WorldWideScience

Sample records for high explosive radio

  1. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  2. DISCOVERY OF RADIO AFTERGLOW FROM THE MOST DISTANT COSMIC EXPLOSION

    International Nuclear Information System (INIS)

    Chandra, Poonam; Frail, Dale A.; Fox, Derek; Kulkarni, Shrinivas; Harrsion, Fiona; Kasliwal, Mansi; Berger, Edo; Cenko, S. Bradley; Bock, Douglas C.-J.

    2010-01-01

    We report on the discovery of radio afterglow emission from the gamma-ray burst GRB 090423, which exploded at a redshift of 8.3, making it the object with the highest known redshift in the universe. By combining our radio measurements with existing X-ray and infrared observations, we estimate the kinetic energy of the afterglow, the geometry of the outflow, and the density of the circumburst medium. Our best-fit model suggests a quasi-spherical, high-energy explosion in a low, constant-density medium. GRB 090423 had a similar energy release to the other well-studied high redshift GRB 050904 (z = 6.26), but their circumburst densities differ by 2 orders of magnitude. We compare the properties of GRB 090423 with a sample of gamma-ray bursts (GRBs) at moderate redshifts. We find that the high energy and afterglow properties of GRB 090423 are not sufficiently different from other GRBs to suggest a different kind of progenitor, such as a Population III (Pop III) star. However, we argue that it is not clear that the afterglow properties alone can provide convincing identification of Pop III progenitors. We suggest that the millimeter and centimeter radio detections of GRB 090423 at early times contained emission from the reverse shock. If true, this may have important implications for the detection of high-redshift GRBs by the next generation of radio facilities.

  3. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  4. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  5. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  6. High Explosives Research and Development (HERD) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...

  7. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  8. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  9. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  10. High energy materials. Propellants, explosives and pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  11. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N 2 and H 2 O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N 2 and H 2 O productions

  12. Multistage reaction pathways in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  13. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  14. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    International Nuclear Information System (INIS)

    Nutt, G.L.

    1991-01-01

    This papent describes a method for suppressing the tendency of a porous solid high explosive to ignite and detonate. It comprises: filling substantially all the press of the solid high explosive material with a predetermined pore radius of at least 10μm with a relatively inert, stable, pore filling material in liquid form, the pore filling being selected from gallium, rubidium-potassium eutectic, and Wood's metal; and solidifying the pore filling material in the pores of the explosive material

  15. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  16. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  17. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  18. High explosive driven plasma opening switches

    International Nuclear Information System (INIS)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Goforth, J.H.; Oliphant, T.A.; Weiss, D.L.

    1983-01-01

    A joint theoretical and experimental effort is underway to understand and improve upon the performance of high explosive driven plasma opening switches such as those first described by Pavlovskii et al. We have modeled these switches in both planar and cylindrical geometry using a one dimensional Lagrangian MHD code. This one-dimensional analysis is now essentially complete. It has shown that simple, one-dimensional, compression of the current-carrying channel can explain the observed resistance increases during the time of flight of the HE detonation products. Our calculations imply that ionization plays an important role as an energy sink and the performance of these switches might be improved by a judicious choice of gases. We also predict improved performance by lowering the pressure in the plasma channel. The bulk of our experimental effort to date has been with planar switches. We have worked with current densities of 0.25 to 0.4 MA/cm and have observed resistance increases of 40 to 60 mΩ. Significant resistance increases are observed later than the time of flight of the HE detonation products. We suggest that these resistance increases are due to mixing between the hot plasma and the relatively cooler detonation products. Such mixing is not included in the 1-D, Lagrangian code. We are presently beginning a computational effort with a 2-D Eulerian code. The status of this effort is discussed. Experimentally we have designed an apparatus that will permit us to test the role of different gases and pressures. This system is also in a planar geometry, but the plasma channel is doughnut shaped, permitting us to avoid edge effects associated with the planar rectangular geometry. The first experiments with this design are quite encouraging and the status of this effort is also discussed

  19. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  20. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  1. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio-over-Fiber......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers......-wave frequencies at carrier frequencies exceeding 60 GHz, using photonic baseband technologies. For signal generation, high spectral-efficient optical modulation technologies are used together with optical heterodyning. In the detection side, the mm-wave signal is modulated in the optical domain and received using...

  2. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  3. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  4. Motivation for a High Explosive Testing Program in South Africa

    Science.gov (United States)

    2015-12-04

    environment for several decades. Much has been learned about the impact of high in situ stress and its influence on rock bursts (violent rock ...is the possibility of evasive nuclear testing in deep mine environments where the release of high stress fields by an explosion can resemble a rock ... burst or natural earthquake. This paper provides background information on previous research in and around the deep mines of South Africa and lays

  5. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  6. Design of a spheromak compressor driven by high explosives

    International Nuclear Information System (INIS)

    Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marsh, S.P.; Marklin, G.J.; Mayo, R.M.; Wysocki, F.J.

    1990-01-01

    High energy density spheromaks can be used to accelerate a thin section of the flux conserver wall to high velocities. The energy density of a spheromak, formed by conventional helicity injection into a flux conserver, can be increased by reducing the flux conserver volume after the spheromak is formed. A method of accomplishing this is by imploding one wall of the flux conserver with high explosives. The authors have embarked on a program to demonstrate that a spheromak can be used as an energy transfer medium, and that a velocity gain over high-explosive driven plate velocities can be achieved. To do this, a plasma gun helicity source that will inject a spheromak with suitable initial energy density and lifetime is needed. Also, an implodable flux conserver that remains intact and clean during the implosion must be developed. The flux conserver problem is probably the more challenging one, because very little experimental work has been done in the past on explosively driven metal plates into a high vacuum, with sizes and travel distances appropriate for their application. There are two necessary practical requirements for an explosive compression of a flux conserver. The first is that the imploding wall does not rupture. The second is that gasses or other debri are not ejected which could penetrate and poison the spheromak plasma, and thus reduce the spheromak lifetime below what is necessary to carry out the spheromak compression and the subsequent acceleration of the flyer plate. The authors have designed and fabricated a plasma gun to be used for injecting the initial spheromak plasma into the collapsible flux conserver

  7. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    OpenAIRE

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the...

  8. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  9. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  10. High explosive characterization for the dice throw event

    Energy Technology Data Exchange (ETDEWEB)

    Helm, F.; Finger, M.; Hayes, B.; Lee, E.; Cheung, H.; Walton, J.

    1976-06-16

    An equation of state for detonation products was developed to describe the detonation of large charges of ammonium nitrate/fuel oil (ANFO). The equation of state will be used to predict air-blast and ground-motion effects in the Dice Throw Event. The explosive performance of ANFO is highly dependent on charge size. The equation developed from this work is applicable to heavily confined detonations 101.6 mm in diameter or larger. The equation of state is based on results from experiments in cylinders and hemispheres, and a large field test. The report contains a detailed discussion of the diagnostic and initiation techniques used in these experiments.

  11. High energy astrophysics in radio-astronomical form

    International Nuclear Information System (INIS)

    Laan, H. van der

    1980-01-01

    The application of high energy astrophysics in observational astronomy, and in particular in radioastronomy, is considered. The current situation of extragalactic HEA, as brought to light by radio-astronomical techniques, is sketched. (C.F.)

  12. Forensic Analysis of High Explosive Residues from Selected Cloth

    International Nuclear Information System (INIS)

    Mohamad Afiq Mohamed Huri; Umi Kalthom Ahmad

    2014-01-01

    Increased terrorist activities around the Asian region have resulted in the need for improved analytical techniques in forensic analysis. High explosive residues from post-blast clothing are often encountered as physical evidence submitted to a forensic laboratory. Therefore, this study was initiated to detect high explosives residues of cyclotrimethylenetrinitramine (RDX) and pentaerythritol tetranitrate (PETN) on selected cloth in this study. Cotton swabbing technique was employed as a simple and rapid method in recovering analytes from the sample matrix. Analytes were analyzed using Griess spot test, TLC and HPLC. TLC separation employed toluene-ethyl acetate (9:1) as a good solvent system. Reversed phase HPLC separation employed acetonitrile-water (65:35) as the mobile phase and analytes detected using a programmed wavelength. RDX was detected at 235 nm for the first 3.5 min and then switched to 215 nm for PETN. Limits of detection (LODs) of analytes were in the low ppm range (0.05 ppm for RDX and 0.25 ppm for PETN). Analyte recovery studies revealed that the type of cloth has a profound effect on the extraction efficiency. Analytes were recovered better for nylon as compared to cotton cloth. However, no analytes could be recovered from denim cloth. For post-blast samples, only RDX was detected in low concentration for both nylon and cotton cloth. (author)

  13. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  14. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  15. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  16. Potentially lethal effects of astrophysical high energy explosive events

    International Nuclear Information System (INIS)

    Zarauza, Dario; Martin, Osmel; Rolando Cardenas

    2007-01-01

    In this work we compare the biological extinction risks posed by different types of high energy explosive events, if they occur at distances close enough to inhabited planets. These events are several kinds of supernovae and gamma ray bursts. We mainly consider the ozone depletion, leaving other effects, as photon retransmission and muon showers, for future work. In order to estimate the damage on ozonosphere, we use a simple analytical model for ozone depletion. We also mention some hints to look for the signatures of these events on Earth biogeochemical record, and evaluate the possibility of applying these results to the astrobiologically interesting sample of stars gathered by Porto de Mello, del Peloso and Ghezzi. (Author)

  17. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  18. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  19. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  20. Prediction of Ignition of High Explosive When Submitted To Impact

    Science.gov (United States)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  1. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20

    Directory of Open Access Journals (Sweden)

    Steve Nicolich

    2009-04-01

    Full Text Available The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model.

  2. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  3. Ultra-high-energy cosmic rays from radio galaxies

    Science.gov (United States)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  4. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  5. Probing the bias of radio sources at high redshift

    CSIR Research Space (South Africa)

    Passmoor, S

    2012-11-01

    Full Text Available The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which...

  6. High radio-isotope uptakes in patients with hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Wing, J.; Kalk, W.J.; Ganda, C. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Medicine)

    1982-12-04

    Hypothyroidism is usually associated with a low radio-isotope uptake by the thyriod gland. We report 8 cases of Hashimoto's thyroiditis with clinical and biochemical hypothyroidism and with borderline high or overtly increased technetium-99m pertechnetate and/or iodine-131 uptakes.

  7. Do Magnetic Fields drive high-energy explosive transients?

    OpenAIRE

    Mundell, Carole

    2017-01-01

    I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.

  8. Do Magnetic Fields Drive High-Energy Explosive Transients?

    Science.gov (United States)

    Mundell, Carole

    2017-10-01

    I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.

  9. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  10. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  11. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  12. iVCJ: A tool for Interactive Visualization of high explosives CJ states

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aslam, Tariq Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-12

    A graphical user interface (GUI) tool has been developed that facilitates the visualization and analysis of the Chapman-Jouguet state for high explosives gaseous products using the Jones- Wilkins-Lee equation of state.

  13. The ion mobility spectrometer for high explosive vapor detection

    International Nuclear Information System (INIS)

    Cohen, M.J.; Stimac, R.M.; Wernlund, R.F.

    1984-01-01

    The Phemto-Chem /SUP R/ Model 100 Ion Mobility Spectrometer (IMS) operates in air and measures a number of explosive vapors at levels as low as partsper-trillion in seconds. The theory and operation of this instrument is discussed. The IMS inhales the vapor sample in a current of air and generates characteristic ions which are separated by time-of -ion drift in the atmospheric pressure gas. Quantitative results, using a dilution tunnel and standard signal generator with TNT, nitroglycerine, ethylene glycol dinitrate, cyclohexanone, methylamine, octafluoronaphthalene and hexafluorobenzene, are given. Rapid sample treatment with sample concentrations, microprocessor signal readout and chemical identification, offer a realistic opportunity of rapid explosive vapor detection at levels down to 10 -14 parts by volume in air

  14. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  15. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  16. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  17. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  18. Computer code to predict the heat of explosion of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B.

    2009-01-01

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (ΔH e ) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R 2 = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials

  19. Research of explosives in an environment of high pressure and temperature using a new test stand

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2015-01-01

    Full Text Available In this article the test stand for determining the blast abilities of explosives in high pressure and temperature conditions as well as the initial results of the research are presented. Explosives are used in rock burst and methane prevention to destroy precisely defined fragments of the rock mass where energy and methane are accumulated. Using this preventive method for fracturing the structure of the rocks which accumulate the energy or coal of the methane seam very often does not bring the anticipated results. It is because of the short range of destructive action of the post-blast gases around the blast hole. Evaluation of the blast dynamics of explosives in a test chamber, i.e. in the pressure and temperature conditions comparable to those found “in situ”, will enable evaluation of their real usefulness in commonly used mining hazard preventive methods. At the same time, it will enable the development of new designs of the explosive charges used for precisely determined mining hazards. In order to test the explosives for their use in difficult environmental conditions and to determine the characteristics of their explosion, a test chamber has been built. It is equipped with a system of sensors and a high-frequency recording system of pressure and temperature during a controlled explosion of an explosive charge. The results of the research will enable the development of new technologies for rock burst and methane prevention which will significantly increase workplace health and safety level. This paper presented results constitute the initial phase of research started in the middle of 2014.

  20. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  1. A novel method for the measurement of the von Neumann spike in detonating high explosives

    Science.gov (United States)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  2. High methane natural gas/air explosion characteristics in confined vessel.

    Science.gov (United States)

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Explosive mixture of high power and high total energy content, and process for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M.A.; Udy, L.L.

    1973-05-10

    This explosive consists of a viscous suspension of an inorganic oxidizer, finely divided aluminum, water, and a liquid organic material miscible with water; a thickener may also be added. The mixture contains 45 to 55% of a strong inorganic oxidizer, of which at least two-thirds is ammonium nitrate; 32 to 43% aluminum powder; 11 to 18% or liquid, mostly water with an organic water-soluble liquid such as ethylene glycol; and a high temperature resistant, gel-forming thickener made of crosslinked guar gum and not crosslinked xanthane gum made from a polysaccharide through bacterial action.

  4. Radio imaging of core-dominated high redshift quasars

    DEFF Research Database (Denmark)

    Barthel, Peter D.; Vestergaard, Marianne; Lonsdale, Colin J.

    1999-01-01

    VLA imaging at kiloparsec-scale resolution of sixteen core-dominated radio-loud QSOs is presented. Many objects appear to display variable radio emission and their radio morphologies are significantly smaller than those of steep-spectrum quasars, consistent with these objects being observed...

  5. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  6. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  7. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1978-01-01

    This detailed report on Lawrence Livermore Laboratory's control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is funcioning effectively

  8. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1980-01-01

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  9. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200  μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  10. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  11. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  12. The cluster environments of powerful, high-redshift radio galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.

    1989-01-01

    We present deep imaging of a sample of 25 powerful radio galaxies in the redshift range 0.15 gr ) about each source, a measure of the richness of environment. The powerful radio galaxies in this sample at z>0.3 occupy environments nearly as rich on average as Abell class 0 clusters of galaxies, about three times richer than the environments of the z<0.3 radio galaxies. This trend in cluster environment is consistent with that seen in radio-loud quasars over the same redshift range. Our previous work on the 3CR sample suggested that the fundamental parameter which correlates with the richness of environment might be the radio luminosity of the galaxy, rather than its redshift. Our direct imaging confirms that the most powerful radio galaxies do inhabit rich environments. (author)

  13. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    Energy Technology Data Exchange (ETDEWEB)

    McRae, D.; Haywood, W.; Powell, J.; Harris, B.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soil and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.

  14. Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

    Directory of Open Access Journals (Sweden)

    Lei Baiwei

    2016-10-01

    Full Text Available In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84 which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

  15. Radio-fluoro guided surgery in high grade gliomas

    International Nuclear Information System (INIS)

    Lopez Piloto, Orestes; Salva Camano, Silvia; Gonzalez Gonzalez, Justo; Cruz Hernandez, Tania Margarita; Martinez Suarez, Eduardo; Lopez Arbolay, Omar; Ardisana Santana, Ernesto

    2015-01-01

    The MIBI (99mTc MIBI, methoxyisobutylisonitrile, MIBI, or sestamibi): is a wide readiness to the rich flow of photons, which improves the detection of pathological uptake with gamma probe, these physical properties make of this radiotracer the election to radioguided surgery. The sodium fluorescein is a water-soluble organic coloring substance used in the exam of the sanguine glasses of the eye. We carried out the report of five cases diagnosed with brain tumor of high grade of malignancy, with the objective to demonstrated that use of Radio-Fluro-guided Surgery (RFGS) we can achieve gross total resections without bigger deficit, completing the inclusion and exclusion criteria. The technique of RFGS demonstrated utility in the gross total resection, diminishing the residual tumor, without increasing surgery complexity and surgical times. In our study doesn't evidence of adverse effects for the administration of the radiopharmaceuticals and fluorescein

  16. Development of a high efficient conventional type cold neutron source using a non-explosive material

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Satoh, S.

    1999-01-01

    An efficient cold moderator that can be used easily at a small neutron source would be useful for neutron radiography, prompt gamma ray analysis and so on. Non-explosive materials are chosen for a cold moderator since explosive materials such as hydrogen and methane require a safety system. Neutronic performances of coupled moderators of various non-explosive materials are studied so as to develop such a cold moderator since the coupled moderator system is the best to obtain high intensity of cold neutrons. Effect of premoderator is studied and neutron spectra from methanol, ethanol, benzene, mesitylene and benzene methanol are measured around 20 K. The premoderator increased the cold neutron intensity by about 50∼70%. Methanol and mesitylene gave the highest cold neutron intensity. Effect of Be filter-reflector is also studied and a intensity gain of about 20% was obtained below about 5 MeV. (author)

  17. Emission spectroscopy of hypervelocity impacts on aluminum, organic and high-explosive targets

    NARCIS (Netherlands)

    Verreault, J.; Day, J.P.R.; Halswijk, W.H.C.; Loiseau, J.; Huneault, J.; Higgins, A.J.; Devir, A.D.

    2015-01-01

    Laboratory experiments of hypervelocity impacts on aluminum, nylon and high-explosive targets are presented. Spectral measurements of the impact flash are recorded, together with radiometric measurements to derive the temperature of the flash. Such experiments aim at demonstrating that the impact

  18. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    Science.gov (United States)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  19. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    Science.gov (United States)

    Schröder, Frank G.; Pierre Auger Collaboration

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  20. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  1. Recent Advances in the Synthesis of High Explosive Materials

    Science.gov (United States)

    2015-12-29

    high thermal stability [29]. Unlike the blue copper(II) nitrotetrazole octahedral complex reported by Huynh [30], DBX-1 is the copper(I) salt that...II) nitrotetrazole octahedral complex reported by Huynh [30], DBX-1 is the copper(I) salt that manifests as orange-red crystals and adopts the...detonation velocity; i ΔfH0 = molar enthalpy of formation; j ΔexU0 = total energy of detonation. 3.3.3. Nitryl Cyanide (NCNO2) Though a simple

  2. Managing the explosion of high resolution topography in the geosciences

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community

  3. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  4. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  5. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  6. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  7. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechanical insult

    International Nuclear Information System (INIS)

    Reaugh, J.E.

    2008-01-01

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the

  8. Experimental study of a high intensity radio-frequency cooler

    Directory of Open Access Journals (Sweden)

    Ramzi Boussaid

    2015-07-01

    Full Text Available Within the framework of the DESIR/SPIRAL-2 project, a radio-frequency quadrupole cooler named SHIRaC has been studied. SHIRaC is a key device of SPIRAL-2, designed to enhance the beam quality required by DESIR. The preliminary study and development of this device has been carried out at Laboratoire de Physique Corpusculaire de CAEN (LPC Caen, France. The goal of this paper is to present the experimental studies conducted on a SHIRaC prototype. The main peculiarity of this cooler is its efficient handling and cooling of ion beams with currents going up as high as 1  μA which has never before been achieved in any of the previous coolers. Much effort has been made lately into these studies for development of appropriate optics, vacuum and rf systems which allow cooling of beams of large emittance (∼80π  mm mrad and high current. The dependencies of SHIRaC’s transmission and the cooled beam parameters in terms of geometrical transverse emittance and the longitudinal energy spread have also been discussed. Investigation of beam purity at optimum cooling condition has also been done. Results from the experiments indicate that an emittance reduction of less than 2.5π  mm mrad and a longitudinal energy spread reduction of less than 4 eV are obtained with more than 70% of ion transmission. The emittance is at expected values whereas the energy spread is not.

  9. Detonation of high explosives in Lagrangian hydrodynamic codes using the programmed burn technique

    International Nuclear Information System (INIS)

    Berger, M.E.

    1975-09-01

    Two initiation methods were developed for improving the programmed burn technique for detonation of high explosives in smeared-shock Lagrangian hydrodynamic codes. The methods are verified by comparing the improved programmed burn with existing solutions in one-dimensional plane, converging, and diverging geometries. Deficiencies in the standard programmed burn are described. One of the initiation methods has been determined to be better for inclusion in production hydrodynamic codes

  10. Automated detection of cavities present in the high explosive filler of artillery shells

    International Nuclear Information System (INIS)

    Kruger, R.P.; Janney, D.H.; Breedlove, J.R. Jr.

    1976-01-01

    Initial research has been conducted into the use of digital image analysis techniques for automated detection and characterization of piping cavities present in the high explosive (HE) filler region of 105-mm artillery shells. Experimental work utilizing scene segmentation techniques followed by a sequential similarity detection algorithm for cavitation detection have yielded promising initial results. This work is described with examples of computer-detected defects

  11. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  12. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  13. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  14. Mechanisms of formation of trace decomposition products in complex high explosive mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Woodyard, J.D.; Burgess, C.E. [West Texas A and M Univ., Canyon, TX (United States); Rainwater, K.A. [Texas Tech Univ., Lubbock, TX (United States)

    1999-03-01

    A significant concern in the nation`s stockpile surveillance program in prediction of the lifetimes of the high explosives (HE) and their components as the weapons age. The Department of Energy`s Core Surveillance and Enhanced Surveillance programs specifically target issues of degradation of HE, binders, and plastic-bonded explosives (PBX) for determination of component lifetimes and handling procedures. These material science topics are being addressed at the DOE national laboratories and production plants, including Pantex. The principal goal of this project is to identify the mechanisms of decomposition of HE, plasticizers, plastic polymer binders, and radical stabilizers resulting from exposures to ionizing radiation, heat, and humidity. The following reports the work completed for 1998, including a comprehensive literature review about some of the materials examined and the laboratory work completed to date. The materials focused on in the laboratory are TATB, Estane 5301, and Irganox 1010.

  15. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  16. Towards low-delay and high-throughput cognitive radio vehicular networks

    Directory of Open Access Journals (Sweden)

    Nada Elgaml

    2017-12-01

    Full Text Available Cognitive Radio Vehicular Ad-hoc Networks (CR-VANETs exploit cognitive radios to allow vehicles to access the unused channels in their radio environment. Thus, CR-VANETs do not only suffer the traditional CR problems, especially spectrum sensing, but also suffer new challenges due to the highly dynamic nature of VANETs. In this paper, we present a low-delay and high-throughput radio environment assessment scheme for CR-VANETs that can be easily incorporated with the IEEE 802.11p standard developed for VANETs. Simulation results show that the proposed scheme significantly reduces the time to get the radio environment map and increases the CR-VANET throughput.

  17. Determining the Coalescence of Hotspots into Uniform Detonation Fronts in High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Steward, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Purdue Univ., West Lafayette, IN (United States); Mays, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baluyot, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-14

    Microwave Interferometry (MI) offers the advantage of a continuous time measurement of detonation front velocity from detonation initiation to disassembly, which is an important step to assure the quality of stockpile high explosives. However, the method is currently characterized by areas of poor signal strength, which lead to low confidence measurements. Experiments in inert materials were conducted to determine if reflective hot spots, pockets of plasma that form during detonation, are responsible due to varying hot spot concentrations. Instead, it was found that the copper tube used in a range of standard HE test configurations is the cause of the poor signal reception. Hot spots were represented by microwave reflective aluminum particles. The aluminum was mixed with Titanium Dioxide, a material electrically similar to the insensitive high explosive, triaminotrinitrobenzene (TATB), in volume percent fractions (VPFs) between 0 and 100% aluminum, in increments of 10%. Reflectivity was measured based on input and reflection received from a test apparatus with a layer representing undetonated explosive and another representing an approaching shockwave. The results showed no correlation between VPF and measured reflectivity test cases while enclosed in the standard copper tube. Upon further testing, each sample’s measured reflectivity independent of the copper enclosure did correlate with VPF. This revealed that the test enclosure currently used for MI measurements is causing poor MI signal reception, and new methods must be developed to account for this aberration in MI measurements.

  18. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  19. Towards autonomous radio detection of ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Garcon, Th.

    2010-01-01

    The radio-detection of extensive air showers, investigated for the first time in the 1960's, obtained promising results but plagued by the technical limitations. At that time, H.R. Allan summed up the state of the art in an extensive review article whose conclusions and predictions are still used today. Set up in 2001 at the Nancay Observatory, the CODALEMA experiment was built first as a demonstrator and successfully showed the feasibility of the radio-detection of extensive air showers. Radically modified in 2005, it allowed to obtain a clear energy correlation, and put in evidence an unambiguous signature of the geomagnetic origin of the electric field emission process associated to the air shower. The switch towards large areas is the next step of the technique's development. Therefore, the autonomy of the detectors becomes essential. After test prototypes installed in 2006 at the Pierre Auger Observatory, a generation of new autonomous detectors was developed. Their first results will be presented. This work is also dedicated to the issues related to the radio-detection technique: the antenna response, the sensitivity, the surrounding effects, the monitoring of a big array. The determination of the shower characteristics independently of other detectors such as the lateral distribution, the energy correlation and the frequency spectrum of the radio transient will be discussed. (author)

  20. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    International Nuclear Information System (INIS)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; Lico, R.; Burlon, D.

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg"2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α_l_o_w) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.

  1. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  2. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  3. Impulsive shock induced single drop steam explosion visualized by high-speed x-ray radiography and photography - metallic melt

    International Nuclear Information System (INIS)

    Park, H. S.; Hansson, R. C.; Sehgal, B. R.

    2003-01-01

    Experimental investigation of fine fragmentation process during vapor explosion was conducted in a small-scale single drop system employing continuous high-speed X-ray radiography and photography. A molten tin drop of about 0.7 g at approximately 1000 .deg. C was dropped into a water pool, at temperatures ranging from 20 to 90 .deg. C, and the explosion was triggered by an external shock pulse of about 1 MPa. X-ray radiographs show that finely fragmented melt particles accelerates to the vapor bubble boundary and forms a particle shell during the period of vapor bubble expansion due to vapor explosions. From the photographs, it was possible to observe a number of counter-jets on the vapor boundary. For tests with highly subcooled coolant, local explosion due to external impulsive shock trigger initiates the stratified mode of explosion along the entire melt surface. For tests with lower subcooled coolant local explosions were initiated by an external impulsive shock trigger and by collapse of vapor/gas pocket attached on the top of the melt drop. Transient spatial distribution map of melt fragments during vapor explosion was obtained by a series of image processing and calibration tests

  4. A survey of high explosive-induced damage and spall in selected metals using proton radiography

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Clark, D.A.; Ferm, E.N.; Gallegos, R.A.; Hammon, D.; Hemsing, W.F.; Hogan, G.E.; Holmes, V.H.; King, N.S.P.; Lopez, R.P.; Merrill, F.E.; Morris, C.L.; Morley, K.B.; Murray, M.M.; Pazuchanics, P.D.; Prestridge, K.P.; Quintana, J.P.; Saunders, A.; Shinas, M.A.; Stacy, H.L.

    2004-01-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns 'shutter' time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented

  5. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

    Science.gov (United States)

    Patel, C. K. N.

    2008-01-01

    Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household

  6. Radio and television interference caused by corona discharges from high-voltage transmission lines

    International Nuclear Information System (INIS)

    Sarmadi, M.

    1996-01-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather

  7. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  8. Dynamics of the formation of the condensed phase particles at detonation of high explosives

    CERN Document Server

    Evdokov, O V; Kulipanov, G N; Luckjanchikov, L A; Lyakhov, N Z; Mishnev, S I; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    The article presents the results of the experimental study SAXS on condensed carbon particles that appear at the detonation of a high explosive. It was shown that the SAXS signal rises for 1.5-4 mu s after the detonation front passing. The SAXS signal in trotyl and its alloys with hexogen starts just after the compression of the material in the detonation wave. In octogen, hexogen and PETN, the SAXS signal appears in 0.5 mu s and is much smaller than the signal at the detonation of trotyl and its alloys with hexogen.

  9. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    Science.gov (United States)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  10. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  11. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  12. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  13. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  14. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  15. Development and data analysis of a radio-detection of ultra high energy cosmic rays experiment

    International Nuclear Information System (INIS)

    Belletoile, A.

    2007-10-01

    The radio-detection of cosmic rays was first attempted in the sixties. Unfortunately at that time, the results suffered from poor reproducibility and the technique was abandoned in favour of direct particle and fluorescence detection. Taking advantage of recent technological improvements the radio-detection of ultra high energy cosmic rays is being reinvestigated. In this document, first, we remind the reader of the global problematic of cosmic rays. Then, the several mechanisms involved in the emission of an electric field associated with extensive air showers are discussed. The CODALEMA (cosmic detection array with logarithmic electro magnetic antenna) experiment that aims to demonstrate the feasibility of cosmic ray radio-detection, is extensively described along with the first experimental results. A radio-detection test experiment implanted at the giant detector Pierre Auger is presented. It should provide inputs to design the future detector using this technique at extreme energies. (author)

  16. Radio reconstruction of the mass of ultra-high cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Dorosti, Qader [Institut fuer Kernphysik (IKP), KIT (Germany)

    2015-07-01

    Detection of ultra-high energy cosmic rays can reveal the processes of the most violent sources in the Universe, which yet has to be determined. Interaction of cosmic rays with the Earth's atmosphere results in cascades of secondary particles, i.e. air showers. Many of such particles are electrons and positrons. The induced electrons and positrons interact with the geomagnetic field and induce radio emissions. Detection of air showers along with the detection of induced radio emissions can furnish a precise measurement of the direction, energy and mass of ultra-high energy cosmic rays. The Auger Engineering Radio Array consists of 124 radio stations measuring radio emission from air showers, in order to reconstruct the energy, direction and mass of cosmic rays. In this contribution, we present a method which employs a reduced hyperbolic model to describe the shape of radio wave front. We have investigated that the parameters of the reduced hyperbolic model are sensitive to the mass of cosmic rays. The obtained results are presented in this talk.

  17. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  18. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  19. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  20. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  1. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  2. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  3. Fine Tuning the CJ Detonation Speed of a High Explosive products Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-12

    For high explosive (HE) simulations, inaccuracies of a per cent or two in the detonation wave speed can result from not suficiently resolving the reaction zone width or from small inaccuracies in calibrating the products equation of state (EOS) or from variation of HE lots. More accurate detonation speeds can be obtained by ne tuning the equation of state to compensate. Here we show that two simple EOS transformations can be used to adjust the CJ detonation speed by a couple of per cent with minimal effect on the CJ release isentrope. The two transformations are (1) a shift in the energy origin and (2) a linear scaling of the speci c volume. The effectiveness of the transformations is demonstrated with simulations of the cylinder test for PBX 9502 starting with a products EOS for which the CJ detonation speed is 1 per cent too low.

  4. Model testing of a 10-kg high explosive blast attenuation maze

    International Nuclear Information System (INIS)

    Bacigalupi, C.M.; Burton, W.A.

    1981-01-01

    The basement area of the proposed High Explosive Applications Facility (HEAF) at the Lawrence Livermore National Laboratory includes 10-kg HE assembly and process cells, and a 10-kg corridor for the transport of up to 10 kg of HE from the receiving dock to the cells and to the experimental firing tanks. Previous model experiments developed a process cell-maze configuration that attenuated the effects of an accidental 10-kg detonation to acceptable levels (maximum of 10 to 11 psi reflected). This document reports 1/8-scale model tests conducted to confirm the maze design and to determine the blast pressures in adjacent areas in the final HEAF building configuration. In addition, pressure/time information was obtained at selected points in the model expansion chamber to provide the architect-engineer with information for structural design

  5. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  6. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  7. On beyond the standard model for high explosives: challenges & obstacles to surmount

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph Ds [Los Alamos National Laboratory

    2009-01-01

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spot generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.

  8. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  9. Investigation of the stable combustion of initiating explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fogelzang, A.E.; Egorshev, V.IU.; Pimenov, A.IU.; Sinditskii, V.P.; Saklantii, A.R.

    1985-01-01

    The combustion of typical initiating explosives - tetrazene, tricycloacetone peroxide, diazodinitrophenol, hexamethylene triperoxide diamine, and cyanur triazide - was studied experimentally in the 0.1-40 MPa pressure range. The dependence of combustion rate on pressure was studied for these explosives. 8 references.

  10. Radio-exposure tied to human activities other than medical uses of ionizing radiation, the functioning or nuclear power plants, or experimental atomic explosions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The chapter deals only with the radio-exposure of the general public. Here the authors shall deal with the radio-exposure connected with the activities of two kinds of establishment: factories which prepare, manufacture, or transform radioactive substances, with the exception of nuclear power plants and their associated installations; and establishments which make use of techniques. The ever-expanding employment of radio-isotopes and radiation in industry is explained by the development of new applications and the increasing reliability of these materials. This technology presents many advantages. It allows one to economize on raw material as well as energy, to improve the quality of products while making these installations safer when functioning, and to protect the environment. The applications of radio-isotopes and radiation are varied, contributing to the efficiency of many industrial operations. The fundamental properties of the radio-elements are employed: the detectability over some distance of the radiations emitted by their chemical biological and thermic effects; and the identical behavior of different isotopes of the same element

  11. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  12. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  13. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  14. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana; Kocz, Jonathon; Prince, Thomas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Horiuchi, Shinji [CSIRO Astronomy and Space Science, Canberra Deep Space Communications Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Lippuner, Jonas [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.

  15. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    Science.gov (United States)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  16. Theoretical Feasibility of Digital Communication Over Ocean Areas by High Frequency Radio

    Science.gov (United States)

    1979-11-01

    The theoretical reliability of digital data transmission via high frequency radio is examined for typical air traffic routes in the Atlantic and Pacific areas to assist the U.S. Department of Transportation in the evaluation of a system for improving...

  17. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  18. HG2006 Workshop on High-Gradient Radio Frequency

    CERN Multimedia

    2006-01-01

    Meeting to be held at CERN on 25-27 September 2006 in Room 40/S2-B01 (Building 40). The objective of the workshop is to bring the high-gradient RF community together to present and discuss recent theoretical and experimental developments. Significant progress has recently been made in understanding the basic physics of rf breakdown and developing techniques for achieving higher gradients. This workshop should contribute to maintaining these efforts and to promoting contacts and collaboration. The scientific programme will be organized in half day sessions dedicated to: High-gradient rf experimental results Theory and computation High-gradient technology, materials and processing Specialized experiments on related high-gradient or high-power phenomenon like dc discharge and pulsed surface heating Reports from collaborations and projects. Each session will consist of selected presentations followed by a dedicated discussion. Information about the meeting and participant registration is available at http...

  19. Equations of state for detonation products of high energy PBX explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Helm, F. H.; Finger, M.; Walton, J. R.

    1977-08-01

    It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.

  20. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    International Nuclear Information System (INIS)

    Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.

    2001-01-01

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios

  1. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  2. CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718-3718

    International Nuclear Information System (INIS)

    Zhu, W. W.; Kaspi, V. M.; Ng, C.-Y.; McLaughlin, M. A.; Pavlov, G. G.; Manchester, R. N.; Gaensler, B. M.; Woods, P. M.

    2011-01-01

    High-magnetic-field pulsars represent an important class of objects for studying the relationship between magnetars and radio pulsars. Here we report on four Chandra observations of the high-magnetic-field pulsar J1718-3718 (B = 7.4 x 10 13 G) taken in 2009 as well as a reanalysis of 2002 Chandra observations of the region. We also report an improved radio position for this pulsar based on ATCA observations. We detect X-ray pulsations at the pulsar's period in the 2009 data, with a pulsed fraction of 52% ± 13% in the 0.8-2.0 keV band. We find that the X-ray pulse is aligned with the radio pulse. The data from 2002 and 2009 show consistent spectra and fluxes: a merged overall spectrum is well fit by a blackbody of temperature 186 +19 -18 eV, slightly higher than predicted by standard cooling models; however, the best-fit neutron star atmosphere model is consistent with standard cooling. We find the bolometric luminosity L ∞ bb = 4 +5 -2 x 10 32 erg s -1 ∼0.3 E-dot for a distance of 4.5 kpc. We compile measurements of the temperatures of all X-ray-detected high-B pulsars as well as those of low-B radio pulsars and find evidence for the former being hotter on average than the latter.

  3. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations

    Directory of Open Access Journals (Sweden)

    Clare Kimblin

    2017-09-01

    Full Text Available Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air are examined as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS reliably correlates reactions involving atomic Al and aluminum monoxide (AlO with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosive detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ∼10-5 s, roughly 100 times faster than the Al and AlO decay rates (∼10-3 s observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N2+. In studies where the height of the ablating laser’s focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.

  4. Dependence of hotspot initiation on void distribution in high explosive crystals simulated with molecular dynamics

    Science.gov (United States)

    Herring, Stuart Davis

    Microscopic defects may dramatically affect the susceptibility of high explosives to shock initiation. Such defects redirect the shock's energy and become hotspots (concentrations of stress and heat) that can initiate chemical reactions. Sufficiently large or numerous defects may produce a self-sustaining deflagration or even detonation from a shock notably too weak to detonate defect-free samples. The effects of circular or spherical voids on the shock sensitivity of a model (two- or three-dimensional) high explosive crystal are considered. We simulate a piston impact using molecular dynamics with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In both dimensionalities, the probability of initiating chemical reactions rises more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void of even 10 nm radius (˜39 interatomic spacings) reduces the minimum initiating velocity by a factor of 4 (8 in 3D). The transition at larger velocities to detonation is studied in micron-long samples with a single void (and its periodic images). Reactions during the shock traversal increase rapidly with velocity, then become a reliable detonation. In 2D, a void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal; a Pop plot of the detonation delays at higher velocities shows a characteristic pressure dependence. 3D samples are more likely to react but less to detonate. In square lattices of voids, reducing the (common) void radius or increasing the porosity without changing the other parameter causes the hotspots to consume the material faster and detonation to occur sooner and at lower velocities. Early behavior is seen to follow a very simple ignition and growth model; the pressure exponents are more realistic than with single voids. The hotspots collectively develop a broad pressure wave (a sonic, diffuse deflagration front

  5. Coefficients of sliding friction of single crystals of high explosives under different rubbing conditions

    International Nuclear Information System (INIS)

    Wu, Y Q; Chaudhri, M Munawar

    2013-01-01

    The coefficients of sliding friction of single crystals of commonly used high explosives pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX) and beta-cyclotetramethylene tetranitramine (β-HMX) under several rubbing configurations and at a relative sliding speed of 0.22 mm s -1 were measured. The sliding configurations were (1) crystal-polished steel pairs, (2) like-crystal pairs and (3) unlike-crystal pairs. For every rubbing configuration the friction force showed oscillations, which are thought to be caused by the formation and shearing of the adhesive junctions formed at the surface of the rubbing crystals. This shearing of the adhesive junctions led to the formation of microscopic and sub-microscopic particles, which were confirmed by an environmental scanning electron microscope study. For every rubbing configuration and for relatively high normal loads pressing the rubbing crystals together, the coefficient of friction was generally in the range 0.2-0.25 and it has been concluded that the coefficient of friction is controlled by the adhesion with almost negligible contribution from the ploughing component. From a knowledge of the coefficient of friction and the uniaxial yield stress values of single crystals of RDX and β-HMX, the shear strength of these crystals were determined to be ∼13.4 MPa and ∼16.8 MPa, respectively.

  6. Destruction of highly toxic chemical materials by using the energy of underground thermonuclear explosion

    International Nuclear Information System (INIS)

    Trutnev, Y.

    1991-01-01

    One of the main problems of modern technogenic civilisation is the evergrowing ecological crisis caused by the growth of industrial wastes harmful for biosphere. Among them the radioactive wastes of atomic energetics, worked out nuclear energy facilities and toxic wastes from various chemical plants begin to play a specific role. Traditional technologies of destruction and disposal of these wastes demand great investments up to many billions of dollars, enormous maintenance expenditures, occupation of substantial territories by new productions and security zones as well as many qualified specialists. On the other hand potential accidents during the conventional processes of waste reprocessing are fraught with the possibility of large ecological disasters, that are the reason of strong oppositions of population and 'green movement' to the foundation of such installations. So, rather progressive seem to be the technologies based on the utilisation of underground nuclear explosion energy for annihilations and disposal of high-level wastes of atomic energetics and nuclear facilities as well as for thermal decomposition of chemically toxic substances at extremely high temperatures. These technologies will be rather cheap, they will allow to process big amounts of materials in ecologically safe form far from the populated regions and will need a commercially beneficial if used for international purposes. The application of these technologies may be of great significance for realisation of disarmament process- destruction of chemical weapons and in future the nuclear warheads and some production components. (au)

  7. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Automated High-Speed Video Detection of Small-Scale Explosives Testing

    Science.gov (United States)

    Ford, Robert; Guymon, Clint

    2013-06-01

    Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.

  9. Explosive vaporization induced by high-power CO2-laser target interactions

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    1976-01-01

    The interactions of high-power laser pulses with targets such as metals or dielectric materials causes a series of optical, thermal, and mechanical processes. Thereby, heating, melting, and vaporization can take place in a short time. At power densities of about 10 7 to several 10 8 W/cm 2 this can even be produced explosively. As compared to continuous ablation, this type of interaction can remove greater masses from the bulk of material. The investigations are performed by using an electron-beam preionized CO 2 -laser acting on different target materials. The energy of the laser pulses is about 30 J, the pulse-half-widths of the long-tail pulses 4 to 6 μs. Optical measurements yield some information on threshold values for these processes, for the formation and expansion of plasmas, and for the ejection of material in form of greater particles. High speed photographic techniques include a rotating mirror- and an image converter camera. Starting from shock-wave theory, gas dynamic equations (in unidimensional approximation) allow for a quantitative determination of the specific internal energies and pressures in the case of optical detonation. (orig.) [de

  10. High-power explosive magnetic energy sources for thermonuclear and physical applications (overview)

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V K [All-Russian Scientific Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    High-power energy sources unavailable up to now are needed to carry out any one project on inertially confined controlled thermonuclear fusion (CTF). Considerable advances have been made in the area of explosive magnetic generators (EGG) as for their output characteristics (high power combined with high energy content). To develop the concept of magnetic cumulation proposed by A.D. Sakharov in 1951, two new approaches to increasing EMC fast operation by two orders (from tens of microseconds to tenths of microseconds) and increasing at the same time the current pulse amplitude by more than one order, were proposed at VNIIEF in the early sixties. The concept aimed at solving the CTF problem by target magnetic compression (MACO) under the effect of an fast-increasing field was proposed (1972) based on VNIIEF achievements, discussed (1976) at the USSR Academy of Sciences and published (1979). The key physical questions are analyzed, the problems to be solved are posed and the results achieved in the experiments with fast-operating high-power EMGs, fast-opening switches, transmitting lines and insulation systems are discussed here. The results obtained in experiments on liner acceleration as well as those on preliminary plasma magnetization and heating, carried out at the constructed EMGs, are discussed briefly. The conclusion is reached that the MACO system is the most suitable one to provide the ignition because the designing of high-power energy sources to be used in this system is practically complete and the concept itself does not need any intermediate transformations of one type of energy into another always accompanied by a decrease in total efficiency. (author). 4 tabs., 14 figs., 21 refs.

  11. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  12. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    . It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... demonstrated how the envelope tracking technique introduces a number of potential pitfalls to the system, namely in the form of power supply ripple intermodulation (PSIM), reduced RFPA linearity and a higherimpedance supply rail for the RFPA. Design and analysis techniques for these three issues are introduced...

  13. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  14. Ecological surveys of the proposed high explosives wastewater treatment facility region

    International Nuclear Information System (INIS)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area

  15. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  16. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Jensen, Niels G [Los Alamos National Laboratory

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  17. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang; Qi, Zumin [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  18. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  19. A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology

    Science.gov (United States)

    Hoy, Scott D.; Figueiredo, Marco A.

    2006-01-01

    Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:

  20. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  1. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    Science.gov (United States)

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  2. A Search for High-Energy Counterparts to Fast Radio Bursts

    Science.gov (United States)

    Cunningham, Virginia A.; Cenko, Bradley

    2018-01-01

    We report on a search for high-energy counterparts to Fast Radio Bursts (FRBs) with the Fermi Gamma-ray Burst Monitor (GBM), Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT). We find no significant associations for any of the 14 FRBs in our sample, but report upper limits to the high-energy fluence for each on timescales of ∼0.1, 1, 10, and 100 s. We report lower limits on the radio to high-energy fluence, fr / fγ, for timescales of ∼0.1 and 100 s. The non-detection of high-energy emission is expected if FRBs are analogous to the giant pulses seen from the Crab pulsar, but the observed radio fluences of FRBs are orders of magnitude larger than even the most extreme giant pulses would be at the implied cosmological distances. It has also been proposed that events similar to magnetar hyperflares produce FRBs; this might be a viable model, but our fr / fγ lower limits are in tension with the fr / fγ upper limit for the 2004 superburst of SGR 1806‑20, for 6 out of the 12 FRBs that we study. This demonstrates the utility of analyses of high-energy data for FRBs in tracking down the nature of these elusive sources.

  3. THE HIGH-METALLICITY EXPLOSION ENVIRONMENT OF THE RELATIVISTIC SUPERNOVA 2009bb

    International Nuclear Information System (INIS)

    Levesque, E. M.; Kewley, L. J.; Soderberg, A. M.; Foley, R. J.; Berger, E.; Torres, M. A. P.; Challis, P.; Kirshner, R. P.; Copete, A.; Chakraborti, S.; Ray, A.; Barthelmy, S. D.; Bietenholz, M. F.; Chandra, P.; Chaplin, V.; Connaughton, V.; Chevalier, R. A.; Fox, O.; Chugai, N.; Fransson, C.

    2010-01-01

    We investigate the environment of the nearby (d ∼ 40 Mpc) broad-lined Type Ic supernova (SN) 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of interstellar medium properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7 Z sun and 3.5 Z sun , in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb's unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.

  4. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  5. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  6. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  7. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-01-01

    The recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  8. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    Science.gov (United States)

    2017-11-02

    wireless systems where consumers will benefit significantly from the high power densities achievable in GaN devices.[8] Further complicating the...future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication... power density of traditional RF amplifier materials at different frequencies and wireless generation bands, as well as an image of the flexible GaN

  9. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  10. HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES

    International Nuclear Information System (INIS)

    Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-01-01

    We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.

  11. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  12. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    discrimination between conventional and simulated chemical/biological artillery rounds using acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. We show that, highly reliable discrimination (> 98%) between conventional and potentially chemical/biological artillery is achieved at ranges exceeding 3km. A feedforward neural network classifier, trained on a feature space derived from the distribution of wavelet coefficients found within different levels of the multiresolution decomposition yields.

  13. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  14. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  15. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  16. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  17. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  18. Xsense: using nanotechnology to combine detection methods for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2010-01-01

    In an effort to produce a handheld explosives sensor the Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners. Using micro- and nano technological approaches it will be attempted to integrate four detection principles into a single de...

  19. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  20. A Low-Cost Time-Hopping Impulse Radio System for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Jinyun Zhang

    2005-03-01

    Full Text Available We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are (i all-baseband implementation that obviates the need for passband components, (ii symbol-rate (not chip rate sampling, A/D conversion, and digital signal processing, (iii fast acquisition due to novel search algorithms, and (iv spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110 Mbps at 7–10 m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.

  1. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  2. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  3. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    Science.gov (United States)

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  4. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  5. CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.

    2011-01-01

    To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.

  6. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  7. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  8. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  9. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  10. A Multipathway Model for High Explosives and Barium Transport Using GoldSim

    Science.gov (United States)

    Newman, B. D.; Hickmott, D. D.; Keating, E. H.; Robinson, B. A.; Gard, M. O.

    2002-05-01

    Outfalls from High Explosives (HE) production sites at Los Alamos National Laboratory (LANL) discharged RDX, TNT, HMX, and barium contaminated waters onto a mesa /canyon system on the western edge of the Pajarito Plateau from 1944 to 1996. HE concentrations in surface soils ranged to over 20 wt.%, and HE in waters range to over 800 ug/L. HE in water is present in springs, surface waters, alluvial waters and deep perched (> 700 ft. depth) and possibly regional (> 1200 ft depth) groundwaters. Barium concentrations range to over 4 wt.% in sediments, and to over 5000 ug/L in spring and alluvial waters. Because of the size of contaminant inventories and observations of HE in the perched zone and possibly deeper, there has been concern that there may be a long-term risk at a downgradient drinking water supply well. To address this concern, a GoldSim multipathway model was developed to simulate transport of HE and barium from source areas to the supply well. The objectives of the modeling effort were to generate a preliminary assessment of potential concentrations at the supply well and to identify any model components/parameters that require additional characterization based on model sensitivity and uncertainty. The model evaluates two main source areas, one is controlled by flow through the mesa vadose zone, and the other by flow through the canyon vadose zone. The two vadose zone modules feed into a saturated zone module that terminates at a pumping well (drinking water) module. The hydrogeology of the site is extremely complex and includes a heterogeneous, unfractured/fractured tuff vadose zone geology, ponds, springs, alluvial aquifers, a perennial stream reach, and two deep aquifers. Because of this complexity, and limited characterization and contaminant inventory information, we used a stochastic approach to quantitatively represent model/parameter uncertainties. Model parameters were developed using a variety of information including flow and transport modeling

  11. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  12. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E.; Tappan, Bryce C.; Hiskey, Michael A.; Son, Steve F.; Harry, Herbert; Montoya, Dennis; Hagelberg, Stephanie [Dynamic Experimentation Division, DX-2 Materials Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-12-01

    This paper describes the explosive sensitivity and performance properties of two novel high-nitrogen materials, 3,6-bis-nitroguanyl-1,2,4,5-tetrazine (1, (NQ{sub 2}Tz)) and its corresponding bis-triaminoguanidinium salt (2, (TAG){sub 2}(NQ){sub 2}Tz). These materials exhibit very low pressure dependence in burning rate. Flash pyrolysis/FTIR spectroscopy was performed, and insight into this interesting burning behavior was obtained. Our studies indicate that 1 and 2 exhibit highly promising energetic materials properties. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions

    International Nuclear Information System (INIS)

    Honda, K.K.

    1976-01-01

    As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented

  14. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.

    Science.gov (United States)

    Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki

    2009-01-01

    In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit.

  15. The MARIACHI Project: Mixed Apparatus for Radio Investigation of Atmospheric Cosmic Rays of High Ionization

    Science.gov (United States)

    Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.

    2005-12-01

    Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.

  16. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  17. Experimental evaluation of high speed impulse radio UWB interference on WiMAX narrowband systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Yin, Xiaoli; Tafur Monroy, Idelfonso

    2010-01-01

    Interference of high speed impulse radio ultrawideband (IR-UWB) on 5.735GHz single carrier 64/256-QAM WiMAX narrowband signals is experimentally investigated. The experimental results indicate that the coexistence of 625Mbps and 2Gbps IR-UWB signals causes penalties of 3dB and 0.5dB respectively...... to the WiMAX channel. At higher bit rates, IR-UWB technology is therefore expected to reduce its interference on WiMAX signals. This work serves as further motivation for the exploration of IR-UWB systems with higher speed and higher capacity....

  18. Computer-assisted high-pressure liquid chromatography of radio-labelled phenylthiohydantoin amino acids

    International Nuclear Information System (INIS)

    Bhown, A.S.; Mole, J.E.; Hollaway, W.L.; Bennet, J.C.

    1978-01-01

    A computer-controlled high-pressure liquid chromatographic (HPLC) system is described to identify in vitro phenyl [ 35 S]isothiocyanate-labelled phenylthiohydantoin (PTH) amino acids from a solid-phase sequencer. Each radio-labelled amino acid from the sequencer is added to a PTH amino acid standard and the mixture separated by HPLC using a computer, programmed to detect a slope change in the absorbance. Individual fractions corresponding to the PTH amino acids are collected and counted. The sensitivity of the system is demonstrated on 700 pmoles of lysozyme. (Auth.)

  19. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  20. Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies

    Directory of Open Access Journals (Sweden)

    Nermin Suljanović

    2017-11-01

    Full Text Available This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.

  1. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NARCIS (Netherlands)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-01-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence

  2. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  3. A Risk Management Framework to Characterize Black Swan Risks: A Case Study of Lightning Effects on Insensitive High Explosives

    Science.gov (United States)

    Sanders, Gary A.

    Effective and efficient risk management processes include the use of high fidelity modeling and simulation during the concept exploration phase as part of the technology and risk assessment activities, with testing and evaluation tasks occurring in later design development phases. However, some safety requirements and design architectures may be dominated by the low probability/high consequence "Black Swan" vulnerabilities that require very early testing to characterize and efficiently mitigate. Failure to address these unique risks has led to catastrophic systems failures including the space shuttle Challenger, Deepwater Horizon, Fukushima nuclear reactor, and Katrina dike failures. Discovering and addressing these risks later in the design and development process can be very costly or even lead to project cancellation. This paper examines the need for risk management process adoption of early hazard phenomenology testing to inform the technical risk assessment, requirements definition and conceptual design. A case study of the lightning design vulnerability of the insensitive high explosives being used in construction, mining, demolition, and defense industries will be presented to examine the impact of this vulnerability testing during the concept exploration phase of the design effort. While these insensitive high explosives are far less sensitive to accidental initiation by fire, impact, friction or even electrical stimuli, their full range of sensitivities have not been characterized and ensuring safe engineering design and operations during events such as lightning storms requires vulnerability testing during the risk assessment phase.

  4. Mid-IR DIAL for high-resolution mapping of explosive precursors

    Science.gov (United States)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  5. Radio observations of a galactic high energy gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Giacani, E.; Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2001-10-01

    PSR B1706-44 is one of the very few galactic pulsars that has been discovered at TeV energies. PSR B1706-44 has been also detected in the X-ray domain. It has been suggested that the high energy radiation could be due to inverse Compton radiation from a pulsar wind nebula (PWN). It was reported on VLA high-resolution observations of a region around the pulsar PSR B1706-44 at 1.4, 4.8 and 8.4 GHz. The pulsar appears embedded in a synchrotron nebula. It was proposed that this synchrotron nebula is the radio counterpart of the high energy emission powered by the spin-down energy of the pulsar.

  6. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    Science.gov (United States)

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released

  8. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220

    Energy Technology Data Exchange (ETDEWEB)

    Barcos-Muñoz, L.; Evans, A. S.; Privon, G. C.; Stierwalt, S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Leroy, A. K.; Condon, J.; Reichardt, A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22904 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Mazzarella, J. M.; Murphy, E. J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Meier, D. S. [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Momjian, E.; Ott, J. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Sakamoto, K. [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Sanders, D. B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96816 (United States); Schinnerer, E.; Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Surace, J. A. [Spitzer Science Center, MS 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Thompson, T. A., E-mail: ldb7et@virginia.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2015-01-20

    We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0.''081 × 0.''063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R {sub 50d}) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of 2.2{sub −1.0}{sup +2.1}×10{sup 5} (east) and 4.5{sub −1.9}{sup +4.5}×10{sup 5} (west) M {sub ☉} pc{sup –2}, corresponding to total hydrogen column densities of N {sub H} = 2.7{sub −1.2}{sup +2.7}×10{sup 25} (east) and 5.6{sub −2.4}{sup +5.5}×10{sup 25} cm{sup –2} (west). The implied gas volume densities are similarly high, n{sub H{sub {sub 2}}}∼3.8{sub −1.6}{sup +3.8}×10{sup 4} (east) and ∼11{sub −4.5}{sup +12}×10{sup 4} cm{sup –3} (west). We also estimate very high luminosity surface densities of Σ{sub IR}∼4.2{sub −0.7}{sup +1.6}×10{sup 13} (east) and Σ{sub IR}∼9.7{sub −2.4}{sup +3.7}×10{sup 13} (west) L{sub ⊙} kpc{sup −2}, and star formation rate surface densities of Σ{sub SFR} ∼ 10{sup 3.7} {sup ±} {sup 0.1} (east) and Σ{sub SFR} ∼ 10{sup 4.1} {sup ±} {sup 0.1}(west) M

  9. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  10. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  11. The Hartebeeshoek Radio Astronomy Observatory

    International Nuclear Information System (INIS)

    Nicolson, G.D.

    1986-01-01

    This article briefly discusses the questions, problems and study fields of the modern astronomer. Radioastronomy has made important contributions to the study of the evolution of stars and has given much information on the birth of stars while at the other extreme, studies of neutron stars and the radio emission from the remnants of supernova explosions have given further insight into the death of individual stars. Radio astronomical studies have learned astronomers much about the structure of the Milky way and some twenty years ago, in a search for new radio galaxies, quasars were discovered. Radioastronomy research in South Africa is carried out at the Hartebeesthoek Radio Astronomy Observatory

  12. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    Science.gov (United States)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1half the sample is significantly obscured with ratios of unobscured: Compton thin (22 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in

  13. A high temperature superconductor notch filter for the Sardinia Radio Telescope

    Science.gov (United States)

    Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario

    2018-04-01

    A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.

  14. Rotational and X-ray luminosity evolution of high-B radio pulsars

    Science.gov (United States)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  15. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...... glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  16. Offset, tilted dipole models of Uranian smooth high-frequency radio emission

    International Nuclear Information System (INIS)

    Schweitzer, A.E.; Romig, J.H.; Evans, D.R.; Sawyer, C.B.; Warwick, J.W.

    1990-01-01

    During the Voyager 2 encounter with Uranus in January 1986, the Planetary Radio Astronomy (PRA) experiment detected a complex pattern of radio emissions. Two types of emissions were seen: smooth and bursty. The smooth emission has been divided into smooth high-frequency (SHF) and smooth low-frequency (SLF) components which are presumed to come from different sources because of their distinctly different characteristics. The SHF component is considered in this paper. The SHF emission has been modeled by many authors on OTD (offset, tilted dipole (Ness et al., 1986)) L shells ranging from 5 to 40. However, the bursts have been modeled at much higher L shells. The authors complete an OTD investigation of the SHF emission at high L shells within the range of the bursty source locations, and present a viable high L shell model. This model has fundamentally the same longitudinally symmetric net emission pattern in space as the L shell 5 model presented in Romig et al. (1987) and Barbosa (1988). However, they were unable to produce an acceptable model on intermediate L shells without restricting source longitude. They discuss the similarities and distinctions between their two models and the models of other authors. They believe that the high L shell model (and others similar to it) cannot account for the observed smoothness and periodicity of the SHF emissions because it has open field lines containing untrapped particles, which should produce more variable emission than that seen in the SHF data. Therefore, the authors prefer models at L shells less than 18, the boundary for closed field lines (Ness et al., 1986). They then discuss and contrast two models within this boundary: the L = 5 model and an L ∼ 12 model by Kaiser et al. (1987) and Farrell and Calvert (1989b). The main distinction between these two models is the longitudinal extent of the source location

  17. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  18. Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christina [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany); Engenhart-Cabillic, Rita; Vorwerk, Hilke [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Schmidt, Michael; Huhnt, Winfried; Blank, Eyck; Sidow, Dietrich; Buchali, Andre [Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany)

    2017-02-15

    Using prospectively collected patient-related, dose-related, and pulmonary function test (PFT) data before radiotherapy (RT) and at several follow-up visits after RT, the time course of PFT changes after high-dose radio(chemo)therapy and influencing factors were analyzed. From April 2012 to October 2015, 81 patients with non-small-cell lung carcinoma (NSCLC), small cell lung carcinoma (SCLC), or esophageal carcinoma where treated with high-dose radio(chemo)therapy. PFT data were collected before treatment and 6 weeks, 12 weeks, and 6 months after RT. The influence of patient- and treatment-related factors on PFT was analyzed. Mean forced expiratory volume in 1 s (FEV1) constantly declined during follow-up (p = 0.001). In total, 68% of patients had a reduced FEV1 at 6 months. Mean vital capacity (VC) didn't change during follow-up (p > 0.05). Mean total lung capacity (TLC) showed a constant decline after RT (p = 0.026). At 6 months, 60% of patients showed a decline in VC and 73% in TLC. The mean diffusion capacity for carbon monoxide (DLCO) declined at 6 and 12 weeks, but recovered slightly at 6 months (p < 0.0005). At 6 months, 86% of patients had a reduced DLCO. After treatment, the partial pressure of CO{sub 2} in the blood (pCO{sub 2}) was increased and pO{sub 2} was decreased (p > 0.05). Only the pretreatment PFT classification had a significant influence on the post-RT FEV1. DLCO seems to be the most reliable indicator for lung tissue damage after thoracic RT. Ventilation parameters appear to be less reliable. Concerning patient- or treatment-related factors, no reliable conclusion can be drawn regarding which factors may be relevant. (orig.) [German] Patientenbezogene, therapiebezogene und Lungenfunktionsdaten (''pulmonary function test'', PFT) wurden vor Radiotherapie (RT) und an verschiedenen Nachsorgeterminen nach RT prospektiv gesammelt, um PFT-Veraenderungen sowie Einflussfaktoren nach Hochdosis-Radio(chemo)therapie zu

  19. Printed silver nanowire antennas with low signal loss at high-frequency radio

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  20. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  1. Detecting Weak Explosions at Local Distances by Fusing Multiple Geophysical Phenomenologies

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nemzek, Robert J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Arrowsmith, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sentz, Kari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    Comprehensive explosion monitoring requires the technical capability to identify certain signatures at low signal strengths. For particularly small, evasively conducted explosions, conventional monitoring methods that use single geophysical phenomenologies may produce marginal or absent detections. To address this challenge, we recorded coincident acoustic, seismic and radio-frequency emissions during the above-ground detonation of ~ 2-12 kg solid charges and assessed how waveform data could be fused to increase explosion-screening capability. Our data provided identifiable explosion signatures that we implemented as template-events in multichannel correlation detectors to search for similar, matching waveforms. We thereby observed that these highly sensitive correlation detectors missed explosive events when applied separately to data streams that were heavily contaminated with noise and signal clutter. By then adding the p-values of these statistics through Fisher’s combined probability test, we correctly identified the explosion signals at thresholds consistent with the false alarm rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms, and higher theoretical detection capability. We conclude that inclusion of these fusion methods in routine monitoring operations will likely lower both detection thresholds for small explosions, while reducing false attribution rates.

  2. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-01-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  3. Proposed use of the radio-frequency quadrupole structure to funnel high-current ion beams

    International Nuclear Information System (INIS)

    Stokes, R.H.; Minerbo, G.N.

    1985-01-01

    In this paper, we describe a new approach to funneling beams that are initially accelerated in two radio-frequency quadrupole (RFQ) accelerators. Instead of discrete optical elements, we propose to funnel within an RFQ structure, so that during the funneling process the beam is always confined by periodic transverse focusing. Beams with high space charge experience irreversible emittance growth when they emerge from a periodic focusing system. To alleviate this problem, in the proposed funneling system it should be possible to maintain the same focusing periodicity as that of the accelerators preceding the funnel. Also, instead of conventional deflection systems, we propose to use the properties of a modified RFQ structure to deflect two parallel beams toward each other and to merge them into a single final beam. 1 ref., 3 figs

  4. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  5. Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.

    Science.gov (United States)

    Luque, A.

    2017-12-01

    The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).

  6. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  7. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    Science.gov (United States)

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  8. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  9. Radio elements / bottom salts separation by nano-filtration aided by complexation in a highly saline environment

    International Nuclear Information System (INIS)

    Gaubert, Eric

    1997-01-01

    This research thesis addresses the use of a membrane-based technique, nano-filtration, aided or not by complexation, for the processing of highly saline liquid effluents produced by radio-chemical decontamination. The objective is to separate non-radioactive elements (sodium nitrate) from radio-elements (caesium, strontium and actinides) in order to reduce the volume of wastes. Within the perspective of an industrial application, a system to concentrate the effluent is firstly defined. Different nano-filtration membranes are tested and reveal to be insufficient in highly saline environment. A stage of selective complexation of radio-elements is therefore considered before nano-filtration. The main factors affecting performance of nano-filtration-complexation (for a given membrane system) are identified: ionic force, pH, ligand content, trans-membrane pressure. Finally, a nano-filtration pilot is implemented to perform nano-filtration-complexation operations by remote handling on radioactive substances [fr

  10. High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors.

    Science.gov (United States)

    Deckert-Gaudig, Tanja; Pichot, Vincent; Spitzer, Denis; Deckert, Volker

    2017-01-18

    The specific attributes of nanodiamonds have attracted increasing interest for electronics or biomedical applications. An efficient synthetic route towards nanodiamonds is via detonation of hexolite (i.e. a mixture of TNT [2,4,6-trinitrotoluene] and RDX [1,3,5-trinitro-1,3,5-triazine]). In particular, detonation of hexolite crystallized by spray flash evaporation (SFE) yields extremely small diamonds (<4 nm). To unravel the detonation mechanism, a structural characterization of the explosives is required but is challenging due to their thermal instability. We demonstrate a combination of conventional Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) for resolving morphological and structural differences of differently prepared hexolite nanocomposites. The experiments allow for the first time a structural differentiation of individual TNT and RDX crystals and 15-20 nm sized core-shell structures, consequently providing a general approach to investigate the actual composition of mixtures on the nanometer scale. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  12. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    Science.gov (United States)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  13. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  14. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  15. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  16. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    Science.gov (United States)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is

  17. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Badmaev, Alexander; Jooyaie, Alborz; Bao, Mingqiang; Wang, Kang L; Galatsis, Kosmas; Zhou, Chongwu

    2011-05-24

    This paper reports the radio frequency (RF) and linearity performance of transistors using high-purity semiconducting carbon nanotubes. High-density, uniform semiconducting nanotube networks are deposited at wafer scale using our APTES-assisted nanotube deposition technique, and RF transistors with channel lengths down to 500 nm are fabricated. We report on transistors exhibiting a cutoff frequency (f(t)) of 5 GHz and with maximum oscillation frequency (f(max)) of 1.5 GHz. Besides the cutoff frequency, the other important figure of merit for the RF transistors is the device linearity. For the first time, we report carbon nanotube RF transistor linearity metrics up to 1 GHz. Without the use of active probes to provide the high impedance termination, the measurement bandwidth is therefore not limited, and the linearity measurements can be conducted at the frequencies where the transistors are intended to be operating. We conclude that semiconducting nanotube-based transistors are potentially promising building blocks for highly linear RF electronics and circuit applications.

  18. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  19. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    International Nuclear Information System (INIS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-01-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252 Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  20. Giving High School Students a Research Grade Radio Telescope to Control; Motivational Results from Access to Real Scientific Tools

    Science.gov (United States)

    Kohrs, Russell; Langston, G.; Heatherly, S.

    2013-01-01

    Have you ever wondered what it might be like to place control of a six-story building in the hands of eager high school students? This past summer, the USNO 20m telescope at the National Radio Astronomy Observatory, Green Bank, WV was brought back online for just such a purpose. This telescope is equipped with an X-band receiver, capable of observing center frequencies from 8-10 GHz and is the first radio telescope accessible by students and observers through the SKYNET telescope network. Operated remotely with a queue-based system, students can now collect real radio data for any range of projects. This past summer, five lessons were written that were tailor-made for student exploration of radio astronomy. Each lesson explores various radio objects in the context of an action-packed sci-fi adventure. Some of the work required to bring the 20m online for student use will be discussed here, but the main focus of this presentation will be how this work has been received by the author’s own students in its first classroom application. Topics that are normally difficult to discuss with students in an inquiry-based classroom setting, such as HII regions, synchrotron radiation, lunar temperature profiles, and galactic supermassive black holes were addressed in the classroom using the lessons developed by the author for the 20m as well as data collected by students using the telescope via SKYNET.

  1. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.; Mutel, R. L.; Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52240 (United States); Guedel, M. [Department of Astrophysics, University of Vienna, A-1180 Vienna (Austria); Ray, T. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Skinner, S. L. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  2. Baseband Transceiver Design of a High Definition Radio FM System Using Joint Theoretical Analysis and FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2014-01-01

    Full Text Available Advances in wireless communications have enabled various technologies for wireless digital communication. In the field of digital radio broadcasting, several specifications have been proposed, such as Eureka-147 and digital radio mondiale (DRM. These systems require a new spectrum assignment, which incurs heavy cost due to the depletion of the available spectrum. Therefore, the in-band on-channel (IBOC system has been developed to work in the same band with the conventional analog radio and to provide digital broadcasting services. This paper discusses the function and algorithm of the high definition (HD radio frequency modulation (FM digital radio broadcasting system. Content includes data format allocation, constellation mapping, orthogonal frequency division multiplexing (OFDM modulation of the transmitter, timing synchronization, OFDM demodulation, integer and fraction carrier frequency (integer carrier frequency offset (ICFO and fractional CFO (FCFO estimation, and channel estimation of the receiver. When we implement this system to the field programmable gate array (FPGA based on a hardware platform, both theoretical and practical aspects have been considered to accommodate the available hardware resources.

  3. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  4. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  5. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  6. Forensic analysis of high explosives residues in post-blast water samples employing solid phase extraction for analyte pro-concentration

    International Nuclear Information System (INIS)

    Umi Kalsom Ahmad; Rajendran, Sumathy; Ling, Lee Woan

    2008-01-01

    Nitro aromatic, nitramine and nitrate ester compounds are a major group of high order explosive or better known as military explosives. Octahydro-1,3,5,7-tetrazocine (HMX), 1,3,5-hexahydro-1,3,5-trinitro triazine (RDX), 2,4,6-trinitro-toluene (TNT), pentaerythritol tetranitrate (PETN) and 2,4-dinitrotoluene (2,4-DNT) are secondary high explosives classified as most commonly used explosives components. There is an increasing demand for pre-concentration of these compounds in water samples as the sensitivity achieved by instrumental analytical methods for these high explosives residues are the main drawback in the application at trace levels for forensic analysis. Hence, a simple cartridge solid phase extraction (SPE) procedure was optimized as the off-line extraction and pre-concentration method to enhance the detection limit of high explosive residues using micellar electrokinetic chromatography (MEKC) and gas chromatography with electron-capture detection (GC-ECD) methods. The SPE cartridges utilized LiChrolut EN as the SPE adsorbent. By emplying pre-concentration using SPE, the detection limits of the target analytes in water sample were lowered by more than 1000 times with good percentage recovery (>87%) for MEKC method and lowered by 120 times with more than 2 % percentage recovery for GC-ECD methods. In order to test the feasibility of the developed method to real cases, post-blast water samples were analyzed. The post-blast water samples which were collected from Baling Bom training range, Ulu Kinta, Perak contained RDX and PETN in the range of 0.05 - 0.17 ppm and 0.0124 - 0.0390 ppm respectively. (author)

  7. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  8. Development of a radio-frequency quadrupole cooler for high beam currents

    Science.gov (United States)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  9. Flexible Gallium Nitride for High-Performance, Strainable Radio-Frequency Devices.

    Science.gov (United States)

    Glavin, Nicholas R; Chabak, Kelson D; Heller, Eric R; Moore, Elizabeth A; Prusnick, Timothy A; Maruyama, Benji; Walker, Dennis E; Dorsey, Donald L; Paduano, Qing; Snure, Michael

    2017-12-01

    Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state-of-the-art values for electrical performance, with electron mobility exceeding 2000 cm 2 V -1 s -1 and sheet carrier density above 1.07 × 10 13 cm -2 . The influence of strain on the RF performance of flexible GaN high-electron-mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  11. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  12. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak

  13. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  14. Ham radio for dummies

    CERN Document Server

    Silver, H Ward

    2013-01-01

    An ideal first step for learning about ham radio Beyond operating wirelessly, today's ham radio operators can transmit data and pictures; use the Internet, laser, and microwave transmitters; and travel to places high and low to make contact. This hands-on beginner guide reflects the operational and technical changes to amateur radio over the past decade and provides you with updated licensing requirements and information, changes in digital communication (such as the Internet, social media, and GPS), and how to use e-mail via radio. Addresses the critical use of ham radio for replacing downe

  15. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  16. Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Shichao Li

    2017-01-01

    Full Text Available To meet the increasing demand of high-data-rate services of high-speed railway (HSR passengers, cloud radio access network (C-RAN is proposed. This paper investigates the tradeoff between energy efficiency (EE performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA to improve EE performance of HSR communication system. First, we consider that the communication system of HSR only bears the passenger information services (PISs. The energy-efficient power allocation problem with delay constraint is studied. The formulated problem is nonconvex. To deal with it, an equivalent convex problem is reformulated. Based on PPTPA, we propose an iterative algorithm to improve the EE performance. Second, we consider that the PISs and the train control services (TCSs are all bore. A capacity optimization problem with joint EE and services transmission delay constraints is formulated. Based on PPTPA, we propose a hybrid power allocation scheme to improve the capacity of the system. Finally, we analyze the effect of small-scale fading on EE performance. The effectiveness of the proposed power allocation algorithm is validated by HSR channel measurement trace based emulation results and extensive simulation results.

  17. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  18. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Pretzell, Alf

    2012-01-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  19. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    Science.gov (United States)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  20. Fourier Analysis of Radio Bursts Observed with Very High Time Resolution

    Czech Academy of Sciences Publication Activity Database

    Dabrowski, Bartosz Premyslaw; Karlický, Marian; Rudawy, P.

    2015-01-01

    Roč. 290, č. 1 (2015), s. 169-180 ISSN 0038-0938 Institutional support: RVO:67985815 Keywords : solar corona * flares * radio bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.862, year: 2015

  1. Textural evidence for high-grade ignimbrites formed by low-explosivity eruptions, Paraná Magmatic Province, southern Brazil

    Science.gov (United States)

    Luchetti, Ana Carolina F.; Gravley, Darren M.; Gualda, Guilherme A. R.; Nardy, Antonio J. R.

    2018-04-01

    The Paraná-Etendeka Province is a Lower Cretaceous huge bimodal tholeiitic volcanic province (1 million·km3) that predated the Gondwana breakup. Its silicic portion makes up a total volume of at least 20,000 km3 and in southern Brazil it comprises the Chapecó porphyritic high-Ti trachydacites-dacites and the Palmas microporphyritic-aphyric low-Ti dacites-rhyolites. The widespread silicic sheets are debated in the literature because they bear similarities between lavas and high grade ignimbrites. Here we provide new observations and interpretations for flow units with large, dark, and vesicle-poor lens-shaped blobs surrounded by a light-colored matrix. The textural features (macro- to micro-scale) of these blobs are different from typical pumice and/or fiamme and support a low explosivity pyroclastic origin, possibly low-column fountain eruptions with discharge rates high enough to produce laterally extensive high-grade ignimbrites. Such an interpretation, combined with a conspicuous absence of lithic fragments in the deposits, is aligned with a lack of identified calderas in the Paraná-Etendeka Province. Maximum timescales of crystallization associated with the juvenile blobs and estimated from CSD slopes are on the order of millennia for phenocryst populations and on the order of decades for microphenocryst populations.

  2. Analysis of Nitro-aromatic and Nitramine Explosives by Atmospheric Pressure Chemical Ionization / High Performance Liquid Chromatography / Mass Spectrometry / Mass Spectrometry

    International Nuclear Information System (INIS)

    Hicks, B.J.; Han, W.; Robben, J.R.

    2009-01-01

    This procedure is capable of separating and quantifying twenty-nine high explosives and internal surrogates with a single injection. After the initial preparation step, the sample is introduced to the high performance liquid chromatograph for target separation, ionized by atmospheric pressure chemical ionization and the explosives of interest are isolated / quantified by mass spectrometry / mass spectrometry. Concentrations of the target explosives are measured relative to the response of both internal and external standard concentrations. A C-18 reverse phase high performance liquid chromatograph column is used for separation. Ionization is performed using both positive and negative atmospheric pressure chemical ionization resulting in a molecular ion with little fragmentation. These ions are isolated at the first quadrupole of the mass spectrometer, dissociated by collision with argon in the collision cell and the resulting daughter ions are isolated at the second quadrupole. These daughter ions then reach the detector where they are quantified. To date this procedure represents the most thorough high performance liquid chromatography / mass spectrometry / mass spectrometry explosives analysis available in the environmental chemistry market. (authors)

  3. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F.; Wu, X. F.

    2016-01-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  4. ON THE APPARENT NARROWING OF RADIO RECOMBINATION LINES AT HIGH PRINCIPAL QUANTUM NUMBERS

    International Nuclear Information System (INIS)

    Alexander, J.; Gulyaev, S.

    2012-01-01

    We critically analyze the Bell et al. findings on 'anomalous' widths of high-order hydrogen radio recombination lines in the Orion Nebula at 6 GHz. We review their method of modified frequency switching and show that the way this method is used for large Δn is not optimal and can lead to misinterpretation of measured spectral line parameters. Using a model of the Orion Nebula, conventional broadening theory, and Monte Carlo simulation, we determine a transition zone n = 224, ..., 241 (Δn = 11, ..., 14), where measurement errors grow quickly with n and become comparable with the measurement values themselves. When system noise and spectrum channelization are accounted for, our simulation predicts 'processed' line narrowing in the transition zone similar to that reported by Bell et al. We find good agreement between our simulation results and their findings, both in line temperatures and widths. We conclude, therefore, that Bell et al.'s findings do not indicate a need to revise Stark broadening theory.

  5. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  6. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  7. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    International Nuclear Information System (INIS)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-01-01

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10 4  S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks

  8. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-09-20

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  9. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  10. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

    Science.gov (United States)

    Tereshchenko, E. D.; Turyansky, V. A.; Khudukon, B. Z.; Yurik, R. Yu.; Frolov, V. L.

    2018-01-01

    We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10-12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

  11. The 20th nuclear explosion test of the Peoples' Republic of China (underground nuclear test)

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    (1) The New China News Agency and the Radio Peking announced that China conducted the underground nuclear explosion test on 17 October, 1976. However, no exact data concerning the data, the place and the scale of this test was stated in above announcement. (2) However, relatively high radioactivity than that of normal level was detected in the rain and dry fallout samples collected from several prefectures. (author)

  12. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling....

  13. On the origin of the dust lane in the active radio galaxies

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1979-01-01

    A simple explosion model leading to the extragalactic extended radio sources is developed to understand the origin of the dust lane seen in the active radio galaxies. The point explosion in a spheroid with inhomogeneous density distribution is investigated by taking account of the cooling effect induced by radiative energy loss. It is suggested that the morphological relation between the dust lane and double radio sources is well explained on the basis of explosion model. (author)

  14. Solid phase microextraction sampling of high explosive residues in the presence of radionuclides and radionuclide surrogate metals

    International Nuclear Information System (INIS)

    Duff, M.C.; Crump, S.L.; Ray, R.J.; Beals, D.; Cotham, W.E.; Mount, K.; Koons, R.D.; Leggitt, J.

    2008-01-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction (SPME) fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection. (author)

  15. High incidence of micronuclei in lymphocytes from residents of the area near the Semipalatinsk nuclear explosion test site

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Hoshi, Masaharu; Kamada, Nanao; Tchaijunusova, N.J.; Takatsuji, Toshihiro; Gusev, B.I.; Sakerbaev, A.K.H.

    2000-01-01

    The Semipalatinsk area is highly contaminated with radioactive fallout from 40 years of continuous nuclear testing. The biological effects on human health in this area have not been studied. Significant remaining radioactivities include long-lived radioisotopes of 238, 239, 400 Pu, 137 Cs and 90 Sr. To evaluate the long-term biological effects of the radioactive fallout, the incidence of micronuclei in lymphocytes from residents of the area was observed. Blood was obtained from 10 residents (5 females and 5 males, aged 47 to 55 years old) from each of the 3 areas of Znamenka, Dolon and Semipalatinsk, which are about 50-150 km from the nuclear explosion test site. For micronucleus assay. PHA-stimulated lymphocytes were cultured for 72 h and cytochalasin B was added at 44 h for detecting binuclear lymphocytes. Five thousand binuclear lymphocytes in each resident were scored. The means of micronucleus counts in 1,000 lymphocytes in residents of Semipalatinsk, Dolon and Znamenka were 16.3, 12.6, and 7.80, respectively, which were higher than those of the normal Japanese persons (4.66). These values were equivalent to the results obtained from 0.187-0.47 Gy of chronic exposure to γ-rays at a dose rate of 0.02 cGy/min. The high incidence of micronuclei in residents of the Semipalatinsk nuclear test site area was mainly caused by internal exposure rather than external exposure received for the past 40 years. (author)

  16. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  17. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays

    Science.gov (United States)

    Huege, Tim; Besson, Dave

    2017-12-01

    Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.

  18. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  19. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  20. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Besson, D. [Department of Physics and Astronomy, University of Kansas, Lawrence 66045, KS (United States); Dagkesamanskii, R.; Kravchenko, E. [Radio Astronomy Observatory LPI RAS, Pushchino 142290, Moscow Region (Russian Federation); Kravchenko, I., E-mail: ikrav@cern.ch [Department of Physics and Astronomy, University of Nebraska, Lincoln, 68588, NE (United States); Zheleznykh, I. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation)

    2012-01-11

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  1. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    International Nuclear Information System (INIS)

    Besson, D.; Dagkesamanskii, R.; Kravchenko, E.; Kravchenko, I.; Zheleznykh, I.

    2012-01-01

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  2. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  3. Radio Astronomy at the Centre for High Performance Computing in South Africa

    Science.gov (United States)

    Catherine Cress; UWC Simulation Team

    2014-04-01

    I will present results on galaxy evolution and cosmology which we obtained using the supercomputing facilities at the CHPC. These include cosmological-scale N-body simulations modelling neutral hydrogen as well as the study of the clustering of radio galaxies to probe the relationship between dark and luminous matter in the universe. I will also discuss the various roles that the CHPC is playing in Astronomy in SA, including the provision of HPC for a variety of Astronomical applications, the provision of storage for radio data, our educational programs and our participation in planning for the SKA.

  4. High-precision (p,t) reactions to determine reaction rates of explosive stellar processes

    NARCIS (Netherlands)

    Matić, Andrija

    2007-01-01

    The aim of my study was to investigate the nuclear structure of 22Mg and 26Si. These two nuclei play a significant role in stellar reaction processes at high temperatures. On base of the obtained nuclear structure we calculated the stellar reaction rates for the following reactions: 18Ne(α,p)21Na,

  5. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    Science.gov (United States)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  6. VizieR Online Data Catalog: BCG high radio-frequency properties (Hogan+, 2015)

    Science.gov (United States)

    Hogan, M. T.; Edge, A. C.; Geach, J. E.; Grainge, K. J. B.; Hlavacek-Larrondo, J.; Hovatta, T.; Karim, A.; McNamara, B. R.; Rumsey, C.; Russell, H. R.; Salome, P.; Aller, H. D.; Aller, M. F.; Benford, D. J.; Fabian, A. C.; Readhead, A. C. S.; Sadler, E. M.; Saunders, R. D. E.

    2016-02-01

    The sample of sources chosen for this study were selected primarily from Hogan et al. (2015. Cat. J/MNRAS/453/1201) as having the brightest (>10mJy at 5GHz), flat-spectrum cores (α50mJy at 5GHz) sources either in fainter clusters and/or clusters misidentified until now. We obtained data from three epochs, using GISMO to observe 29, 24 and 17 sources in 2012 April, November and 2013 April observing runs, respectively, with as many source overlaps between runs as possible 23 sources were observed at 90GHz using the CARMA interferometer in D-array between 2012 May 21-June 15, of which 20 overlap with our GISMO sources. We used the AMI-LA to observe 17 of our sources, with each target visited either two or three times in 2012. Five of the sources in our sample have been monitored as part of this OVRO monitoring campaign. An additional 11 BCGs that were identified from this work as having strong high radio-frequency emission, have been included within the dynamic queue since 2013 January, allowing regular (typically every 10d) observations for these sources. Observations were made using the SCUBA-2 instrument (Holland et al. 2013) on the James Clerk Maxwell Telescope (JCMT) as part of a poor weather programme (JCMT weather Bands 4 and 5, {tau}225GHz=0.15-0.3) as part of Canadian and UK projects (M12AC15, M12BC18, M12BU38, M13AC16 and M13AU38) between 2012 February and 2013 July. (4 data files).

  7. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  8. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  9. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    International Nuclear Information System (INIS)

    Tong Wang

    2002-01-01

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radio frequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ∼140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ∼140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ∼140 MV

  10. Dynamics of an n = 1 explosive instability and its role in high-β disruptions

    Science.gov (United States)

    Aydemir, A. Y.; Park, B. H.; In, Y. K.

    2018-01-01

    Some low-n kink-ballooning modes not far from marginal stability are shown to exhibit a bifurcation between two very distinct nonlinear paths that depends sensitively on the background transport levels and linear perturbation amplitudes. The particular instability studied in this work is an n=1 mode dominated by an m/n=2/1 component. It is driven by a large pressure gradient in weak magnetic shear and can appear in various high- \

  11. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  12. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  13. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  14. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  15. Rapid Decline in Radio Flux Density of Nova Sco 2015 Followed By Rise at High Frequencies

    Science.gov (United States)

    Linford, J.; Nelson, T.; Chomiuk, L.; Sokoloski, J.; Mukai, K.; Finzell, T.; Weston, J.; Rupen, M.; Mioduszewski, A.

    2015-03-01

    We are monitoring Nova Sco 2015 (PNV J17032620-3504140) at radio wavelengths with the Karl G. Jansky Very Large Array (VLA). We have observations from three epochs: 2015 Feb 14.5, 2015 Feb 18.5-19.5, and 2015 Feb 24.6-Mar 01.5.

  16. The Far-Infrared Radio Correlation at High-z : Prospects for the SKA

    NARCIS (Netherlands)

    Murphy, Eric J.

    2009-01-01

    In this conference proceedings article I summarize the recent work of Murphy (2009) which presents physically motivated predictions for the evolution of the Far-Infrared--radio correlation as a function of redshift arising from variations in the cosmic-ray (CR) electron cooling time-scales as

  17. Ultrastructural evaluation of multiple pass low energy versus single pass high energy radio-frequency treatment.

    Science.gov (United States)

    Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian

    2006-02-01

    The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes

  18. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  19. Freeze frame analysis on high speed cinematography of Nd/YAG laser explosions in ocular tissues.

    Science.gov (United States)

    Vernon, S A; Cheng, H

    1986-01-01

    High speed colour cinematography at 400 frames per second was used to photograph both single and train burst Nd/YAG laser applications in ox eyes at threshold energy levels. Measurements of the extent and speed of particle scatter and tissue distortion from the acoustic transient were made from a sequential freeze frame analysis of the films. Particles were observed to travel over 8 mm from the site of Nd/YAG application 20 milliseconds after a single pulse at initial speeds in excess of 20 km/h. The use of train bursts of pulses was seen to increase the number of particles scattered and project the wavefront of particles further from the point of laser application. Images PMID:3754458

  20. Freeze frame analysis on high speed cinematography of Nd/YAG laser explosions in ocular tissues.

    Science.gov (United States)

    Vernon, S A; Cheng, H

    1986-05-01

    High speed colour cinematography at 400 frames per second was used to photograph both single and train burst Nd/YAG laser applications in ox eyes at threshold energy levels. Measurements of the extent and speed of particle scatter and tissue distortion from the acoustic transient were made from a sequential freeze frame analysis of the films. Particles were observed to travel over 8 mm from the site of Nd/YAG application 20 milliseconds after a single pulse at initial speeds in excess of 20 km/h. The use of train bursts of pulses was seen to increase the number of particles scattered and project the wavefront of particles further from the point of laser application.

  1. Explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    1971-04-01

    An explosive composition containing ammonium nitrate consists of (1) from 40 to 75 Pt. by wt of particulate ammonium nitrate, (2) from 20 to 35 Pt. by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate and aqueous ammoniacal ammonium nitrate; and (3) at least 2 Pt. by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, anhydrous calcium sulfate, anhydrous magnesium sulfate, anhydrous sodium tetrapyrophosphate and anhydrous sodium thiosulfate. The setting agent is further characterized in setting the composition to a solid material which contains solvent used in the liquid phase. (Abstract only - original article not available from T.U.)

  2. Explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Slykhouse, T E

    1968-05-09

    An ammonium nitrate explosive composition is characterized in that it contains from 40 to 75 parts by wt of particulate ammonium nitrate, from 20 to 35 parts by wt of a solution selected from the group consisting of aqueous magnesium nitrate, aqueous ammonium nitrate, and aqueous ammoniacal ammonium nitrate. It also contains at least 2 parts by wt of a setting agent selected from the group consisting of alkaline earth metal oxides, zinc oxide, lead monoxide, calcined dolomitic limestone, substantially anhydrous calcium sulfate, substantially anhydrous magnesium sulfate, substantially anhydrous sodium tetrapyrophosphate and substantially anhydrous sodium thiosulfate. The setting agent is further characterized in that it sets the composition to a solid material which contains solvent used in the liquid phase. (12 claims)

  3. Slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    1973-08-23

    A slurry explosive is comprised of (1) a composition consisting of ammonium nitrate or a mixture of ammonium nitrate and an alkali metal nitrate; or an alkaline earth metal nitrate; or an alkali metal nitrate and an alkaline earth metal nitrate; at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels; and water; (2) 0.1 to 2.0% of guar gum; (3) between 0% and 0.3% of a sodium, potassium, calcium or magnesium borate; and greater than 0% but not more than 20% of hexamethylene tetramine; and (4) 0.02 to 2.0% of antimony potassium tartarate, antimony trioxide, antimony trisulfide or a mixture of these antimony compounds, % by wt.

  4. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility.

    Science.gov (United States)

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H

    2016-01-01

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the

  5. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Peculiar morphology of the high-redshift radio galaxies 3C 13 and 3C 256 in subarcsecond seeing

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Nottale, L.; Mazure, A.; Christian, C.

    1988-01-01

    High-spatial-resolution imaging is presented for two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0.6-arcsec FWHM for 3C 13 and 0.7-arcsec FWHM for 3C 256 in the R band, over long integration times, made it possible to resolve these distant galaxies into complex structures. As suggested by Le Fevre et al. (1987) for another source (the gravitational lens candidate 3C 324) an interpretation in terms of gravitational amplification by foreground galaxies or clusters of galaxies is proposed. 3C 13 appears to be the most serious candidate, since a foreground galaxy, with an absolute luminosity M(R) = 23.3 and a redshift z = 0.477, is only 3.9 in from the extended radio galaxy. 18 references

  7. The explosion-proof container, satisfying the IAEA norms on safety

    International Nuclear Information System (INIS)

    Syrunin, M.A.; Fedorenko, A.G.; Ivanov, A.G.; Abakumov, A.I.; Nizovtsev, P.N.; Loginov, P.G.; Smolyakov, A.A.; Solov'ev, V.P.

    1998-01-01

    Safety of radioactive materials (RM) transportation is under strict control of the international norms of IAEA, aimed to ensure non-proliferation of hazardous materials in the environments. At the same time the nuclear countries use much more dangerous transportations of two types of hazardous materials. Probability of emergency explosion of high explosives (HE) during transportation and storage of such constructions is not equal to zero. HE explosion can be caused by: 1)excess of mechanical effects, allowable by the norms, on an explosive 2)lightening or fire 3)terrorist attack 4)radio controlled or time controlled mechanism in case of the terrorist device. It is obvious that an accident with explosion HE element of the nuclear weapon in an usual container, which meets the IAEA norms, but is not explosion-proof, will result in its destruction, RM dispersal, and inadmissible pollution of the environments. Therefore, it is urgent need for development of the container, which is able to withstand explosion of HE, placed in it, and to confine released RM inside of it. The experimental prototype of the load-bearing shell of the explosion-proof container (EC) can be the successfully tested spherical steel - glass plastic shell, having high-strength throats and lids. Having weight of 45-50 kg it is able to withstand internal explosion with energy more than 1.4 kg of the TNT equivalent. To preserve the explosion-proofness property in the abnormal environments during transportation, the explosion-proof container should be placed in the protective supporting transport device or the transport container (TC), consisting of the external thin-walled steel shell and the damping heat-proof layer from heat-resistant foam plastic. To justify the design parameters of such container, the tests for development and revision of the numerical model parameters were carried out. With use of this model the calculations were performed to calculate loads and the container response to 1

  8. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  9. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  10. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  11. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Brandt, William N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Wang, Ran [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  12. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Shemmer, Ohad; Stein, Matthew S. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Paolillo, Maurizio [Dipartimento di Scienze Fisiche, Università Federico II di Napoli, via Cinthia 6, I-80126 Napoli (Italy); Kaspi, Shai [School of Physics and Astronomy and the Wise Observatory, Tel Aviv University, Tel Aviv 69978 (Israel); Vignali, Cristian [Dipartimento di Astronomia, Università degli studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago (Chile); Gibson, Robert R., E-mail: ohad@unt.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  13. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C.

    2011-01-01

    We present the first detection of the H40α, H34α, and H31α radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of ∼1100 km s -1 . From the line widths, we estimate a terminal velocity for the ionized gas in the jet of ≥500 km s -1 , consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40α, H34α, and H31α lines are 43, 229, and 280 km s -1 , clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r -2.11 , and turbulent and expanding wind velocities of 60 and 500 km s -1 .

  14. Radio-detection of ultra-high energy cosmic rays. Analysis, simulation and interpretation

    International Nuclear Information System (INIS)

    Marin, V.

    2011-01-01

    Despite the use of giant detectors suitable for low flux beyond 1018 eV, the origin of ultra energy cosmic rays, remains unclear. In the 60', the radio-detection of air shower is proposed as a complementary technique to the ground particle detection and to the fluorescence method. A revival of this technique took place in the 2000's in particular with CODALEMA experiment. The first results show both a strong dependence of the signal to the geomagnetic field and a strong correlation between energy estimated by the radio-detectors and by particle detectors. The new generation of autonomous detectors created by the CODALEMA collaboration indicates that it is now possible to detect air showers autonomously. Due to the expected performances (a nearly 100% duty cycle, a signal generated by the complete shower, simplicity and low cost of a detector), it is possible to consider to deploy this technique for the future large arrays. In order to interpret experimental data, a simulation tool, SELFAS, is developed in this wok. This simulation code allowed us to highlight the existence of a second radio-emission mechanism. A first interpretation of the longitudinal profile as an observable of a privileged instant of the shower development is also proposed, which could give an estimation of the nature of the primary. (author)

  15. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  16. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  17. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  18. Problems in the theory of point explosions

    Science.gov (United States)

    Korobeinikov, V. P.

    The book is concerned with the development of the theory of point explosions, which is relevant to the study of such phenomena as the initiation of detonation, high-power explosions, electric discharges, cosmic explosions, laser blasts, and hypersonic aerodynamics. The discussion covers the principal equations and the statement of problems; linearized non-self-similar one-dimensional problems; spherical, cylindrical, and plane explosions with allowance for counterpressure under conditions of constant initial density; explosions in a combustible mixture of gases; and point explosions in inhomogeneous media with nonsymmetric energy release. Attention is also given to point explosions in an electrically conducting gas with allowance for the effect of the magnetic field and to the propagation of perturbations from solar flares.

  19. Simulating intracrater ash recycling during mid-intensity explosive activity: high temperature laboratory experiments on natural basaltic ash

    Science.gov (United States)

    D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel

    2010-05-01

    Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of

  20. Integrated control system for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, William F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The Integrated Control System (ICS) has been developed to facilitate Plowshare nuclear detonations by following a unified system approach. This system consolidates the techniques for firing, safety program, scientific program, and communications. Maximum emphasis is placed upon control and data transmission by radio rather than hardwire or coaxial cable. The ICS consists of a Command Point (CP) Trailer, a radio repeater station, a field station (the ICE Box), and several chassis located in the explosive canister. Commands originate in the CP and are transmitted via microwave radio to the ICE Box; monitors are returned to the CP from the canister, the ICE Box, and sensors near ground zero. The system allows complete checkout and operation before shipment to the field. The explosive canister may be dry-run at the assembly area (at NTS) before shipment to the field. The basic detonation functions for every event are: 1. Arming and firing commands in the explosive canister and at surface ground zero. 2. Environmental monitors and suitable arming monitors in the explosive canister. 3. Safety monitors at the zero site for weather, RAMS (Remote Area Monitoring System), and cavity collapse. Secondary functions that may be required for a specific project are: 4. Scientific program of phenomenology measurements. 5. Explosive performance measurements. 6. Ground zero television. 7. Auxiliary communications such as local telephones, VHF radio. By combining functions that have previously been performed by separate organizations and systems, the ICS attempts a minimum cost detonation service. Economy of operation results because: 1. Operating personnel work on more than one sub-system. 2. Interfaces and interface complexity are minimized. 3. A reduced dependence upon signal cables results from a microwave-based system. 4. Pre-fabrication allows test operation before shipment to the field and minimizes setup time in the field. The ICS is in use on the Sturtevant event and is

  1. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  2. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  3. Development of the radio astronomical method of cosmic particle detection for extremely high-energy cosmic ray physics and neutrino astronomy

    Directory of Open Access Journals (Sweden)

    Zheleznykh Igor

    2017-01-01

    Full Text Available The proposal to use ground based radio telescopes for detection of Askaryan radio pulses from particle cascades arising when extremely high-energy (EHE > 1020 eV cosmic rays (including neutrinos interact with the lunar regolith of multi gigaton mass was made at the end of 1980s in the framework of the Russian (Soviet DUMAND Program. During more than a quarter of century a number of lunar experiments were carried out mainly in the 1–3 GHz frequency range using the large radio telescopes of Australia, USA, Russia and other countries but these experiments only put upper limits to the EHE cosmic rays fluxes. For this reason, it would be of great interest to search for nanosecond radio pulses from the Moon in a wider interval of frequencies (including lower ones of 100–350 MHz with larger radio detectors – for example the giant radio telescope SKA (Square Kilometer Array which is constructed in Australia, New Zealand and South Africa. In this paper possibilities are discussed to use one of the most sensitive meter-wavelength (∼ 110 MHz Large Phased Array (LPA of 187 × 384 m2 and the wide field of view meter-wavelength array of the Pushchino Radio Astronomy Observatory as prototypes of low frequency radio detectors for lunar experiments. The new scheme for fast simulation of ultrahigh and extremely high-energy cascades in dense media is also suggested. This scheme will be used later for calculations of radio emission of cascades in the lunar regolith with energies up to 1020 eV and higher in the wide frequency band of 0.1− a few GHz.

  4. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  5. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  6. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    Science.gov (United States)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  7. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  8. Long-Term Results after Treatment of Very Low-, Low-, and High-Risk Thyroid Cancers in a Combined Setting of Thyroidectomy and Radio Ablation Therapy in Euthyroidism

    Directory of Open Access Journals (Sweden)

    Nikos Emmanouilidis

    2013-01-01

    Full Text Available Introduction. Differentiated thyroid cancer treatment usually consists of thyroidectomy and radio ablation in hypothyroidism 4-6 weeks after surgery. Replacing hypothyroidism by recombinant human thyroid stimulating hormone can facilitate radio ablation in euthyroidism within one week after surgery. The outcome of this approach was investigated. Methods. This is a prospective randomized trial to compare thyroidectomy and radio ablation within a few days after preconditioning with recombinant human thyroid stimulating hormone versus thyroidectomy and radio ablation separated by four weeks of L-T4 withdrawal. Tumors were graded into very low-, low- , or high-risk tumors. Recurrence-free survival was confirmed at follow-up controls by neck ultrasound and serum thyroglobulin. Suspected tumor recurrence was treated by additional radio ablation or surgery. Quality-of-life questionnaires with additional evaluation of job performance and sick-leave time were used in all patients. Results. Radio ablation in euthyroidism in quick succession after thyroidectomy did not lead to higher tumor recurrence rates of differentiated thyroid cancers in any risk category and was significantly advantageous with respect to quality-of-life (P<0.001, sick-leave time (P<0.001, and job performance (P=0.002. Conclusion. Recombinant human thyroid stimulating hormone can be used safely and with good efficacy to allow radio ablation under sustained euthyroidism within one week after thyroidectomy.

  9. FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters

    International Nuclear Information System (INIS)

    Blanton, E. L.; Gregg, M. D.; Helfand, D. J.; Becker, R. H.; White, R. L.

    2000-01-01

    Bent-double radio sources can act as tracers for clusters of galaxies. We present imaging and spectroscopic observations of the environments surrounding 10 of these sources (most of them wide-angle tails [WATs]) selected from the VLA FIRST survey. Our results reveal a previously unknown cluster associated with eight of the radio sources with redshifts in the range 0.33< z<0.85; furthermore, we cannot rule out that the other two bent doubles may be associated with clusters at higher redshift. Richness measurements indicate that these clusters are typical of the majority of those found in the Abell catalog, with a range of Abell richness classes from 0 to 2. The line-of-sight velocity dispersions are very different from cluster to cluster, ranging from approximately 300 to 1100 km s-1. At the upper end of these intervals, we may be sampling some of the highest redshift massive clusters known. Alternatively, the large velocity dispersions measured in some of the clusters may indicate that they are merging systems with significant substructure, consistent with recent ideas concerning WAT formation (Burns et al.). (c) 2000 The American Astronomical Society

  10. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  11. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  12. Adaptation of the deoxyglucose method for use at cellular level: histological processing of the central nervous system for high resolution radio-autography

    International Nuclear Information System (INIS)

    Des Rosiers, M.H.; Descarries, Laurent

    1978-01-01

    Vascular perfusion of all products required for primary fixation, postfixation, dehydration and embedding of nervous tissue in Epon permits radio-autographic detection of radioactivity accumulated in the central nervous system after intravenous injection of [ 3 H]deoxyglucose. This histological technique should allow application of the deoxyglucose method at cellular if not subcellular level, since a high proportion of the tracer appears to be retained in situ in specimens adequately preserved for light and electron microscope radio-autography [fr

  13. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    Science.gov (United States)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.

  14. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    Science.gov (United States)

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  15. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  16. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  17. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  18. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  19. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  20. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  1. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    Science.gov (United States)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  2. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-01-01

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10 18 eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ≳ 10 3 yr –1 Gpc –3 . Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  3. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  4. High levels of X-linked Inhibitor-of-Apoptosis Protein (XIAP) are indicative of radio chemotherapy resistance in rectal cancer

    International Nuclear Information System (INIS)

    Flanagan, L.; Kehoe, J.; Fay, J.; Bacon, O.; Lindner, A.U.; Kay, E.W.; Deasy, J.; McNamara, D.A.; Prehn, J.H.M.

    2015-01-01

    The mainstay of treatment in rectal cancer is neoadjuvant radio chemotherapy prior to surgery, in an attempt to downstage the tumour, allowing for more complete removal during surgery. In 40 % of cases however, this neoadjuvant radio chemotherapy fails to achieve tumour regression, partly due insufficient apoptosis signaling. X-linked Inhibitor of Apoptosis Protein (XIAP) is an anti-apoptotic protein that has been reported to contribute to disease progression and chemotherapy resistance. We obtained rectal biopsy normal and matched tumour tissue from 29 rectal cancer patients with varying degrees of tumour regression, and using Western blot, examined anti-apoptotic XIAP and pro-apoptotic Smac protein levels in these tissues, with the aim to examine whether disturbed XIAP/Smac levels may be an indicator of neoadjuvant radio chemotherapy resistance. Expression of inhibitor of apoptosis proteins cIAP-1 and cIAP-2 was also examined. We found that levels of XIAP increased in accordance with the degree of radio chemotherapy resistance of the tissue. Levels of this protein were also significantly higher in tumour tissue, compared to matched normal tissue in highly resistant tissue. In contrast, Smac protein levels did not increase with radio chemotherapy resistance, and the protein was similarly expressed in normal and tumour tissue, indicating a shift in the balance of these proteins. Post treatment surgical resection tissue was available for 8 patients. When we compared matched tissue pre- and post- radio chemotherapy we found that XIAP levels increased significantly during treatment in both normal and tumour tissue, while Smac levels did not change. cIAP-1 and cIAP-2 levels were not differentially expressed in varying degrees of radio chemotherapy resistance, and neoadjuvant therapy did not alter expression of these proteins. These data indicate that disturbance of the XIAP/Smac balance may be a driver of radio chemotherapy resistance, and hence high levels of XIAP may

  5. Architectures for radio over fiber transmission of high-quality video and data signals

    DEFF Research Database (Denmark)

    Lebedev, Alexander

    with a constraint on complexity. For wireless personal area networks distribution, we explore the notion of joint optimization of physical layer parameters of a fiber-wireless link (optical power levels, wireless transmission distance) and the codec parameters (quantization, error-resilience tools) based...... on the peak signal-to-noise ratio as an objective video quality metric for compressed video transmission. Furthermore, we experimentally demonstrate uncompressed 1080i highdefinition video distribution in V-band (50–75 GHz) and W-band (75–110 GHz) fiber-wireless links achieving 3 m of wireless transmission...... efficient wired/wireless backhaul of picocell networks. Gigabit signal transmission is realized in combined fiber-wireless-fiber link enabling simultaneous backhaul of dense metropolitan and suburban areas. In this Thesis, we propose a technique to combat periodic chromatic dispersion-induced radio...

  6. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    Science.gov (United States)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  7. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  8. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  9. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    International Nuclear Information System (INIS)

    Baudin, G; Roudot, M; Genetier, M; Mateille, P; Lefrançois, A

    2014-01-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  10. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    Science.gov (United States)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  11. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  12. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    Science.gov (United States)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  13. Passive ultra high frequency radio frequency identification systems for single-item identification in food supply chains

    Directory of Open Access Journals (Sweden)

    Paolo Barge

    2017-02-01

    Full Text Available In the food industry, composition, size, and shape of items are much less regular than in other commodities sectors. In addition, a wide variety of packaging, composed by different materials, is employed. As material, size and shape of items to which the tag should be attached strongly influence the minimum power requested for tag functioning, performance improvements can be achieved only selecting suitable radio frequency (RF identifiers for the specific combination of food product and packaging. When dealing with logistics units, the dynamic reading of a vast number of tags could originate simultaneous broadcasting of signals (tag-to-tag collisions that could affect reading rates and the overall reliability of the identification procedure. This paper reports the results of an analysis of the reading performance of ultra high frequency radio frequency identification systems for multiple static and dynamic electronic identification of food packed products in controlled conditions. Products were considered when arranged on a logistics pallet. The effects on reading rate of different factors, among which the product type, the gate configuration, the field polarisation, the power output of the RF reader, the interrogation protocol configuration as well as the transit speed, the number of tags and their interactions were statistically analysed and compared.

  14. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  15. Study and development of a high resolution tomograph for the γ radio-imagery in vivo of small animals

    International Nuclear Information System (INIS)

    Valda Ochoa, A.

    1995-01-01

    By the use of molecular radio-labelled tracers, molecular biology can reveal some aspects of the functional organisation of the brain. Non invasive in vivo brain research on small laboratory animals, like mice or rats, require analysis of structures of some cubic millimeters present in a brain of the order of a cubic centimeter. Since imaging performances of positron emission tomography (PET) and single photon emission tomography (SPECT) fail in this research field, we present here a high resolution tomograph (TOHR) based on an original principle that allows to overcome the compromise between detection efficiency and spatial resolution. TOHR is a radiation counter device having a large solid angle focusing collimator. By the use of radio-tracers decaying by a cascade of two photons, coincidence detection offers an accurate delimitation of the analysed region and improves spatial resolution. TOHR acts as a scanner, so the image is built voxel by voxel by moving the animal relative to the detector. A numerical feasibility study of such a system shows that a sub millimeter spatial resolution can be achieved. We show that the chemical etching technique is well suited for manufacturing a multi-module focusing collimator by building and testing two such modules. Finally a numerical simulation exhibits TOHR's performance in a neuro-pharmacological experiment on a rat. From these results, other application of TOHR are envisaged, such as oncology (in vivo evolution of tumours) or gene therapy (distribution of viral particles in the brain). (author). 51 refs., 73 figs., 3 tabs

  16. Research and Development of a portable microfocus x-ray system capable of providing ultra-high resolutions images of improvised explosive devices

    International Nuclear Information System (INIS)

    Korkala, G.

    1989-01-01

    The utilization of x-ray screening has long been a recognized valuable tool as a means to evaluate and identify suspect articles for possible improvised explosive devices. Recent bombings indicate an increase in technical sophistication by the terrorist which demand additional means to further the possibility of detecting these devices before they reach their target or detonate. This paper discusses history of the use of x-ray and the design parameters of a portable micro-focus x-ray system capable of providing ultra high resolution radiographs as well as being able to be used with additional state-of-the-art imaging systems

  17. Thermodynamic properties of fluid mixtures at high pressures and high temperatures. Application to high explosives and to phase diagrams of binary mixtures

    International Nuclear Information System (INIS)

    Pittion-Rossillon, Gerard

    1982-01-01

    The free energy for mixtures of about ten species which are chemically reacting is calculated. In order to have accurate results near the freezing line, excess properties are deduced from a modern statistical mechanics theory. Intermolecular potentials for like molecules are fitted to give good agreement with shock experiments in pure liquid samples, and mixture properties come naturally from the theory. The stationary Chapman-Jouguet detonation wave is calculated with a chemical equilibrium computer code and results are in good agreement with experiment for a lot of various explosives. One then study gas-gas equilibria in a binary mixture and show the extreme sensitivity of theoretical phase diagrams to the hypothesis of the model (author) [fr

  18. The Biggest Explosions in the Universe

    Indian Academy of Sciences (India)

    tion of stars. Biman Nath is an astrophysicist at the. Raman Research. Institute, Bangalore. G am m a ray bursts { w hich are ¯rst detected in energetic gam m a rays and w hich then glow in. X -ray, visible and radio w avelengths { are the result of the biggest explosions in the universe. A stronom ers w onder w hat causes ...

  19. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Skov, Mette; Lykke, Marianne

    2012-01-01

    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform...... the design of information architecture and interaction design of a research infrastructure that will enable future radio and audio based research. Results from a questionnaire survey on humanities scholars‟ research interest and information needs, preferred access points, and indexing levels are reported....... Finally, a flexible metadata schema is suggested, that includes both general metadata and highly media and research project specific metadata....

  20. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  1. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  2. The solar eruption of 13 May 2005: EISCAT and MERLIN observations of a coronal radio burst

    Directory of Open Access Journals (Sweden)

    R. A. Jones

    2006-09-01

    Full Text Available We report results from EISCAT and MERLIN observations of radio scintillation during a solar eruptive event in May 2005. Anomalous increases in signal strength detected at sites more than 2000 km apart are shown to arise from the detection of a strong coronal radio burst in the distant off-axis response of the MERLIN and EISCAT antennas. These observations show that EISCAT is capable of detecting the signatures of explosive events in the solar atmosphere with a high degree of time resolution. We further suggest that the highly time-structured variation in signal strength caused by distant off-axis detection of a powerful coronal radio signal could provide an explanation for previously unexplained anomalies in EISCAT IPS observations, as well as being a potential source of errors in active observations using radar codes with a completion time longer than the time-variation of the coronal signal.

  3. Observational effects of explosions in the nuclei of spiral galaxies

    International Nuclear Information System (INIS)

    Sanders, R.H.; Bania, T.M.

    1976-01-01

    We conclude that an explosive event will produce a distinct observational signature evidenced by an inner ringlike structure of the principal spiral tracers, conspicuous dips in the gas rotation curve at the locus of this ring, and a ringlike or double radio structure in the plane of the galaxy. Evidence is presented supporting the suggestion that one particular spiral galaxy, NGC 4736, exhibits this characteristic signature and therefore is a galaxy which may have undergone a recent explosive event in its nucleus

  4. Cognitive Radio on a Reconfigurable MPSoC Platform

    NARCIS (Netherlands)

    Zhang, Q.

    2009-01-01

    Due to the explosive growth of wireless communication, the demands for radio spectrum are rapidly increasing. It is very di±cult to accommodate new wireless services under the current spectrum allocation scheme. On the other hand, the allocated spectrum is not e±ciently utilized. Cognitive Radio is

  5. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    Science.gov (United States)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  6. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  7. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  8. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  9. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  10. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    International Nuclear Information System (INIS)

    Henke, J.L.; Speitel, G.E.

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft 2 , and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance

  11. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  12. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  13. Single-charge craters excavated during subsurface high-explosive experiments at Big Black Test Site, Mississippi

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Bryan, J.B.

    1978-01-01

    Single-charge and row-charge subsurface cratering experiments were performed to learn how close-spacing enhances single-crater dimensions. Our first experimental phase established cratering curves for 60-lb charges of the chemical explosive. For the second phase, to be described in a subsequent report, the Row-cratering experiments were designed and executed. This data report contains excavated dimensions and auxiliary data for the single-charge cratering experiments. The dimensions for the row-charge experiments will be in the other report. Significant changes in the soil's water content appeared to cause a variability in the excavated dimensions. This variability clouded the interpretation and application of the cratering curves obtained

  14. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.

    1976-01-01

    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  15. Off-center point explosion in a spheroid

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1978-01-01

    An off-center point explosion in a spheroid with exponential or Gaussian density distribution is investigated by applying the generalized Laumbach and Probstein method. For a typical example, we calculate the explosion in a spheroid with the eccentricity e = 0.7. If the separation distance between the center of the spheroid and the explosion point is larger than three times of the density scale height, the shock wave may almost propagate toward the direction of the minor axis of symmetry, within the polar angle of 30 0 . The shock envelope elongates toward the same direction and may form a polar jet and/or a tilted jet. But, in the case of an explosion in the equatorial plane (perpendicular to the minor axis of symmetry), two plasmas with the same form may be ejected into two different directions with the angle smaller than 180 0 . Explosion models of double radio sources and related objects are suggested. (author)

  16. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [Department of Physics, The George Washington University, 725 21st St, NW, Washington, DC 20052 (United States); Ofek, E. O.; Gal-Yam, A.; Xu, D. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sullivan, M.; Maguire, K.; Pan, Y.-C. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. B. [NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Sternberg, A. [Max-Planck-Institut fur Astrophysik, D-85741 Garching (Germany); Bersier, D., E-mail: corsi@gwu.edu [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  17. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    Science.gov (United States)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater

  18. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    Science.gov (United States)

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  19. Self-assembling siloxane bilayer directly on SiO{sub 2} surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Xu Pengcheng; Li Xinxin, E-mail: xxli@mail.sim.ac.cn [State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO{sub 2} surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO{sub 2} cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  20. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    International Nuclear Information System (INIS)

    Chen Ying; Xu Pengcheng; Li Xinxin

    2010-01-01

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO 2 surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO 2 cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  1. SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S., E-mail: schroedter@veritas.sao.arizona.edu, E-mail: mccann@kicp.uchicago.edu, E-mail: nepomuk.otte@gmail.com [DESY, Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-12-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E {sub {gamma}} > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On {approx}8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  2. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; hide

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  3. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    Science.gov (United States)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  4. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  5. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  6. New wireless data transmission system based on high frequency radio communication: design, development and testing results under repository conditions

    International Nuclear Information System (INIS)

    Garcia-Sineriz, J.L.; Barcena, I.; Espada, F.; Rodriguez, A.; Mayor, J.C.; Barnichon, J.D.; Dick, P.

    2012-01-01

    Document available in extended abstract form only. According to the starting basis of the MoDeRn project (FP7 232598), the design and development of a system capable of transmitting the evolution of the physical parameters inside a repository will be a challenging task due to the harsh working conditions imposed by both the element itself to be monitored (for instance the canister enclosing radioactive waste), the engineered barriers into which they will be embedded and the host rock that contains everything. The measuring devices will work exposed to high pressures, high temperatures, high humidity degrees, presence of radiation, etc., during an expected lifetime of several decades without any possibility of either being powered from any external source or being replaced in case of malfunction, as the operating area will be sealed and inaccessible. Therefore, a main objective of AITEMIN and ENRESA contribution to MoDeRn was focused on the design, development and test under 'real conditions' of a new wireless system, based on high frequency radio transmission (HF), capable of monitoring the physical parameters inside a repository cell independently of the host rock type. In order to achieve the aforementioned objectives and to obtain a suitable monitoring system for the target application, the following key points have been addressed: 1. Data transmission technology (transmission media); 2. Communication protocols; 3. Available power sources; 4. Expected environmental conditions; 5. Suitable sensors. The activities carried out for the development of the HF wireless system were structured in three steps: 1. Laboratory work, to select the best solutions under controlled environment. 2. Field testing, to validate under more realistic conditions the solutions selected at lab. 3. Demonstration: long-term evaluation of the real performance of the solutions proved to be applicable during the field testing Obtained results were as follows: 1. A suitable radio communication

  7. Dimensional analysis for the mechanical effects of some underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Delort, Francis [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)

  8. The fracture of concrete under explosive shock loading

    International Nuclear Information System (INIS)

    Watson, A.J.; Sanderson, A.J.

    1982-01-01

    Concrete fracture close to the point of application of high explosive shock pressures has been studied experimentally by placing an explosive charge on the edge of a concrete slab. The extent of the crushing and cracking produced by a semi cylindrical diverging plane compressive stress pulse has been measured and complementary experiments gave the pressure transmitted at an explosive to concrete interface and the stress-strain relation for concrete at explosive strain rates. (orig.) [de

  9. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  10. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  11. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  12. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Republic of Germany, India, Mexico, Sweden, Thailand, United Kingdom, USA and USSR. An additional 21 Member States sent observers. A summary of the technical papers follows: n general, statements on national programmes revealed continued interest in assessing the technical and economic feasibility of peaceful nuclear explosions and in evaluating the health and safety problems. In some cases the interest was qualified by the realization that factors such as high population densities and social attitudes make it improbable that the States concerned will be able to make any use of peaceful nuclear explosions domestically even if such explosions are shown to be technically and economically viable. Health and safety, phenomenology, applications, and projects all received attention in the technical papers presented by participants. The scope of the health and safety papers and the discussion which they generated reflected the considerable attention now being given to these aspects both within and outside of national programmes. (author)

  13. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  14. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  15. High resolution radio-imager for biology and micro-dosimetry

    International Nuclear Information System (INIS)

    Aubineau-Laniece, I.; Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Valentin, L.

    1999-01-01

    We have developed a self triggered intensified CCD (STIC) for real time high spatial resolution a and b imaging. This device is, in particular, of great interest for quantitative autoradiography of radiolabeled biochemical species with low level activity. (authors)

  16. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  17. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  18. New technology based on clamping for high gradient radio frequency photogun

    Science.gov (United States)

    Alesini, David; Battisti, Antonio; Ferrario, Massimo; Foggetta, Luca; Lollo, Valerio; Ficcadenti, Luca; Pettinacci, Valerio; Custodio, Sean; Pirez, Eylene; Musumeci, Pietro; Palumbo, Luigi

    2015-09-01

    High gradient rf photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the present paper we present the design of a new rf photogun recently developed in the framework of the SPARC_LAB photoinjector activities at the laboratories of the National Institute of Nuclear Physics in Frascati (LNF-INFN, Italy). This design implements several new features from the electromagnetic point of view and, more important, a novel technology for its realization that does not involve any brazing process. From the electromagnetic point of view the gun presents high mode separation, low peak surface electric field at the iris and minimized pulsed heating on the coupler. For the realization, we have implemented a novel fabrication design that, avoiding brazing, strongly reduces the cost, the realization time and the risk of failure. Details on the electromagnetic design, low power rf measurements and high power radiofrequency and beam tests performed at the University of California in Los Angeles (UCLA) are discussed in the paper.

  19. Thermochemistry of mixed explosives

    International Nuclear Information System (INIS)

    Janney, J.L.; Rogers, R.N.

    1982-01-01

    In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1

  20. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  1. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    Science.gov (United States)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  2. Effects of radio frequency and high pressure steam sterilisation on the colour and flavour of prepared Nostoc sphaeroides.

    Science.gov (United States)

    Xu, Jicheng; Zhang, Min; An, Yanjun; Roknul, Azam Sm; Adhikari, Benu

    2018-03-01

    Nostoc sphaeroides has been used as a highly effective herbal medicine and dietary supplement for thousands of years. The desired dark green colour of fresh N. sphaeroides is converted into an undesirable dark brown during conventional high pressure (HP) steam sterilisation. Radio frequency (RF) sterilisation technology was used in this study to determine its effectiveness in sterilising N. sphaeroides and to achieve better preservation of natural colour and desirable flavour. Sterilisation was carried out using a 6 kW, 27 MHz RF instrument for 10, 20 and 30 min. The degree of microbial kill and the effects of RF sterilisation on colour and flavour were determined and compared with those obtained from HP steam (121 °C, 30 min) sterilisation. The effects of RF sterilisation on colour and flavour (measured using electronic nose) parameters were significantly lower than that in HP steam sterilisation. The RF sterilisation carried out for 20 min achieved logarithmic reduction of bacterial population and met China's national standard while preserving the colour and flavour better. Results of the present study indicated that application of RF sterilisation would improve the quality of sterilised N. sphaeroides and broaden its application in the food and health food industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    International Nuclear Information System (INIS)

    Ciovati, G.; Geng, R.; Lushtak, Y.; Manini, P.; Maccallini, E.; Stutzman, M.

    2017-01-01

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. The results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.

  4. Evidence of high-field radio-frequency hot spots due to trapped vortices in niobium cavities

    Directory of Open Access Journals (Sweden)

    G. Ciovati

    2008-12-01

    Full Text Available Superconducting radio-frequency (rf cavities made of high-purity niobium exhibit strong anomalous rf losses starting at peak surface magnetic fields of about 90–100 mT in the gigahertz range. This phenomenon is referred to as “Q drop.” Temperature maps of the cavity surface have revealed the presence of “hot spots” in the high magnetic field region of the cavities. Several models have been proposed over the years to explain this phenomenon but there is still no experimental evidence on the mechanisms behind such hot spots. In this work we show that at least some of the hot spots are due to trapped vortices responsible for the anomalous losses. Here we report experiments in which a local thermal gradient was applied to the hot spot regions of a cavity in order to displace the vortices. Temperature maps measured before and after applying the thermal gradient unambiguously show that the hot spots do move and change their intensities, allowing us to determine changes in the hot spot positions and strengths and their effect on the cavity performance. Results on a large-grain niobium cavity clearly show a different distribution and in some cases a weakening of the intensity of the “hot spots,” suggesting new ways of improving the cavity performance without additional material treatments.

  5. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G., E-mail: gciovati@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Geng, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Lushtak, Y.; Manini, P.; Maccallini, E. [SAES Getters, S.p.A, Viale Italia, 77, 20020 Lainate, MI (Italy); Stutzman, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2017-01-11

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. The results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.

  6. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    International Nuclear Information System (INIS)

    Zhang Xiao-Yu; Sun Jian-Dong; Li Xin-Xing; Zhou Yu; Lü Li; Qin Hua; Tan Ren-Bing

    2015-01-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage V g , the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. (paper)

  7. Low Power, Small Form Factor, High Performance EVA Radio Employing Micromachined Contour Mode Piezoelectric Resonators and Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I Harmonic Devices proposes to investigate the feasibility of a low-power, low-volume, lightweight, frequency agile, and fault tolerant EVA radio based on...

  8. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  9. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of 239Pu due to non- nuclear detonation of high explosive

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Freis, R.P.; Pitovranov, S.E.; Chernokozhin, E.V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of 239 Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal ''coupling coefficient'' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of 239 Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported

  10. An alternative high breeding radio design concept with liquid breeder for the NET/INTOR blanket

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Cardella, A.; Raia, G.; Rosatelli, F.; Farfaletti-Casali, F.

    1984-01-01

    A liquid lithium tubolar breeding blanket concept has been studied which could be applied to NET/INTOR or other next generation Tokamak reactors. A high breeding ratio can be achieved using a moderator medium, without enriching lithium in the Li6 percentage. Preliminary neutron and gamma flux and thermohydraulics calculations have shown the feasibility and efficiency of our concept. (author)

  11. Unraveling the mysteries of high-energy cosmic rays using radio detection

    NARCIS (Netherlands)

    Docters, Wendy

    2015-01-01

    The earth gets bombarded by hig-energetic particles originating from the universe on a daily basis. These high-energetic particles collide with molecules in the atmosphere, creating an avalanche of secondary particles. To determine the nature and the origin of the primary particle, the properties of

  12. Identifying dielectric and resistive electrode losses in high-density capacitors at radio frequencies

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Liu, J.; Klee, M.; Keur, W.; Mauczock, R.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2008-01-01

    A regression-based technique is presented which distinguishes the dielectric loss from the resistive loss of high density planar capacitors in a very wide bandwidth of 0.1–8 GHz. Moreover, the procedure yields useful results if the capacitor deviates from a lumped element model and indicates when

  13. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  14. Techniques of industrial radiology in military explosives

    International Nuclear Information System (INIS)

    Alves, L.E.G.

    1985-01-01

    The use of industrial radiology techniques id very important for military explosive fabrication. The cylindrical-ogive bodies made in forged metal have their interior fulfilled with high melted explosive and they must explode when they reach the target. The granades, as these bodies are called, are thrown by cannons and their interior are submitted to high pressures and accelerations which can cause a premature detonation, in most case, in interior of tube, in case of they have defects in explosive mass. The origins of defects, its localization and classification presenting the techniques used and disposable in Brazil are discussed. (M.C.K.) [pt

  15. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  16. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  17. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  18. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  19. Evaluation of Indoor Radio Deployment Options in High-Rise Building

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Wigard, Jeroen; Kovacs, Istvan

    2017-01-01

    to the increase of inter-cell interference (ICI). Increasing transmit power brings largest gain when the density of indoor cell is low, and the noise and/or outdoor interference is the dominant source of performance degradation. When analyzing performance gain of an ideal receiver-side Interference Cancellation......In this paper we set out to analyze the indoor capacity under a realistic high-rise building scenario. The study takes into consideration the number of indoor cells deployed per floor, different inter-site distances (ISDs), transmit power settings and outdoor macro interference levels. The outcome...

  20. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  1. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-Y.; Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Shannon, R. [CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, Marsfield, NSW 2210 (Australia); Gonzalez, M. E., E-mail: ncy@physics.mcgill.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  2. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  3. Conditioning of high voltage radio frequency cavities by using fuzzy logic in connection with rule based programming

    CERN Document Server

    Perréard, S

    1993-01-01

    Many processes are controlled by experts using some kind of mental model to decide actions and make conclusions. This model, based on heuristic knowledge, can often be conveniently represented in rules and has not to be particularly accurate. This is the case for the problem of conditioning high voltage radio-frequency cavities: the expert has to decide, by observing some criteria, if he can increase or if he has to decrease the voltage and by how much. A program has been implemented which can be applied to a class of similar problems. The kernel of the program is a small rule base, which is independent of the kind of cavity. To model a specific cavity, we use fuzzy logic which is implemented as a separate routine called by the rule base. We use fuzzy logic to translate from numeric to symbolic information. The example we chose for applying this kind of technique can be implemented by sequential programming. The two versions exist for comparison. However, we believe that this kind of programming can be powerf...

  4. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  5. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  6. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  7. Development of high power radio frequency components for fusion plasma heating. Final report, Revision 3

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this CRADA was to develop advanced microwave heating systems for both ion cyclotron heating and electron cyclotron heating for magnetic fusion reactors. This involved low-frequency (UHF), high-power (millimeter-wave) microwave components, such as antennas, windows, and matching elements. This CRADA also involved developing conceptual designs for new microwave sources. General Atomics built and tested the distributed cooled window and provided LLNL with transmission and reflection test data in order to then benchmark the EM computer codes. The combline antenna built and analyzed by LLNL was based on a GA design. GA provided LLNL with a number of niobium plates for hot pressing and provided the necessary guidance to allow successful bonding. GA representatives were on site at LLNL on numerous occasions to consult and give guidance on the ferroelectric tuner, combline antenna and distributed window analysis

  8. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  9. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1984-01-01

    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  10. Apparatus for forming an explosively expanded tube-tube sheet joint

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1984-01-01

    The invention relates to apparatus for expanding a tube into a bore formed in a tube sheet. According to the invention, a primary explosive containing a relatively high number of grains of explosive per unit length extends within the tube coextensive with that portion of the tube to be expanded. An energy transfer cord extends between a detonator and the primary explosive and includes a relatively low number of grains of explosive per unit length which are insufficient to detonate the primary explosive. The transfer cord is covered by a sheath to contain the debris and gases associated with the explosion of the explosive therein. A booster extends between the energy transfer cord and the primary explosive and contains an explosive which can be detonated by the explosive in the energy transfer cord and can, upon exploding, in turn detonate the primary explosive. (author)

  11. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  12. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  13. Study and development of a high resolution tomograph for the {gamma} radio-imagery in vivo of small animals; Etude et developpement d`un tomographe haute resolution pour la radio-imagerie {gamma} in vivo de petits animaux

    Energy Technology Data Exchange (ETDEWEB)

    Valda Ochoa, A

    1995-06-23

    By the use of molecular radio-labelled tracers, molecular biology can reveal some aspects of the functional organisation of the brain. Non invasive in vivo brain research on small laboratory animals, like mice or rats, require analysis of structures of some cubic millimeters present in a brain of the order of a cubic centimeter. Since imaging performances of positron emission tomography (PET) and single photon emission tomography (SPECT) fail in this research field, we present here a high resolution tomograph (TOHR) based on an original principle that allows to overcome the compromise between detection efficiency and spatial resolution. TOHR is a radiation counter device having a large solid angle focusing collimator. By the use of radio-tracers decaying by a cascade of two photons, coincidence detection offers an accurate delimitation of the analysed region and improves spatial resolution. TOHR acts as a scanner, so the image is built voxel by voxel by moving the animal relative to the detector. A numerical feasibility study of such a system shows that a sub millimeter spatial resolution can be achieved. We show that the chemical etching technique is well suited for manufacturing a multi-module focusing collimator by building and testing two such modules. Finally a numerical simulation exhibits TOHR`s performance in a neuro-pharmacological experiment on a rat. From these results, other application of TOHR are envisaged, such as oncology (in vivo evolution of tumours) or gene therapy (distribution of viral particles in the brain). (author). 51 refs., 73 figs., 3 tabs.

  14. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  15. Explosives 92. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.A. (ed.)

    1992-01-01

    17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.

  16. Explosions of Thorne-Żytkow objects

    Science.gov (United States)

    Moriya, Takashi J.

    2018-03-01

    We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.

  17. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  18. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  19. Bipolar explosion models for hypernovae

    International Nuclear Information System (INIS)

    Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    Bipolar explosion models for hypernovae (very energetic supernovae) are presented. These models provide a favorable situation to explain some unexpected features in observations of hypernovae, e.g., high velocity matter dominated by Fe and low velocity matter dominated by O. The overall abundance of these models gives a good fit, at least qualitatively, to abundances in extremely metal-poor stars. We suggest hypernovae be driven by bipolar jets and contribute significantly to the early Galactic chemical evolution

  20. Inelastic processes in seismic wave generation by underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  1. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1980-01-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  2. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    Science.gov (United States)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  3. Pengaruh Tandem Booster TNT Terhadap Kecepatan Detonasi Campuran Bahan Peledak Tepung Kalium Klorat, Sulfur Dan Aluminium Sebagai Bahan Peldak High Explosive

    OpenAIRE

    Tarigan, Tarsim

    2010-01-01

    There are a research on velocity of detonation explosives from Improvised Bomb with potassium chlorate, sulfur and aluminum with a composition of 65:20:15% (weight / weight), 70 mesh, galvanized pipes and containers with some blasting mechanism, starts with an explosion that ignite by a improvise detonator, factory detonator without a booster, factory detonator with a tandem booster TNT, and TNT booster modifications by adding a layer of Pb plate and make a cavity between the main booster ch...

  4. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  5. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  6. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  7. Intermittent Explosive Disorder

    Science.gov (United States)

    ... explosive disorder involves repeated, sudden episodes of impulsive, aggressive, violent behavior or angry verbal outbursts in which you react grossly out of proportion to the situation. Road rage, domestic abuse, throwing or breaking objects, or other temper tantrums ...

  8. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  9. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  10. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  11. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  12. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  13. POWERFUL ACTIVITY IN THE BRIGHT AGES. I. A VISIBLE/IR SURVEY OF HIGH REDSHIFT 3C RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Sparks, W. B.; Macchetto, F. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tremblay, G. R. [Yale University, Department of Astronomy, 260 Whitney Avenue, New Haven, CT 06511 (United States); Stanghellini, C. [INAF—Istituto di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Baum, S.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, 66 Chancellors Circle, Winnipeg, MB R3T 2N2 (Canada); Capetti, A. [Osservatorio Astronomico de Torino, Corso Savona, I-10024 Moncalieri TO (Italy); Miley, G. K. [Universiteit Leiden, Rapenburg 70, 2311 EZ Leiden (Netherlands); Perlman, E. S. [Florida Institute of Technology, 150 W University Boulevard, Melbourne, FL 32901 (United States); Quillen, A. [Rochester Institute of Technology, School of Physics and Astronomy, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-07-01

    We present new rest-frame UV and visible observations of 22 high- z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope ’s Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveal that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.

  14. Teaching radio astrophysics the hand-on way

    Science.gov (United States)

    Joshi, Bhal Chandra

    Astronomy and space sciences have always been instrumental in attracting young students to physical sciences. While the lectures/demonstrations and exhibitions pertaining to space sci-ences capture the imagination of young students, these alone are not sufficient to induce them to join scientific research. In countries like India, where a large number of students take to physical sciences for under-graduate education, complex sociological factors are key issues in translating this large body of students to potential researchers. While lectures and exhibition lead to an increase in scientific awareness for these students, these do not give a feel for scien-tific research and bridge the gap between high school/college science education and high end research. In this context, a hands-on approach to astronomy education, in science research environments or closely connected to scientific institutions, offers a promising alternative. This approach has been used in optical astronomy, where inexpensive small telescopes are available, often coupling a vast network of amateur astronomy clubs to leading astronomy institutes. The non-visual and relatively more technical nature of radio astronomy has limited a similar approach in past for connecting students to space sciences using radio waveband. The tech-nological explosion in communication industry and radio connectivity in the last decade along with an expansion in engineering education makes this possible now using a hands-on approach in teaching radio astrophysics. In this presentation, the sociological factors affecting the student choice are discussed followed by a review of the efforts to bridge the above mentioned gap by various groups in the world in the last decade with a view to enumerate the best practices in a hands-on approach. A program using this approach at National Center for Radio Astrophysics is described, where the students are exposed to simple hands-on radio astronomy experiments such as spectral line

  15. Explosion of optimal high-beta operation regime by magnetic axis swing in the Large Helical Device

    International Nuclear Information System (INIS)

    Sakakibara, S.; Ohdachi, S.; Watanabe, K.Y.

    2010-11-01

    In Large Helical Device (LHD), the volume averaged beta value dia > as high as 5.1% was achieved in FY2007-2008 experiments. High beta operation regime was explorated by the programmed control of magnetic axis position, which characterizes MHD equilibrium, stability and transport. This control became enable by increasing capability of poloidal coil power supply. The experiments made clear the effect of magnetic hill on MHD activities in high-beta plasmas with more than 4%. Also it enabled to access the ideal stability boundary with keeping high-beta state. The strong m/n=2/1 mode leading minor collapse in core plasma appeared with the inward shift of the magnetic axis. (author)

  16. Wide Field Radio Transient Surveys

    Science.gov (United States)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  17. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  18. Influence of external-detonation-generated plasmas on the performance of semi-confined explosive charges

    Energy Technology Data Exchange (ETDEWEB)

    Udy, L.L.

    1979-02-01

    External-detonation-generated plasmas, highly ionized zones of reacting material ejected from the surface of detonating explosive charges, are shown to be the cause of channel desensitization, i.e., the self-quenching of a detonating explosive column loaded in a borehole with an air annulus between the explosive and the borehole wall. The effects of this phenomenon on several explosive compositions and types are demonstrated and discussed. The explosives tested include aluminum-sensitized and explosive-sensitized slurries, ANFO, liquid explosives and dynamites. Various techniques are described that can be used to reduce or eliminate the plasma effect.

  19. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  20. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  1. [Analysis of the pediatric trauma score in patients wounded with shrapnel; the effect of explosives with high kinetic energy: results of the first intervention center].

    Science.gov (United States)

    Taş, Hüseyin; Mesci, Ayhan; Demirbağ, Suzi; Eryılmaz, Mehmet; Yiğit, Taner; Peker, Yusuf

    2013-03-01

    We aimed to assess the pediatric trauma score analysis in pediatric trauma cases due to shrapnel effect of explosives material with high kinetic energy. The data of 17 pediatric injuries were reviewed retrospectively between February 2002 and August 2005. The information about age, gender, trauma-hospital interval, trauma mechanism, the injured organs, pediatric Glasgow coma score (PGCS), pediatric trauma score (PTS), hemodynamic parameters, blood transfusion, interventions and length of hospital stay (LHS) were investigated. While all patients suffered from trauma to the extremities, only four patients had traumatic lower-limb amputation. Transportation time was 1 hour in 65% of cases. While PTS was found as 8 (p=0.007). Morbidity rates of PTS 8 cases were 29.4% and 5.9%, respectively (p=0.026). While LHS was 22.8 days in PTS LHS was found to be only 4 days in PTS >8 cases. This difference was found to be statistically significant (p=0.001). PTS is very efficient and a time-saving procedure to assess the severity of trauma caused by the shrapnel effect. The median heart rate, morbidity, and LHS increased significantly in patients with PTS <=8.

  2. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  3. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    Sakuta, K; Narita, Y; Itozaki, H

    2007-01-01

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  4. Motion of the Debris from a High-Altitude Nuclear Explosion: Simulations Including Collisionless Shock and Charge Exchange

    Science.gov (United States)

    2014-06-01

    14   Figure 3.   Distribution of mass of fission fragments from the fission of uranium-235 by a thermal neutron (after Krane, 1988...1962 to the present underscores how critical this effect can be to the Department of Defense (DOD) and to the Nation. In addition to the...overhead of Johnston Island.”3 Fission of an actinide generally produces two ionized fission fragments. These fission fragments are highly ionized

  5. Beamsteerable GNSS Radio Occultation ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  6. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation.

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

  7. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Dzyuba, A; Romanenko, A; Cooley, L D

    2010-01-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H pen . Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H pen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H pen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ∼ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  8. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    Science.gov (United States)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  9. A model of vulcanian explosions

    International Nuclear Information System (INIS)

    Woods, A.W.

    1995-01-01

    We present a model of the initial stages of the explosive eruption of magma from a volcanic conduit as occurs in Vulcanian style eruptions. We assume there is a volatile rich (1-10 wt%) mixture of magma, vaporised groundwater and exsolved volatiles, trapped at high pressure (1-100 atm) just below a plug in a volcanic conduit. If the plug disrupts, there is an explosive eruption in which a rarefaction wave propagates into the conduit allowing the volatile rich mixture to expand and discharge into the atmosphere ahead of the vent. Typically, the explosions are so rapid that coarse grained ejecta (>0.5 mm) do not remain in thermal equilibrium with the gas, and this leads to significantly lower velocities and temperatures than predicted by an equilibrium model. Material may erupt from the vent at speeds of 100-400 m s -1 with an initial mass flux of order 10 7 -10 9 kg s -1 , consistent with video observations of eruptions and measurements of the ballistic dispersal of large clasts. (orig.)

  10. The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9

    Science.gov (United States)

    Silva, M.; Humphrey, A.; Lagos, P.; Villar-Martín, M.; Morais, S. G.; di Serego Alighieri, S.; Cimatti, A.; Fosbury, R.; Overzier, R. A.; Vernet, J.; Binette, L.

    2018-03-01

    We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly α emitting nebula and the giant H I absorber associated with the z = 2.92 radio galaxy MRC 0943-242, using spectroscopic observations from Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE), VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765-6378 Å at z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localized compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of supersolar metallicity gas (Z/Z⊙ = 2.1) by an active galactic nuclei-like continuum (α = -1.0) at a moderate ionization parameter (U = 0.018) gives the best overall fit to the complete X-SHOOTER emission-line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the H I absorption feature across the range log N(H I/cm-2) = 15.20 and 19.63, with the two best fitting occurring near the extreme ends of this range. The extended H I absorber is blueshifted relative to the emission-line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large-scale expanding shell.

  11. High-Level Design for Ultra-Fast Software Defined Radio Prototyping on Multi-Processors Heterogeneous Platforms

    OpenAIRE

    Moy , Christophe; Raulet , Mickaël

    2010-01-01

    International audience; The design of Software Defined Radio (SDR) equipments (terminals, base stations, etc.) is still very challenging. We propose here a design methodology for ultra-fast prototyping on heterogeneous platforms made of GPPs (General Purpose Processors), DSPs (Digital Signal Processors) and FPGAs (Field Programmable Gate Array). Lying on a component-based approach, the methodology mainly aims at automating as much as possible the design from an algorithmic validation to a mul...

  12. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  13. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  14. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Heger, Alex; Chen, Ke-Jung

    2013-01-01

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M ☉ , however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼10 55 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≅ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10 7 M ☉ , much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ∼ ☉ after ∼> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today

  15. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  16. Radio emission from supernovae. I. One to twelve year old supernovae

    International Nuclear Information System (INIS)

    Weiler, K.W.; Panagia, N.; Sramek, R.A.; Van Der Hulst, J.M.; Roberts, M.S.

    1989-01-01

    All recorded optical supernovae brighter than 14.0 mag from SN 1970A to SN 1981A were observed in May 1982 using VLA at 6 cm. Apart from the known radio supernovae (SN 1970G, SN 1979C, and SN 1980K), radio emissions were not detected from any of the objects to a limit of about 0.5 mJy. Limits on mass-loss rates from the presupernova systems are established. It is found that Type Ia Sns originate in systems which contain very little circumstellar material at the time of explosion. These systems are very different from those which originate Type Ib Sns. With some exceptions, Type II SNs originate with the high presupernova mass-loss rates expected from red supergiant progenitors with original main-sequence masses greater than about 8 solar masses. 16 references

  17. The Giant Flare From SGR 1806-20 And Its Radio Afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.B.; /New Mexico U. /NRAO, Socorro; Granot, J.; /KIPAC, Menlo Park

    2006-09-26

    The multi-wavelength observations of the 2004 December 27 Giant Flare (GF) from SGR 1806-20 and its long-lived radio afterglow are briefly reviewed. The GF appears to have been produced by a dramatic reconfiguration of the magnetic field near the surface of the neutron star, possibly accompanied by fractures in the crust. The explosive release of over 10{sup 46} erg (isotropic equivalent) powered a one-sided mildly relativistic outflow. The outflow produced a new expanding radio nebula, that is still visible over a year after the GF. Also considered are the constraints on the total energy in the GF, the energy and mass in the outflow, and on the external density, as well as possible implications for short {gamma}-ray bursts and potential signatures in high energy neutrinos, photons, or cosmic rays. Some possible future observations of this and other GFs are briefly discussed.

  18. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    the star's explosion. They did this by comparing images of the object, called G1.9+0.3, made more than two decades apart. In 1985, astronomers led by Green observed G1.9+0.3 with the VLA and identified it as a supernova remnant. At that time, they estimated its age as between 400 and 1,000 years. It is near the center of our Galaxy, roughly 25,000 light-years from Earth. In 2007, another team of astronomers, led by Stephen Reynolds of North Carolina State University, observed the object with the Chandra X-Ray Observatory. To their surprise, their image showed the object to be about 16 percent larger than in the 1985 VLA image. "This is a huge difference. It means the explosion debris is expanding very quickly, which in turn means the object is much younger than we originally thought," Reynolds explained. However, this expansion measurement came from comparing a radio image to an X-ray image. To make an "apples to apples" comparison, the scientists sought and were quickly granted observing time on the VLA. "I've never seen a large astronomical institution move so fast," said Reynolds. Their new VLA observations confirmed the supernova remnant's rapid expansion. The discovery provides scientists with a valuable source of new information about exploding stars. "Our previous situation was as if someone studying humans could look at babies and at adults, but could not study teenagers. Now, we're filling in that gap," said Reynolds. The object already has provided surprises. The velocities of its explosion debris and extreme energies of its particles are unprecedented. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath," he added. The discovery was possible because radio and X-ray telescopes, unlike visible-light telescopes, can penetrate the thick clouds of gas and dust in our Galaxy. "Looking out of the Milky Way, we can see some

  19. Energetic Residues and Crater Geometries from the Firing of 120-mm High-Explosive Mortar Projectiles into Eagle River Flats, June 2007

    Science.gov (United States)

    2008-07-01

    samples. ERDC/CRREL TR-08-10 15 c. US DH-48 isokinetic sampler. Figure 7 (cont’d). The second activity was the collection of soil at the...3 0.28 Mc1/3 0.3 Mc1/3 Ra Apparent radius of the crater in meters Mc Mass of the explosive charge in kilograms Da Apparent depth of the crater in... meters The apparent depth and radius of a crater will increase with the depth of explosive charge below the surface down to a maximum depth called

  20. High-grade acute organ toxicity as positive prognostic factor in primary radio(chemo)therapy for locally advanced, inoperable head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Hendrik Andreas; Bosch, Jan; Hennies, Steffen; Hess, Clemens F.; Christiansen, Hans [Dept. of Radiotherapy and Radiooncology, Univ. Medicine Goettingen (Germany); Jung, Klaus [Dept. of Medical Statistics, Univ. Medicine Goettingen (Germany); Overbeck, Tobias [Dept. of Haematology and Oncology, Univ. Medicine Goettingen (Germany); Matthias, Christoph; Roedel, Ralph M. [Dept. of Otorhinolaryngology, Univ. Medicine Goettingen (Germany)

    2010-05-15

    Purpose: to test for a possible correlation between high-grade acute organ toxicity during primary radio(chemo)therapy and treatment outcome in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Patients and methods: from 05/1994 to 01/2009, 216 HNSCC patients were treated with radio(chemo)therapy in primary approach. They received normofractionated (2 Gy/fraction) irradiation including associated nodal drainage sites to a cumulative dose of 70 Gy. 151 patients received additional concomitant chemotherapy (111 patients 5-fluorouracil/mitomycin C, 40 patients cisplatin-based). Toxicity during treatment was monitored weekly according to the Common Toxicity Criteria (CTC), and any toxicity grade CTC {>=} 3 of mucositis, dysphagia or skin reaction was assessed as high-grade acute organ toxicity for later analysis. Results: a statistically significant coherency between high-grade acute organ toxicity and overall survival as well as locoregional control was found: patients with CTC {>=} 3 acute organ toxicity had a 5-year overall survival rate of 4% compared to 8% in patients without (p < 0.01). Thereby, multivariate analyses revealed that the correlation was independent of other possible prognostic factors or factors that may influence treatment toxicity, especially concomitant chemotherapy and radiotherapy technique or treatment-planning procedure. Conclusion: these data indicate that normal tissue and tumor tissue may behave similarly with respect to treatment response, as high-grade acute organ toxicity during radio(chemo)therapy showed to be an independent prognostic marker in the own patient population. However, the authors are aware of the fact that a multivariate analysis in a retrospective study generally has statistical limitations. Therefore, their hypothesis should be further analyzed on biomolecular and clinical levels and other tumor entities in prospective trials. (orig.)

  1. The effects of 450 kg surface explosions at the E layer of the ionosphere

    International Nuclear Information System (INIS)

    Fitzgerald, T.J.; Carlos, R.C.

    1992-01-01

    A network of hf ionospheric sounders consisting of two transmitter and two receiver stations was deployed to detect the effects of acoustic waves generated by surface ground motion following an underground nuclear test (UGT) at the Nevada Test Site. The frequency of the transmissions were chosen so that the hf radio waves were totally reflected in the E layer of the ionosphere at an altitude of approximately 100 km. The transmissions were highly stable cw tones at two frequencies separated by 100 kHz so that two altitudes separated by approximately .5 km could be sensed. The network sampled four geographic locations in the ionosphere ranging from almost directly overhead of the UGT out to a horizontal range of 60 km. The ionospheric sounders detected disturbances on all the paths beginning at approximately 325 s after the UGT which persisted for up to 100 s. These disturbances will be described in detail in a later paper. Shortly after the UGT an extended series of ionospheric disturbances were detected which we ascribe to the arrival of acoustic shock waves at the E layer caused by the surface detonation of ordinance with effective yields of 450 kg of high explosive during an unrelated exercise conducted by the U. S. Air Force at a nearby bombing range. The conjunction of these disturbances produced a direct comparison of the effects of UGT's and surface explosions in the ionosphere. In this paper we describe the effects produced by the surface explosions and interpret the disturbance in terms of diffraction induced by electron density changes accompanying the passage of the acoustic waves from the explosions through the reflection altitudes

  2. Explosive and radio-selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    40

    sitive measurements will lead to very accurate mass loss estimation in these supernovae. .... transients are powerful probes of intervening media owing to dispersion ...... A., & Chandra, P. 2011, Nature Communications,. 2, 175. Chakraborti, S.

  3. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Sergatskov, D.; Melnychuk, O.; Trenikhina, Y.; Crawford, A.; Rowe, A.; Wong, M.; Khabiboulline, T.; Barkov, F.

    2013-10-01

    We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the surface resistance is reversed compared to standardly treated niobium.

  4. Symptoms of post-traumatic stress disorder, severe psychological distress, explosive anger and grief amongst partners of survivors of high levels of trauma in post-conflict Timor-Leste.

    Science.gov (United States)

    Silove, D M; Tay, A K; Steel, Z; Tam, N; Soares, Z; Soares, C; Dos Reis, N; Alves, A; Rees, S

    2017-01-01

    Little is known about the mental health of partners of survivors of high levels of trauma in post-conflict countries. We studied 677 spouse dyads (n = 1354) drawn from a community survey (response 82.4%) in post-conflict Timor-Leste. We used culturally adapted measures of post-traumatic stress disorder (PTSD), psychological distress, explosive anger and grief. Latent class analysis identified three classes of couples: class 1, comprising women with higher trauma events (TEs), men with intermediate TEs (19%); class 2, including men with higher TEs, women with lower TEs (23%); and class 3, comprising couples in which men and women had lower TE exposure (58%) (the reference group). Men and women partners of survivors of higher TE exposure (classes 1 and 2) had increased symptoms of explosive anger and grief compared with the reference class (class 3). Women partners of survivors of higher TE exposure (class 2) had a 20-fold increased rate of PTSD symptoms compared with the reference class, a pattern that was not evident for men living with women exposed to higher levels of trauma (class 1). Men and women living with survivors of higher levels of trauma showed an increase in symptoms of grief and explosive anger. The manifold higher rate of PTSD symptoms amongst women living with men exposed to high levels of trauma requires replication. It is important to assess the mental health of partners when treating survivors of high levels of trauma in post-conflict settings.

  5. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  6. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  7. Relating pressure measurements to phenomena observed in high speed video recordings during tests of explosive charges in a semi-confined blast chamber

    CSIR Research Space (South Africa)

    Mostert, FJ

    2012-09-01

    Full Text Available initiation of the charge. It was observed in the video recordings that the detonation product cloud exhibited pulsating behaviour due to the reflected shocks in the chamber analogous to the behaviour of the gas bubble in underwater explosions. This behaviour...

  8. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  9. GRB 030329: 3 years of radio afterglow monitoring

    NARCIS (Netherlands)

    van der Horst, A.J.; Kamble, A.; Wijers, R.A.M.J.; Resmi, L.; Bhattacharya, D.; Rol, E.; Strom, R.; Kouveliotou, C.; Oosterloo, T.; Ishwara-Chandra, C.H.

    2007-01-01

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring

  10. Explosive composition containing water

    Energy Technology Data Exchange (ETDEWEB)

    Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.

    1971-11-26

    This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.

  11. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ... the Storage of Ammonium Nitrate. OSHA subsequently made several minor revisions to the standard (37 FR... explosives; storing ammonium nitrate; and storing small arms ammunition, small arms primers, and small arms..., which is extremely widespread, causes lung disease, silicosis and lung cancer. Terminating the...

  12. New slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    Kale, D.C.

    1982-12-01

    Mining engineers will soon have an additional 2 or 3 types of explosives which increase rock yield without increasing cost. A new variety of Ammonium Nitrate and Fuel Oil (ANFO), which is much heavier and more powerful, is being introduced in the US. New types of NCN (nitrocarbonitrate) blasting agents have also been developed.

  13. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  14. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  15. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  16. A radio and optical study of Molonglo radio sources

    Science.gov (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.

    2001-05-01

    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  17. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  18. Development and data analysis of a radio-detection of ultra high energy cosmic rays experiment; Developpement et analyse des donnees d'une experience de radiodetection des rayons cosmiques d'ultra haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Belletoile, A

    2007-10-15

    The radio-detection of cosmic rays was first attempted in the sixties. Unfortunately at that time, the results suffered from poor reproducibility and the technique was abandoned in favour of direct particle and fluorescence detection. Taking advantage of recent technological improvements the radio-detection of ultra high energy cosmic rays is being reinvestigated. In this document, first, we remind the reader of the global problematic of cosmic rays. Then, the several mechanisms involved in the emission of an electric field associated with extensive air showers are discussed. The CODALEMA (cosmic detection array with logarithmic electro magnetic antenna) experiment that aims to demonstrate the feasibility of cosmic ray radio-detection, is extensively described along with the first experimental results. A radio-detection test experiment implanted at the giant detector Pierre Auger is presented. It should provide inputs to design the future detector using this technique at extreme energies. (author)

  19. Development and data analysis of a radio-detection of ultra high energy cosmic rays experiment; Developpement et analyse des donnees d'une experience de radiodetection des rayons cosmiques d'ultra haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Belletoile, A

    2007-10-15

    The radio-detection of cosmic rays was first attempted in the sixties. Unfortunately at that time, the results suffered from poor reproducibility and the technique was abandoned in favour of direct particle and fluorescence detection. Taking advantage of recent technological improvements the radio-detection of ultra high energy cosmic rays is being reinvestigated. In this document, first, we remind the reader of the global problematic of cosmic rays. Then, the several mechanisms involved in the emission of an electric field associated with extensive air showers are discussed. The CODALEMA (cosmic detection array with logarithmic electro magnetic antenna) experiment that aims to demonstrate the feasibility of cosmic ray radio-detection, is extensively described along with the first experimental results. A radio-detection test experiment implanted at the giant detector Pierre Auger is presented. It should provide inputs to design the future detector using this technique at extreme energies. (author)

  20. Search for very high energy gamma-ray emission from the peculiar radio galaxy IC 310 with TACTIC during 2012 to 2015

    Science.gov (United States)

    Ghosal, B.; Singh, K. K.; Yadav, K. K.; Tickoo, A. K.; Rannot, R. C.; Chandra, P.; Kothari, M.; Gaur, K. K.; Goyal, H. C.; Goyal, A.; Kumar, N.; Marandi, P.; Chanchalani, K.; Agarwal, N. K.; Dhar, V. K.; Koul, M. K.; Koul, R.; Venugopal, K.; Bhat, C. K.; Chouhan, N.; Borwankar, C.; Kaul, S. R.; Bhatt, H.; Agarwal, A.; Gupta, A. C.

    2018-04-01

    Non-blazar active galactic nuclei like radio galaxies have emerged as a new class of γ-ray sources in the sky. Observations of very high energy (VHE) γ-rays from radio galaxies with misaligned jets offer a unique tool to understand the physical processes involved in these type of objects. In this work, we present the results of our observations of the nearby peculiar radio galaxy IC 310 (z = 0.0189) with TACTIC telescope for nearly 95.5 hours from 03 December, 2012 to 19 January, 2015 (MJD 56265 - 57041). Detailed analysis of the data reveals absence of a statistically significant γ-ray signal from the source direction (both on the overall period and on yearly basis). Our results suggest that the source was possibly in a low-TeV emission state (below the TACTIC sensitivity level) during the above mentioned observation period and the resulting 3σ upper limit on the integral flux above 850 GeV has been estimated to be 4.99 ×10-12phcm-2s-1 (23% of the Crab Nebula flux). Analysis of the contemporaneous data collected by Fermi-LAT in the 30 - 300 GeV energy range, also indicate the absence of a statistically significant γ-ray signal, therefore 2σ upper limit on the integral flux above 30 GeV has been estimated on yearly basis. We also report the results from dedicated optical observations in B, V and R bands from ARIES observatory carried out from December, 2014 to March, 2015.