events that lead to inflammation and fibrosing nonalcoholic steatohepatitis (NASH) is incompletely understood. Hence, we investigated the chronology of whole body, tissue, and cellular events that occur during the evolution of diet-induced NASH. Male C57Bl/6 mice were assigned to a fast-food (FF; high calorie, high cholesterol, high fructose) or standard-chow (SC) diet over a period of 36 wk. Liver histology, body composition, mitochondrial respiration, metabolic rate, gene expression, and hepatic lipid content were analyzed. Insulin resistance [homeostasis model assessment-insulin resistance (HOMA-IR)] increased 10-fold after 4 wk. Fibrosing NASH was fully established by 16 wk. Total hepatic lipids increased by 4 wk and remained two- to threefold increased throughout. Hepatic triglycerides declined from sixfold increase at 8 wk to threefold increase by 36 wk. In contrast, hepatic cholesterol levels steadily increased from baseline at 8 wk to twofold by 36 wk. The hepatic immune cell population altered over time with macrophages persisting beyond 16 wk. Mitochondrial oxygen flux rates of FF mice diet were uniformly lower with all the tested substrates (13-276 pmol·s -1 ·ml -1 per unit citrate synthase) than SC mice (17-394 pmol·s -1 ·ml -1 per unit citrate synthase) and was accompanied by decreased mitochondrial:nuclear gene copy number ratios after 4 wk. Metabolic rate was lower in FF mice. Mitochondrial glutathione was significantly decreased at 24 wk in FF mice. Expression of dismutases and catalase was also decreased in FF mice. The evolution of NASH in the FF diet-induced model is multiphasic, particularly in terms of hepatic lipid composition. Insulin resistance precedes hepatic inflammation and fibrosis. Mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Collectively, these observations provide a unique overview of the sequence of changes that coevolve with the histological evolution of

  9. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  10. Bounding quantum gate error rate based on reported average fidelity

    International Nuclear Information System (INIS)

    Sanders, Yuval R; Wallman, Joel J; Sanders, Barry C

    2016-01-01

    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates. (fast track communication)

  11. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  12. Construction requirements for full-term newborn simulation manikin

    NARCIS (Netherlands)

    Thielen, M.W.H.; Bovendeerd, P.H.M.; Neto Fonseca, L.T.; van der Hout-van der Jagt, M.B.

    2015-01-01

    Introduction In the Netherlands, approximately 4500 newborns are admitted each year in the Neonatal Intensive Care Unit (NICU). In order to determine and practice optimal treatment for these fragile patients, clinicians increasingly use educative simulation. However, a high-fidelity simulation of

  13. Airway management in a bronchoscopic simulator based setting

    DEFF Research Database (Denmark)

    Graeser, Karin; Konge, Lars; Kristensen, Michael S

    2014-01-01

    BACKGROUND: Several simulation-based possibilities for training flexible optical intubation have been developed, ranging from non-anatomical phantoms to high-fidelity virtual reality simulators. These teaching devices might also be used to assess the competence of trainees before allowing them...

  14. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model

    International Nuclear Information System (INIS)

    Zheng, Linfeng; Zhang, Lei; Zhu, Jianguo; Wang, Guoxiu; Jiang, Jiuchun

    2016-01-01

    Highlights: • The numerical solution for an electrochemical model is presented. • Trinal PI observers are used to concurrently estimate SOC, capacity and resistance. • An iteration-approaching method is incorporated to enhance estimation performance. • The robustness against aging and temperature variations is experimentally verified. - Abstract: Lithium-ion batteries have been widely used as enabling energy storage in many industrial fields. Accurate modeling and state estimation play fundamental roles in ensuring safe, reliable and efficient operation of lithium-ion battery systems. A physics-based electrochemical model (EM) is highly desirable for its inherent ability to push batteries to operate at their physical limits. For state-of-charge (SOC) estimation, the continuous capacity fade and resistance deterioration are more prone to erroneous estimation results. In this paper, trinal proportional-integral (PI) observers with a reduced physics-based EM are proposed to simultaneously estimate SOC, capacity and resistance for lithium-ion batteries. Firstly, a numerical solution for the employed model is derived. PI observers are then developed to realize the co-estimation of battery SOC, capacity and resistance. The moving-window ampere-hour counting technique and the iteration-approaching method are also incorporated for the estimation accuracy improvement. The robustness of the proposed approach against erroneous initial values, different battery cell aging levels and ambient temperatures is systematically evaluated, and the experimental results verify the effectiveness of the proposed method.

  15. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  16. Multi-infill strategy for kriging models used in variable fidelity optimization

    Directory of Open Access Journals (Sweden)

    Chao SONG

    2018-03-01

    Full Text Available In this paper, a computationally efficient optimization method for aerodynamic design has been developed. The low-fidelity model and the multi-infill strategy are utilized in this approach. Low-fidelity data is employed to provide a good global trend for model prediction, and multiple sample points chosen by different infill criteria in each updating cycle are used to enhance the exploitation and exploration ability of the optimization approach. Take the advantages of low-fidelity model and the multi-infill strategy, and no initial sample for the high-fidelity model is needed. This approach is applied to an airfoil design case and a high-dimensional wing design case. It saves a large number of high-fidelity function evaluations for initial model construction. What’s more, faster reduction of an aerodynamic function is achieved, when compared to ordinary kriging using the multi-infill strategy and variable-fidelity model using single infill criterion. The results indicate that the developed approach has a promising application to efficient aerodynamic design when high-fidelity analyses are involved. Keywords: Aerodynamics, Infill criteria, Kriging models, Multi-infill, Optimization

  17. Simulant Basis for the Standard High Solids Vessel Design

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    The Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant and a non-Newtonian simulant be developed that would represent the Most Adverse Design Conditions (in development) with respect to mixing performance as specified by WTP. The majority of the simulant requirements are specified in 24590-PTF-RPT-PE-16-001, Rev. 0. The first step in this process is to develop the basis for these simulants. This document describes the basis for the properties of these two simulant types. The simulant recipes that meet this basis will be provided in a subsequent document.

  18. Validation of High-resolution Climate Simulations over Northern Europe.

    Science.gov (United States)

    Muna, R. A.

    2005-12-01

    Two AMIP2-type (Gates 1992) experiments have been performed with climate versions of ARPEGE/IFS model examine for North Atlantic North Europe, and Norwegian region and analyzed the effect of increasing resolution on the simulated biases. The ECMWF reanalysis or ERA-15 has been used to validate the simulations. Each of the simulations is an integration of the period 1979 to 1996. The global simulations used observed monthly mean sea surface temperatures (SST) as lower boundary condition. All aspects but the horizontal resolutions are similar in the two simulations. The first simulation has a uniform horizontal resolution of T63L. The second one has a variable resolution (T106Lc3) with the highest resolution in the Norwegian Sea. Both simulations have 31 vertical layers in the same locations. For each simulation the results were divided into two seasons: winter (DJF) and summer (JJA). The parameters investigated were mean sea level pressure, geopotential and temperature at 850 hPa and 500 hPa. To find out the causes of temperature bias during summer, latent and sensible heat flux, total cloud cover and total precipitation were analyzed. The high-resolution simulation exhibits more or less realistic climate over Nordic, Artic and European region. The overall performance of the simulations shows improvements of generally all fields investigated with increasing resolution over the target area both in winter (DJF) and summer (JJA).

  19. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  20. Potentials and Challenges of Light Fidelity Based Indoor Communication System

    OpenAIRE

    Aftab, Farooq

    2016-01-01

    In this era of modern devices and high speed communication the issue of spectral overloading is increasing with time and becoming more serious. With the advancement in LED industry, light fidelity (Li-Fi) based indoor network is an attractive substitute for the existing radio frequency (RF) based communication networks. Because of its capability to perform dual function of lighting as well as high speed communication, Li-Fi is attracting both industrial as well as academic researchers. The Li...

  1. A method for assessing fidelity of delivery of telephone behavioral support for smoking cessation.

    Science.gov (United States)

    Lorencatto, Fabiana; West, Robert; Bruguera, Carla; Michie, Susan

    2014-06-01

    Behavioral support for smoking cessation is delivered through different modalities, often guided by treatment manuals. Recently developed methods for assessing fidelity of delivery have shown that face-to-face behavioral support is often not delivered as specified in the service treatment manual. This study aimed to extend this method to evaluate fidelity of telephone-delivered behavioral support. A treatment manual and transcripts of 75 audio-recorded behavioral support sessions were obtained from the United Kingdom's national Quitline service and coded into component behavior change techniques (BCTs) using a taxonomy of 45 smoking cessation BCTs. Interrater reliability was assessed using percentage agreement. Fidelity was assessed by comparing the number of BCTs identified in the manual with those delivered in telephone sessions by 4 counselors. Fidelity was assessed according to session type, duration, counselor, and BCT. Differences between self-reported and actual BCT use were examined. Average coding reliability was high (81%). On average, 41.8% of manual-specified BCTs were delivered per session (SD = 16.2), with fidelity varying by counselor from 32% to 49%. Fidelity was highest in pre-quit sessions (46%) and for BCT "give options for additional support" (95%). Fidelity was lowest for quit-day sessions (35%) and BCT "set graded tasks" (0%). Session duration was positively correlated with fidelity (r = .585; p reliably coded in terms of BCTs. This can be used to assess fidelity to treatment manuals and to in turn identify training needs. The observed low fidelity underlines the need to establish routine procedures for monitoring delivery of behavioral support. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  3. A highly efficient sharp-interface immersed boundary method with adaptive mesh refinement for bio-inspired flow simulations

    Science.gov (United States)

    Deng, Xiaolong; Dong, Haibo

    2017-11-01

    Developing a high-fidelity, high-efficiency numerical method for bio-inspired flow problems with flow-structure interaction is important for understanding related physics and developing many bio-inspired technologies. To simulate a fast-swimming big fish with multiple finlets or fish schooling, we need fine grids and/or a big computational domain, which are big challenges for 3-D simulations. In current work, based on the 3-D finite-difference sharp-interface immersed boundary method for incompressible flows (Mittal et al., JCP 2008), we developed an octree-like Adaptive Mesh Refinement (AMR) technique to enhance the computational ability and increase the computational efficiency. The AMR is coupled with a multigrid acceleration technique and a MPI +OpenMP hybrid parallelization. In this work, different AMR layers are treated separately and the synchronization is performed in the buffer regions and iterations are performed for the convergence of solution. Each big region is calculated by a MPI process which then uses multiple OpenMP threads for further acceleration, so that the communication cost is reduced. With these acceleration techniques, various canonical and bio-inspired flow problems with complex boundaries can be simulated accurately and efficiently. This work is supported by the MURI Grant Number N00014-14-1-0533 and NSF Grant CBET-1605434.

  4. Wireless Sensor Networks for High Fidelity Sampling

    Science.gov (United States)

    2007-07-20

    detection (detecting changes in structural properties or system behavior). This dissertation describes a platform for indirect detection of structural...construct the polynomial P (X) using these messages as coefficients, such that P (X) = m−1∑ i=0 wix i We then evaluate this polynomial P (X) at n...Experiment Methodology As hardware platforms for our evaluation, Mica2 [13] and Mica2Dot [14] are used. In the evaluation of erasure code (Subsection 3.7.2

  5. Bridging communication gaps with High Fidelity prototypes

    DEFF Research Database (Denmark)

    Kramp, Gunnar

    2006-01-01

    As computer technology becomes more and more integrated in our daily life, the interface moves from the screen back into our physical surroundings. Also, design teams become more and more complex regarding professions and the cultural backgrounds of the people participating. This poses great...

  6. Fidelity induced distance measures for quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Zhang Fulin; Chen Jingling

    2009-01-01

    Fidelity plays an important role in quantum information theory. In this Letter, we introduce new metric of quantum states induced by fidelity, and connect it with the well-known trace metric, Sine metric and Bures metric for the qubit case. The metric character is also presented for the qudit (i.e., d-dimensional system) case. The CPT contractive property and joint convex property of the metric are also studied.

  7. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  8. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  9. SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Henley, David B.; Shelton, Robin L.

    2011-01-01

    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass ∼ 120 M sun ) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass ∼ 4 x 10 5 M sun ) remained largely intact, although deformed, during its simulation period (240 Myr).

  10. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  11. Simulations of depleted CMOS sensors for high-radiation environments

    CERN Document Server

    Liu, J.; Bhat, S.; Breugnon, P.; Caicedo, I.; Chen, Z.; Degerli, Y.; Godiot-Basolo, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Moustakas, K.; Pangaud, P.; Rozanov, A.; Rymaszewski, P.; Schwemling, P.; Wang, M.; Wang, T.; Wermes, N.; Zhang, L.

    2017-01-01

    After the Phase II upgrade for the Large Hadron Collider (LHC), the increased luminosity requests a new upgraded Inner Tracker (ITk) for the ATLAS experiment. As a possible option for the ATLAS ITk, a new pixel detector based on High Voltage/High Resistivity CMOS (HV/HR CMOS) technology is under study. Meanwhile, a new CMOS pixel sensor is also under development for the tracker of Circular Electron Position Collider (CEPC). In order to explore the sensor electric properties, such as the breakdown voltage and charge collection efficiency, 2D/3D Technology Computer Aided Design (TCAD) simulations have been performed carefully for the above mentioned both of prototypes. In this paper, the guard-ring simulation for a HV/HR CMOS sensor developed for the ATLAS ITk and the charge collection efficiency simulation for a CMOS sensor explored for the CEPC tracker will be discussed in details. Some comparisons between the simulations and the latest measurements will also be addressed.

  12. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foun