WorldWideScience

Sample records for high ethanol tolerance

  1. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  2. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  3. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application ... sources include cashew, apple juice (Osho, 2005), palm ... choice for fermentation (Chandra and Panchal, 2003). Yeasts ...

  4. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    Directory of Open Access Journals (Sweden)

    Thiago M Pais

    2013-06-01

    Full Text Available The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

  5. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  6. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  7. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  8. Metabolic adaption of ethanol-tolerant Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Xinshu Zhu

    Full Text Available Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT strain and an ethanol-tolerant strain cultivated without (ET0 or with (ET3 3% (v/v exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.

  9. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    International Nuclear Information System (INIS)

    Song, S.H.; Kim, K.; Lee, M.W.

    1994-01-01

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  10. A comparison of the development of tolerance to ethanol and cross-tolerance to nicotine after chronic ethanol treatment in long- and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1993-09-01

    Previous studies have shown that inbred mouse strains differ in the development of tolerance to both nicotine and ethanol, indicating that genetic factors regulate tolerance development. Those mouse strains that are most sensitive to an acute challenge dose of either drug develop the most tolerance to that drug. The ethanol-sensitive long-sleep (LS) mice are more sensitive to several behavioral and physiological effects of nicotine than are the ethanol-resistant short-sleep (SS) mice. The experiments reported here assessed whether the LS and SS mice develop tolerance to ethanol after chronic treatment with ethanol-containing liquid diets and whether cross-tolerance to nicotine also developed. Tolerance and cross-tolerance were measured by assessing the effects of acute challenge doses of drug on Y-maze crossing and rearing activities, heart rate and body temperature. The LS mice developed tolerance to ethanol's effects on three of the four measures and were cross-tolerant to nicotine on all of the measures. In contrast, the SS mice developed tolerance to ethanol for only two of the measures, but failed to develop cross-tolerance to any action of nicotine. These findings support the hypothesis that ethanol and nicotine share sites of action and that common genes regulate responses to these two drugs. Evidence suggests that tolerance to nicotine may be related to an up-regulation of brain nicotinic receptors, at least in some inbred mouse strains, but chronic ethanol treatment did not reproducibly change either [3H]nicotine or alpha-[125I]bungarotoxin binding. Therefore, other mechanisms must underlie the tolerance and cross-tolerance that was seen.

  11. Ethanol tolerant Pt-alloy cathodes for DEFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Valera, F.J. [CINVESTAV Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Minerales y Energeticos; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Direct ethanol fuel cells (DEFCs) based on Ru/C cathodes have interesting current density versus cell voltage behaviour. In particular, the selectivity towards the oxygen reduction reaction (ORR) in acid medium in the presence of ethanol was improved when this cathode material was used. This study quantified the degree of tolerance to ethanol and the electrocatalytic activity for the ORR. It compared the specific activity towards the ORR for Pt1Co1/C and Pt3Cr1/C. The study showed that these cathodes have a high tolerance to this alcohol and demonstrated the good performance of this type of Pt-alloy in a DEFC as oxygen reduction cathodes. The performance of the Pt1Co1/C alloy was shown to be better than the Pt3Cr1/C, even when the former had a lower Pt content. The enhanced catalytic behaviour of the PtCo/C alloy can be attributed to the higher degree of allying or a smaller mean particle size and a larger surface area. Polarization measurements with relatively high ethanol concentrations confirmed the good catalytic behaviour of the PtCo/C alloy as cathode in a DEFC operating at 90 degrees C. Current work is focusing on the variation of Co content in the alloy structure and the analysis of this change in terms of ORR activity, tolerance to ethanol and electrochemical behaviour in a DEFC. 10 refs., 5 figs.

  12. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  13. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    Science.gov (United States)

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  14. The time course of ethanol tolerance: associative learning

    Directory of Open Access Journals (Sweden)

    J.L.O. Bueno

    2007-11-01

    Full Text Available The effect of different contextual stimuli on different ethanol-induced internal states was investigated during the time course of both the hypothermic effect of the drug and of drug tolerance. Minimitters were surgically implanted in 16 Wistar rats to assess changes in their body temperature under the effect of ethanol. Rat groups were submitted to ethanol or saline trials every other day. The animals were divided into two groups, one receiving a constant dose (CD of ethanol injected intraperitoneally, and the other receiving increasing doses (ID during the 10 training sessions. During the ethanol training sessions, conditioned stimuli A (tone and B (buzzer were presented at "state +" (35 min after drug injection and "state -" (170 min after drug injection, respectively. Conditioned stimuli C (bip and D (white noise were presented at moments equivalent to stimuli A and B, respectively, but during the saline training sessions. All stimuli lasted 15 min. The CD group, but not the ID group, developed tolerance to the hypothermic effect of ethanol. Stimulus A (associated with drug "state +" induced hyperthermia with saline injection in the ID group. Stimulus B (associated with drug "state -" reduced ethanol tolerance in the CD group and modulated the hypothermic effect of the drug in the ID group. These results indicate that contextual stimuli acquire modulatory conditioned properties that are associated with the time course of both the action of the drug and the development of drug tolerance.

  15. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Yanan eZhang

    2015-05-01

    Full Text Available Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the ∆slr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive ∆slr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the ∆slr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the ∆slr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.

  16. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    Science.gov (United States)

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  17. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    DEFF Research Database (Denmark)

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S....... cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  18. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  19. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    Science.gov (United States)

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  1. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.

    Science.gov (United States)

    Turanlı-Yıldız, Burcu; Benbadis, Laurent; Alkım, Ceren; Sezgin, Tuğba; Akşit, Arman; Gökçe, Abdülmecit; Öztürk, Yavuz; Baykal, Ahmet Tarık; Çakar, Zeynep Petek; François, Jean M

    2017-09-01

    Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v -1 ) and gradually increasing (5-11.4%, v v -1 ) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v -1 ) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v -1 ) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Modifying yeast tolerance to inhibitory conditions of ethanol production processes

    Directory of Open Access Journals (Sweden)

    Luis eCaspeta

    2015-11-01

    Full Text Available Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated –omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.

  3. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine

    Science.gov (United States)

    Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme

    2016-01-01

    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718

  4. A Mutated Yeast Strain with Enhanced Ethanol Production Efficiency and Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Naghmeh Hemmati1*, David A. Lightfoot1,2, and Ahmed Fakhoury3

    2012-05-01

    Full Text Available One of the strategies to improve and optimize bio-ethanolproduction from new feed stocks is to develop new strainsof Saccharomyces cerevisiae with tolerance to stresses. Themain objectives here were to; generate S. cerevisiae mutantstolerant to high ethanol concentrations; test for their abilityto ferment maize starch; and partially characterize the mutationsresponsible for the new phenotypes. A combinationof mutagenesis, selection and cross-stress protection methodswere used. EMS (ethyl methanesulfonate was used tomutagenize one S. cerevisiae strain. The mutagenized yeaststrain was exposed to high concentrations of ethanol andtolerant mutants were isolated. Mutants showed improvedethanol yield (0.02-0.03 g/g of maize and fermentation efficiency(3-5%. Finally, AFLP (Amplified Fragment LengthPolymorphism was performed to identify polymorphisms inthe mutants that might underlie the strains ethanol tolerance.The best performing mutant isolate had four altered genetranscripts encoding; an arginine uptake and canavanine resistanceprotein (CAN1; mitochondrial membrane proteins(SLS1; a putative membrane glycoprotein (VTH1; and cytochromeC oxidase (COX6; EC 1.9.3.1 among about 1,000tested. It was concluded these mutations might underlie theimproved ethanol production efficiency and stress tolerance.

  5. Ethanol tolerant precious metal free cathode catalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Grimmer, Ilena; Zorn, Paul; Weinberger, Stephan; Grimmer, Christoph; Pichler, Birgit; Cermenek, Bernd; Gebetsroither, Florian; Schenk, Alexander; Mautner, Franz-Andreas

    2017-01-01

    Highlights: • Selective ORR catalysts are presented for alkaline direct ethanol fuel cells. • Perovskite based cathode catalysts show high tolerance toward ethanol. • A membrane-free alkaline direct ethanol fuel cell is presented. - Abstract: La 0.7 Sr 0.3 (Fe 0.2 Co 0.8 )O 3 and La 0.7 Sr 0.3 MnO 3 −based cathode catalysts are synthesized by the sol-gel method. These perovskite cathode catalysts are tested in half cell configuration and compared to MnO 2 as reference material in alkaline direct ethanol fuel cells (ADEFCs). The best performing cathode is tested in single cell setup using a standard carbon supported Pt 0.4 Ru 0.2 based anode. A backside Luggin capillary is used in order to register the anode potential during all measurements. Characteristic processes of the electrodes are investigated using electrochemical impedance spectroscopy. Physical characterizations of the perovskite based cathode catalysts are performed with a scanning electron microscope (SEM) and by X-ray diffraction showing phase pure materials. In half cell setup, La 0.7 Sr 0.3 MnO 3 shows the highest tolerance toward ethanol with a performance of 614 mA cm −2 at 0.65 V vs. RHE in 6 M KOH and 1 M EtOH at RT. This catalyst outperforms the state-of-the-art precious metal-free MnO 2 catalyst in presence of ethanol. In fuel cell setup, the peak power density is 27.6 mW cm −2 at a cell voltage of 0.345 V and a cathode potential of 0.873 V vs. RHE.

  6. Effect of isopregnanolone on rapid tolerance to the anxiolytic effect of ethanol

    Directory of Open Access Journals (Sweden)

    Debatin Thaize

    2006-01-01

    Full Text Available OBJETIVE: It has been shown that neurosteroids can either block or stimulate the development of chronic and rapid tolerance to the incoordination and hypothermia caused by ethanol consumption. The aim of the present study was to investigate the influence of isopregnanolone on the development of rapid tolerance to the anxiolytic effect of ethanol in mice. METHOD: Male Swiss mice were pretreated with isopregnanolone (0.05, 0.10 or 0.20 mg/kg 30 min before administration of ethanol (1.5 g/kg. Twenty-four hours later, all animals we tested using the plus-maze apparatus. The first experiment defined the doses of ethanol that did or did not induce rapid tolerance to the anxiolytic effect of ethanol. In the second, the influence of pretreatment of mice with isopregnanolone (0.05, 0.10 or 0.20 mg/kg on rapid tolerance to ethanol (1.5 g/kg was studied. CONCLUSIONS: The results show that pretreatment with isopregnanolone interfered with the development of rapid tolerance to the anxiolytic effect of ethanol.

  7. Attenuation of a radiation-induced conditioned taste aversion after the development of ethanol tolerance

    International Nuclear Information System (INIS)

    Hunt, W.A.; Rabin, B.M.

    1988-01-01

    An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself

  8. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    2015-11-01

    Full Text Available Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

  9. Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis.

    Science.gov (United States)

    Liang, Meng; Kim, Min Hea; He, Qinghua Peter; Wang, Jin

    2013-09-01

    In this work we conducted the pseudo-continuous fermentation, i.e., continuous fermentation with cell retention, using Scheffersomyces stipitis, and studied its effect on ethanol tolerance of the strain. During the fermentation experiments, S. stipitis was adapted to a mild concentration of ethanol (20-26 g/L) for two weeks. Two substrates (glucose and xylose) were used in different fermentation experiments. After fermentation, various experiments were performed to evaluate the ethanol tolerance of adapted cells and unadapted cells. Compared to the unadapted cells, the viability of adapted cells increased by 8 folds with glucose as the carbon source and 6 folds with xylose as the carbon source following exposure to 60 g/L ethanol for 2 h. Improved ethanol tolerance of the adapted cells was also revealed in the effects of ethanol on plasma membrane permeability, extracellular alkalization and acidification. The mathematical modeling of cell leakage, extracellular alkalization and acidification revealed that cells cultured on glucose show better ethanol tolerance than cells cultured on xylose but the differences become smaller for adapted cells. The results show that pseudo-continuous fermentation can effectively improve cell's ethanol tolerance due to the environmental pressure during the fermentation process. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  11. Ethanol and sugar tolerance of wine yeasts isolated from fermenting ...

    African Journals Online (AJOL)

    Seventeen wine yeasts isolated from fermenting cashew apple juice were screened for ethanol and sugar tolerance. Two species of Saccharomyces comprising of three strains of S. cerevisiae and one S. uvarum showed measurable growth in medium containing 9% (v/v) ethanol. They were equally sugar-tolerant having ...

  12. Chronic ethanol or nicotine treatment results in partial cross-tolerance between these agents.

    Science.gov (United States)

    Burch, J B; de Fiebre, C M; Marks, M J; Collins, A C

    1988-01-01

    Female DBA/2Ibg mice were treated chronically (21 days) with ethanol- or dextrin-containing liquid diets or infused chronically with nicotine (8 mg/kg/h) or saline for 10 days. The responses of these animals to challenge doses of ethanol (2.5 g/kg) or nicotine (1 or 2 mg/kg) were measured using a test battery consisting of respiration rate, acoustic startle response, Y-maze crosses and rears, heart rate and body temperature. Chronic ethanol-treated animals were tolerant to the effects elicited by a challenge dose of ethanol on four of the six measures and were cross-tolerant to nicotine's effects on the acoustic startle test. Chronic nicotine-treated animals were tolerant to nicotine's effects on five of the six measures and cross-tolerant to ethanol's effects on heart rate and body temperature. Thus, partial cross-tolerance between ethanol and nicotine exists. Chronic nicotine treatment resulted in significant increases in L-[3H]-nicotine binding in six of seven brain regions and in alpha-[125I]-bungarotoxin binding in three of seven brain regions. Chronic ethanol treatment failed to alter the binding of either ligand. Therefore, the cross-tolerance that develops between ethanol and nicotine is not totally dependent on alterations in the number of brain nicotinic receptors.

  13. Effect of ethanol on galactose tolerance in man

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, C.T.; Rudnick, J.; McInteer, B.B.; Whaley, T.W.; Shreeve, W.W.

    1978-01-01

    Galactose-/sup 13/C was given to 18 subjects; /sup 13/CO/sub 2/ excretion in respiratory air was followed for 3 hours. Each subject was given galactose-/sup 13/C/sub 6/ (10 g/m/sup 2/), then retested some days later with the same amount of labeled sugar and a low level (3.5 g/m/sup 2/) of ethanol. On the basis of the /sup 13/CO/sub 2/ excretion curves in the presence and absence of ethanol, the subjects were divided into four groups (i.e., subjects considered as normal, probably normal, probable liver damage, and liver damage). Ethanol strongly inhibited galactose metabolism in normal subjects. This effect of ethanol progressively declined in the four groups until, in the last group (liver damage), ethanol had no further effect on the already severely depressed oxidation of galactose. Comparison of the galactose tolerance data with other clinical tests and with the results of a drinking history suggests that the ethanol-primed galactose tolerance test may give good discrimination between groups of people with varying degrees of liver damage short of frank cirrhosis, although alcohol-priming is not necessary to distinguish between normal and cirrhotic subjects.

  14. Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone.

    Science.gov (United States)

    Jacob, Joanna C; Poklis, Justin L; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L

    2017-07-01

    This study compared the development of tolerance to two orally bioavailable prescription opioids, oxycodone and hydrocodone, to that of morphine, and the reversal of this tolerance by ethanol. Oxycodone (s.c.) was significantly more potent in the mouse tail-withdrawal assay than either morphine or hydrocodone. Oxycodone was also significantly more potent in this assay than hydrocodone when administered orally. Tolerance was seen following chronic subcutaneous administration of each of the three drugs and by the chronic administration of oral oxycodone, but not following the chronic oral administration of hydrocodone. Ethanol (1 g/kg i.p.) significantly reversed the tolerance to the subcutaneous administration of each of the three opioids that developed when given 30 minutes prior to challenge doses. It took twice as much ethanol, when given orally, to reverse the tolerance to oxycodone. We investigated whether the observed tolerance to oxycodone and its reversal by ethanol were due to biodispositional changes or reflected a true neuronal tolerance. As expected, a relationship between brain oxycodone concentrations and activity in the tail-immersion test existed following administration of acute oral oxycodone. Following chronic treatment, brain oxycodone concentrations were significantly lower than acute concentrations. Oral ethanol (2 g/kg) reversed the tolerance to chronic oxycodone, but did not alter brain concentrations of either acute or chronic oxycodone. These studies show that there is a metabolic component of tolerance to oxycodone; however, the reversal of that tolerance by ethanol is not due to an alteration of the biodisposition of oxycodone, but rather is neuronal in nature. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  16. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    Science.gov (United States)

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  17. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  18. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  19. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  20. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation.

    Science.gov (United States)

    Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W

    2009-01-01

    The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.

  1. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production.

    Science.gov (United States)

    Cao, Tian-Shu; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2014-01-01

    It has been reported that trehalose plays an important role in stress tolerance in yeasts. Therefore, in order to construct a stably recombinant Saccharomyces sp. W0 with higher ethanol tolerance, the TPS1 gene encoding 6-phosphate-trehalose synthase cloned from Saccharomycopsis fibuligera A11 was ligated into the 18S rDNA integration vector pMIRSC11 and integrated into chromosomal DNA of Saccharomyces sp. W0. The transformant Z8 obtained had the content of 6.23 g of trehalose/100 g of cell dry weight, while Saccharomyces sp. W0 only contained 4.05 g of trehalose/100 g of cell dry weight. The transformant Z8 also had higher ethanol tolerance (cell survival was 25.1 % at 18 ml of ethanol/100 ml of solution) and trehalose-6-phosphate synthase (Tps1) activity (1.3 U/mg) and produced more ethanol (16.4 ml of ethanol/100 ml of medium) than Saccharomyces sp. W0 (cell survival was 12.1 % at 18 ml of ethanol/100 ml of solution, Tps1 activity was 0.8 U/mg and the produced ethanol concentration was 14.2 ml of ethanol/100 ml of medium) under the same conditions. The results show that trehalose indeed can play an important role in ethanol tolerance and ethanol production by Saccharomyces sp. W0.

  2. Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kiransree, N.; Sridhar, M.; Venkateswar Rao, L. [Department of Microbiology, Osmania University, Hyderabad (India)

    2000-03-01

    Of the four thermotolerant, osmotolerant, flocculating yeasts (VS{sub 1}, VS{sub 2}, VS{sub 3} and VS{sub 4}) isolated from the soil samples collected within the hot regions of Kothagudem Thermal Power Plant, located in Khammam Dt., Andhra Pradesh, India, VS{sub 1} and VS{sub 3} were observed as better performers. They were identified as Saccharomyces cerevisiae. VS{sub 1} and VS{sub 3} were tested for their growth characteristics and fermentation abilities on various carbon sources including molasses at 30 C and 40 C respectively. More biomass and fermentation was observed in sucrose, fructose and glucose. Maximum amount of ethanol produced by VS{sub 3} containing 150 (g/l) of these substrates were 74, 73, and 72 (g/l) at 30 C and 64, 61 and 63 (g/l) at 40 C respectively. With molasses containing 14% sugar, the amount of ethanol produced by VS{sub 3} was 53.2 and 45 (g/l) at 30 C and 40 C respectively. VS{sub 3} strain showed 12% W/V ethanol tolerance. VS{sub 3} strain was also characterised for its ethanol producing ability using various starchy substrates in solid state and submerged fermentation. More ethanol was produced in submerged than solid state fermentation. (orig.)

  3. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jill C Bettinger

    Full Text Available The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.

  4. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  5. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    Science.gov (United States)

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pavlovian control of cross-tolerance between pentobarbital and ethanol.

    Science.gov (United States)

    Cappell, H; Roach, C; Poulos, C X

    1981-01-01

    Tolerance to several effects of a number of drugs has been shown to depend on Pavlovian conditioning processes. Experiment I extended the compensatory conditioning model (Siegel 1975) to tolerance to the hypothermic effect of pentobarbital (30 mg/kg). In Experiment I, rats that acquired hypothermic tolerance in one environment did not display tolerance when tested in an environment not previously associated with drug administration. In Experiment II, rats were made tolerant to the hypothermic effect of pentobarbital (30 mg/kg) and tested for cross-tolerance to ethanol (2.5 g/kg). Cross-tolerance was observed, but it was significantly reduced if the test was in an environment different from the one in which tolerance to pentobarbital was originally acquired. Thus, the compensatory conditioning model accounts for at least part of the tolerance and cross-tolerance to the thermic effects of alcohol and pentobarbital. The physiological processes in the CNS underlying tolerance and cross-tolerance for these drugs, therefore, are controlled by associative processes.

  7. Recombinant yeast with improved ethanol tolerance and related methods of use

    Science.gov (United States)

    Gasch, Audrey P [Madison, WI; Lewis, Jeffrey A [Madison, WI

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  8. Engineering yeast transcription machinery for improved ethanol tolerance and production.

    Science.gov (United States)

    Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory

    2006-12-08

    Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.

  9. Long-term contextual memory in infant rats as evidenced by an ethanol conditioned tolerance procedure.

    Science.gov (United States)

    Castelló, Stefanía; Molina, Juan Carlos; Arias, Carlos

    2017-08-14

    Conditioned tolerance can be conceptualized as a particular case of Pavlovian conditioning in which contextual cues play the role of the conditioned stimulus. Although the evidence is contradictory, it is frequently assumed that long-term contextual conditioning in pre-weanling rats is weak or even absent. This hypothesis comes from and is sustained mainly by behavioral studies that explored different contextual effects in 16-18day-old rats using a fear-conditioning paradigm, but their conclusions are stated in terms of an immature (hippocampal-dependent) declarative memory system. The main goal of the present manuscript was based on a recent antecedent from our laboratory, to analyze whether context-dependent tolerance induced by ethanol during the pre-weanling period persists over time. Results showed that the context was able to modulate ethanol-induced tolerance in 2- and 3-week-old rats. Interestingly, contextual conditioned tolerance was stronger (in terms of persistence) during the third than during the second postnatal week. When subjects were tested 8days after training, when the context presumably lost its influence over tolerance, the opposite effect emerged (sensitization). These results are important for the ethanol literature, adding new evidence of long-term retention of ethanol effects acquired during infancy, whilst also showing striking ontogenetic differences in the sensitivity to ethanol between the 2nd and 3rd postnatal weeks. Importantly, contextual information modulates the expression of these ethanol effects even eight days after training, a result that is particularly relevant to the discussion of the ontogeny of contextual memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Selection of Ethanol-Tolerant Yeast Hybrids in pH-Regulated Continuous Culture

    OpenAIRE

    Jiménez, Juan; Benítez, Tahía

    1988-01-01

    Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemos...

  11. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  12. Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Varela, F.J.R. [Centro de Investigacion y de Estudios Avanzados, Coahuila (Mexico). Unidad Saltillo

    2008-07-01

    Recent studies have demonstrated that electroactive palladium (Pd) and Pd-alloy catalysts prepared using a sputtering technique possess a similar degree of activity as platinum (Pt) electrodes. This study demonstrated that Pd and Pd-alloys show a high degree of tolerance to ethanol during oxygen reduction reaction (ORR) processes. The onset potential of the ORR process in the presence of 0.5M of ethanol decreased by only 33 mV and 18 mV on Pd and Pd-cobalt (Co) catalysts. Linear sweep voltammetry experiments showed that no peak current density caused by the electro-oxidation of ethanol was observed in the Pd-based catalysts. The selective behaviour of the Pd and Pd-Co catalysts was attributed to a slow rate of adsorption of the ethanol as well as the presence of reaction intermediates on the catalytic surface. Results suggested that the Pd and Pd-Co catalysts are suitable candidates for direct alcohol fuel cell applications. 10 refs., 2 figs.

  13. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    Science.gov (United States)

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  14. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1

    Directory of Open Access Journals (Sweden)

    Sandrasegarampillai Balakumar

    2012-03-01

    Full Text Available Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min and osmotic shock (sorbitol 300gl-1, trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1 and ethanol (50gl-1 at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

  15. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  16. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  17. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  18. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.

    Science.gov (United States)

    Zheng, Dao-Qiong; Jin, Xin-Na; Zhang, Ke; Fang, Ya-Hong; Wu, Xue-Chang

    2017-05-01

    The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anti-hyperglycemic effect and glucose tolerance of guajava (Psidium guajava L.) leaf ethanol extract in diabetic rats

    Science.gov (United States)

    Yanis Musdja, Muhammad; Mahendra, Feizar; Musir, Ahmad

    2017-12-01

    Traditionally guava (Psidium guajava L) leaf is used for treatment of various ailments like diarrhea, wounds, rheumatism, anti-allergy, ant-spasmodic, etc, as folk medicine. The aim of this research is to know the effect of hypoglycemia and glucose tolerance of ethanol extract of guava leaf against male white rat. The guajava leaf was obtained from Balitro Bogor. Preparation of guajava leaf extract was done by cold maceration extraction technique using ethanol 70%. Male albino rats were made into diabetics using the alloxan method. Rats were divided into 6 groups, as a comparative drug for anti-hyperglycemic used glibenclamid and as a comparative drug for glucose tolerance used acarbose. The result of blood glucometer test showed that ethanol extract 70% of guajava leaf had effect as anti-hyperglycemic and glucose tolerance with no significant difference with glibenclamid drug as anti-hyperglycemic and acarbose as glucose tolerance drug.

  20. A Shortcut to the Production of High Ethanol Concentration from Jerusalem Artichoke Tubers

    Directory of Open Access Journals (Sweden)

    Wei-Guo Zhang

    2005-01-01

    Full Text Available Aspergillus niger SL-09, a newly isolated exoinulinase-hyperproducing strain, and Saccharomyces cerevisiae Z-06, with high ethanol tolerance, were used in a fed-batch process for simultaneous saccharification and fermentation of Jerusalem artichoke tuber mash and flour. S. cerevisiae Z-06 utilized 98 % of the total sugar and produced 19.6 % of ethanol in 48 h. In this process the conversion efficiency of the fermentation of Jerusalem artichoke and the production of ethanol were 90 % of the theoretical ethanol yield and the cost of the production of flour was cut nearly into half.

  1. Functional interaction and cross-tolerance between ethanol and Δ9-THC: possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors.

    Science.gov (United States)

    Dar, M Saeed

    2014-08-15

    We have previously shown a functional motor interaction between ethanol and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) that involved cerebellar adenosinergic A1 and GABAergic A receptor modulation. We now report the development of cross-tolerance between intracerebellar Δ(9)-THC and intraperitoneal ethanol using ataxia as the test response in male CD-1 mice. The drugs [Δ(9)-THC (20 μg), N(6)-cyclohexyladenosine, CHA (12 ng), muscimol (20 ng)] used in the study were directly microinfused stereotaxically via guide cannulas into the cerebellum except ethanol. Δ(9)-THC, infused once daily for 5 days followed 16 h after the last infusion by acute ethanol (2g/kg) and Rotorod evaluation, virtually abolished ethanol ataxia indicating development of cross-tolerance. The cross-tolerance was also observed when the order of ethanol and Δ(9)-THC treatment was reversed, i.e., ethanol injected once daily for 5 days followed 16 h after the last ethanol injection by Δ(9)-THC infusion. The cross-tolerance appeared within 24-48 h, lasted over 72 h and was maximal in 5-day ethanol/Δ(9)-THC-treated animals. Finally, tolerance in chronic ethanol/Δ(9)-THC/-treated animals developed not only to ethanol/Δ(9)-THC-induced ataxia, respectively, but also to the ataxia potentiating effect of CHA and muscimol, indicating modulation by cerebellar adenosinergic A1 and GABAA receptors. A practical implication of these results could be that marijuana smokers may experience little or no negative effects such as ataxia following alcohol consumption. Clinically, such antagonism of ethanol-induced ataxia can be observed in marijuana users thereby encouraging more alcohol consumption and thus may represent a risk factor for the development of alcoholism in this segment of population. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.

  3. Selectively bred crossed high-alcohol-preferring mice drink to intoxication and develop functional tolerance, but not locomotor sensitization during free-choice ethanol access.

    Science.gov (United States)

    Matson, Liana M; Kasten, Chelsea R; Boehm, Stephen L; Grahame, Nicholas J

    2014-01-01

    Crossed high-alcohol-preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines and demonstrate blood ethanol concentrations (BECs) during free-choice drinking reminiscent of those observed in alcohol-dependent humans. In this report, we investigated the relationship between free-choice drinking, intoxication, tolerance, and sensitization in cHAP mice. We hypothesized that initially mice would become ataxic after drinking alcohol, but that increased drinking over days would be accompanied by increasing tolerance to the ataxic effects of ethanol (EtOH). Male and female cHAP mice had free-choice access to 10% EtOH and water (E), while Water mice (W) had access to water alone. In experiment 1, the first drinking experience was monitored during the dark portion of the cycle. Once E mice reached an average intake rate of ≥1.5 g/kg/h, they, along with W mice, were tested for footslips on a balance beam, and BECs were assessed. In experiments 2, 3, and 4, after varying durations of free-choice 10% EtOH access (0, 3, 14, or 21 days), mice were challenged with 20% EtOH and tested for number of footslips on a balance beam or locomotor stimulant response. Blood was sampled for BEC determination. We found that cHAP mice rapidly acquire alcohol intakes that lead to ataxia. Over time, cHAP mice developed behavioral tolerance to the ataxic effects of alcohol, paralleled by escalating alcohol consumption. However, locomotor sensitization did not develop following 14 days of free-choice EtOH access. Overall, we observed increases in free-choice drinking with extended alcohol access paralleled by increases in functional tolerance, but not locomotor sensitization. These data support our hypothesis that escalating free-choice drinking over days in cHAP mice is driven by tolerance to alcohol's behavioral effects. These data are the first to demonstrate that escalating free-choice consumption is accompanied by increasing alcohol tolerance. In

  4. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  5. N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyi [Fukui Prefectural Univ., Fukui (Japan). Dept. of Bioscience; Takagi, Hiroshi [Nara Inst. of Science and Technology, Ikoma, Nara (Japan). Graduate School of Biological Sciences

    2007-07-15

    N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H{sub 2}O{sub 2}, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H{sub 2}O{sub 2} or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H{sub 2}O{sub 2}. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains. (orig.)

  6. Chronic free-choice drinking in crossed high alcohol preferring mice leads to sustained blood ethanol levels and metabolic tolerance without evidence of liver damage.

    Science.gov (United States)

    Matson, Liana; Liangpunsakul, Suthat; Crabb, David; Buckingham, Amy; Ross, Ruth Ann; Halcomb, Meredith; Grahame, Nicholas

    2013-02-01

    Crossed high alcohol preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines, and we demonstrate blood ethanol concentrations (BECs) during free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. Therefore, this line may provide an unprecedented opportunity to learn about the consequences of excessive voluntary ethanol (EtOH) consumption, including metabolic tolerance and liver pathology. Cytochrome p450 2E1 (CYP2E1) induction plays a prominent role in driving both metabolic tolerance and EtOH-induced liver injury. In this report, we sought to characterize cHAP drinking by assessing whether pharmacologically relevant BEC levels are sustained throughout the active portion of the light-dark cycle. Given that cHAP intakes and BECs are similar to those observed in mice given an EtOH liquid diet, we assessed whether free-choice exposure results in metabolic tolerance, hepatic enzyme induction, and hepatic steatosis. In experiment 1, blood samples were taken across the dark portion of a 12:12 light-dark cycle to examine the pattern of EtOH accumulation in these mice. In experiments 1 and 2, mice were injected with EtOH following 3 to 4 weeks of access to water or 10% EtOH and water, and blood samples were taken to assess metabolic tolerance. In experiment 3, 24 mice had 4 weeks of access to 10% EtOH and water or water alone, followed by necropsy and hepatological assessment. In experiment 1, cHAP mice mean BEC values exceeded 80 mg/dl at all sampling points and approached 200 mg/dl during the middle of the dark cycle. In experiments 1 and 2, EtOH-exposed mice metabolized EtOH faster than EtOH-naïve mice, demonstrating metabolic tolerance (p alcohol dehydrogenase and aldehyde dehydrogenase. These results demonstrate that excessive intake by cHAP mice results in sustained BECs throughout the active period, leading to the development of metabolic tolerance and evidence of CYP2E1 induction

  7. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  8. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  9. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  10. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  11. Alcohol levels do not accurately predict physical or mental impairment in ethanol-tolerant subjects: relevance to emergency medicine and dram shop laws.

    Science.gov (United States)

    Roberts, James R; Dollard, Denis

    2010-12-01

    The human body and the central nervous system can develop tremendous tolerance to ethanol. Mental and physical dysfunctions from ethanol, in an alcohol-tolerant individual, do not consistently correlate with ethanol levels traditionally used to define intoxication, or even lethality, in a nontolerant subject. Attempting to relate observed signs of alcohol intoxication or impairment, or to evaluate sobriety, by quantifying blood alcohol levels can be misleading, if not impossible. We report a case demonstrating the disconnect between alcohol levels and generally assigned parameters of intoxication and impairment. In this case, an alcohol-tolerant man, with a serum ethanol level of 515 mg/dl, appeared neurologically intact and cognitively normal. This individual was without objective signs of impairment or intoxication by repeated evaluations by experienced emergency physicians. In alcohol-tolerant individuals, blood alcohol levels cannot always be predicted by and do not necessarily correlate with outward appearance, overt signs of intoxication, or physical examination. This phenomenon must be acknowledged when analyzing medical decision making in the emergency department or when evaluating the ability of bartenders and party hosts to identify intoxication in dram shop cases.

  12. Ethanol Production Kinetics by a Thermo-Tolerant Mutant of Saccharomyces Cerevisiae from Starch Industry Waste (Hydrol

    Directory of Open Access Journals (Sweden)

    Farman Ali Shah

    2010-06-01

    Full Text Available A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP, and overall ethanol yield (YP/S were found to be 2.82 g L-1 h-1 and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol and death (Ed = 19.1 kJ/mol and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol revealed the thermo-stability of the organism for up to 47°C.

  13. Ethanol production kinetics by a thermo-tolerant mutant of saccharomyces cerevisiae from starch industry waste (hydrol)

    International Nuclear Information System (INIS)

    Shah, F.A.; Aziz, S.

    2010-01-01

    A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP), and overall ethanol yield (YP/S) were found to be 2.82 g L/sup -1/ h/sup -1/ and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol) and death (Ed = 19.1 kJ/mol) and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol) revealed the thermo-stability of the organism for up to 47 deg. C. (author)

  14. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  15. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain

    DEFF Research Database (Denmark)

    Devantier, Rasmus; Pedersen, S; Olsson, Lisbeth

    2005-01-01

    Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics such as the ......Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics...... such as the ethanol yield and volumetric and specific productivity were determined. It was shown that higher glucoamylase doses and/or pre-saccharification accelerated the simultaneous saccharification and fermentation process and increased the final ethanol concentration from 106 to 126 g/kg although the maximal...... specific growth rate was decreased. Ethanol production was not only growth related, as more than half of the total saccharides were consumed and more than half of the ethanol was produced during the stationary phase. Furthermore, a high stress tolerance of the applied yeast strain was found to be crucial...

  16. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Devantier, R. [Starch, Applied Discovery, Research and Development, Novozymes A/S, Bagsvaerd (Denmark); Center for Microbial Biotechnology, BioCentrum-DTU, Technical Univ. of Denmark, Kgs Lyngby (Denmark); Pedersen, S. [Starch, Applied Discovery, Research and Development, Novozymes A/S, Bagsvaerd (Denmark); Olsson, L. [Center for Microbial Biotechnology, BioCentrum-DTU, Technical Univ. of Denmark, Kgs Lyngby (Denmark)

    2005-09-01

    Ethanol was produced from very high gravity mashes of dry milled corn (35% w/w total dry matter) under simultaneous saccharification and fermentation conditions. The effects of glucoamylase dosage, pre-saccharification and Saccharomyces cerevisiae strain on the growth characteristics such as the ethanol yield and volumetric and specific productivity were determined. It was shown that higher glucoamylase doses and/or pre-saccharification accelerated the simultaneous saccharification and fermentation process and increased the final ethanol concentration from 106 to 126 g/kg although the maximal specific growth rate was decreased. Ethanol production was not only growth related, as more than half of the total saccharides were consumed and more than half of the ethanol was produced during the stationary phase. Furthermore, a high stress tolerance of the applied yeast strain was found to be crucial for the outcome of the fermentation process, both with regard to residual saccharides and final ethanol concentration. The increased formation of cell mass when a well-suited strain was applied increased the final ethanol concentration, since a more complete fermentation was achieved. (orig.)

  17. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  18. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  19. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929.

    Science.gov (United States)

    Liu, Siqing

    2014-11-01

    The Lactobacillus buchneri NRRL B-30929 strain, isolated from a fuel ethanol (EtOH) production facility, exhibits high tolerance to environmental EtOH concentrations. This study aimed to identify proteins produced by B-30929 in response to environmental EtOH. Cellular proteins expressed by B-30929 growing in media with 10 versus 0% EtOH were compared by 2DE, followed by in-gel digestion and MALDI-MS analyses. Twenty EtOH responsive proteins were identified. These include a proline-specific peptidase (Lbuc_1852); a membrane protein (Lbuc_0921), two general stress-related proteins including a 10 kDa chaperonin (GroESL Lbuc_1359) and a 29 kDa member of the HK 97 family (Lbuc_1523); metabolic enzymes involving redox potential balances (Lbuc_2051 and Lbuc_0522) and carbohydrate fermentation (Lbuc_1319 and Lbuc_2157); nitrogen, amino acid, and fatty acid metabolism proteins (Lbuc_1994, Lbuc_0446, Lbuc_0858, Lbuc_0707, and Lbuc_0787). These changes suggested B-30929 cells respond to EtOH by degradation of available proteins and fatty acids and increased production of specific enzymes and molecular chaperons. These results can be used to guide genetic modifications to increase EtOH tolerance in industrial biocatalysts. The data have been deposited to World-2DPAGE (http://world-2dpage.expasy.org/repository/0068/; username liu, password 1h8d6Mg1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R. Adron; Blednov, Yuri A.

    2013-01-01

    The continuous two bottle choice test is the most common measure of alcohol consumption but there is remarkably little information about the development of tolerance or dependence with this procedure. We showed that C57BL/6JxFVB/NJ and FVB/NJxC57BL/6J F1 hybrid mice demonstrate greater preference for and consumption of alcohol than either parental strain. In order to test the ability of this genetic model of high alcohol consumption to produce neuroadaptation, we examined development of alcohol tolerance and dependence after chronic self-administration using a continuous access two-bottle choice paradigm. Ethanol-experienced mice stably consumed about 16–18 g/kg/day of ethanol. Ethanol-induced withdrawal severity was assessed (after 59 days of drinking) by scoring handling-induced convulsions; withdrawal severity was minimal and did not differ between ethanol-experienced and -naïve mice. After 71 days of drinking, the rate of ethanol clearance was similar for ethanol-experienced and -naïve mice. After 77 days of drinking, ethanol-induced loss of righting reflex (LORR) was tested daily for 5 days. Ethanol-experienced mice had a shorter duration of LORR. For both ethanol-experienced and -naïve mice, blood ethanol concentrations taken at gain of righting reflex were greater on day 5 than on day 1, indicative of tolerance. After 98 days of drinking, ethanol-induced hypothermia was assessed daily for 3 days. Both ethanol-experienced and –naïve mice developed rapid and chronic tolerance to ethanol-induced hypothermia, with significant group differences on the first day of testing. In summary, chronic, high levels of alcohol consumption in F1 hybrid mice produced rapid and chronic tolerance to both the sedative/hypnotic and hypothermic effects of ethanol; additionally, a small degree of metabolic tolerance developed. The development of tolerance supports the validity of using this model of high alcohol consumption in genetic studies of alcoholism. PMID:23313769

  1. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  2. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  3. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  4. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  5. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  6. Neurogranin in the nucleus accumbens regulates NMDA receptor tolerance and motivation for ethanol seeking.

    Science.gov (United States)

    Reker, Ashlie N; Oliveros, Alfredo; Sullivan, John M; Nahar, Lailun; Hinton, David J; Kim, Taehyun; Bruner, Robert C; Choi, Doo-Sup; Goeders, Nicholas E; Nam, Hyung W

    2018-03-15

    Dysfunction of N-methyl-d-aspartate receptor (NMDAR) signaling in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng), a calmodulin-binding protein, is exclusively expressed in the post-synapse, and mediates NMDAR driven synaptic plasticity by regulating the calcium-calmodulin (Ca 2+ -CaM) pathway. To study the functional role of Ng in AUD, we administrated behavior tests including Pavlovian instrument transfer (PIT), operant conditioning, and rotarod test using Ng null mice (Ng -/- mice). We used adeno-associated virus (AAV)-mediated Ng expression and pharmacological manipulation to validate behavioral responses in Ng -/- mice. The results from our multidisciplinary approaches demonstrated that deficit of Ng increases tolerance to NMDAR inhibition and elicit faster cue reactivity during PIT without changes in ethanol reward. Operant conditioning results demonstrated that Ng -/- mice self-administered significantly more ethanol and displayed reduced sensitivity to aversive motivation. We identified that ethanol exposure decreases mGluR5 (metabotropic glutamate receptor 5) expression in the NAc of Ng -/- mice and pharmacological inhibition of mGluR5 reverses NMDAR desensitization in Ng -/- mice. Together these findings specifically suggest that accumbal Ng plays an essential role in the counterbalance between NMDAR and mGluR5 signaling; which alters NMDAR resistance, and thereby altering aversive motivation for ethanol and may ultimately contribute to susceptibility for alcohol addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of soya fatty acids on cassava ethanol fermentation.

    Science.gov (United States)

    Xiao, Dongguang; Wu, Shuai; Zhu, Xudong; Chen, Yefu; Guo, Xuewu

    2010-01-01

    Ethanol tolerance is a key trait of microbes in bioethanol production. Previous studies have shown that soya flour contributed to the increase of ethanol tolerance of yeast cells. In this paper, the mechanism of this ethanol tolerance improvement was investigated in cassava ethanol fermentation supplemented with soya flour or defatted soya flour, respectively. Experiment results showed that ethanol tolerance of cells from soya flour supplemented medium increased by 4-6% (v/v) than the control with defatted soya flour. Microscopic observation found that soya flour can retain the cell shape while dramatic elongations of cells were observed with the defatted soya flour supplemented medium. Unsaturated fatty acids (UFAs) compositions of cell membrane were analyzed and the UFAs amounts increased significantly in all tested strains grown in soya flour supplemented medium. Growth study also showed that soya flour stimulated the cell growth rate by approximately tenfolds at 72-h fermentation. All these results suggested that soya fatty acids play an important role to protect yeast cells from ethanol stress during fermentation process.

  8. Alcohol Ataxia Tolerance: Extinction Cues, Spontaneous Recovery, and Relapse

    OpenAIRE

    Brooks, Douglas C.

    2005-01-01

    This article reviews ethanol ataxic tolerance experiments with rats that investigate spontaneous recovery after extinction and how extinction-related cues reduce this recovery. Tolerance to the effects of many drugs including ethanol is partly the result of Pavlovian conditioning. Tolerance to the ataxic (and other) effects of ethanol depends critically upon the circumstances in which the drug is administered. Tolerance shows other characteristics common in Pavlovian conditioning, e.g.,. it c...

  9. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress.

    Science.gov (United States)

    Diniz, Raphael Hermano Santos; Villada, Juan C; Alvim, Mariana Caroline Tocantins; Vidigal, Pedro Marcus Pereira; Vieira, Nívea Moreira; Lamas-Maceiras, Mónica; Cerdán, María Esperanza; González-Siso, María-Isabel; Lahtvee, Petri-Jaan; da Silveira, Wendel Batista

    2017-09-01

    The thermotolerant yeast Kluyveromyces marxianus displays a potential to be used for ethanol production from both whey and lignocellulosic biomass at elevated temperatures, which is highly alluring to reduce the cost of the bioprocess. Nevertheless, contrary to Saccharomyces cerevisiae, K. marxianus cannot tolerate high ethanol concentrations. We report the transcriptional profile alterations in K. marxianus under ethanol stress in order to gain insights about mechanisms involved with ethanol response. Time-dependent changes have been characterized under the exposure of 6% ethanol and compared with the unstressed cells prior to the ethanol addition. Our results reveal that the metabolic flow through the central metabolic pathways is impaired under the applied ethanol stress. Consistent with these results, we also observe that genes involved with ribosome biogenesis are downregulated and gene-encoding heat shock proteins are upregulated. Remarkably, the expression of some gene-encoding enzymes related to unsaturated fatty acid and ergosterol biosynthesis decreases upon ethanol exposure, and free fatty acid and ergosterol measurements demonstrate that their content in K. marxianus does not change under this stress. These results are in contrast to the increase previously reported with S. cerevisiae subjected to ethanol stress and suggest that the restructuration of K. marxianus membrane composition differs in the two yeasts which gives important clues to understand the low ethanol tolerance of K. marxianus compared to S. cerevisiae.

  10. Heterologous expression of a rice metallothionein isoform (OsMTI-1b in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

    Directory of Open Access Journals (Sweden)

    Zahra Ansarypour

    Full Text Available Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.

  11. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  12. Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2013-03-01

    Full Text Available A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0.5 h−1. Furfural was added directly into the bioreactor by pulse injection or by addition into the feed medium to obtain furfural concentrations ranging from 0.1 to 21.8 g L−1. At all pulse injections of furfural, the yeast was able to convert the furfural very rapidly by in situ detoxification. When injecting 21.8 g L−1 furfural to the cultivation, the yeast converted it by a specific conversion rate of 0.35 g g−1 h−1. At high cell density, Saccharomyces cerevisiae could tolerate very high furfural levels without major changes in the ethanol production. During the continuous cultures when up to 17.0 g L−1 furfural was added to the inlet medium, the yeast successfully produced ethanol, whereas an increase of furfural to 18.6 and 20.6 g L−1 resulted in a rapidly decreasing ethanol production and accumulation of sugars in the permeate. This study show that continuous ethanol fermentations by total cell retention in a membrane bioreactor has a high furfural tolerance and can conduct rapid in situ detoxification of medium containing high furfural concentrations.

  13. The Cumulative Daily Tolerance Levels of Potentially Toxic Excipients Ethanol and Propylene Glycol Are Commonly Exceeded in Neonates and Infants

    DEFF Research Database (Denmark)

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell

    2018-01-01

    neonates and infants and compare these levels to the tolerance limits found in guidelines published by European Medicines Agency (EMA). As part of the SEEN study, all medicinal products administered to neonates and infants were recorded. All included neonates received ≥2 medicinal products/day and infants...... ≥3 medicinal products/day. Daily excipient levels were calculated based on quantities obtained from manufacturers or databases. Excipient levels were compared to tolerance limits proposed by the EMA. Altogether, 470 neonates and 160 infants were included, recording 4207 prescriptions and 316 products...... exceed tolerance limit of 6 mg/kg/day. Of the total number of prescriptions involving PG-containing medicinal products (n = 174), 70% would alone exceed a maximum tolerance limit of 50 mg/kg/day. Maximal daily exposure to ethanol (1563 mg/kg/day) or PG (954 mg/kg/day) exceeded the tolerance limits...

  14. Flocculent killer yeast for ethanol fermentation of beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kazuhito; Shimoii, Hitoshi; Sato, Shun' ichi; Saito, Kazuo; Tadenuma, Makoto

    1987-09-25

    When ethanol is produced using beet molasses, the concentration of ethanol is lower than that obtained using suger cane molasses. Yeast strain improvement was conducted to enhance ethanol production from beet molasses. The procedures and the results are as follows: (1) After giving ethanol tolerance to the flocculent yeast, strain 180 and the killer yeast, strain 909-1, strain 180-A-7, and strain 909-1-A-4 were isolated. These ethanol tolerant strains had better alcoholic fermentation capability and had more surviving cells in mash in the later process of fermentation than the parental strains. (2) Strain H-1 was bred by spore to cell mating between these two ethanol tolerant strains. Strain H-1 is both flocculent and killer and has better alcoholic fermentation capability than the parental strains. (3) In the fermentation test of beet molasses, strain H-1 showed 12.8% of alcoholic fermentation capability. It is equal to that of sugar cane molasses. Fermentation with reused cells were also successful. (5 figs, 21 refs)

  15. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  16. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  17. Experimental characterization and modeling of an ethanol steam reformer

    DEFF Research Database (Denmark)

    Mandø, Matthias; Bovo, Mirko; Nielsen, Mads Pagh

    2006-01-01

    This work describes the characterization of an ethanol reforming system for a high temperature PEM fuel cell system. High temperature PEM fuel cells are well suited for operation on reformate gas due to the superior CO tolerance compared with low temperature PEM. Steam reforming of liquid biofuels...

  18. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  19. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  20. High ethanol yields using Aspergillus oryzae koji and corn media

    Energy Technology Data Exchange (ETDEWEB)

    Ziffer, J.; Iosif, M.C.

    1982-01-01

    High ethanol and stillage solids were achieved using whole corn mashes. Ethanol yields of 14% (98.5% of theory) and stillage levels of approximately 23% were obtained in 74-90 hours using mild acid pretreatment with A. oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.

  1. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research to increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and

  2. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Soo [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Sciences; Kim, Na-Rae [Ewha Womans Univ., Seoul (Korea, Republic of). Div. of Life and Pharmaceutical Sciences; Yang, Jungwoo [Ewha Womans Univ., Seoul (Korea, Republic of). Microbial Resources Research Center; Choi, Wonja [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Sciences; Ewha Womans Univ., Seoul (Korea, Republic of). Div. of Life and Pharmaceutical Sciences; Ewha Womans Univ., Seoul (Korea, Republic of). Microbial Resources Research Center

    2011-08-15

    Saccharomyces cerevisiae strains tolerant to ethanol and heat stresses are important for industrial ethanol production. In this study, five strains (Tn 1-5) tolerant to up to 15% ethanol were isolated by screening a transposon-mediated mutant library. Two of them displayed tolerance to heat (42 C). The determination of transposon insertion sites and Northern blot analysis identified seven putative genes (CMP2, IMD4, SSK2, PPG1, DLD3, PAM1, and MSN2) and revealed simultaneous down-regulations of CMP2 and IMD4, and SSK2 and PPG1, down-regulation of DLD3, and disruptions of the open reading frame of PAM1 and MSN2, indicating that ethanol and/or heat tolerance can be conferred. Knockout mutants of these seven individual genes were ethanol tolerant and three of them (SSK2, PPG1, and PAM1) were tolerant to heat. Such tolerant phenotypes reverted to sensitive phenotypes by the autologous or overexpression of each gene. Five transposon mutants showed higher ethanol production and grew faster than the control strain when cultured in rich media containing 30% glucose and initial 6% ethanol at 30 C. Of those, two thermotolerant transposon mutants (Tn 2 and Tn 3) exhibited significantly enhanced growth and ethanol production compared to the control at 42 C. The genes identified in this study may provide a basis for the application in developing industrial yeast strains. (orig.)

  3. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself.

  4. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan M.

    2012-02-07

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  5. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan  M.; Contreras, Maria F.; Faller, Roland; Longo, Marjorie  L.

    2012-01-01

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  6. Ethanol tolerance in Aspergillus niger and Escherichia coli phytase

    Science.gov (United States)

    The expanded use of corn and other grain for biofuels have created an increased supply of dried grains with soluble (DDGS) and other byproducts of ethanol fermentation. Elevated levels of phytic acid in this DDGS indicate that ethanol is denaturing the native phytase produced by the yeast, Saccharo...

  7. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary; Becker, Howard C

    2016-04-01

    The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  9. A Highly Active and Alcohol-Tolerant Cathode Electrocatalyst Containing Ag Nanoparticles Supported on Graphene

    International Nuclear Information System (INIS)

    Jiang, Rongzhong; Moton, Elizabeth; McClure, Joshua P.; Bowers, Zachary

    2014-01-01

    A highly active oxygen reduction reaction (ORR) catalyst was synthesized by supporting Ag nano-particles on graphene nano platelets (Ag/GNP) via ultrasound treatment. The Ag/GNP catalyzes the O 2 molecule through a 4-electron reduction to water in 0.1 M KOH electrolyte. The half-wave potential for the ORR on Ag/GNP is similar to a Pt black coated electrode (i.e -0.27 V at Ag/GNP, and -0.18 V at 40% Pt/C vs.SCE). The kinetic rate for the ORR on Ag/GNP is 3.16 × 10 −2 cm · s −1 at -0.4 V vs. SCE. The effect of alcohols and other impurities on the ORR catalytic activity for Ag/GNP was examined and found to be highly tolerant to methanol, ethanol and ethylene glycol. The Ag/GNP catalyst is also tolerant to tetraalkyl ammonium hydroxides; i.e. functional groups related to the chemical structure of common alkaline electrolyte membranes

  10. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  11. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  12. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Jing; Ding, Wen-Tao; Zhang, Guo-Chang; Wang, Jing-Yu [Tianjin Univ. (China). Dept. of Biochemical Engineering

    2011-08-15

    Genome shuffling is an efficient way to improve complex phenotypes under the control of multiple genes. For the improvement of strain's performance in very high-gravity (VHG) fermentation, we developed a new method of genome shuffling. A diploid ste2/ste2 strain was subjected to EMS (ethyl methanesulfonate) mutagenesis followed by meiotic recombination-mediated genome shuffling. The resulting haploid progenies were intrapopulation sterile and therefore haploid recombinant cells with improved phenotypes were directly selected under selection condition. In VHG fermentation, strain WS1D and WS5D obtained by this approach exhibited remarkably enhanced tolerance to ethanol and osmolarity, increased metabolic rate, and 15.12% and 15.59% increased ethanol yield compared to the starting strain W303D, respectively. These results verified the feasibility of the strain improvement strategy and suggested that it is a powerful and high throughput method for development of Saccharomyces cerevisiae strains with desired phenotypes that is complex and cannot be addressed with rational approaches. (orig.)

  13. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  14. Tolerance to disulfiram induced by chronic alcohol intake in the rat.

    Science.gov (United States)

    Tampier, Lutske; Quintanilla, María Elena; Israel, Yedy

    2008-06-01

    Disulfiram, an inhibitor of aldehyde dehydrogenase used in the treatment of alcoholism, is an effective medication when its intake is supervised by a third person. However, its therapeutic efficacy varies widely, in part due to the fact that disulfiram is a pro-drug that requires its transformation into an active form and because it shows a wide range of secondary effects which often prevent the use of doses that ensure full therapeutic effectiveness. In this preclinical study in rats we report the development of tolerance to disulfiram induced by the chronic ingestion of ethanol, an additional source of variation for the actions of disulfiram with possible therapeutic significance, We also addresses the likely mechanism of this effect. Wistar-derived rats bred for generations as high ethanol drinkers (UChB) were trained for either 3 days (Group A) or 30 days (Group B) to choose between ethanol (10% v/v) or water, which were freely available from 2 bottles on a 24-hour basis. Subsequently, animals in both groups were administered disulfiram or cyanamide (another inhibitor of aldehyde dehydrogenase) and ethanol intake in this free choice paradigm was determined. Animals were also administered a standard dose of 1 g ethanol/kg (i.p) and arterial blood acetaldehyde was measured. Disulfiram (12.5 and 25 mg/kg) and cyanamide (10 mg/kg) markedly inhibited ethanol intake (up to 60 to 70%) in animals that had ethanol access for only 3 days (Group A). However both drugs were inactive in inhibiting ethanol intake in animals that had consumed ethanol for 30 days (Group B). Following the injection of 1 g ethanol/kg, arterial blood acetaldehyde levels reached levels of 150 and 300 microM for disulfiram and cyanamide respectively, values which were virtually identical regardless of the length of prior ethanol intake of the animals. Chronic ethanol intake in high-drinker rats leads to marked tolerance to the aversive effects of disulfiram and cyanamide on ethanol intake despite

  15. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  16. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  17. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    Science.gov (United States)

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  18. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  19. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    .e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied...... ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  20. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  1. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    International Nuclear Information System (INIS)

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-01-01

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  2. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E

    2013-03-28

    Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved

  3. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    Science.gov (United States)

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  4. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  5. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    International Nuclear Information System (INIS)

    Dybiec, L.D.; Rumpho, M.E.; Kennedy, R.A.

    1989-01-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N 2 , plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N 2 increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N 2 . Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by [ 35 S]-Met labeling of 3 day old seedlings grown in air or N 2 . Significant protein synthesis was measured in tolerant seedlings under N 2 and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance

  6. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni

    NARCIS (Netherlands)

    Silveira, da M.G.; Baumgärtner, M.; Rombouts, F.M.; Abee, T.

    2004-01-01

    The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol

  7. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  8. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  9. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    Science.gov (United States)

    He, Qinggang; Chen, Wei; Mukerjee, Sanjeev; Chen, Shaowei; Laufek, František

    Carbon-supported Pd 4Au- and Pd 2.5Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd 4Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media.

  10. Improvement of growth, fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract.

    Science.gov (United States)

    Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus

    2010-01-30

    The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.

  11. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  12. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  13. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    Science.gov (United States)

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  14. Summary of High-Octane Mid-Level Ethanol Blends Study

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Timothy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alleman, Teresa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Fioroni, Gina [National Renewable Energy Lab. (NREL), Golden, CO (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Huff, Shean P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leiby, Paul Newsome [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oladosu, Gbadebo A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szybist, James P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thomas, John F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Original equipment manufacturers (OEMs) of light-duty vehicles are pursuing a broad portfolio of technologies to reduce CO2 emissions and improve fuel economy. Central to this effort is higher efficiency spark ignition (SI) engines, including technologies reliant on higher compression ratios and fuels with improved anti-knock properties, such as gasoline with significantly increased octane numbers. Ethanol has an inherently high octane number and would be an ideal octane booster for lower-octane petroleum blendstocks. In fact, recently published data from Department of Energy (DOE) national laboratories (Splitter and Szybist, 2014a, 2014b; Szybist, 2010; Szybist and West, 2013) and OEMs (Anderson, 2013) and discussions with the U.S. Environmental Protection Agency (EPA) suggest the potential of a new high octane fuel (HOF) with 25–40 vol % of ethanol to assist in reaching Renewable Fuel Standard (RFS2) and greenhouse gas (GHG) emissions goals. This mid-level ethanol content fuel, with a research octane number (RON) of about 100, appears to enable efficiency improvements in a suitably calibrated and designed engine/vehicle system that are sufficient to offset its lower energy density (Jung, 2013; Thomas, et al, 2015). This efficiency improvement would offset the tank mileage (range) loss typically seen for ethanol blends in conventional gasoline and flexible-fuel vehicles (FFVs). The prospects for such a fuel are additionally attractive because it can be used legally in over 18 million FFVs currently on the road. Thus the legacy FFV fleet can serve as a bridge by providing a market for the new fuel immediately, so that future vehicles will have improved efficiency as the new fuel becomes widespread. In this way, HOF can simultaneously help improve fuel economy while expanding the ethanol market in the United States via a growing market for an ethanol blend higher than E10. The DOE Bioenergy Technologies Office initiated a collaborative research program

  15. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  16. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  17. High-pressure pyrolysis and oxidation of ethanol

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2018-01-01

    against the present data as well as ignition delay times and flame speed measurements from literature. The model predicted the onset of fuel conversion and the composition of products from the flow reactor experiments fairly well. It also predicted well ignition delays above 900 K whereas it overpredicted...... reported flame speeds slightly. The results of sensitivity analyses revealed the importance of the reaction between ethanol and the hydroperoxyl radical for ignition at high pressure and intermediate temperatures. An accurate determination of the rate coefficients for this reaction is important to improve......The pyrolysis and oxidation of ethanol has been investigated at temperatures of 600–900 K, a pressure of 50 bar and residence times of 4.3–6.8 s in a laminar flow reactor. The experiments, conducted with mixtures highly diluted in nitrogen, covered fuel-air equivalence ratios (Φ) of 0.1, 1.0, 43...

  18. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  19. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Wang Jiangxin

    2012-12-01

    Full Text Available Abstract Background Fermentation production of biofuel ethanol consumes agricultural crops, which will compete directly with the food supply. As an alternative, photosynthetic cyanobacteria have been proposed as microbial factories to produce ethanol directly from solar energy and CO2. However, the ethanol productivity from photoautotrophic cyanobacteria is still very low, mostly due to the low tolerance of cyanobacterial systems to ethanol stress. Results To build a foundation necessary to engineer robust ethanol-producing cyanobacterial hosts, in this study we applied a quantitative transcriptomics approach with a next-generation sequencing technology, combined with quantitative reverse-transcript PCR (RT-PCR analysis, to reveal the global metabolic responses to ethanol in model cyanobacterial Synechocystis sp. PCC 6803. The results showed that ethanol exposure induced genes involved in common stress responses, transporting and cell envelope modification. In addition, the cells can also utilize enhanced polyhydroxyalkanoates (PHA accumulation and glyoxalase detoxication pathway as means against ethanol stress. The up-regulation of photosynthesis by ethanol was also further confirmed at transcriptional level. Finally, we used gene knockout strains to validate the potential target genes related to ethanol tolerance. Conclusion RNA-Seq based global transcriptomic analysis provided a comprehensive view of cellular response to ethanol exposure. The analysis provided a list of gene targets for engineering ethanol tolerance in cyanobacterium Synechocystis.

  20. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    International Nuclear Information System (INIS)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    Highlights: • High solids (30% dry matter) pretreatment, enzymatic hydrolysis and fermentation. • Horizontal rotary reactor for hydrolysis and fermentation. • In situ hydrolysates detoxification using inhibitors adsorbing PEI polymer. • 50% of inhibitors recovered as by-product, recyclability of PEI polymer up to 5 times. • 76% of maximum theoretical ethanol was fermented at final concentration of 51 g/kg. - Abstract: Performing the bioethanol production process at high solids loading is a requirement for economic feasibility at industrial scale. So far this has successfully been achieved using wheat straw and other agricultural residues at 30% of water insoluble solids (WIS), but for softwood species (i.e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to ∼20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble polyelectrolyte polymer (polyethylenimine, PEI) to absorb inhibitory compounds in the material. On average 50% removal and recovery of the main inhibitors (HMF, furfural, acetic acid and formic acid) was achieved dosing 1.5% w/w of soluble PEI. The use of PEI was compatible with operating the process at high solids loadings and enabled fermentation of hydrolysates, which

  1. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Mukerjee, Sanjeev [Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Chen, Wei; Chen, Shaowei [Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Laufek, Frantisek [Czech Geological Survey (Czech Republic)

    2009-02-15

    Carbon-supported Pd{sub 4}Au- and Pd{sub 2.5}Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd{sub 4}Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media. (author)

  2. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Sawayama, Shigeki [National Inst. of Advanced Industrial Science and Technology (AIST), Hiroshima (JP). Biomass Technology Research Center (BTRC); Kodaki, Tsutomu [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2009-08-15

    Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed. (orig.)

  3. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  4. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.

    Science.gov (United States)

    Favaro, Lorenzo; Basaglia, Marina; Trento, Alberto; Van Rensburg, Eugéne; García-Aparicio, Maria; Van Zyl, Willem H; Casella, Sergio

    2013-11-29

    Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse. This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the

  5. Study on genotypic variation for ethanol production from sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Ratnavathi, C.V.; Suresh, K.; Kumar, B.S. Vijay; Pallavi, M.; Komala, V.V.; Seetharama, N. [Directorate of Sorghum Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh (India)

    2010-07-15

    Sugarcane molasses is the main source for ethanol production in India. Sweet sorghum with its juicy stem containing sugars equivalent to that of sugarcane is a very good alternative for bio-ethanol production to meet the energy needs of the country. Sweet sorghum is drought resistant, water logging resistant and saline-alkaline tolerant. Growing sweet sorghum for ethanol production is relatively easy and economical and ethanol produced from sweet sorghum is eco-friendly. In view of this, it is important to identify superior genotypes for ethanol production in terms of percent juice brix, juice extractability, total fermentable sugars, ethanol yield and fermentation efficiency. This paper presents the study on the variability observed for the production of ethanol by various sweet sorghum genotypes in a laboratory fermentor. Five Sweet Sorghum (Sorghum bicolor L. Moench) genotypes were evaluated for ethanol production from stalk juice (Keller, SSV 84, Wray, NSSH 104 and BJ 248). Sweet sorghum juice differs from cane juice mainly in its higher content of starch and aconitic acid. Data were collected for biomass yield; stalk sugar yield and ethanol production in five genotypes. Maximum ethanol production of 9.0%w/v ethanol was obtained with Keller variety (20% sugar concentration was used), and decreased for other genotypes. A distiller's strain of Saccharomyces cerevisiae (gifted by Seagram Distilleries Ltd.) was employed for fermentation. The fermentation efficiency (FE) was 94.7% for this strain. High biomass of yeast was obtained with BJ 248 variety. When the similar experiments were conducted with unsterile sweet sorghum juice (15% sugar concentration) 6.47%w/v ethanol was produced. (author)

  6. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    Science.gov (United States)

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  7. Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress

    Directory of Open Access Journals (Sweden)

    Yukina Yamauchi

    2016-08-01

    Full Text Available Severe ethanol stress (>9% ethanol, v/v as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be intensively translated under glucose deprivation, suggesting that some mRNAs are preferentially translated even under severe ethanol stress. In the present study, we tried to identify the mRNA that can be preferentially translated under severe ethanol stress. BTN2 encodes a v-SNARE binding protein, and its null mutant shows hypersensitivity to ethanol. We found that BTN2 mRNA was efficiently translated under severe ethanol stress but not under mild ethanol stress. Moreover, the increased Btn2 protein levels caused by severe ethanol stress were smoothly decreased with the elimination of ethanol stress. These findings suggested that severe ethanol stress extensively induced BTN2 expression. Further, the BTN2 promoter induced protein synthesis of non-native genes such as CUR1, GIC2, and YUR1 in the presence of high ethanol concentrations, indicating that this promoter overcame severe ethanol stress-induced translation repression. Thus, our findings provide an important clue about yeast response to severe ethanol stress and suggest that the BTN2 promoter can be used to improve the efficiency of ethanol production and stress tolerance of yeast cells by modifying gene expression in the presence of high ethanol concentration.

  8. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  9. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    Science.gov (United States)

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    flocculating yeast and a temperature-reduction profile. Ethanol toxicity is intensified in the presence of lignocellulosic inhibitors at temperatures that are beneficial to hydrolysis in high-gravity SSCF. The counteracting effects of temperature on cell viability and hydrolysis call for more tolerant microorganisms, enzyme systems with lower temperature optimum, or full optimization of the multifeed strategy with temperature profile.

  10. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.

    Science.gov (United States)

    Khatun, M Mahfuza; Yu, Xinshui; Kondo, Akihiko; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Eleutherio Elis CA

    2001-07-01

    Full Text Available Abstract Background Living cells constantly sense and adapt to redox shifts by the induction of genes whose products act to maintain the cellular redox environment. In the eukaryote Saccharomyces cerevisiae, while stationary cells possess a degree of constitutive resistance towards oxidants, treatment of exponential phase cultures with sub-lethal stresses can lead to the transient induction of protection against subsequent lethal oxidant conditions. The sensors of oxidative stress and the corresponding transcription factors that activate gene expression under these conditions have not yet been completely identified. Results We report the role of SOD1, SOD2 and TPS1 genes (which encode the cytoplasmic Cu/Zn-superoxide dismutase, the mitochondrial Mn-isoform and trehalose-6-phosphate synthase, respectively in the development of resistance to oxidative stress. In all experimental conditions, the cultures were divided into two parts, one was immediately submitted to severe stress (namely: exposure to H2O2, heat shock or ethanol stress while the other was initially adapted to 40°C for 60 min. The deficiency in trehalose synthesis did not impair the acquisition of tolerance to H2O2, but this disaccharide played an essential role in tolerance against heat and ethanol stresses. We also verified that the presence of only one Sodp isoform was sufficient to improve cellular resistance to 5 mM H2O2. On the other hand, while the lack of Sod2p caused high cell sensitivity to ethanol and heat shock, the absence of Sod1p seemed to be beneficial to the process of acquisition of tolerance to these adverse conditions. The increase in oxidation-dependent fluorescence of crude extracts of sod1 mutant cells upon incubation at 40°C was approximately 2-fold higher than in sod2 and control strain extracts. Furthermore, in Western blots, we observed that sod mutants showed a different pattern of Hsp104p and Hsp26p expression also different from that in their control

  12. A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hou, L.; Cao, X.; Wang, C. [Tianjin Univ. of Science and Technology, Tianjin (China). Key Laboratory of Food Nutrition and Safety

    2010-06-15

    The partial substitution of fossil fuels with bioethanol has become an important strategy for the use of renewable energy. Ethanol production is generally achieved through fermentation of starch or sugar-based feedstock by Saccharomyces cerevisiae. In order to meet the growing demand for ethanol, there is a need for new yeast strains that can produce ethanol more efficiently and cost effectively. This paper presented a new genome engineering approach that was developed to improve ethanol production by S. cerevisiae. In this study, the aneuploid strain constructed on the base of tetraploid cells was shown to have favourable metabolic traits in very high gravity (VHG) fermentation with 300 g/L glucose as the carbon source. The tetraploid strain was constructed using the plasmid YCplac33-GHK, which comprised the HO gene encoding the site-specific HO endonucleases. The aneuploid strain, WT4-M, was chosen and screened once the tetraploid cells were treated with methyl benzimidazole-2-yl-carbamate to induce loss of mitotic chromosomes. The aneuploid strain WT4-M increased ethanol production as well as osmotic and thermal tolerance. The sugar to ethanol conversion rate also improved. It was concluded that this new approach is valuable for creating yeast strains with better fermentation characteristics. 25 refs., 3 figs.

  13. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    Science.gov (United States)

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  15. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    Science.gov (United States)

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an

  16. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.

    Science.gov (United States)

    Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong

    2015-06-01

    Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.

  17. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  18. Derived thermodynamic properties for the (ethanol + decane) and (carbon dioxide + ethanol + decane) systems at high pressures

    International Nuclear Information System (INIS)

    Zamora-López, Héctor S.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio; Hernández-Rosales, Irma P.; Méndez-Lango, Edgar

    2012-01-01

    Highlights: ► Experimental density data are reported for (ethanol + decane) and (ethanol + decane + CO 2 ) mixtures. ► Compressed liquid densities were measured in a vibrating tube densimeter from (313 to 363) K. ► Excess molar volumes for (ethanol + decane) mixtures are positive. ► The presence of carbon dioxide in the (ethanol + decane) mixture causes negative excess molar volumes. - Abstract: Volumetric properties for the binary (ethanol + decane) and ternary (ethanol + decane + carbon dioxide) systems are reported from (313 to 363) K and pressures up to 20 MPa. Compressed liquid densities of both systems were measured in a vibrating tube densimeter at different compositions. Binary mixtures {x 1 ethanol + (1-x 1 ) decane} were prepared at x 1 = 0.0937, 0.1011, 0.2507, 0.4963, 0.7526, 0.9014. Compositions for the ternary system were prepared by varying the ethanol/decane relation and trying to keep constant the presence of carbon dioxide at about 0.2 mole fraction. These were {x 1 ethanol + x 2 decane + (1-x 1 -x 2 ) carbon dioxide} x 1 = 0.0657, 0.1986, 0.4087, 0.6042, 0.7109. Density results were correlated using an empirical model with five parameters. Deviations between experimental and calculated values agree and are within the experimental uncertainty. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated for both binary and ternary systems using the empirical model.

  19. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions.

    Science.gov (United States)

    Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y

    2012-01-01

    Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the

  20. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  1. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cíntia Lacerda Ramos

    2013-09-01

    Full Text Available Sixty six indigenous Saccharomyces cerevisiae strains were evaluated in stressful conditions (temperature, osmolarity, sulphite and ethanol tolerance and also ability to flocculate. Eighteen strains showed tolerant characteristics to these stressful conditions, growing at 42 ºC, in 0.04% sulphite, 1 mol L-1 NaCl and 12% ethanol. No flocculent characteristics were observed. These strains were evaluated according to their fermentative performance in sugar cane juice. The conversion factors of substrates into ethanol (Yp/s, glycerol (Yg/s and acetic acid (Yac/s, were calculated. The highest values of Yp/s in sugar cane juice fermentation were obtained by four strains, one isolated from fruit (0.46 and the others from sugar cane (0.45, 0.44 and 0.43. These values were higher than the value obtained using traditional yeast (0.38 currently employed in the Brazilian bioethanol industry. The parameters Yg/s and Yac/s were low for all strains. The UFLA FW221 presented the higher values for parameter related to bioethanol production. Thus, it was tested in co-culture with Lactobacillus fermentum. Besides this, a 20-L vessel for five consecutive batches of fermentation was performed. This strain was genetically stable and remained viable during all batches, producing high amounts of ethanol. The UFLA FW221 isolated from fruit was suitable to produce bioethanol in sugar cane juice. Therefore, the study of the biodiversity of yeasts from different environmental can reveal strains with desired characteristics to industrial applications.

  2. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  3. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David; Blanch, Harvey; Keasling, Jay D.

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.

  4. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  5. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2015-07-01

    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.

  6. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.

    Science.gov (United States)

    Rahayu, Farida; Kawai, Yuto; Iwasaki, Yuki; Yoshida, Koichiro; Kita, Akihisa; Tajima, Takahisa; Kato, Junichi; Murakami, Katsuji; Hoshino, Tamotsu; Nakashimada, Yutaka

    2017-12-01

    A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile.

    Science.gov (United States)

    Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena

    2017-11-03

    Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.

  8. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects.

    Science.gov (United States)

    la Porte, Charles; Voduc, Nha; Zhang, Guijun; Seguin, Isabelle; Tardiff, Danielle; Singhal, Neera; Cameron, D William

    2010-07-01

    Trans-resveratrol is a polyphenol, which is found in red wine and has cancer chemo-preventive properties and disease-preventive properties. The pharmacokinetics of trans-resveratrol have been investigated in single-dose studies and in studies with relatively low dosages. The present study aimed to investigate the steady-state pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol). This was a two-period, open-label, single-arm, within-subject control study in eight healthy subjects. The steady-state 12-hour pharmacokinetics of trans-resveratrol 2000 mg twice daily were studied with a standard breakfast, a high-fat breakfast, quercetin 500 mg twice daily and 5% alcohol 100 mL. Trans-resveratrol plasma concentrations were determined using liquid chromatography with tandem mass spectrometry. The mean (SD) area under the plasma concentration-time curve from 0 to 12 hours (AUC(12)) and maximum plasma concentration (C(max)) of trans-resveratrol were 3558 (2195) ng * h/mL and 1274 (790) ng/mL, respectively, after the standard breakfast. The high-fat breakfast significantly decreased the AUC(12) and C(max) by 45% and 46%, respectively, when compared with the standard breakfast. Quercetin 500 mg twice daily or 5% alcohol 100 mL did not influence trans-resveratrol pharmacokinetics. Diarrhoea was reported in six of the eight subjects. Significant but not clinically relevant changes from baseline were observed in serum potassium and total bilirubin levels. Trans-resveratrol 2000 mg twice daily resulted in adequate exposure and was well tolerated by healthy subjects, although diarrhoea was frequently observed. In order to maximize trans-resveratrol exposure, it should be taken with a standard breakfast and not with a high-fat meal. Furthermore, combined intake with quercetin or alcohol did not influence trans-resveratrol exposure.

  9. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  10. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  12. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  13. Direct Fungal Production of Ethanol from High-Solids Pulps by the Ethanol-fermenting White-rot Fungus Phlebia sp. MG-60

    Directory of Open Access Journals (Sweden)

    Ichiro Kamei

    2014-07-01

    Full Text Available A white-rot fungus, Phlebia sp. MG-60, was applied to the fermentation of high-solid loadings of unbleached hardwood kraft pulp (UHKP without the addition of commercial cellulase. From 4.7% UHKP, 19.6 g L-1 ethanol was produced, equivalent to 61.7% of the theoretical maximum. The highest ethanol concentration (25.9 g L-1, or 46.7% of the theoretical maximum was observed in the culture containing 9.1% UHKP. The highest filter paper activity (FPase was observed in the culture containing 4.7% UHKP, while the production of FPase in the 16.5% UHKP culture was very low. Temporarily removing the silicone plug from Erlenmeyer flasks, which relieved the pressure and allowed a small amount of aeration, improved the yield of ethanol produced from the 9.1% UHKP, which reached as high as 37.3 g L-1. These results indicated that production of cellulase and ensuing saccharification and fermentation by Phlebia sp. MG-60 is affected by water content and benefits from a small amount of aeration.

  14. A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Mezzina, Mariela P.; Álvarez, Daniela; Egoburo, Diego

    2017-01-01

    The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. Phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against...... as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and to other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which...... and chemicals production.Importance. This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the Pha...

  15. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    Science.gov (United States)

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  16. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  17. Transmicrocatheter local injection of ethanol to treat hepatocellular carcinoma with high flow arteriovenous shunts

    International Nuclear Information System (INIS)

    Guan Shouhai; Shan Hong; Jiang Zaibo; Huang Mingsheng; Zhu Kangshun; Li Zhengran; Meng Xiaochun

    2002-01-01

    Objective: To evaluate the feasibility and clinical effect of embolization therapy in treating the high flow hepatic arteriovenous shunts in hepatocellular carcinoma (HCC) by locally injected ethanol through microcatheter. Methods: Forty-one branches of arteriovenous shunts were treated by local ethanol infusion through microcatheter in 29 patients suffered with HCC. Angiography was performed to observe the embolization effect and influence to non-targeted vessels. Result: Forty-one branches of arteriovenous shunts in 29 patients were injected with ethanol locally. Each single shunt was infused 1-6 times. The dose of ethanol was 2-3 ml per time, and the total dose of ethanol was 2-12 ml. All shunting tracts were embolized, and all non-target vessels were protected fluently. Iodine-oil deposition was well in continued TACE. Their syndromes were improved or disappeared. Conclusion: Transmicrocatheter injection of ethanol could safely and effectively treat the hepatic arteriovenous shunts and make advantages to TACE in HCC

  18. Comparison of tolerance to soil acidity among crop plants. II. Tolerance to high levels of aluminum and manganese. Comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Hayakawa, Y

    1975-01-01

    Research was conducted by growing various species of plants in solutions containing high concentrations of manganese or aluminum. A comparison was made of the tolerance of these plants to low pH and to the manganese and aluminum. In addition, the element content of the plants was compared. Plants high in calcium were found to have an intermediate tolerance to high concentrations of manganese and aluminum. Gramineae had a high tolerance to these elements and to low pH. They also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Cruciferae had a low tolerance to the elements and to low pH. They contained low levels of manganese and aluminum. Chenopodiaceae had a low tolerance to the elements as well as low element contents. However, they were highly tolerant to low pH.

  19. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    Science.gov (United States)

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Production of 16% ethanol from 35% sucrose

    International Nuclear Information System (INIS)

    Breisha, Gaber Z.

    2010-01-01

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g -1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l -1 together with thiamine at a level of 0.2 g l -1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm 3 min -1 m 3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  1. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?

    International Nuclear Information System (INIS)

    Sopuck, R.D.

    2002-01-01

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's ethanol facility also produces a high protein cattle feed called distillers dry grain. Controversies surround the ethanol industry over both the economics and the environmental benefits and impacts. At issue is the economic efficiency of the production of ethanol, where opponents claim that the final product contains less energy than that required to produce it. A small gain is obtained, as revealed by a recent study. It is difficult to quantify the environmental effects of the ethanol industry, whether they be negative or positive. The author indicates that no matter what happens, the gasoline market in Manitoba is so small when compared to the rest of the world that the effect will not be significant. The three methods for the production of ethanol are: (1) the most risky and expensive method is the stand alone ethanol production facility, (2) integrated facilities where other products are produced, such as wet mash or nutraceuticals, and (3) integrated facilities where dry mash can be exported as a high protein feed. The production of a wide range of products is clearly the best option to be considered during the design of an ethanol facility. Price collapse and the capitalizing of subsidies into prices are the main risks facing the expansion of ethanol production in Manitoba. The author states that direct subsidies and price supports should be avoided, since subsidies would encourage the conversion of more feed grain into ethanol. The feed shortage would worsen especially as Manitoba does not currently produce enough feed to support its growing livestock industry. The author concludes that

  2. Ethanol Production from Lignocellulose by the Dimorphic Fungus Mucor Indicus

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, P.R.; Taherzadeh, M.J. (School of Engineering, Univ. of Boraas, SE-50190, Boraas (Sweden)). e-mail: Patrik.Lennartsson@hb.se; Karimi, K. (Dept. of Chemical Engineering, Isfahan Univ. of Technology, 84156-83111, Isfahan (IR)); Edebo, L. (Dept. of Clinical Bacteriology, Univ. of Goeteborg, SE-41346, Goeteborg (Sweden))

    2008-10-15

    Ethanol production from dilute-acid lignocellulosic hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then used to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus, is useful for ethanol production from toxic substrates independent of its morphology. Keywords: bio-ethanol, lignocellulosic materials, dilute acid hydrolysis, Mucor indicus, dimorphic fungi

  3. Predictors of ethanol consumption in adult Sprague-Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake.

    Science.gov (United States)

    Karatayev, Olga; Barson, Jessica R; Carr, Ambrose J; Baylan, Jessica; Chen, Yu-Wei; Leibowitz, Sarah F

    2010-06-01

    To investigate mechanisms in outbred animals that increase the propensity to consume ethanol, it is important to identify and characterize these animals before or at early stages in their exposure to ethanol. In the present study, different measures were examined in adult Sprague-Dawley rats to determine whether they can predict long-term propensity to overconsume ethanol. Before consuming 9% ethanol with a two-bottle choice paradigm, rats were examined with the commonly used behavioral measures of novelty-induced locomotor activity and anxiety, as assessed during 15 min in an open-field activity chamber. Two additional measures, intake of a low 2% ethanol concentration or circulating triglyceride (TG) levels after a meal, were also examined with respect to their ability to predict chronic 9% ethanol consumption. The results revealed significant positive correlations across individual rats between the amount of 9% ethanol ultimately consumed and three of these different measures, with high scores for activity, 2% ethanol intake, and TGs identifying rats that consume 150% more ethanol than rats with low scores. Measurements of hypothalamic peptides that stimulate ethanol intake suggest that they contribute early to the greater ethanol consumption predicted by these high scores. Rats with high 2% ethanol intake or high TGs, two measures found to be closely related, had significantly elevated expression of enkephalin (ENK) and galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) but no change in neuropeptide Y (NPY) in the arcuate nucleus (ARC). This is in contrast to rats with high activity scores, which in addition to elevated PVN ENK expression showed enhanced NPY in the ARC but no change in GAL. Elevated ENK is a common characteristic related to all three predictors of chronic ethanol intake, whereas the other peptides differentiate these predictors, with GAL enhanced with high 2% ethanol intake and TG measures but NPY related to activity. 2010 Elsevier

  4. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Ning; Bai, Yun; Liu, Chen-Guang; Zhao, Xin-Qing; Xu, Jian-Feng; Bai, Feng-Wu

    2014-03-01

    Whereas Saccharomyces cerevisiae uses the Embden-Meyerhof-Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner-Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ∼100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost-effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  6. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  7. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  8. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    Science.gov (United States)

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  10. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  11. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    Science.gov (United States)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly

  13. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  14. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  15. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  16. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  17. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose.

    Science.gov (United States)

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hatanaka, Haruyo; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-01-10

    Production of ethanol from xylose at high temperature would be an economical approach since it reduces risk of contamination and allows both the saccharification and fermentation steps in SSF to be running at elevated temperature. Eight recombinant xylose-utilizing Saccharomyces cerevisiae strains developed from industrial strains were constructed and subjected to high-temperature fermentation at 38 °C. The best performing strain was sun049T, which produced up to 15.2 g/L ethanol (63% of the theoretical production), followed by sun048T and sun588T, both with 14.1 g/L ethanol produced. Via transcriptomic analysis, expression profiling of the top three best ethanol producing strains compared to a negative control strain, sun473T, led to the discovery of genes in common that were regulated in the same direction. Identification of the 20 most highly up-regulated and the 20 most highly down-regulated genes indicated that the cells regulate their central metabolism and maintain the integrity of the cell walls in response to high temperature. We also speculate that cross-protection in the cells occurs, allowing them to maintain ethanol production at higher concentration under heat stress than the negative controls. This report provides further transcriptomics information in the interest of producing a robust microorganism for high-temperature ethanol production utilizing xylose. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum

    Directory of Open Access Journals (Sweden)

    Tran Dang Xuan

    2015-08-01

    Full Text Available The use of biofuels helps to reduce the dependency on fossil fuels and therefore decreases CO2 emission. Ethanol mixed with gasoline in mandatory percentages has been used in many countries. However, production of ethanol mainly depends on food crops, commonly associated with problems such as governmental policies and social controversies. Sweet sorghum (Sorghum bicolor (L. Moench is one of the most potential and appropriate alternative crops for biofuel production because of its high biomass and sugar content, strong tolerance to environmental stress conditions and diseases, and wide adaptability to various soils and climates. The aim of this study was to select prospective varieties of sweet sorghum, optimum sowing times and densities to achieve high yields of ethanol production and to establish stable operational conditions in cultivating this crop. The summer-autumn cropping season combined with the sowing densities of 8.3–10.9 plant m−2 obtained the highest ethanol yield. Among cultivated locations, the soil with pH of 5.5 and contents of Al and Zn of 39.4 and 0.6 g kg−1, respectively, was the best condition to have an ethanol yield >5000 L ha−1. The pH ≥ 6.0 may be responsible for the significant reduction of zinc content in soils, which decreases both biomass of sweet sorghum and ethanol yield, while contents of N, P, K, organic carbon (OC and cation exchange capacity (CEC, and Fe likely play no role. The cultivar 4A was the preferred candidate for ethanol production and resistant to pests and diseases, especially cut worm (Agrotis spp..

  19. Treatment of hyperfunctioning thyroid nodules by percutaneous ethanol injection.

    Science.gov (United States)

    Larijani, Bagher; Pajouhi, Mohammad; Ghanaati, Hossein; Bastanhagh, Mohammad-Hassan; Abbasvandi, Fereshteh; Firooznia, Kazem; Shirzad, Mahmood; Amini, Mohammad-Reza; Sarai, Maryam; Abbasvandi, Nasreen; Baradar-Jalili, Reza

    2002-12-06

    BACKGROUND: Autonomous thyroid nodules can be treated by a variety of methods. We assessed the efficacy of percutaneous ethanol injection in treating autonomous thyroid nodules. METHODS: 35 patients diagnosed by technetium-99 scanning with hyperfunctioning nodules and suppressed sensitive TSH (sTSH) were given sterile ethanol injections under ultrasound guidance. 29 patients had clinical and biochemical hyperthyroidism. The other 6 had sub-clinical hyperthyroidism with suppressed sTSH levels (thyroid hormone levels. Ethanol injections were performed once every 1-4 weeks. Ethanol injections were stopped when serum T3, T4 and sTSH levels had returned to normal, or else injections could no longer be performed because significant side effects. Patients were followed up at 3, 6 and, in 15 patients, 24 months after the last injection. RESULTS: Average pre-treatment nodule volume [18.2 PlusMinus; 12.7 ml] decreased to 5.7 PlusMinus; 4.6 ml at 6 months follow-up [P thyroid hormone levels at 3 and 6 months follow-up [P 0.05]. Ethanol injections were well tolerated by the patients, with only 2 cases of transient dysphonia. CONCLUSION: Our findings indicate that ethanol injection is an alternative to surgery or radioactive iodine in the treatment of autonomous thyroid nodules.

  20. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  1. “Jello® Shots” and Cocktails as Ethanol Vehicles: Parametric Studies with High- and Low-Saccharin-Consuming Rats

    Directory of Open Access Journals (Sweden)

    Nancy K. Dess

    2013-11-01

    Full Text Available Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose; ethanol concentration (4% or 10%; and feeding status (chow deprived or ad lib. during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS or low (LoS saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed.

  2. Furfural tolerance and detoxification mechanism in Candida tropicalis.

    Science.gov (United States)

    Wang, Shizeng; Cheng, Gang; Joshua, Chijioke; He, Zijun; Sun, Xinxiao; Li, Ruimin; Liu, Lexuan; Yuan, Qipeng

    2016-01-01

    Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis 's robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation. Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis 's half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis , the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis ( ctADH1 ) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1 , we found that C. tropicalis 's furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli 's furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased

  3. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  4. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  5. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  6. High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    2017-07-01

    Full Text Available On Mars, significant amounts (0.4–0.6% of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6% during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7% sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.

  7. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, H. [Departement of Applied Chemistry, Dongguan University of Technology, Dongguan 523106 (China); Shen, P.K. [School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Jiang, S.P.

    2007-12-03

    Pd nanowire arrays (NWAs) with high electrochemically active surface area are successfully fabricated using anodized aluminum oxide electrodeposition. The electrocatalytic activity and stability of the Pd NWAs for ethanol electrooxidation are not only significantly higher that of conventional Pd film electrodes, but also higher than that of well-established commercial PtRu/C electrocatalysts. The Pd NWAs show great potential as electrocatalysts for ethanol electrooxidation in alkaline media in direct ethanol fuel cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli.

    Science.gov (United States)

    Mezzina, Mariela P; Álvarez, Daniela S; Egoburo, Diego E; Díaz Peña, Rocío; Nikel, Pablo I; Pettinari, M Julia

    2017-07-15

    The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals. IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E

  9. Ligno-ethanol in competition with food-based ethanol in Germany

    International Nuclear Information System (INIS)

    Poganietz, Witold-Roger

    2012-01-01

    First-generation biofuels are often challenged over their potentially adverse impact on food prices. Biofuels that use nonfood biomass such as lignocellulose are being promoted to ease the conflict between fuels and food. However, their complex processes mean that the total costs of lignocellulosic ethanol may be high in comparison. This might undermine the economic soundness of plans for its use. Another potential advantage of lignocellulosic ethanol is seen in an enhanced contribution to a reduction in greenhouse gas emissions. Yet the increasing attractiveness of lignocellulosic biofuels may also lead to changes in land use that induce additional carbon emissions. For this reason, the environmental impacts of such plans are not straightforward and depend on the affected category of land. The objective of this paper is to compare the economic perspectives and environmental impact of lignocellulosic ethanol with food-based ethanol taking into account market constraints and policy measures. The analysis of the environmental impact focuses on carbon dioxide emissions. In the medium run, i.e., by 2020, lignocellulosic ethanol could enter the gasoline market, crowding out inter alia food-based ethanol. In terms of carbon dioxide emissions, lignocellulosic ethanol seems to be environmentally desirable in each of the analyzed cases. The findings depend crucially on the market conditions, which are influenced inter alia by crude oil, the exchange rate, and technology conditions. -- Highlights: ► Competition of ligno-ethanol with competing energy carriers is analyzed. ► In medium-term ligno-ethanol could crowd out food-based ethanol. ► In terms of CO 2 ligno-ethanol seems to be environmentally desirable. ► The environmental impacts include by land use change induced CO 2 emissions. ► The findings depend crucially on market conditions.

  10. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    Science.gov (United States)

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  11. Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping; Zhang, Jian; Sun, Ying-Chao; Shi, Peng-Fei [Department of Applied Chemistry, Harbin Institute of Technology, Harbin (China 150001)

    2006-09-29

    This research is aimed to improve the utilization and activity of anodic alloy catalysts and thus to lower the contents of noble metals and the catalyst loading on anodes for ethanol electrooxidation. The DEFC anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by a chemical reduction method. Their performances were tested by using a glassy carbon working electrode and cyclic voltammetric curves, chronoamperometric curves and half cell measurement in a solution of 0.5molL{sup -1} CH{sub 3}CH{sub 2}OH and 0.5molL{sup -1} H{sub 2}SO{sub 4}. The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face centered cubic structures and had smaller lattice parameters than a Pt-alone catalyst. Their particle sizes were small, about 4.5nm. No significant differences in the ethanol electrooxidation on both electrodes were found using cyclic voltammetry, especially regarding the onset potential for ethanol electrooxidation. The electrochemically active specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts were almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst was higher for ethanol electrooxidation than that of the Pt-Ru/C catalyst. Their tolerance to CO formed as one of the intermediates of ethanol electrooxidation, was better than that of the Pt-Ru/C catalyst. (author)

  12. Examination of Ethanol Marketing and Input Procurement Practices of the U.S. Ethanol Producers

    OpenAIRE

    Spaulding, Aslihan D.; Schmidgall, Timothy J.

    2008-01-01

    Growing concerns about the dependence on foreign oil and high prices of gasoline have led to rapid growth in ethanol production in the past decade. Unlike earlier development of the ethanol industry which was highly concentrated in a few large corporations, recent ownership of the ethanol plants has been by farmer-owned cooperatives. Not much is known about the marketing and purchasing practices and plants’ flexibility with respect to adapting new technologies. The purpose of this research is...

  13. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    Science.gov (United States)

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  14. High-temperature fermentation. How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Banat, Babiker M.A.; Hoshida, Hisashi; Nonklang, Sanom; Akada, Rinji [Yamaguchi Univ. Graduate School of Medicine, Ube (Japan). Dept. of Applied Molecular Bioscience; Ano, Akihiko [Iwata Chemical Co. Ltd. (Japan)

    2010-01-15

    The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5 C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies. (orig.)

  15. Solanum nigrum Protects against Hepatic Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats

    Directory of Open Access Journals (Sweden)

    Cheng-Jeng Tai

    2016-02-01

    Full Text Available Background: Advanced glycation end products (AGEs signal through the receptor for AGE (RAGE, which can lead to hepatic fibrosis in hyperglycemia and hyperlipidemia. We investigated the inhibitory effect of aqueous extracts from Solanum nigrum (AESN on AGEs-induced RAGE signaling and activation of hepatic stellate cells (HSCs and hyperglycemia induced by high-fat diet with ethanol. Methods: An animal model was used to evaluate the anti-hepatic fibrosis activity of AESN in rats fed a high-fat diet (HFD; 30% with ethanol (10%. Male Wistar rats (4 weeks of age were randomly divided into four groups (n = 6: (1 control (basal diet; (2 HFD (30% + ethanol (10% (HFD/ethanol; (3 HFD/ethanol + AESN (100 mg/kg, oral administration; and (4 HFD/ethanol + pioglitazone (10 mg/kg, oral administration and treated with HFD for 6 months in the presence or absence of 10% ethanol in dietary water. Results: We found that AESN improved insulin resistance and hyperinsulinemia, and downregulated lipogenesis via regulation of the peroxisome proliferator-activated receptor α (PPARα, PPARγ co-activator (PGC-1α, carbohydrate response element-binding protein (ChREBP, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS mRNA levels in the liver of HFD/ethanol-treated rats. In turn, AESN may delay and inhibit the progression of hepatic fibrosis, including α-smooth muscle actin (α-SMA inhibition and MMP-2 production. Conclusions: These results suggest that AESN may be further explored as a novel anti-fibrotic strategy for the prevention of liver disease.

  16. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  17. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  18. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  19. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  20. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  1. Phase behaviour measurements for the system (carbon dioxide + biodiesel + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Araújo, Odilon A.S.; Silva, Fabiano R.; Ramos, Luiz P.; Lenzi, Marcelo K.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Graphical abstract: Comparison between ethyl and methyl esters in a pressure-composition of {CO 2 (1) + biodiesel(2)} at 303.15 K (triangles), 323.15 K (squares) and 343.15 K (circles). Open symbols are ethyl biodiesel (this work) and closed symbols are methyl biodiesel data by Pinto et al. Highlights: ► We measured phase behaviour for the system involving {CO 2 + biodiesel + ethanol}. ► The saturation pressures were obtained using a variable-volume view cell. ► The experimental data were modelled using PR-vdW2 and PR-WS equations of state. - Abstract: This work reports phase equilibrium measurements for binary system {CO 2 (1) + biodiesel(2)} and ternary system {CO 2 (1) + biodiesel(2) + ethanol(3)}. The biodiesel (ethyl esters) used in this work was produced from soybean oil, purified and characterised following the standard specification for subsequent use. Nowadays, great interest in biodiesel production processes at supercritical and/or pressurised solvents is observed, such as, non-catalytic supercritical biodiesel production and enzyme-catalyzed biodiesel production, besides the supercritical CO 2 can be an interesting alternative to glycerol separation in the biodiesel purification step. Towards this, the main goal of this work is to study the phase behaviour at high pressure for the binary and ternary systems involving CO 2 , biodiesel and ethanol. Experiments were carried out in a high pressure variable-volume view cell with operating temperatures ranging from (303.15 to 343.15) K and pressures up to 25 MPa. The CO 2 molar fraction ranged from 0.4213 to 0.9855 for the system {CO 2 (1) + biodiesel(2)}, 0.4263 to 0.9781 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:3), and 0.4317 to 0.9787 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:8). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL

  2. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  3. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, A.; Shigechi, H.; Abe, M.; Uyama, K. [Dept. of Chemical Science and Engineering, Kobe Univ., Nadaku, Kobe (Japan); Matsumoto, T.; Fukuda, H. [Div. of Molecular Science, Kobe Univ., Nadaku, Kobe (Japan); Takahashi, S.; Ueda, M.; Tanaka, A. [Dept. of Synthetic Chemistry and Biological Chemistry, Kyoto Univ., Sakyoku, Kyoto (Japan); Kishimoto, M. [Dept. of Biotechnology, Osaka Univ., Osaka (Japan)

    2002-07-01

    A Strain of host yeast YF207, which is a tryptophan auxotroph and shows strong flocculation ability, was obtained from Saccharomyces diastaticus ATCC60712 and S. cerevisiae W303-1B by tetrad analysis. The plasmid pGA11, which is a multicopy plasmid for cell-surface expression of the Rhyzopus oryzae glucoamylase/{alpha}-agglutinin fusion protein, was then introduced into this flocculent yeast strain (YF207/pGA11). Yeast YF207/pGA11 grew rapidly under aerobic condition (dissolved oxygen 2.0 ppm), using soluble starch. The harvested cells were used for batch fermentation of soluble starch to ethanol under anaerobic condition and showed high ethanol production rates (0.71 g h{sup -1} I{sup -1}) without a time lag, because glucoamylase was immobilized on the yeast cell surface. During repeated utilization of cells for fermentation, YF207/pGA11 maintained high ethanol production rates over 300 h. Moreover, in fed-batch fermentation with YF207/pGA11 for approximately 120 h, the ethanol concentration reached up to 50 g I{sup -1}. In conclusion, flocculent yeast cells displaying cell-surface glucoamylase are considered to be very effective for the direct fermentation of soluble starch to ethanol. (orig.)

  4. The Effect of Ethanol Extract of Aerial Parts of the Mentha piperita in the Acquisition, Tolerance Expression and Dependence to Morphine in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    N Khajeh

    2015-04-01

    Full Text Available Background & aim: Morphine dependence is a compulsive pattern of drug taking, resulting from the positive reinforcement of the rewarding effects of drug taking and the negative reinforcement of withdrawal syndrome that accompanies the cessation of drug taking. The objective of this study was to investigate the effect of ethanol extract of aerial parts of the Mentha piperita in the acquisition, tolerance expression and dependence to morphine in adult male mice Methods: In the present study, 75 NMRI mice were divided into fifiteen groups. The Hot-plate test was used to survey the morphine activity. Morphine was injected (2.5, 5, 10, 20, 40 mg/kg, i.p. twice daily for seven days, except in 8th day in which morphine was administrated at a single dose (50 mg/kg. The extract (50, 75, 100 mg/kg was injected for eight days. The control animals were intact, and sham animals only received morphine. Naloxone was injected (10 mg/kg five hours after the final dose of morphine and the withdrawal signs were recorded during a 30 minute period. The data were expressed as mean values ± SEM and tested, using analysis of one-way ANOVA test. Results: Peppermint extract at doses of 75 and 100 kg significantly improved the tolerance expression and dependence to morphine in animals and significantly reduced the symptoms of withdrawal. Conclusion: Peppermint extract was commuted morphine tolerance and dependence in mice.The plant contained component(s that alleviate morphine withdrawal syndrome. The extract possibly be effective in improving tolerance to morphine.

  5. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  6. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  7. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L leaves in high fatty diet rats

    Directory of Open Access Journals (Sweden)

    Sachin V. Tembhurne

    2012-05-01

    Full Text Available Objective: To evaluate the hypoglycemic and anti-obesity activities of of Murraya koenigii leaves. Method: The study was performed in high fatty diet induced obesity rats. After 15 days baseline period the treatments animals were received ethanolic extract of Murraya koenigii leaves (300 and 500 mg/kg in high fatty diet rats. All the treatments were given for one month. On 30th day all the fasted animals received an intraperitoneal injection of glucose (1 g/kg for glucose tolerance test. At the end of study body weight, total cholesterol, triglycerides, and blood glucose level were measured. Results: The results demonstrate clearly that repeated oral administration of Murraya koenigii leaves evoked a potent anti-hyperglycaemic activity in high fat diet obese rats. Postprandial hyperglycaemic peaks were significantly lower in plant-treated experimental groups. In other hand, high fatty diet group increased the both total cholesterol and triglycerides levels as compared to control group. While administration of Murraya koenigii leaves significantly decreased in both cholesterol as well as triglycerides. Conclusions: We can conclude that Murraya koenigii leaves evokes potent anti-hyperglycaemic and anti-obesity effects. This fact could support their use by the diabetes patient for controlling body weight as well as maintains the glycemic level.

  8. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  9. Spillover effect induced Pt-TiO2/C as ethanol tolerant oxygen reduction reaction catalyst for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Meenakshi, S.; Nishanth, K.G.; Sridhar, P.; Pitchumani, S.

    2014-01-01

    Hypo-hyper-d-electronic interactive nature is used to develop a new carbon supported HT-Pt-TiO 2 composite catalyst comprising Pt and Ti in varying atomic ratio, namely 1:1, 2:1 and 3:1. The electro-catalysts are characterized by XRD, TEM, SEM-EDAX, Cyclic Voltammetry (CV) and Linear sweep voltammetry (LSV) techniques. HT-Pt-TiO 2 /C catalysts exhibit significant improvement in oxygen reduction reaction (ORR) over Pt/C. The effect of composition towards ORR with and without ethanol has been studied. The direct ethanol fuel cell (DEFC) with HT-Pt-TiO 2 /C cathode catalyst exhibits an enhanced peak power density of 41 mW cm −2 , whereas 21 mW cm −2 is obtained for the DEFCs with carbon-supported Pt catalyst operating under identical conditions

  10. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw

    DEFF Research Database (Denmark)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David

    2014-01-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from...... of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately...

  11. Novel Biocatalytic Platform for Ethanol Production from Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chyi-Shin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tachea, Firehiwot [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregg, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rolison-Welch, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shirazi, Fatemeh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Qian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sun, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-23

    The goals of the CRADA were achieved by illustrating the scalability of immobilized yeast technology, demonstrating lignocellulosic feedstock consumption by the immobilized cells, and confirming Microvi’s proprietary polymer matrix ethanol toxicity tolerance. We conducted fermentations at 2L and 300L scales. For carbon source, we performed pretreatment and saccharification at 100L scale to produce lignocellulosic sugars with glucose and xylose.

  12. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  13. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  14. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  15. Acquired tolerance and in situ detoxification of furfural and HMF through glucose metabolic pathways by Saccharomyces cerevisiae

    Science.gov (United States)

    Lignocellulosic biomass conversion inhibitors furfural and HMF inhibit microbial growth and interfere with subsequent fermentation of ethanol. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, little is known about system mechanisms of the tolerance and detoxi...

  16. Study of gasoline mixture with 10% of anhydrous ethanol. Physic-chemical properties evaluation

    International Nuclear Information System (INIS)

    Torres, Jaime; Molina, Daniel; Pinto, Carlos; Rueda, Fernando

    2002-01-01

    This study includes the assessment results for blends of premium and regular gasoline produced in Barrancabermeja' s refinery with 10vol% anhydrous ethanol and concentrations within this range (from 5vol% to 15vol%). The results may allow for a more precise definition of the characteristics for the desired blend. The survey basically focused on the Reid vapor pressure (RVP) and the antiknock index (RON+MON/2) properties, in order to determine the variations within these properties when 5vol%, 10vol%, and 15vol% anhydrous ethanol is added to the base fuels. Based on these results, the RVP and antiknock index were determined for the base fuels, blended with 10vol% ethanol, to comply with the quality standards required for Colombian fuels in year 2005. For the adjustment of the base fuel's RVP, light-vapors, nitrogen-dragging stripper was designed and built. As for the adjustment of the base fuel's antiknock index, blends with straight naphtha were made for lower index values, while blends with cracked naphtha and high octane alkylate were made for higher index values. Having determined the specifications for base fuels, as required to blend them with 10vol% ethanol and meet the quality standards for Colombian gasoline in year 2005, water tolerance for the blends was estimated at temperature ranges of 273 k to 313 k

  17. Treatment of hyperfunctioning thyroid nodules by percutaneous ethanol injection

    Directory of Open Access Journals (Sweden)

    Sarai Maryam

    2002-12-01

    Full Text Available Abstract Background Autonomous thyroid nodules can be treated by a variety of methods. We assessed the efficacy of percutaneous ethanol injection in treating autonomous thyroid nodules. Methods 35 patients diagnosed by technetium-99 scanning with hyperfunctioning nodules and suppressed sensitive TSH (sTSH were given sterile ethanol injections under ultrasound guidance. 29 patients had clinical and biochemical hyperthyroidism. The other 6 had sub-clinical hyperthyroidism with suppressed sTSH levels (3, T4 and sTSH levels had returned to normal, or else injections could no longer be performed because significant side effects. Patients were followed up at 3, 6 and, in 15 patients, 24 months after the last injection. Results Average pre-treatment nodule volume [18.2 ± 12.7 ml] decreased to 5.7 ± 4.6 ml at 6 months follow-up [P 4 and sTSH did not change significantly between 6 months and 2 years [P > 0.05]. Ethanol injections were well tolerated by the patients, with only 2 cases of transient dysphonia. Conclusion Our findings indicate that ethanol injection is an alternative to surgery or radioactive iodine in the treatment of autonomous thyroid nodules.

  18. Impact of low dose prenatal ethanol exposure on glucose homeostasis in Sprague-Dawley rats aged up to eight months.

    Directory of Open Access Journals (Sweden)

    Megan E Probyn

    Full Text Available Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring's health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure.

  19. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis

    OpenAIRE

    Tano,Marcia Sadae; Buzato,João Batista

    2003-01-01

    Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g su...

  20. High-Efficiency Palladium Nanoparticles Supported on Hydroxypropyl-β-Cyclodextrin Modified Fullerene [60] for Ethanol Oxidation

    International Nuclear Information System (INIS)

    Zhang, Qing; Bai, Zhengyu; Shi, Min; Yang, Lin; Qiao, Jinli; Jiang, Kai

    2015-01-01

    Highlights: • C 60 support provides new ways to develop catalyst materials for its distorted structure. • Pd nanoparticles with uniform size and high dispersion have been successfully assembled on HP-β-CD-C 60 in aqueous solution. • Pd/HP-β-CD-C 60 shows very promising catalytic activity for ethanol oxidation. - Abstract: In this paper, Palladium nanoparticles with uniform size and high dispersion have been successfully assembled on hydroxypropyl-β-Cyclodextrin (HP-β-CD) modified C 60 (abbreviated as HP-β-CD-C 60 ) via a sodium borohydride reduction process. According to the transmission electron microscopy (TEM) measurements, the average particle size of the as-prepared Pd nanoparticles dispersed on HP-β-CD modified C 60 is 2.7 nm. Electrochemical studies reveal that the Pd/HP-β-CD-C 60 modified electrode shows a significantly high electrocatalytic activity, much more negative onset potentials and better stability than electrodes modified by other electrocatalysts for ethanol oxidation, which indicates that it is a better potential candidate for application in a direct ethanol fuel cell (DEFC)

  1. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    Science.gov (United States)

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  3. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  4. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Mishra, Mukti Nath; Kumar, Santosh; Gupta, Namrata; Kaur, Simarjot; Gupta, Ankush; Tripathi, Anil K

    2011-04-01

    Azospirillum brasilense, a plant-growth-promoting rhizobacterium, is exposed to changes in its abiotic environment, including fluctuations in temperature, salinity, osmolarity, oxygen concentration and nutrient concentration, in the rhizosphere and in the soil. Since extra-cytoplasmic function (ECF) sigma factors play an important role in stress adaptation, we analysed the role of ECF sigma factor (also known as RpoE or σ(E)) in abiotic stress tolerance in A. brasilense. An in-frame rpoE deletion mutant of A. brasilense Sp7 was carotenoidless and slow-growing, and was sensitive to salt, ethanol and methylene blue stress. Expression of rpoE in the rpoE deletion mutant complemented the defects in growth, carotenoid biosynthesis and sensitivity to different stresses. Based on data from reverse transcriptase-PCR, a two-hybrid assay and a pull-down assay, we present evidence that rpoE is cotranscribed with chrR and the proteins synthesized from these two overlapping genes interact with each other. Identification of the transcription start site by 5' rapid amplification of cDNA ends showed that the rpoE-chrR operon was transcribed by two promoters. The proximal promoter was less active than the distal promoter, whose consensus sequence was characteristic of RpoE-dependent promoters found in alphaproteobacteria. Whereas the proximal promoter was RpoE-independent and constitutively expressed, the distal promoter was RpoE-dependent and strongly induced in response to stationary phase and elevated levels of ethanol, salt, heat and methylene blue. This study shows the involvement of RpoE in controlling carotenoid synthesis as well as in tolerance to some abiotic stresses in A. brasilense, which might be critical in the adaptation, survival and proliferation of this rhizobacterium in the soil and rhizosphere under stressful conditions.

  5. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  6. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    Directory of Open Access Journals (Sweden)

    Mauraine Carlier

    Full Text Available Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV, a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  7. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    Science.gov (United States)

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  8. Investigation of a Pt-Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Castro Luna, A. M.; Bonesi, A.; Triaca, W. E.; Blasi, A. Di; Stassi, A.; Baglio, V.; Antonucci, V.; Arico, A. S.

    2010-01-01

    Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt-Fe/C), with a particle size of about 2-3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt-Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm 2 DEFC single cells at 60 and 80 o C. An improvement in single cell performance was observed in the presence of the Pt-Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm -2 at 2 bar rel. cathode pressure and 80 o C.

  9. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol.

    Science.gov (United States)

    Zaki, A M; Wimalasena, T T; Greetham, D

    2014-11-01

    Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.

  10. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  11. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  12. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  13. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  14. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    Science.gov (United States)

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  15. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  16. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  17. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  18. The NILE Project - Advances in the Conversion of Lignocellulosic Materials into Ethanol

    International Nuclear Information System (INIS)

    Monot, F.; Margeot, A.; Hahn-Haegerdal, B.; Lindstedt, J.; Slade, R.

    2013-01-01

    NILE ('New Improvements for Lignocellulosic Ethanol') was an integrated European project (2005-2010) devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials - spruce and wheat straw - both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial

  19. Production, transport, and metabolism of ethanol in eastern cottonwood

    International Nuclear Information System (INIS)

    MacDonald, R.C.

    1991-01-01

    In plant tissues, the production of acetaldehyde and ethanol are usually thought to occur as a mechanism to allow tolerance of hypoxic conditions. Acetaldehyde and ethanol were found to be common in vascular cambium and the transpiration stream of trees. Ethanol concentrations in the vascular cambium of Populus deltoides were not changed by placing logs from nonflooded trees in a pure oxygen environment for as long as 96 h, but increased by almost 3 orders of magnitude when exposed to low external pO 2 s. Ethanol is present in the xylem sap of flooded and nonflooded trees. Because of the constitutive presence of alcohol dehydrogenase in the mature leaves of woody plants, it was hypothesized that the leaves and shoots of trees had the ability to metabolize ethanol supplied by the transpiration stream. 1-[ 14 C]ethanol was supplied to excised leaves and shoots of Populus deltoides Bartr. in short- and long-term experiments. Greater than 99% of the radiolabel was incorporated into plant tissue in short-term experiments, with more than 95% of the label remaining in plant tissue after 24 h. Very little label reached the leaf mesophyll cells of excised shoots, as revealed by autoradiography. Radiolabel appeared primarily in the water- and chloroform-soluble fractions in short-term experiments, while in long-term experiments, label was also incorporated into protein. When labelled ethanol was supplied to excised petioles in a 5 min pulse, 41% of the label was incorporated into organic acids. Some label was also incorporated into amino acids, protein, and the chloroform-soluble fraction, with very little appearing in neutral sugars, starch, or the insoluble pellet. Labelled organic acids were separated by HPLC, and were comprised of acetate, isocitrate, α-ketoglutarate, and succinate. There was no apparent incorporation of label into phosphorylated compounds

  20. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate.

    Science.gov (United States)

    Wang, X; Miller, E N; Yomano, L P; Zhang, X; Shanmugam, K T; Ingram, L O

    2011-08-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low K(m) for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms.

  1. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    Science.gov (United States)

    Wang, X.; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms. PMID:21685167

  2. Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Wen, Chen; Huang, Qunwu; Kang, Xue; Chen, Miao; Wang, Huilin

    2017-01-01

    Highlights: • Thermal performances of ethanol phase-change immersion and active water cooling are compared. • Effects of operation parameters on ethanol phase-change immersion are studied. • Optimum filling ratio is 30% for ethanol phase-change immersion cooling system. • Exergy efficiency of ethanol phase-change immersion method increases by 57%. - Abstract: This paper presents an optimized ethanol phase-change immersion cooling method to obtain lower temperature of dense-array solar cells in high concentrating photovoltaic system. The thermal performances of this system were compared with a conventional active water cooling system with minichannels from the perspectives of start-up characteristic, temperature uniformity, thermal resistance and heat transfer coefficient. This paper also explored the influences of liquid filling ratio, absolute pressure and water flow rate on thermal performances. Dense-array LEDs were used to simulate heat power of solar cells worked under high concentration ratios. It can be observed that the optimal filling ratio was 30% in which the thermal resistance was 0.479 °C/W and the heat transfer coefficient was 9726.21 W/(m 2 ·°C). To quantify the quality of energy output of two cooling systems, exergy analysis are conducted and maximum exergy efficiencies were 17.70% and 11.27%, respectively. The experimental results represent an improvement towards thermal performances of ethanol phase-change immersion cooling system due to the reduction in contact thermal resistance. This study improves the operation control and applications for ethanol phase-change immersion cooling technology.

  3. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  4. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  5. Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology

    DEFF Research Database (Denmark)

    Herzog, Max; Striker, Gustavo G; Colmer, Timothy D

    2016-01-01

    :shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers....... Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N...

  6. Fault-tolerance techniques for high-speed fiber-optic networks

    Science.gov (United States)

    Deruiter, John

    1991-01-01

    Four fiber optic network topologies (linear bus, ring, central star, and distributed star) are discussed relative to their application to high data throughput, fault tolerant networks. The topologies are also examined in terms of redundancy and the need to provide for single point, failure free (or better) system operation. Linear bus topology, although traditionally the method of choice for wire systems, presents implementation problems when larger fiber optic systems are considered. Ring topology works well for high speed systems when coupled with a token passing protocol, but it requires a significant increase in protocol complexity to manage system reconfiguration due to ring and node failures. Star topologies offer a natural fault tolerance, without added protocol complexity, while still providing high data throughput capability.

  7. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence

    Directory of Open Access Journals (Sweden)

    Francisca Carvajal

    2017-09-01

    Full Text Available The melanocortin (MC system regulates feeding and ethanol consumption. Recent evidence shows that melanocortin 4 receptor (MC4-R stimulation within the nucleus accumbens (NAc elicits anorectic responses and reduces ethanol consumption and ethanol palatability in adult rats. Ethanol exposure during adolescence causes long-lasting changes in neural pathways critically involved in neurobehavioral responses to ethanol. In this regard, binge-like ethanol exposure during adolescence reduces basal alpha-melanocyte-stimulating hormone (α-MSH and alters the levels of agouti-related peptide (AgRP in hypothalamic and limbic areas. Given the protective role of MC against excessive ethanol consumption, disturbances in the MC system induced by binge-like ethanol exposure during adolescence might contribute to excessive ethanol consumption during adulthood. In the present study, we evaluated whether binge-like ethanol exposure during adolescence leads to elevated ethanol intake and/or eating disturbance during adulthood. Toward that aim, Sprague-Dawley rats were treated with ethanol (3 g/kg i.p.; BEP group or saline (SP group for 14 days (PND 25 to PND 38. On PND73, all the groups were given access to 20% ethanol on an intermittent schedule. Our results showed that adult rats given intermittent access (IAE to 20% ethanol achieved high spontaneous ethanol intake that was not significantly enhanced by binge-like ethanol pretreatment during adolescence. However, BEP group exhibited an increase in food intake without a parallel increase in body weight (BW relative to SP group suggesting caloric efficiency disturbance. Additionally, we evaluated whether binge-like ethanol exposure during adolescence alters the expected reduction in feeding and ethanol consumption following NAc shell administration of a selective MC4-R agonist in adult rats showing high rates of ethanol consumption. For that, animals in each pretreatment condition (SP and BEP were divided into

  8. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  9. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry.

    Science.gov (United States)

    Yegin, Sirma

    2017-04-15

    An extracellular xylanase from Aureobasidium pullulans NRRL Y-2311-1 produced on wheat bran was purified by a single-step chromatographic procedure. The enzyme had a molecular weight of 21.6kDa. The optimum pH and temperature for xylanase activity were 4.0 and 30-50°C, respectively. The enzyme was stable in the pH range of 3.0-8.0. The inactivation energy of the enzyme was calculated as 218kJmol -1 . The xylanase was ethanol tolerant and kept complete activity in the presence of 10% ethanol. Likewise, it retained almost complete activity at a concentration range of 0-20% NaCl. In general, the enzyme was resistant to several metal ions and reagents. Mg 2+ , Zn 2+ , Cu 2+ , K 1+ , EDTA and β-mercaptoethanol resulted in enhanced xylanase activity. The K m and V max values on beechwood xylan were determined to be 19.43mgml -1 and 848.4Uml -1 , respectively. The enzyme exhibits excellent characteristics and could, therefore, be a promising candidate for application in food and bio-industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  11. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  12. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  13. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    Directory of Open Access Journals (Sweden)

    Hoang Phong Nguyen

    2015-01-01

    Full Text Available The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L. Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0 mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast.

  14. Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping

    Science.gov (United States)

    Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing

    2018-06-01

    Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.

  15. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  16. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  17. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Science.gov (United States)

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  18. Desolvation of L-histidine and {alpha}-ketoisocaproic acid complex from ethanolate crystals under humidified conditions and influence of crystallinity on its desolvation; Histidine Ketoisocapron san ensan ethanol wamono kessho no koshitsudo jokenka deno datsu ethanol to datsu ethanol sei ni oyobosu kesshosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, S.; Tanabe, T.; Maruyama, S.; Kishishita, A.; Nagashima, N. [Ajinomoto Co. Inc., Tokyo (Japan)

    1996-07-10

    Desolvation of L-histidine and a-ketoisocaproic acid complex from ethanolate crystals was investigated. The ethanolate crystals were obtained from ethanol aqueous solutions of above 60 wt% of ethanol. It was difficult to remove ethanol molecules from the crystals lay vacuum drying. However, it was found that ethanol molecules in the crystal lattice could be released under humidified conditions, for example, 313 K and 60% relative humidity, accompanied by transformation to non-solvated crystals. When the peak of 2{theta}=9.0{degree}(CuK{alpha} radiation) in powder X-ray diffraction pattern of the ethanolate crystals was weak, ethanol molecules (about 1wt.%) remained in the crystals at the end of transformations and then the residual ethanol decreased slowly. A controlled moderate cooling process, where the supersaturation is released slowly, is the key point to obtain ethanolate crystals having high `crystallinity` (defined as peak height of 2{theta}=9.0{degree}) which shows quick desolation rather than adding ethanol for a rapid increase of supersaturation in crystallization. 6 refs., 7 figs.

  19. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  1. Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Li, Tongfei; Fu, Gengtao; Su, Jiahui; Wang, Yi; Lv, Yinjie; Zou, Xiuyong; Zhu, Xiaoshu; Xu, Lin; Sun, Dongmei; Tang, Yawen

    2017-01-01

    Graphical abstract: We develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst by a facile and novel phosphorus reduction method, and demonstrate the Au-P/C is a highly active and stable electrocatalyst for the ethanol oxidation reaction. - Highlights: • Au-P/C catalyst is synthesized by a facile and novel white-phosphorus reduce method. • AuP particles with ultrafine particle-size are uniformly dispersed on carbon support. • Au-P/C catalyst exhibits much higher content of P 0 than reported metal/P catalysts. • Au-P/C catalysts show excellent catalytic properties for ethanol oxidation reaction. - Abstract: Herein, we develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst for the alkaline ethanol oxidation reaction (EOR). The Au-P/C catalysts with different Au/P ratio (i.e., AuP/C, Au 3 P 2 /C and Au 4 P 3 /C) can be obtained by a facile and novel hot-reflux method with white phosphorus (P 4 ) as reductant and ethanol as solvent. The crystal structure, composition and particle-size of the Au-P/C catalysts are investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), etc. The results demonstrate that Au-P/C catalysts present an alloy phase with the high content of P, ultrafine particle-size and high dispersity on carbon support, which results in excellent electrocatalytic activity and stability towards the EOR compared with that of the free-phosphorus Au/C catalyst. In addition, among the various Au-P/C catalysts with different Au/P ratio, the AuP/C sample exhibits the best electrocatalytic performance in comparison with other Au 3 P 2 /C and Au 4 P 3 /C samples.

  2. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  3. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  4. Crude oil–corn–ethanol – nexus: A contextual approach

    International Nuclear Information System (INIS)

    Natanelov, Valeri; McKenzie, Andrew M.; Van Huylenbroeck, Guido

    2013-01-01

    This paper offers a holistic study on the complex relationships between crude oil, corn and ethanol during a turbulent period between 2006 and end of 2011. Through a holistic mapping of the current market situation and a contextual analytical design we show that there exists a strong relationship between crude oil and corn markets on one side, and crude oil and ethanol on the other. However, the price relationship between corn and ethanol was revealed to be less straightforward, and is driven by the US government fuel policy. Furthermore the study indicates that corn markets have became more prone to volatility due to ethanol production, especially when the demand for corn is high and/or the crude oil prices are high enough to create a competitive market for ethanol. - Highlights: • Strong relationship between crude oil–corn and crude oil–ethanol. • Corn–ethanol connected through a by-pass of crude oil markets. • Ethanol market has no direct impact on the price levels of corn. • Corn markets became more prone to volatility due to ethanol production

  5. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.

    Science.gov (United States)

    Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R

    2009-12-01

    A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.

  6. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    International Nuclear Information System (INIS)

    Bastami, Tahereh Rohani; Entezari, Mohammad H.

    2013-01-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm 2 (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months

  7. A high precision radiation-tolerant LVDT conditioning module

    CERN Document Server

    Masi, A; Losito, R; Peronnard, P; Secondo, R; Spiezia, G

    2014-01-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. ...

  8. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  9. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.

    Science.gov (United States)

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the

  10. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  11. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  12. Melatonin in concentrated ethanol and ethanol alone attenuate methamphetamine-induced dopamine depletions in C57BL/6J mice.

    Science.gov (United States)

    Yu, L; Cherng, C-F G; Chen, C

    2002-12-01

    The present study aimed to investigate the protective effects of melatonin, ethanol and temperature changes on methamphetamine-induced neurotoxicity in both sexes of mice. Mice exhibited a similar degree of striatal dopamine depletion when methamphetamine was administered during the light and dark cycles. Moreover, 10 mg/kg, but not 5 mg/kg, of methamphetamine, significantly increased body temperature even though dopamine depletions were observed following both doses. Melatonin (80 mg/kg) dissolved in 30% (v/v) ethanol and 30% ethanol alone exerted a moderate to full protection against methamphetamine-induced dopamine depletions in both sexes of mice, whereas the same dose of melatonin in 3% ethanol exerted no protective effect. Furthermore, ethanol attenuated methamphetamine-induced dopamine depletions in a dose-dependent manner with the exception of high efficacy of ethanol at low doses. Finally, the protective effects of ethanol were not blocked by bicuculline. Together, we conclude that ethanol may protect mice against methamphetamine-induced dopamine depletion probably via non-GABAA receptor activation.

  13. Genotypic variability for tuber yield, biomass, and drought tolerance in Jerusalem artichoke germplasm

    Science.gov (United States)

    Jerusalem artichoke could be an alternative feedstock for bioenergy during times when there are shortages of other raw materials for the ethanol industry. However, insufficient water under rainfed conditions is a major cause of Jerusalem artichoke losses. Genetic variation for drought tolerance is...

  14. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  15. Development of a membraneless ethanol/oxygen biofuel cell

    International Nuclear Information System (INIS)

    Topcagic, Sabina; Minteer, Shelley D.

    2006-01-01

    Biofuel cells are similar to traditional fuel cells, except the metallic electrocatalyst is replaced with a biological electrocatalyst. This paper details the development of an enzymatic biofuel cell, which employs alcohol dehydrogenase to oxidize ethanol at the anode and bilirubin oxidase to reduce oxygen at the cathode. This ethanol/oxygen biofuel cell has an active lifetime of about 30 days and shows power densities of up to 0.46 mW/cm 2 . The biocathode described in this paper is unique in that bilirubin oxidase is immobilized within a modified Nafion polymer that acts both to entrap and stabilize the enzyme, while also containing the redox mediator in concentrations large enough for self-exchange based conduction of electrons between the enzyme and the electrode. This biocathode is fuel tolerant, which leads to a unique fuel cell that employs both renewable catalysts and fuel, but does not require a separator membrane to separate anolyte from catholyte

  16. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga, E-mail: leticiamoraes@usp.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil); Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  17. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga; Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral

    2016-01-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  18. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong; Cheng, Faliang [Dongguan University of Technology, Dongguan 523106 (China); Xu, Changwei; Jiang, Sanping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-05-15

    Highly ordered Pd nanowire arrays were prepared by template-electrodeposition method using anodic aluminum oxide template. The Pd nanowire arrays, in this paper, have high electrochemical active surface and show excellent catalytic properties for ethanol electrooxidation in alkaline media. The activity of Pd nanowire arrays for ethanol oxidation is not only higher that of Pd film, but also higher than that of commercial E-TEK PtRu(2:1 by weight)/C. The micrometer sized pores and channels in nanowire arrays act as structure units. They make liquid fuel diffuse into and products diffuse out of the catalysts layer much easier, therefore, the utilization efficiency of catalysts gets higher. Pd nanowire arrays are stable catalysts for ethanol oxidation. The nanowire arrays may be a great potential in direct ethanol fuel cells and ethanol sensors. (author)

  19. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  20. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    Science.gov (United States)

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  1. Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires

    Science.gov (United States)

    Li, X. Q.; Wei, J. Q.; Xu, J. C.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, Xinqing

    2017-12-01

    In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.

  2. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  3. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    Science.gov (United States)

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  4. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  5. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor.

    Science.gov (United States)

    Zhang, Jian; Chu, Deqiang; Huang, Juan; Yu, Zhanchun; Dai, Gance; Bao, Jie

    2010-03-01

    The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. (c) 2009 Wiley Periodicals, Inc.

  6. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    Science.gov (United States)

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  7. The expanding U. S. ethanol industry

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  8. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    Science.gov (United States)

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  9. Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol.

    Science.gov (United States)

    Hoyer, Kerstin; Galbe, Mats; Zacchi, Guido

    2013-10-08

    Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable sugars at the beginning of the

  10. Social opportunity and ethanol drinking in rats.

    Science.gov (United States)

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  11. Coordinated Fault Tolerance for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  12. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  13. Ethanol demand in Brazil: Regional approach

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: → Article consists of a first insight on regional demand for ethanol in Brazil. → It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. → Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. → Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  14. Ethanol demand in Brazil: Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-05-15

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: {yields} Article consists of a first insight on regional demand for ethanol in Brazil. {yields} It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. {yields} Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. {yields} Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  15. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    Science.gov (United States)

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  16. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    International Nuclear Information System (INIS)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier

    2011-01-01

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni 59 Nb 40 Pt 0.6 Rh 0.4 and Ni 59 Nb 40 Pt 0.6 Rh 0.2 Ru 0.2 composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  19. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  20. Preparation and characterization of micro-arc-induced Pd/TM(TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation

    International Nuclear Information System (INIS)

    Wang, Xiaoguang; Ma, Guanshui; Zhu, Fuchun; Lin, Naiming; Tang, Bin; Zhang, Zhonghua

    2013-01-01

    Using the electro-spark deposition technique, a novel kind of Pd/TM (TM = Ni, Co and Ti) electrode was successfully prepared by arc-depositing Pd on the transition metal substrates. The structure, morphology and chemical composition of the arc-deposited films were investigated using thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results show that, a coarsening topographical morphology can be obtained, being composed of numerous craters/spots with sizes ranging from nano-scales to several microns. The electrochemical measurements indicate that the arc-deposited Pd/TM electrodes exhibit distinct electrochemical behaviors and the catalytic activity toward ethanol electro-oxidation reaction (EOR) is highly dependent upon the nature of substrate. Among the Pd/TM electrodes investigated, the arc-deposited Pd/Co reveals the best activity and superior poisoning tolerance towards ethanol oxidation and will find promising applications as a candidate for the anode catalyst of direct ethanol fuel cells (DEFCs)

  1. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    Science.gov (United States)

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Yao, Shuo

    2012-01-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...... the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UVinduced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more...

  3. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  4. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    Science.gov (United States)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  5. Influence and role of ethanol minor constituents of fuel grade ethanol on corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Samusawa, Itaru; Shiotani, Kazuhiko

    2015-01-01

    Highlights: • The pitting factors of the minor contents of ethanol are acetic acid, Cl and H 2 O. • Formic acid in ethanol promotes general corrosion. • The H 2 O content in fuel-grade-ethanol (FGE) affects the corrosion morphology. • Acetic acid generates iron acetate, which has high solubility in FGE environments. • A pitting mechanism based on the rupture of passive film is proposed. - Abstract: The influences of organic acids, chloride and water on the corrosion behavior of carbon steel in fuel grade ethanol (FGE) environments were investigated by immersion testing in simulated FGE. The roles of acetic acid, chloride and water in pitting corrosion were studied by using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES) and electrochemical experiments. The results indicated that iron acetate is generated on oxide film. Iron(II) acetate shows high solubility in FGE environments. The sites where iron(II) acetate is existed become preferential anodic sites, and chloride promotes anodic dissolution at such sites

  6. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    Science.gov (United States)

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes

    Science.gov (United States)

    Aims: Salmonella enterica serovar Enteritidis (S. Enteritidis) can encounter mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adapta...

  8. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

    Directory of Open Access Journals (Sweden)

    Xianglin Tao

    Full Text Available Very high gravity (VHG fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2 with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.

  9. Screening of yeasts associated with food from the Sudan and their possible application for single cell protein and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, S H

    1986-06-18

    In a screening program carried out in the Sudan, 200 pure yeast cultures were isolated and analysed. In a series of fermentations the kinetic parameters and the chemical composition of C.Kefyr were tested. The kinetic parameters identified for C. Kefyr in a bioreactor with 10 l working volume were used to simulate a fed batch cultivation in a 30 m/sup 3/ bioreactor with different values for the volumetric mass transfer coefficient of oxygen. Heat production and oxygen requirement were under the critical values calculated throughout the simulation. The ability of C. Kefyr to produce and tolerate ethanol at different fermentation temperatures was tested in shake flasks experiments. These experiments showed that C. Kefyr can produce and tolerate up to 10% V/V ethanol at the fermentation temperature of 40/sup 0/C. (MBC)

  10. Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats.

    Science.gov (United States)

    Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Rosenwasser, Alan M

    2007-10-01

    Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while

  11. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  12. Systems and Methods for Implementing High-Temperature Tolerant Supercapacitors

    Science.gov (United States)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80C and approximately 300C; a second electrode that is thermally stable between at least approximately 80C and approximately 300C; an ionically conductive separator that is thermally stable between at least approximately 80C and 300C; an electrolyte that is thermally stable between approximately at least 80C and approximately 300C; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.

  13. An overview of exposure to ethanol-containing substances and ethanol intoxication in children based on three illustrated cases

    Directory of Open Access Journals (Sweden)

    Kam Lun Hon

    2018-01-01

    Full Text Available Alcohol addiction and intoxication are major health problems worldwide. Acute alcohol intoxication is well reported in adults and adolescents but less frequently reported in children of younger ages. We report three anonymized cases of pediatric ethanol exposure and illustrate the different mechanisms of intoxication. In all cases, a focused history is the key to prompt diagnosis and timely management. Physicians should be aware of this potential poison in children presented with acute confusional or encephalopathic state. In contrast, neonates with ethanol intoxication may present with nonspecific gastrointestinal symptomatology. Urgent exclusion of sepsis, electrolyte imbalance, drug intoxication, and surgical abdominal condition is critical. Using these illustrated cases, we performed a narrative literature review on issues of exposure to ethanol-containing substances and ethanol intoxication in children. In conclusion, a high level of suspicion and interrogation on ethanol or substance use are essential particularly in the lactating mother for an accurate and timely diagnosis of ethanol intoxication to be made.

  14. How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Meyer, Seth; Westhoff, Pat

    2009-01-01

    The recent increase in ethanol use in the US strengthens and changes the nature of links between agricultural and energy markets. Here, we explore the interaction of market volatility and the scope for policy to affect this interaction, with a focus on how corn yields and petroleum prices affect ethanol prices. Mandates associated with new US energy legislation may intervene in these links in the medium-term future. We simulate stochastically a structural model that represents these markets, and that includes mandates, in order to assess how shocks to corn or oil markets can affect ethanol price and use. We estimate that the mandate makes ethanol producer prices more sensitive to corn yields and less sensitive to changes in petroleum prices overall. We note a discontinuity in these links that is caused by the mandate. Ethanol use can exceed the mandate if petroleum prices and corn yields are high enough, but the mandate limits downside adjustments in ethanol use to low petroleum prices or corn yields

  15. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  16. High Level Ethanol Production by Nitrogen and Osmoprotectant Supplementation under Very High Gravity Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Pachaya Chan-u-tit

    2013-02-01

    Full Text Available Optimization of nutrient supplements i.e., yeast extract (1, 3 and 5 g·L−1, dried spent yeast (DSY: 4, 12 and 20 g·L−1 and osmoprotectant (glycine: 1, 3 and 5 g·L−1 to improve the efficiency of ethanol production from a synthetic medium under very high gravity (VHG fermentation by Saccharomyces cerevisiae NP 01 was performed using a statistical method, an L9 (34 orthogonal array design. The synthetic medium contained 280 g·L−1 of sucrose as a sole carbon source. When the fermentation was carried out at 30 °C, the ethanol concentration (P, yield (Yp/s and productivity (Qp without supplementation were 95.3 g·L−1, 0.49 g·g−1 and 1.70 g·L−1·h−1, respectively. According to the orthogonal results, the order of influence on the P and Qp values were yeast extract > glycine > DSY, and the optimum nutrient concentrations were yeast extract, 3; DSY, 4 and glycine, 5 g·L−1, respectively. The verification experiment using these parameters found that the P, Yp/s and Qp values were 119.9 g·L−1, 0.49 g g−1 and 2.14 g·L−1·h−1, respectively. These values were not different from those of the synthetic medium supplemented with 9 g·L−1 of yeast extract, indicating that DSY could be used to replace some amount of yeast extract. When sweet sorghum juice cv. KKU40 containing 280 g·L−1 of total sugar supplemented with the three nutrients at the optimum concentrations was used as the ethanol production medium, the P value (120.0 g·L−1 was not changed, but the Qp value was increased to 2.50 g·L−1·h−1.

  17. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2004-07-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  18. A high precision radiation-tolerant LVDT conditioning module

    Energy Technology Data Exchange (ETDEWEB)

    Masi, A. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Danzeca, S. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); IES, F-34000 Montpellier (France); Losito, R.; Peronnard, P. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Secondo, R., E-mail: raffaello.secondo@cern.ch [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Spiezia, G. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  19. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  20. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice.

    Science.gov (United States)

    Fritz, Brandon M; Boehm, Stephen L

    2014-12-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predisposed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H-preferring xylose reductase–xylitol dehydrogenase pathway

    Directory of Open Access Journals (Sweden)

    Biao Zhang

    2015-12-01

    Full Text Available A thermo-tolerant NADP(H-preferring xylose pathway was constructed in Kluyveromyces marxianus for ethanol production with xylose at elevated temperatures (Zhang et al., 2015 [25]. Ethanol production yield and efficiency was enhanced by pathway engineering in the engineered strains. The constructed strain, YZJ088, has the ability to co-ferment glucose and xylose for ethanol and xylitol production, which is a critical step toward enabling economic biofuel production from lignocellulosic biomass. This study contains the fermentation results of strains using the metabolic pathway engineering procedure. The ethanol-producing abilities of various yeast strains under various conditions were compared, and strain YZJ088 showed the highest production and fastest productivity at elevated temperatures. The YZJ088 xylose fermentation results indicate that it fermented well with xylose at either low or high inoculum size. When fermented with an initial cell concentration of OD600=15 at 37 °C, YZJ088 consumed 200 g/L xylose and produced 60.07 g/L ethanol; when the initial cell concentration was OD600=1 at 37 °C, YZJ088 consumed 98.96 g/L xylose and produced 33.55 g/L ethanol with a productivity of 0.47 g/L/h. When fermented with 100 g/L xylose at 42 °C, YZJ088 produced 30.99 g/L ethanol with a productivity of 0.65 g/L/h, which was higher than that produced at 37 °C.

  2. Production of ethanol at high temperatures in the fermentation of Jerusalem artichoke juice and a simple medium by Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.F.; Correia, I.S.; Novais, J.M.

    1987-01-01

    Temperatures as high as 36 degrees C and 40 degrees C did not negatively affect the ethanol productivity of Jerusalem artichoke (J.a.) juice batch fermentation and the final concentrations of ethanol were close to those produced at lower temperatures. At higher process temperatures (36-40 degrees C), ethanol toxicity in Kluyveromyces marxianus was less important during the fermentation of J.a. juice as compared with a simple medium. In simple medium, the heat-sticking of fermentation was observed and the percentage of unfermented sugars steeply increased from 28 degrees C up to 40 degrees C. (Refs. 13).

  3. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    Science.gov (United States)

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  4. Autoshaping of ethanol drinking: an animal model of binge drinking.

    Science.gov (United States)

    Tomie, Arthur; di Poce, Jason; Derenzo, Christopher C; Pohorecky, Larissa A

    2002-01-01

    To examine the hypothesis that Pavlovian autoshaping provides an animal learning model of drug abuse, two studies evaluated the induction of ethanol drinking by autoshaping procedures. In Experiment 1, the sipper tube conditioned stimulus (CS) contained saccharin/ethanol solution and was repeatedly paired with food as an unconditioned stimulus (US). The CS-US paired group consumed more of the 0.1% saccharin-6% ethanol solution than did the CS-US random group, revealing that autoshaping conditioned responses (CR) induce ethanol drinking not attributable to pseudo-conditioning. Experiment 2 employed saccharin-fading procedures and showed that the paired vs random group differences in ethanol drinking were maintained, even as the saccharin was eliminated from the solution. The results show that Pavlovian autoshaping procedures induce high volumes of ethanol drinking when the presentation of a sipper tube containing an ethanol solution precedes the response-independent delivery of food. The high volume of ethanol consumed in a brief period of time suggests that Pavlovian autoshaping may be a model of binge drinking.

  5. 2G ethanol from the whole sugarcane lignocellulosic biomass.

    Science.gov (United States)

    Pereira, Sandra Cerqueira; Maehara, Larissa; Machado, Cristina Maria Monteiro; Farinas, Cristiane Sanchez

    2015-01-01

    and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.

  6. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...

  7. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  9. PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite-Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation

    Science.gov (United States)

    Fard, Leyla Abolghasemi; Ojani, Reza; Raoof, Jahan Bakhsh; Zare, Ehsan Nazarzadeh; Lakouraj, Moslem Mansour

    2017-04-01

    In the current study, well-defined PdCo porous nanostructure (PdCo PNS) is prepared by a simple one-pot wet-chemical method and polypyrrole@multi-walled carbon nanotubes (PPy@MWCNTs) nanocomposite is used as a catalyst support. The morphology and the structural properties of the prepared catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic performance of PdCo PNS/PPy@MWCNTs on glassy carbon electrode has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) techniques. The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm-2) is higher than those of other compared electrocatalysts. Also, PdCo PNS/PPy@MWCNTs catalyst represented higher electrocatalytic activity, better long-term stability and high level of poisoning tolerance to the carbonaceous oxidative intermediates for ethanol electrooxidation reaction in alkaline media. Furthermore, the presence of PPY@MWCNTs on the surface of GCE produce a high activity to electrocatalyst, which might be due to the easier charge transfer at polymer/carbon nanotubes interfaces, higher electrochemically accessible surface areas and electronic conductivity. The superior catalytic activity of PdCo PNS/PPy@MWCNTs suggests it to be as a promising electrocatalyst for future direct ethanol fuel cells.

  10. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  11. Forced swim stress increases ethanol consumption in C57BL/6J mice with a history of chronic intermittent ethanol exposure.

    Science.gov (United States)

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-06-01

    Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated alcohol use to the development of alcohol dependence. Additionally, stress is a common trigger for relapse and subsequent loss of control of drinking in alcohol-dependent individuals. The present study was designed to characterize effects of repeated forced swim stress (FSS) on ethanol consumption in three rodent drinking models that engender high levels of ethanol consumption. Adult male C57BL/6J mice were exposed to 10-min FSS 4 h prior to each drinking session in three different models of high ethanol consumption: chronic intermittent ethanol (CIE) drinking (a model of dependence-like drinking), drinking-in-the-dark (DID; a model of binge-like drinking), and intermittent vs. continuous access (a model of escalated drinking). In the CIE drinking paradigm, daily FSS facilitated the escalation of ethanol intake that is typically seen in CIE-exposed mice without altering ethanol consumption in control mice exposed to FSS. FSS prior to drinking sessions did not alter ethanol consumption in the DID or intermittent access paradigms, whereas stressed mice in the continuous access procedure consumed less ethanol than their nonstressed counterparts. The CIE drinking paradigm may provide a helpful preclinical model of stress-induced transition to ethanol dependence that can be used to (1) identify underlying neural mechanisms that facilitate this transition and (2) evaluate the therapeutic potential of various pharmacological agents hypothesized to alleviate stress-induced drinking.

  12. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals.

    Science.gov (United States)

    Wang, Xuan; Yomano, Lorraine P; Lee, James Y; York, Sean W; Zheng, Huabao; Mullinnix, Michael T; Shanmugam, K T; Ingram, Lonnie O

    2013-03-05

    Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic traits have been identified that increase furfural tolerance in ethanol-producing Escherichia coli LY180 (strain W derivative): increased expression of fucO, ucpA, or pntAB and deletion of yqhD. Plasmids and integrated strains were used to characterize epistatic interactions among traits and to identify the most effective combinations. Furfural resistance traits were subsequently integrated into the chromosome of LY180 to construct strain XW129 (LY180 ΔyqhD ackA::PyadC'fucO-ucpA) for ethanol. This same combination of traits was also constructed in succinate biocatalysts (Escherichia coli strain C derivatives) and found to increase furfural tolerance. Strains engineered for resistance to furfural were also more resistant to the mixture of inhibitors in hemicellulose hydrolysates, confirming the importance of furfural as an inhibitory component. With resistant biocatalysts, product yields (ethanol and succinate) from hemicellulose syrups were equal to control fermentations in laboratory media without inhibitors. The combination of genetic traits identified for the production of ethanol (strain W derivative) and succinate (strain C derivative) may prove useful for other renewable chemicals from lignocellulosic sugars.

  13. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    Science.gov (United States)

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst.

    Science.gov (United States)

    Dai, Lei; Qin, Qing; Zhao, Xiaojing; Xu, Chaofa; Hu, Chengyi; Mo, Shiguang; Wang, Yu Olivia; Lin, Shuichao; Tang, Zichao; Zheng, Nanfeng

    2016-08-24

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni-Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources.

  15. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  16. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  17. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    Science.gov (United States)

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  18. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Directory of Open Access Journals (Sweden)

    Alessandra T. Peana

    2016-01-01

    Full Text Available In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.

  19. Urban physiology: city ants possess high heat tolerance.

    Directory of Open Access Journals (Sweden)

    Michael J Angilletta

    Full Text Available Urbanization has caused regional increases in temperature that exceed those measured on a global scale, leading to urban heat islands as much as 12 degrees C hotter than their surroundings. Optimality models predict ectotherms in urban areas should tolerate heat better and cold worse than ectotherms in rural areas. We tested these predications by measuring heat and cold tolerances of leaf-cutter ants from South America's largest city (São Paulo, Brazil. Specifically, we compared thermal tolerances of ants from inside and outside of the city. Knock-down resistance and chill-coma recovery were used as indicators of heat and cold tolerances, respectively. Ants from within the city took 20% longer to lose mobility at 42 degrees C than ants from outside the city. Interestingly, greater heat tolerance came at no obvious expense of cold tolerance; hence, our observations only partially support current theory. Our results indicate that thermal tolerances of some organisms can respond to rapid changes in climate. Predictive models should account for acclimatory and evolutionary responses during climate change.

  20. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism.

    Science.gov (United States)

    Rocha, Katiucha Karolina Honório Ribeiro; Souza, Gisele Aparecida; Seiva, Fábio Rodrigues Ferreira; Ebaid, Geovana Xavier; Novelli, Ethel Lourenzi Barbosa

    2011-01-01

    The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.

  1. High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production

    Science.gov (United States)

    Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid

    2017-01-01

    It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.

  2. Ethanol does not delay muscle recovery but decreases testosterone/cortisol ratio.

    Science.gov (United States)

    Haugvad, Anders; Haugvad, Lars; Hamarsland, Håvard; Paulsen, Gøran

    2014-11-01

    This study investigated the effects of ethanol consumption on recovery from traditional resistance exercise in recreationally trained individuals. Nine recreationally trained volunteers (eight males and one female, 26 ± 4 yr, 81 ± 4 kg) conducted four resistance exercise sessions and consumed a low (0.6 (females) and 0.7 (males) g · kg(-1) body mass) or a high dose (1.2 or 1.4 g · kg(-1) body mass) of ethanol 1-2.5 h after exercise on two occasions. The first session was for familiarization with the tests and exercises and was performed without ethanol consumption. As a control trial, alcohol-free drinks were consumed after the exercise session. The sequence of trials, with low and high ethanol doses and alcohol-free drinks (control), was randomized. Maximal voluntary contractions (MVC) (knee extension), electrically stimulated contractions (knee extension), squat jumps, and hand grip strength were assessed 10-15 min and 12 and 24 h after the ethanol/placebo drinks. In addition to a baseline sample, blood was collected 1, 12, and 24 h after the ethanol/placebo drinks. The exercise session comprised 4 × 8 repetition maximum of squats, leg presses, and knee extensions. MVC were reduced by 13%-15% immediately after the exercise sessions (P squat jump performance were recovered 24 h after ethanol drinks. MVC was not fully recovered at 24 h in the control trial. Compared with those in the control, cortisol increased and the free testosterone/cortisol ratio were reduced after the high ethanol dose (P < 0.01). Neither a low nor a high dose of ethanol adversely affected recovery of muscle function after resistance exercise in recreationally strength-trained individuals. However, the increased cortisol levels and reduced testosterone/cortisol ratio after the high ethanol dose could translate into long-term negative effects.

  3. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  4. Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.

    Science.gov (United States)

    Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2003-11-01

    In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.

  5. Yield and properties of ethanol biofuel produced from different whole cassava flours.

    Science.gov (United States)

    Ademiluyi, F T; Mepba, H D

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber.

  6. Breeding and fermentation characterization of Pachysolen Tannophilus mutant with high ethanol productivity from xylose

    International Nuclear Information System (INIS)

    Pan Lijun; Chu Kaiqing; Yang Peizhou

    2011-01-01

    Currently, few strains can utilize xylose to produce ethanol with very low productivity. By the method of mutation breeding to these strains the rate of lignocellulosic utilization could be improved. In this study, the initial Pachysolen tannophilus As 2.1585 was treated by N + ions implantation of 15 keV. The survival curve showed a saddle model. Considering the survival rate and range of positive mutation, the N + ions implantation of 12.5 × 10 14 ions/cm for mutation breeding of Pachysolen tannophilus was selected. A Pachysolen tannophilus mutant mut-54, which had perfect genetic stability of producing ethanol was screened out after continuous 7 passages. The mut-54 had a higher xylose consumption rate, biomass accumulation and ability of ethanol-resistant than the parent strain. Compared with the parent strain, the ethanol concentration fermented by the mut-54 for 72 h increased by 12.74%, which was more suitable for producing ethanol from xylose than the parent strain. (authors)

  7. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  8. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    Full Text Available Abstract Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20% enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation

  9. Development of cold and drought tolerant short-season maize germplasm for fuel and feed utilization

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2013-04-01

    Full Text Available Maize has become a profitable alternative for North Dakota (ND farmers and ranchers. However, U.S. northern industry hybrids still lack cold and drought stress tolerance as well as adequate grain quality for ethanol and feedstock products. Moreover, there is a need to increase the value of feedstock operations before and after ethanol utilization. The ND maize breeding program initiated the development of hybrids with high quality protein content through the Early Quality Protein Maize for Feedstock (EarlyQPMF project. The North Dakota State University (NDSU maize breeding program acts as a genetic provider to foundation seed companies, retailer seed companies, processing industry, and breeders nationally and internationally. In the past 10 years, NDSU was awarded 9 PVP maize certificates and released 38 maize products. Within those, 13 inbred lines were exclusively released to a foundation seed company for commercial purposes. In addition, 2 hybrids were identified for commercial production in central and western ND.

  10. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  11. Ethanol, saccharin, and quinine: early ontogeny of taste responsiveness and intake.

    Science.gov (United States)

    Kozlov, Andrey P; Varlinskaya, Elena I; Spear, Norman E

    2008-02-01

    Rat pups demonstrate high levels of immediate acceptance of ethanol during the first 2 weeks of postnatal life. Given that the taste of ethanol is most likely perceived by infant rats as a combination of sweet and bitter, high intake of ethanol early in ontogeny may be associated with age-related enhanced responsiveness to the sweet component of ethanol taste, as well as with ontogenetic decreases in sensitivity to its bitter component. Therefore, the present study compared responsiveness to ethanol and solutions with bitter (quinine) and sweet (saccharin) taste in terms of intake and palatability across the first 2 weeks of postnatal life. Characteristic patterns of responsiveness to 10% (v/v) ethanol, 0.1% saccharin, 0.2% quinine, and water in terms of taste reactivity and fluid intake were assessed in rat pups tested on postnatal day (P) 4, 9, or 12 using a new technique of on-line monitoring of fluid flow through a two-channel intraoral cannula. Taste reactivity included analysis of ingestive and aversive responses following six intraoral infusions of the test fluids. This taste reactivity probe was followed by the intake test, in which animals were allowed to voluntarily ingest fluids from an intraoral cannula. Pups of all ages showed more appetitive responses to saccharin and ethanol than to water or quinine. No age-related differences were apparent in taste responsiveness to saccharin and ethanol. However, the age-related pattern of ethanol intake drastically differed from that of saccharin. Intake of saccharin increased from P4 to P9 and decreased substantially by P12, whereas intake of ethanol gradually increased from P4 to P12. Intake of ethanol was significantly lower than intake of saccharin on P9, whereas P12 pups took in more ethanol than saccharin. The findings of the present study indicate ontogenetic dissociations between taste reactivity to ethanol and saccharin and intake of these solutions, and suggest that high acceptance of ethanol early in

  12. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  13. Ethanol Production by Soy Fiber Treatment and Simultaneous Saccharification and Co-Fermentation in an Integrated Corn-Soy Biorefinery

    Directory of Open Access Journals (Sweden)

    Jasreen K. Sekhon

    2018-05-01

    Full Text Available Insoluble fiber (IF recovered from the enzyme-assisted aqueous extraction process (EAEP of soybeans is a fraction rich in carbohydrates and proteins. It can be used to enhance ethanol production in an integrated corn-soy biorefinery, which combines EAEP with traditional corn-based ethanol processing. The present study evaluated IF as a substrate for ethanol production. The effects of treatment of IF (soaking in aqueous ammonia (SAA, liquid hot water (LHW, and enzymatic hydrolysis, primarily simultaneous saccharification and co-fermentation (SSCF, as well as scaling up (250 mL to 60 L on ethanol production from IF alone or a corn and IF slurry were investigated. Enzymatic hydrolysis (pectinase, cellulase, and xylanase, each added at 5% soy solids during simultaneous saccharification and fermentation/SSCF was the best treatment to maximize ethanol production from IF. Ethanol yield almost doubled when SSCF of IF was performed with Saccharomyces cerevisiae and Escherichia coli KO11. Addition of IF in dry-grind corn fermentation increased the ethanol production rate (~31%, but low ethanol tolerance of E. coli KO11 was a limiting factor for employing SSCF in combination corn and IF fermentation. Nonlinear Monod modeling accurately predicted the effect of ethanol concentration on E. coli KO11 growth kinetics by Hanes-Woolf linearization. Collectively, the results from this study suggest a potential of IF as a substrate, alone or in dry-grind corn fermentation, where it enhances the ethanol production rate. IF can be incorporated in the current bioethanol industry with no added capital investment, except enzymes.

  14. Taste-aversion-prone (TAP) rats and taste-aversion-resistant (TAR) rats differ in ethanol self-administration, but not in ethanol clearance or general consumption.

    Science.gov (United States)

    Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L

    2004-05-01

    Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.

  15. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  16. Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2017-01-15

    In this study, carbon coated WC (WC@C) was synthesized through solvothermal reactions in the presence of reducing agent magnesium (Mg) by employing tungsten oxide (WO{sub 3}) as a precursor, acetone (C{sub 3}H{sub 6}O) as a carbon source. The formation of WC@C nano particles is confirmed by X-ray diffraction and Transmission electron microscopy. The thermal stability of the synthesized powder examined in air shows its stability up to 550 °C. In this method, in-situ produced outer carbon layer increase the surface area of materials which is 52.6 m{sup 2} g{sup −1} with pore volume 0.213 cm{sup 3} g{sup −1}. The Electrocatalytic activity of ethanol oxidation on a synthesized sample with and without Pt nano particles have been investigated using cyclic voltammetry (CV). The CV results show the enhancement in oxidation stability of WC@C in acidic media as well as better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles as compared to without Pt nano particles. - Highlights: • Tungsten carbide nano powder was synthesized using acetone as carbon source. • In-situ produced outer carbon layer increase the surface area of materials. • Mesoporous WC with surface areas 52.6 m{sup 2}/g obtained. • Pt modified WC powder showed higher electrochemical stability. • Better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles.

  17. Butter improves glucose tolerance compared with at highly polyunsaturated diet in the rat

    DEFF Research Database (Denmark)

    Hellgren, Lars

    in epidemiological studies, where the typical fatty acid composition of milk-fat, i.e. a high level of saturated fatty acids (SFA) and low concentration of polyunsaturated fatty acids (PUFAs), has been correlated to increased insulin-resistance. It is therefore essential to characterize the impact of milk......-fat on glucose-tolerance in intervention studies. Methods: 16 rats were divided into two groups and fed a semisynthetic diet containing 31 E-% fat, either as butter or highly polyunsaturated grapeseed oil. After 12 weeks on the diets, glucose-tolerance was assayed with the oral-glucose tolerance test (OGTT......). Results and Discussion: The OGTT revealed that the rats on the butter-containing diet, had a substantially higher glucose tolerance than the rats, which were fed grapeseed oil (area under the curve =195  31 mM*min-2 vs. 310  13 mM*min-2, n= 8, p=0.004). There were no differences in serum triacylglycerol...

  18. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system.

    Science.gov (United States)

    Arai, Sayuri; Hayashihara, Kayoko; Kanamoto, Yuki; Shimizu, Kazunori; Hirokawa, Yasutaka; Hanai, Taizo; Murakami, Akio; Honda, Hiroyuki

    2017-08-01

    Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO 2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila

    Directory of Open Access Journals (Sweden)

    Gissel P. Aranda

    2017-08-01

    Full Text Available Male flies under the influence of ethanol display disinhibited courtship, which is augmented with repeated ethanol exposures. We have previously shown that dopamine is important for this type of ethanol-induced behavioral sensitization but the underlying mechanism is unknown. Here we report that DopEcR, an insect G-protein coupled receptor that binds to dopamine and steroid hormone ecdysone, is a major receptor mediating courtship sensitization. Upon daily ethanol administration, dumb and damb mutant males defective in D1 (dDA1/DopR1 and D5 (DAMB/DopR2 dopamine receptors, respectively, showed normal courtship sensitization; however, the DopEcR-deficient der males exhibited greatly diminished sensitization. der mutant males nevertheless developed normal tolerance to the sedative effect of ethanol, indicating a selective function of DopEcR in chronic ethanol-associated behavioral plasticity. DopEcR plays a physiological role in behavioral sensitization since courtship sensitization in der males was reinstated when DopEcR expression was induced during adulthood but not during development. When examined for the DopEcR’s functional site, the der mutant’s sensitization phenotype was fully rescued by restored DopEcR expression in the mushroom body (MB αβ and γ neurons. Consistently, we observed DopEcR immunoreactivity in the MB calyx and lobes in the wild-type Canton-S brain, which was barely detectable in the der brain. Behavioral sensitization to the locomotor-stimulant effect has been serving as a model for ethanol abuse and addiction. This is the first report elucidating the mechanism underlying behavioral sensitization to another stimulant effect of ethanol.

  20. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    Science.gov (United States)

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.

  1. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  2. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  3. Oxidative and Non-Oxidative Metabolomics of Ethanol.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge

    2016-01-01

    It is well known that ethanol can cause significant morbidity and mortality, and much of the related toxic effects can be explained by its metabolic profile. This work performs a complete review of the metabolism of ethanol focusing on both major and minor metabolites. An exhaustive literature search was carried out using textual and structural queries for ethanol and related known metabolizing enzymes and metabolites. The main pathway of metabolism is catalyzed by cytosolic alcohol dehydrogenase, which exhibits multiple isoenzymes and genetic polymorphisms with clinical and forensic implications. Another two oxidative routes, the highly inducible CYP2E1 system and peroxisomal catalase may acquire relevance under specific circumstances. In addition to oxidative metabolism, ethanol also originates minor metabolites such as ethyl glucuronide, ethyl sulfate, ethyl phosphate, ethyl nitrite, phosphatidylethanol and fatty acid ethyl esters. These metabolites represent alternative biomarkers since they can be detected several hours or days after ethanol exposure. It is expected that knowing the metabolomics of ethanol may provide additional insights to better understand the toxicological effects and the variability of dose response.

  4. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  5. Competitive advantage and tolerance of selected shochu yeast in barley shochu mash.

    Science.gov (United States)

    Takashita, Hideharu; Fujihara, Emi; Furutera, Mihoko; Kajiwara, Yasuhiro; Shimoda, Masahiko; Matsuoka, Masayoshi; Ogawa, Takahira; Kawamoto, Seiji; Ono, Kazuhisa

    2013-07-01

    A shochu yeast strain, Saccharomyces cerevisiae BAW-6, was previously isolated from Kagoshima yeast strain Ko, and has since been utilized in shochu production. The BAW-6 strain carries pho3/pho3 homozygous genes in contrast to the heterozygous PHO3/pho3 genes in the parental Ko strain. However, absence of the PHO3 gene per se cannot explain the fermentation superiority of BAW-6. Here, we demonstrate the growth advantage of the BAW-6 strain over the Ko strain by competitive cultivation in barley shochu preparation, where alcohol yield and nihonshudo of the former strain were higher than those of the latter strain. In addition, the maximum growth rate of BAW-6 was less affected than that of Ko by high Brix values of barley koji medium, suggesting that BAW-6 is less sensitive to growth inhibitory compounds derived from barley or barley koji. The tolerance of BAW-6 to growth inhibitory compounds, cerulenin and diethylstilbestrol (an H⁺-ATPase inhibitor), was also higher than that of other yeast strains. Consistent with BAW-6's tolerance to diethylstilbestrol in the presence of 8% ethanol (pH 4.5), H⁺-ATPase activity, but not transcription of its gene, was higher in BAW-6 than in Ko. We conclude that the BAW-6 strain is associated with certain gene alterations other than PHO3, such that it can maintain cellular ion homeostasis under conditions of ethanol stress during the latter phase of fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Different pituitary. beta. -endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Gianoulakis, C.G.; Beliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. (McGill Univ., Quebec (Canada))

    1989-01-01

    The purpose of the present studies was to investigate the activity of the adrenal gland and the pituitary {beta}-endorphin system in individuals from families with a 3 generation history of alcoholism, High Risk group, or from families without history of alcoholism, Low Risk group. On the day of testing, blood sample was taken at 9:00 a.m., then the subject drank a placebo drink or an ethanol solution. Additional blood samples were taken at 15, 45 and 120 minutes post-drink. Results indicated that individuals of the High Risk group had lower basal levels of {beta}-endorphin like immunoreactivity ({beta}-EPLIR) than individuals of the Low Risk group. The dose of 0.5 g ethanol/kg B.Wt. induced an induce an increase in the plasma content of {beta}-EPLIR of the High Risk group, but not of the Low Risk group. In the Low Risk group ethanol did not induce an increase above the 9:00 a.m. levels, however, it attenuated the {beta}-endorphin decrease overtime, observed following the placebo drink. Analysis of {beta}-endorphin-like peptides in the plasma of the High Risk group, with Sephadex G-75 chromatography indicated that the major component of the plasma {beta}-EPLIR was {beta}-lipotropin. Plasma cortisol levels, following ethanol intake, presented a small increase in the High Risk group but not in the Low Risk group.

  7. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    Science.gov (United States)

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite—Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fard, Leyla Abolghasemi [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Ojani, Reza, E-mail: fer-o@umz.ac.ir [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Raoof, Jahan Bakhsh [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of); Zare, Ehsan Nazarzadeh; Lakouraj, Moslem Mansour [Polymer Research Laboratory Department of Organic-Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, 3rd Kilometer of Air Force Road, 47416-95447, Babolsar (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • The PdCo PNS/PPy@MWCNT electrocatalyst was easily prepared. • The electrocatalyst exhibits high electrocatalytic activity and stability toward the EOR. • The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm{sup −2}) is higher than those of other compared electrocatalysts. • The high electrocatalytic performance is attributed to concerted effects of Porous nature, Co and PPy@MWCNT. • The PdCo PNS/PPy@MWCNT electrocatalyst has never been reported. - Abstract: In the current study, well-defined PdCo porous nanostructure (PdCo PNS) is prepared by a simple one-pot wet-chemical method and polypyrrole@multi-walled carbon nanotubes (PPy@MWCNTs) nanocomposite is used as a catalyst support. The morphology and the structural properties of the prepared catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic performance of PdCo PNS/PPy@MWCNTs on glassy carbon electrode has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) techniques. The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm{sup −2}) is higher than those of other compared electrocatalysts. Also, PdCo PNS/PPy@MWCNTs catalyst represented higher electrocatalytic activity, better long-term stability and high level of poisoning tolerance to the carbonaceous oxidative intermediates for ethanol electrooxidation reaction in alkaline media. Furthermore, the presence of PPY@MWCNTs on the surface of GCE produce a high activity to electrocatalyst, which might be due to the easier charge transfer at polymer/carbon nanotubes interfaces, higher electrochemically accessible surface areas and electronic conductivity. The superior catalytic activity of PdCo PNS/PPy@MWCNTs suggests it to be as a promising electrocatalyst for future direct ethanol fuel cells.

  9. Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration.

    Science.gov (United States)

    Krank, Marvin D

    2003-10-01

    Conditioned incentive theories of addictive behavior propose that cues signaling a drug's reinforcing effects activate a central motivational state. Incentive motivation enhances drug-taking and drug-seeking behavior. We investigated the behavioral response to cues associated with ethanol and their interaction with operant self-administration of ethanol. In two experiments, rats received operant training to press a lever for a sweetened ethanol solution. After operant training, the animals were given Pavlovian pairings of a brief and localized cue light with the sweetened ethanol solution (no lever present). Lever pressing for ethanol was then re-established, and the behavioral effects of the cue light were tested during an ethanol self-administration session. The conditioned responses resulting from pairing cue lights with the opportunity to ingest ethanol had three main effects: (1) induction of operant behavior reinforced by ethanol, (2) stimulation of ethanol-seeking behavior (magazine entries), and (3) signal-directed behavior (i.e., autoshaping, or sign-tracking). Signal-directed behavior interacted with the other two effects in a manner predicted by the location of the cue light. These conditioned responses interact with operant responding for ethanol reinforcement. These findings demonstrate the importance of Pavlovian conditioning effects on ethanol self-administration and are consistent with conditioned incentive theories of addictive behavior.

  10. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  11. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  12. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    Science.gov (United States)

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  13. Ethanol Extract from Ulva prolifera Prevents High-Fat Diet-Induced Insulin Resistance, Oxidative Stress, and Inflammation Response in Mice

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-01-01

    Full Text Available Ulva prolifera is the major causative species in the green tide, a serious marine ecological disaster, which bloomed in the Yellow Sea and the Bohai Sea of China. However, it is also a popular edible seaweed and its extracts exerts anti-inflammatory and antioxidant effects. The present study investigated the effects of ethanol extract of U. prolifera (EUP on insulin sensitivity, inflammatory response, and oxidative stress in high-fat-diet- (HFD- treated mice. HFD-treated mice obtained drinking water containing 2% or 5% EUP. The results showed that EUP supplementation significantly prevented HFD-induced weight gain of liver and fat. EUP supplementation also improved glucose tolerance and insulin resistance in HFD-treated mice. Moreover, EUP supplementation prevented the increased expression of genes involved in triglyceride synthesis and proinflammatory genes and the decreased expression of genes involved in fatty acid oxidation in liver of HFD-treated mice. Furthermore, EUP supplementation decreased reactive oxygen species content, while increasing glutathione content and glutathione peroxidase activity in HFD-treated mice. In conclusion, our results showed that EUP improved insulin resistance and had antilipid accumulation and anti-inflammatory and antioxidative effects on HFD-treated mice. We suggested that U. prolifera extracts may be regarded as potential candidate for the prevention of nonalcoholic fatty liver disease.

  14. Simulation of Assembly Tolerance and Characteristics of High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-12-01

    Full Text Available Fuel injector is the key part of a high-pressure common rail fuel injection system. Its manufacturing precision and assembly quality affect system's property and performance. According to the characteristics and demands of assembly of the fuel injector, an intelligent optimization algorithm is proposed to resolve the problem of assembly sequence planning. Based on geometric modeling, assembly dimension chain of the injector control chamber is established, and the relationship between assembly tolerance and volume change of control chamber is analyzed. The optimization model of the assembly is established. The impact of assembly tolerance on injector's performance is simulated according to the optimization algorithm. The simulation result shows that quantity of injection fuel changes correspondingly with the change of assembly tolerance, while injection rate and pressure do not change significantly, and the response rate of needle considerably slow. Similarly, the leakage rate of fuel in control chamber is calculated, indicating that the assembly tolerance has obvious impact on fuel leakage and its rate. The study illuminates that injector's assembly tolerance has prominent effect on injection.

  15. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Tolerance of High Inorganic Mercury of Perna viridis : Laboratory ...

    African Journals Online (AJOL)

    Tolerance of High Inorganic Mercury of Perna viridis : Laboratory Studies of Its Accumulation, Depuration and Distribution. ... coefficient, indicating that it could act as one of the excretion routes for Hg and it can be proposed as a sensitive biomonitoring material for Hg. The fecal materials released by the mussel had elevated ...

  17. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  18. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    Science.gov (United States)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  19. Chronic administration of ethanol with high vitamin A supplementation in a liquid diet to rats does not cause liver fibrosis. 2. Biochemical observations

    NARCIS (Netherlands)

    Seifert, W. F.; Bosma, A.; Hendriks, H. F.; Blaner, W. S.; van Leeuwen, R. E.; van Thiel-de Ruiter, G. C.; Wilson, J. H.; Knook, D. L.; Brouwer, A.

    1991-01-01

    The inability of the 'ethanol/high vitamin A Lieber-DeCarli diet' to induce liver fibrosis in two different rat strains was further evaluated by determining changes in parameters of liver cell damage and of retinoid and lipid metabolism. In the ethanol/vitamin A-treated group, slight but constant

  20. IMPROVEMENT OF BIOFUEL ETHANOL RECOVERY USING THE PERVAPORATION SEPARATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Nilufer Durmaz Hilmioglu [Kocaeli University Chemical Engineering Department Veziroglu Campus, Kocaeli (Turkey)

    2008-09-30

    The climatic impact of carbon dioxide emissions from the burning of fossil fuels have become a major problem. The production of renewable biofuels from biomass has received increasing attention. Because of the economic and environmental benefits of fuel ethanol's use it is considered one of the most important renewable fuels. In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered by pervaporation from the fermentation broth as it is formed. The hybrid process is an attractive process to increase ethanol production economics and to decrease environmental pollution. The separaiton of alcohol from mixtures with ethanol produced by fermentation is usually carried out by distillation and the energy consumption is very high when azeotropic concentration is reached, which corresponds to 5% water in ethanol/water mixture. The pervaporation process provides an economical alternative to the existing distillation technique. A continous recovery of alcohol could be achieved by using the pervaporation process during fermentation, making the process more energy efficient. In this work, for the purposes of membrane material development for pervaporation; zeolite filled and unfilled cellulose acetate membranes were prepared. Zeolite types were 4A, 13X. The effect of incorporation of nano-sized zeolites prepared in a colloidal form in membranes was also investigated. From the sorption tests it is concluded that, ethanol/water azeotropy can be breaked by pervaporation.

  1. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  2. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  3. Performances comparison between three technologies for continuous ethanol production from molasses

    International Nuclear Information System (INIS)

    Bouallagui, Hassib; Touhami, Youssef; Hanafi, Nedia; Ghariani, Amine; Hamdi, Moktar

    2013-01-01

    Molasses are a potential feedstock for ethanol production. The successful application of anaerobic fermentation for ethanol production from molasses is critically dependent to the development and the use of high rate bioreactors. In this study the fermentation of sugar cane molasses by Saccharomyces cerevisiae for the ethanol production in a continuously stirred tank reactor (CSTR), an immobilised cell reactor (ICR) and a membrane reactor (MBR) was investigated. Ethanol production and reactor productivities were compared under different dilution rates (D). When using the CSTR, a decent ethanol productivity (Qp) of 6.8 g L −1 h −1 was obtained at a dilution rate of 0.5 h −1 . The Qp was improved by 48% and the residual sugar concentration was reduced by using the ICR. Intensifying the production of ethanol was investigated in the MBR to achieve a maximum ethanol concentration and a Qp of 46.5 g L −1 and 19.2 g L −1 h −1 , respectively. The achieved results in the MBR worked with high substrate concentration are promising for the scale up operation. -- Highlights: ► We compare three reactors for ethanol production from sugar cane molasses. ► The ethanol productivity of 6.8 g L -1 h -1 was obtained using the CSTR. ► The ethanol productivity was improved by 48% by using the ICR. ► Intensifying ethanol productivity (19.2 g L -1 h -1 ) was investigated in the MBR

  4. Ethanol Transportation Backgrounder

    OpenAIRE

    Denicoff, Marina R.

    2007-01-01

    For the first 6 months of 2007, U.S. ethanol production totaled nearly 3 billion gallons—32 percent higher than the same period last year. As of August 29, there were 128 ethanol plants with annual production capacity totaling 6.78 billion gallons, and an additional 85 plants were under construction. U.S. ethanol production capacity is expanding rapidly and is currently expected to exceed 13 billion gallons per year by early 2009, if not sooner. Ethanol demand has increased corn prices and le...

  5. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  6. Use of a crossed high alcohol preferring (cHAP) mouse model with the NIAAA-model of chronic-binge ethanol intake to study liver injury.

    Science.gov (United States)

    Thompson, Kyle J; Nazari, Shayan S; Jacobs, W Carl; Grahame, Nicholas J; McKillop, Iain H

    2017-11-01

    This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  7. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  8. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    Science.gov (United States)

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  9. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    Science.gov (United States)

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling

  10. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.

    2006-01-01

    The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter, The experi......The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter...

  11. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Directory of Open Access Journals (Sweden)

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  12. Nanofibrillated Cellulose (NFC: A High-Value Co-Product that Improves the Economics of Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Qiong Song

    2014-02-01

    Full Text Available Cellulosic ethanol is a sustainable alternative to petroleum as a transportation fuel, which could be made biologically from agricultural and forestry residues, municipal waste, or herbaceous and woody crops. Instead of putting efforts on steps overcoming the natural resistance of plants to biological breakdown, our study proposes a unique pathway to improve the outcome of the process by co-producing high-value nanofibrillated cellulose (NFC, offering a new economic leverage for cellulosic ethanol to compete with fossil fuels in the near future. In this study, glucose has been produced by commercial enzymes while the residual solids are converted into NFC via sonification. Here, we report the morphology of fibers changed through the process and yield of glucose in the enzymatic hydrolysis step.

  13. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  14. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    Science.gov (United States)

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  15. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  16. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    Science.gov (United States)

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  18. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    Science.gov (United States)

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  19. Xylose fermentation to ethanol. A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  20. Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  1. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  2. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  3. Effect of furfural on ethanol production by S. cerevisiae in a cross-linked immobilized cell reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, L.J.; Vega, J.L.; Basu, R.; Clausen, E.C.; Gaddy, J.L. (Arkansas Univ., Fayetteville, AR (United States). Dept. of Chemical Engineering)

    1992-01-01

    Furfural, a browning reaction product, inhibits yeast (Saccharomyces cerevisiae) growth and metabolism at low concentration levels in batch culture. The performance of an immobilized cell reactor (ICR) in the presence of 0-2.0 g l[sup -1] of furfural was examined. Cell growth in the ICR, with and without furfural in the media, indicated that either furfural did not impair glucose utilization, or that the negative effects of furfural were negated by increasing cell density in the reactor. Ethanol yields were constant at 0.48 g ethanol per g glucose regardless of the furfural concentration in the media. Although the specific productivity in the ICR decreased with furfural concentration, the productivity based on liquid hold-up remained constant. Furfural was depleted in the ICR during the experimental operation. Thus, furfural levels of 2.0 g 1[sup -1] or less can be tolerated by the yeast for ethanol production in the ICR without negatively affecting reactor performance. (author).

  4. Thermodynamic analysis of ethanol reforming for hydrogen production

    International Nuclear Information System (INIS)

    Sun, Shaohui; Yan, Wei; Sun, Peiqin; Chen, Junwu

    2012-01-01

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  5. Ethanol research with representatives of provincial/territorial governments and ethanol retailers : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    This paper provided the results of a survey conducted to obtain feedback from retailers and provincial and territorial governments concerning the promotion of ethanol use. A key objective of the research was to determine whether local and provincial governments and retailers are interested in cooperating with the federal government in promoting ethanol use. Thirteen government representatives were interviewed as well as 11 retailers. Results of the study suggested that approaches to collaboration with the diverse stakeholders involved in the promotion of ethanol will require a tailored approach. The needs and interests of jurisdictions and provinces varied widely. Outlets selling ethanol-blended gasoline were concentrated in Ontario, Quebec, and Saskatchewan. Retailers who embraced the alternative fuel tended to be well-established in the ethanol market, and did not require assistance from the Government of Canada. Retailers who were reluctant to embrace ethanol stated that they were only likely to enter the market when required to do so by law. Many stakeholders felt that consumers entertained common misperceptions concerning ethanol, and that consumers were unsure of the effect of ethanol on their vehicles. Many retailers had taken steps to communicate with consumers about the relative benefits of ethanol-blended gasoline. Results indicated that the federal government can assist provinces and retailers by providing promotional tools such as flyers, pamphlets and brochures. Interest among retailers in collaborating with the government was only moderate. It was recommended that retailers be provided with accurate information on ethanol. It was concluded that strategies should be developed by the federal government to increase public awareness of ethanol use.

  6. Ethanol and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with and without permitted alcohol consumption.

    Science.gov (United States)

    Gessner, Stephan; Below, Elke; Diedrich, Stephan; Wegner, Christian; Gessner, Wiebke; Kohlmann, Thomas; Heidecke, Claus-Dieter; Bockholdt, Britta; Kramer, Axel; Assadian, Ojan; Below, Harald

    2016-09-01

    During hand antisepsis, health care workers (HCWs) are exposed to alcohol by dermal contact and by inhalation. Concerns have been raised that high alcohol absorptions may adversely affect HCWs, particularly certain vulnerable individuals such as pregnant women or individuals with genetic deficiencies of aldehyde dehydrogenase. We investigated the kinetics of HCWs' urinary concentrations of ethanol and its metabolite ethyl glucuronide (EtG) during clinical work with and without previous consumption of alcoholic beverages by HCWs. The median ethanol concentration was 0.7 mg/L (interquartile range [IQR], 0.5-1.9 mg/L; maximum, 9.2 mg/L) during abstinence and 12.2 mg/L (IQR, 1.5-139.6 mg/L; maximum, 1,020.1 mg/L) during alcohol consumption. During abstinence, EtG reached concentrations of up to 958 ng/mL. When alcohol consumption was permitted, the median EtG concentration of all samples was 2,593 ng/mL (IQR, 890.8-3,576 ng/mL; maximum, 5,043 ng/mL). Although alcohol consumption was strongly correlated with both EtG and ethanol in urine, no significant correlation for the frequency of alcoholic hand antisepsis was observed in the linear mixed models. The use of ethanol-based handrub induces measurable ethanol and EtG concentrations in urine. Compared with consumption of alcoholic beverages or use of consumer products containing ethanol, the amount of ethanol absorption resulting from handrub applications is negligible. In practice, there is no evidence of any harmful effect of using ethanol-based handrubs as much as it is clinically necessary. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Continuous high-solids corn liquefaction and fermentation with stripping of ethanol.

    Science.gov (United States)

    Taylor, Frank; Marquez, Marco A; Johnston, David B; Goldberg, Neil M; Hicks, Kevin B

    2010-06-01

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous research showed that this approach is feasible. Savings of $0.03 per gallon were predicted at 34% corn dry solids. Greater savings were predicted at higher concentration. Now the feasibility has been demonstrated at over 40% corn dry solids, using a continuous corn liquefaction system. A pilot plant, that continuously fed corn meal at more than one bushel (25 kg) per day, was operated for 60 consecutive days, continuously converting 95% of starch and producing 88% of the maximum theoretical yield of ethanol. A computer simulation was used to analyze the results. The fermentation and stripping systems were not significantly affected when the CO(2) stripping gas was partially replaced by nitrogen or air, potentially lowering costs associated with the gas recycle loop. It was concluded that previous estimates of potential cost savings are still valid. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  8. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  9. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  10. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    Science.gov (United States)

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Phase equilibrium measurements and thermodynamic modelling for the system (CO2 + ethyl palmitate + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Gaschi, Priscilla S.; Mafra, Marcos R.; Ndiaye, Papa M.; Corazza, Marcos L.

    2013-01-01

    Graphical abstract: Ethyl palmitate and biodiesel comparison in a pressure–composition diagram for the systems (CO 2 + ethyl palmitate + biodiesel), at different temperatures. Highlights: ► We measured VLE, LLE, and VLLE for the system (CO 2 + ethyl palmitate + ethanol). ► The saturation pressures were obtained using a variable-volume view cell. ► Phase envelope of (CO 2 + ethyl palmitate) is different that (CO 2 + soybean oil biodiesel). ► The experimental data were modeled using PR-vdW2 and PR–WS equations of state. - Abstract: This work reports phase equilibrium measurements for the binary {CO 2 (1) + ethyl palmitate(2)} and ternary {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} systems at high pressures. There is currently great interest in biodiesel production processes involving supercritical and/or pressurized solvents, such as non-catalytic supercritical biodiesel production and enzyme-catalysed biodiesel production. Also, supercritical CO 2 can offer an interesting alternative for glycerol separation in the biodiesel purification step in a water-free process. In this context, the main goal of this work was to investigate the phase behaviour of binary and ternary systems involving CO 2 , a pure constituent of biodiesel ethyl palmitate and ethanol. Experiments were carried out in a high-pressure variable-volume view cell with operating temperatures ranging from (303.15 to 353.15) K and pressures up to 21 MPa. The CO 2 mole fraction ranged from 0.5033 to 0.9913 for the binary {CO 2 (1) + ethyl palmitate(2)} system and from 0.4436 to 0.9712 for ternary system {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} system with ethyl ester to ethanol molar ratios of (1:6), (1:3), and (1:1). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL) phase transitions were observed. The experimental data sets were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals

  12. Selecting ethanol as an ideal organic solvent probe in radiation chemistry γ-radiolysis of acetone-ethanol system and acetophenone-ethanol system

    International Nuclear Information System (INIS)

    Jin Haofang; Wu Jilan; Fang Xingwang; Zhang Xujia

    1995-01-01

    Radiolysis of acetone-ethanol solution and acetophenone-ethanol solution has been studied in this work. The dependences of G values of the final γ radiolysis products such as H 2 . 2,3-butanediol and acetaldehyde on additive concentration in liquid ethanol have been obtained. There are two kinds of new final products, isopropanol and 2-methyl-2,3-butanediol are detected in irradiated acetone-ethanol solution. As for acetophenone-ethanol system, more new final products are found. In addition, experiments of pulse radiolysis upon acetophenone-ethanol solution have also been performed. The absorption spectrum with λ max at 315nm and 440nm is observed, which is assigned to ketyl radical ion C 6 H 5 (CH 3 )CO - . And the reaction mechanism of the two systems is proposed respectively with a moderate success. (author)

  13. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  14. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  15. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  16. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.

    Science.gov (United States)

    Li, Ruoyun; Xiong, Guotong; Yuan, Shukun; Wu, Zufang; Miao, Yingjie; Weng, Peifang

    2017-11-03

    Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.

  17. On the pH and Osmotic Stress Tolerance of High Ethanol Tolerant ...

    African Journals Online (AJOL)

    Saccharomyces yeast strains Y13, Y522 and Y1189 isolated from fermenting palm wine juice showed marked differences in their optimum growth pH and possessed osmotolerance comparable to established industrial yeast strains. Shifts in medium pH beyond the growth optimum elicited obvious reductions in growth rate ...

  18. Fluxes of Ethanol Between the Atmosphere and Oceanic Surface Waters; Implications for the Fate of Biofuel Ethanol Released into the Environment

    Science.gov (United States)

    Avery, G. B., Jr.; Shimizu, M. S.; Willey, J. D.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Lathrop, T. E.; Felix, J. D. D.

    2017-12-01

    The use of ethanol as a transportation fuel has increased significantly during the past decade in the US. Some ethanol escapes the combustion process in internal combustion engines resulting in its release to the atmosphere. Ethanol can be oxidized photochemically to acetaldehyde and then converted to peroxyacetyl nitrate contributing to air pollution. Therefore it is important to determine the fate ethanol released to the atmosphere. Because of its high water solubility the oceans may act as a sink for ethanol depending on its state of saturation with respect to the gas phase. The purpose of the current study was to determine the relative saturation of oceanic surface waters by making simultaneous measurements of gas phase and surface water concentrations. Data were obtained from four separate cruises ranging from estuarine to open ocean locations in the coast of North Carolina, USA. The majority of estuarine sites were under saturated in ethanol with respect to the gas phase (11-50% saturated) representing a potential sink. Coastal surface waters tended to be supersaturated (135 - 317%) representing a net flux of ethanol to the atmosphere. Open ocean samples were generally at saturation or slightly below saturation (76-99%) indicating equilibrium between the gas and aqueous phases. The results of this study underscore to variable role the oceans play in mitigating the increases in atmospheric ethanol from increased biofuel usage and their impact on air quality.

  19. Ethanol Fermentation of Various Pretreated and Hydrolyzed Substrates at Low Initial pH

    Science.gov (United States)

    Kádár, Zsófia; Maltha, San Feng; Szengyel, Zsolt; Réczey, Kati; de Laat, Wim

    Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.

  20. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  1. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  2. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  3. Performance of a passive direct ethanol fuel cell

    Science.gov (United States)

    Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.

    2014-06-01

    Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.

  4. The effect of ethanol on 35-S-TBPS binding to mouse brain membranes in the presence of chloride

    International Nuclear Information System (INIS)

    Liljequist, S.; Culp, S.; Tabakoff, B.

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of 35 S-t-butyl-bicyclophosphorothionate ( 35 S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl (100 mM) containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal 35 S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action (stimulation followed by inhibition) on 35 S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of 35 S-TBPS binding produced by diazepam. 35 S-TBPS binding to cortical brain membranes was inhibited by the putative Cl - channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol (≤ 100 mM ethanol). Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on 35 S-TBPS binding. The enhancement of 35 S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit 35 S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal 35 S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of 35 S-TBPS binding by diazepam. (author)

  5. Effect of HCl Loading and Ethanol Concentration over HCl-Activated Clay Catalysts for Ethanol Dehydration to Ethylene.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2017-01-01

    Montmorillonite clay (MMT) is one of materials that can be "green material" due to its environmental safety. In this work, acid-activated MMT catalysts were prepared for the dehydration reaction of ethanol. To be the green process, the reaction with bioethanol was also studied. Ethanol concentrations in feed were varied in the range of 10-99.95 wt%. Moreover, the concentrations of hydrochloric acid activated MMT were investigated in range of 0.05-4 M. From the experiment, it reveals that different acid concentrations to activate MMT affect the catalytic activity of catalysts. The 0.3 M of HCl activated MMT exhibits the highest activity (under the best condition of 30 ml HCl aging for 1 h) with the Si/Al ratio of 7.4. It can reach the ethanol conversion and ethylene selectivity up to 95% and 98% at reaction temperature of 400°C, respectively. For the several ethanol feed concentrations, it does not remarkably affect in ethanol conversion. However, it has some different effect on ethylene selectivity between lower and higher reaction temperatures. It was found that at lower temperature reaction, ethylene selectivity is high due to the behavior of water in feed. In addition, the 0.3 M-MMT can be carried out under the hydrothermal effect.

  6. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  7. Reduction of salt content of fish sauce by ethanol treatment.

    Science.gov (United States)

    Liu, Yu; Xu, Ying; He, Xiaoxia; Wang, Dongfeng; Hu, Shiwei; Li, Shijie; Jiang, Wei

    2017-08-01

    Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.

  8. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  9. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  10. Assessment of the short-term safety and tolerability of a quantified 80 % ethanol extract from the stem bark of Nauclea pobeguinii (PR 259 CT1) in healthy volunteers: a clinical phase I study.

    Science.gov (United States)

    Mesia, Kahunu; Cimanga, Kanyanga; Tona, Lutete; Mampunza, Ma Miezi; Ntamabyaliro, Nsengi; Muanda, Tsobo; Muyembe, Tamfum; Totté, Jozef; Mets, Tony; Pieters, Luc; Vlietinck, Arnold

    2011-01-01

    The aim of this study was to evaluate the short-term safety and tolerability of an antimalarial herbal medicinal product (PR 259 CT1) consisting of a quantified 80 % ethanol extract from the stem bark of Nauclea pobeguinii when given orally to healthy adult male volunteers. The amount of the major alkaloid strictosamide in the extract was determined by a validated HPLC method and was shown to be 5.6 %. The herbal preparation was formulated in a gelatine capsule form containing 500 mg of PCR 259 CT1. A sample of 15 healthy male volunteers, selected using the Lot Quality Assurance of Sampling (LQAS) method, was eligible for inclusion after fulfillment of the inclusion criteria and clinical examination by a physician. The volunteers were treated in an outpatient clinic with a drug regimen of two 500 mg capsules three times daily (each eight hours) for seven days, during meals. Safety and tolerability were monitored clinically, haematologically, biochemically and by electrocardiographic (ECG) examination at days 0, 1, 3, 7 and 14. Adverse effects were recorded by self-reporting of the participants or by detection of abnormalities in clinical examinations by a physician. The oral administration of PR 259 CT1 at high doses of 2 × 500 mg/capsule/day for 7 days was found to induce no significant changes in the concentration levels of all investigated haematological, biochemical, electrocardiogram and vital sign parameters and physical characteristics after 14 days of treatment compared to those seen in the baseline data. The concentration levels of all evaluated parameters were within the normal limits as reported in the literature. All adverse events noted were mild and self-resolving including increase of appetite (33 %), headache (20 %) and nausea (20 %). Other minor side effects were insomnia, somnolence and asthenia (7 %). Thus, PR 259 CT1 presented a significant safety and tolerability in healthy volunteers to allow its further development by starting a phase II

  11. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    Directory of Open Access Journals (Sweden)

    Andrew K Haack

    Full Text Available The lateral habenula (LHb plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  12. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  13. High Defect Tolerance in Lead Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Kang, Jun; Wang, Lin-Wang

    2017-01-19

    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.

  14. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Chika C Nwugo

    Full Text Available Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA, a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  15. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  16. Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress

    OpenAIRE

    Hsiao, Tsun-Hsien; Lin, Chia-Jen; Chung, Yi-Shao; Lee, Gang-Hui; Kao, Tseng-Ting; Chang, Wen-Ni; Chen, Bing-Hung; Hung, Jan-Jong; Fu, Tzu-Fun

    2014-01-01

    Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level app...

  17. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  18. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  19. Influences of diesel pilot injection on ethanol autoignition - a numerical analysis

    Science.gov (United States)

    Burnete, N. V.; Burnete, N.; Jurchis, B.; Iclodean, C.

    2017-10-01

    The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.

  20. Impact of a high intensity training program on glucose tolerance in people with multiple sclerosis

    OpenAIRE

    Patyn, Cédric

    2014-01-01

    Abstract Background: Recent research reported a higher prevalence of impaired glucose tolerance (IGT) in MS patients than in healthy people. The influence of high intensity exercise on IGT in MS was never investigated before. Objective: To investigate the effect of high intensity aerobic interval (HIIT) or continuous endurance (CT) training, both in combination with resistance training, on glucose tolerance muscle strength and body composition. Methods: 34 subjects were randomly as...

  1. Recurrence of primary aldosteronism after percutaneous ethanol injection

    Directory of Open Access Journals (Sweden)

    Fan-Chi Chang

    2012-03-01

    Full Text Available Adrenalectomy is the definite treatment for aldosterone-producing adenoma (APA. Percutaneous ethanol or acetic acid injection with computed tomography (CT guidance has been described as a safe, noninvasive, and effective alternative treatment modality in patients with high surgical risk. We report on a man who was 49 years of age and presented with treatment-resistant hypertension and was later diagnosed with APA. CT-guided percutaneous ethanol injection (PEI was performed for this high surgical risk patient. He had aldosteronism recurrence 4 years after the ethanol injection, so a second PEI was performed. The tumor size was reduced and his blood pressure was normalized. Therefore, we suggest that clinicians should closely check aldosterone to renin ration and potassium level if percutaneous chemical ablation is considered in functioning adrenal adenomas.

  2. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    BACKGROUND: Paracetamol (acetaminophen) intoxication often in combination with ethanol, is seen commonly in overdose cases. Doses of several grams might be close to the maximum adsorption capacity of the standard treatment dose (50g) of activated charcoal. The aim of this study was to determine...... the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7.......2 (intestinal environment), and with and without 10% ethanol. METHODS: Activated charcoal, at both gastric or intestinal pHs, and paracetamol were mixed, resulting in activated charcoal-paracetamol ratios from 10:] to 1:1. In trials with ethanol, some of the gastric or intestinal fluid was replaced...

  3. Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Henrique, E-mail: henrique.pacini@energy.kth.se; Silveira, Semida, E-mail: semida.silveira@energy.kth.se

    2011-11-15

    The introduction of flex-fuel vehicles since 2003 has made possible for Brazilian drivers to choose between high ethanol blends or gasoline depending on relative prices and fuel economies. In Sweden, flex-fuel fleets were introduced in 2005. Prices and demand data were examined for both Brazil and Sweden. Bioethanol has been generally the most cost-efficient fuel in Brazil, but not for all states. In any case, consumers in Brazil have opted for ethanol even when this was not the optimal economic choice. In Sweden, a different behavior was observed when falling gasoline prices made E85 uneconomical in late 2008. In a context of international biofuels expansion, the example of E85 in Sweden indicates that new markets could experience different consumer behavior than Brazil: demand falls rapidly with reduced price differences between ethanol and gasoline. At the same time, rising ethanol demand and lack of an international market with multiple biofuel producers could lead to higher domestic prices in Brazil. Once the limit curve is crossed, the consumer might react by shifting back to the usage of gasoline. - Research Highlights: > Brazil and Sweden both have infrastructure for high fuel ethanol blends. > Flex-fuel vehicles enable competition between ethanol and gasoline in fuel markets. > Data suggests that consumers make their fuel choice based mainly on prices. > Consumers in Sweden appear to be more price-sensitive than their Brazilian counterparts. > In the absence of international markets, high ethanol prices may drive consumers back to gasoline.

  4. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  5. From potential to reality. Yeasts derived from ethanol production for animal nutrition

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.; Trevizam, A.B.; Nepomuceno, N.; Amorim, H.V.

    1998-01-01

    The high costs of cereals and vegetable protein supplements used for animal nutrition have directed much attention toward non-conventional alternative protein sources. Brazil has a significant potential to provide such material, since it is the world's largest producer of ethanol (13 billion liters per year) derived from fermentation by yeasts (sugar cane being the basic raw material). Distilleries are recovering surplus yeast to produce dry yeast for use in animal food formulations. With regard to the yeast biomass elemental composition, INAA analyses performed on a pool of samples from various different fermentations have shown the presence of various trace elements, e.g. As, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sc, Sm, Th, and Zn. This reinforces the need for additional studies concerning the suitability of yeast in terms of maximum tolerable levels of these elements in formulations for domestic animals. (author)

  6. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    Science.gov (United States)

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  7. Water-induced ethanol dewetting transition.

    Science.gov (United States)

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  8. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    Science.gov (United States)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  9. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.

    Science.gov (United States)

    Matsushika, Akinori; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2017-08-01

    We previously showed that overexpression of IoGAS1, which was isolated from the multiple stress-tolerant yeast Issatchenkia orientalis, endows Saccharomyces cerevisiae cells with the ability to grow and ferment under acidic and high-salt conditions. The deduced amino acid sequence of the IoGAS1 gene product exhibits 60% identity with the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity. However, the functional roles of ScGAS1 in stress tolerance and pH regulation remain unclear. In the present study, we characterized ScGAS1 regarding its roles in tolerance to low pH and high salt concentrations. Transcriptional analysis indicated that, as for the IoGAS1 gene, ScGAS1 expression was pH dependent, with maximum expression at pH 3.0; the presence of salt increased endogenous expression of both GAS1 genes at almost all pH levels. These results suggested that ScGAS1, like IoGAS1, is involved in a novel acid- and salt-stress adaptation mechanism in S. cerevisiae. Overexpression of ScGAS1 in S. cerevisiae improved growth and ethanol production from glucose under acid stress without added salt, although the stress tolerance of the ScGAS1-overexpressing strain was inferior to that of the IoGAS1-overexpressing strain. However, overexpression of ScGAS1 did not result in increased tolerance of S. cerevisiae to combined acid and salt stress, even though ScGAS1 appears to be a salt-responsive gene. Thus, ScGAS1 is directly implicated in tolerance to low pH but does not confer salinity tolerance, supporting the view that ScGAS1 and IoGAS1 have overlapping yet distinct roles in stress tolerance in yeast. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell.

    Science.gov (United States)

    Jin, Jia-Mei; Sheng, Tian; Lin, Xiao; Kavanagh, Richard; Hamer, Philip; Hu, Peijun; Hardacre, Christopher; Martinez-Bonastre, Alex; Sharman, Jonathan; Thompsett, David; Lin, Wen-Feng

    2014-05-28

    The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 °C and 60 °C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 °C to 60 °C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

  11. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions and the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.

  12. Continuous ethanol production from sugar beet molasses using an osmotolerant mutant strain of zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.C.; Baratti, J.C. (Univ. de Provence, Marseille (France). Centre National de la Recherche Scientifique)

    1992-01-25

    In conventional alcohol fermentation processes using yeast species, the substrate cost represents a major fraction of the total production cost. Therefore, it may be very attractive to use the bacterium Zymomonas mobilis, since it has shown higher ethanol yields than yeasts when grown on a glucose-based medium. A report is made on the use of mutant strain of Zymomonas mobilis for ethanol production from hydrolyzed sugar beet molasses in a two-stage continuous culture which showed high ethanol yield and an ethanol concentration sufficiently high for economical recovery. A single stage continuous culture was first operated in an attempt to reduce the formation of sorbitol. Further on, a second fermentor was added with additional substrate feeding to increase the effluent ethanol concentration. An ethanol concentration of 59.9g/l was obtained at 97% sugar conversion and at high ethanol yield. The volumetric ethanol productivity was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the ethanol concentration was increased to a level acceptable for economical recovery. 18 refs., 3 figs., 5 tabs.

  13. Well-to-Wheels Greenhouse Gas Emission Analysis of High-Octane Fuels with Ethanol Blending: Phase II Analysis with Refinery Investment Options

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; DiVita, Vincent [Jacobs Consultancy Inc., Houston, TX (United States)

    2016-08-01

    Higher-octane gasoline can enable increases in an internal combustion engine’s energy efficiency and a vehicle’s fuel economy by allowing an increase in the engine compression ratio and/or by enabling downspeeding and downsizing. Producing high-octane fuel (HOF) with the current level of ethanol blending (E10) could increase the energy and greenhouse gas (GHG) emissions intensity of the fuel product from refinery operations. Alternatively, increasing the ethanol blending level in final gasoline products could be a promising solution to HOF production because of the high octane rating and potentially low blended Reid vapor pressure (RVP) of ethanol at 25% and higher of the ethanol blending level by volume. In our previous HOF well-to-wheels (WTW) report (the so-called phase I report of the HOF WTW analysis), we conducted WTW analysis of HOF with different ethanol blending levels (i.e., E10, E25, and E40) and a range of vehicle efficiency gains with detailed petroleum refinery linear programming (LP) modeling by Jacobs Consultancy and showed that the overall WTW GHG emission changes associated with HOFVs were dominated by the positive impact associated with vehicle efficiency gains and ethanol blending levels, while the refining operations to produce gasoline blendstock for oxygenate blending (BOB) for various HOF blend levels had a much smaller impact on WTW GHG emissions (Han et al. 2015). The scope of the previous phase I study, however, was limited to evaluating PADDs 2 and 3 operation changes with various HOF market share scenarios and ethanol blending levels. Also, the study used three typical configuration models of refineries (cracking, light coking, and heavy coking) in each PADD, which may not be representative of the aggregate response of all refineries in each PADD to various ethanol blending levels and HOF market scenarios. Lastly, the phase I study assumed no new refinery expansion in the existing refineries, which limited E10 HOF production to the

  14. Removal of minute amount of furfural in ethanol aqueous solution by use of batch-rectification; Kaibun seiryu ni yoru ethanol suiyoekichu no biryo furfural no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, K.; Shimoda, M.; Uemura, Y.; Hatate, Y. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1997-03-10

    Furfural is produced in the distillation stage of low-class distilled spirit manufacturing and badly influences the quality of products. The removal of minute amount of furfural in an ethanol aqueous solution was thus investigated by an Oldershow-type batch-rectifying column consisting of ten plates. Furfural of 50 ppm was added to an ethanol aqueous solution of 6.6 mole% as raw materials. If the ethanol concentration in the upper distillation plates is set high, furfural is forecast to be concentrated in the intermediate plate. In an experiment, side-cut was carried out at this plate. If side-cut is performed at the seventh-plate tray from the top, the total side-cut rate is 12%. In this case, 77% of furfural is removed. The side-cut rate of ethanol at that time was 11%. Moreover, 85% of furfural was removed when ethanol with high concentration was extracted from the top under total reflux conditions and when side-cut was carried out. Only 9% of ethanol was distilled in this case. It was confirmed that furfural can be separated using a multi-plate batch-distilling column. 2 refs., 4 figs., 1 tab.

  15. Ethanol production from Dekkera bruxellensis in synthetic media with pentose

    Directory of Open Access Journals (Sweden)

    Carolina B. Codato

    Full Text Available Abstract Ethanol is obtained in Brazil from the fermentation of sugarcane, molasses or a mixture of these. Alternatively, it can also be obtained from products composed of cellulose and hemicellulose, called “second generation ethanol - 2G”. The yeast Saccharomyces cerevisiae, commonly applied in industrial ethanol production, is not efficient in the conversion of pentoses, which is present in high amounts in lignocellulosic materials. This study aimed to evaluate the ability of a yeast strain of Dekkera bruxellensis in producing ethanol from synthetic media, containing xylose or arabinose, xylose and glucose as the sole carbon sources. The results indicated that D. bruxellensis was capable of producing ethanol from xylose and arabinose, with ethanol concentration similar for both carbon sources, 1.9 g L-1. For the fermentations performed with xylose and glucose, there was an increase in the concentration of ethanol to 5.9 g L-1, lower than the standard yeast Pichia stipitis (9.3 g L-1, but with similar maximum yield in ethanol (0.9 g g TOC-1. This proves that the yeast D. bruxellensis produced lower amounts of ethanol when compared with P. stipitis, but showed that is capable of fermenting xylose and can be a promising alternative for ethanol conversion from hydrolysates containing glucose and xylose as carbon source.

  16. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mamma, D.; Christakopoulos, P.; Koullas, D.; Kekos, D.; Macris, B.J.; Koukios, E. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

    1995-10-01

    The ethanol fermentation of juice and press case, resulting from the squeezing of sweet sorghum stalks at high pressure was investigated. The juice was fermented by Saccharomyces cerevisiae and yielded 4.8 g ethanol per 100 g of fresh stalks. The press cake was fermented directly to ethanol by a mixed culture of Fusarium oxysporum and Saccharomyces cerevisiae and yielded 5.1 g ethanol per 100 g of fresh stalks. An overall ethanol concentration and yield of 5.6% (w/v) and 9.9 g of ethanol per 100 g of fresh stalks respectively was obtained. Based on soluble carbohydrates, the ethanol yield from press cake was doubled while the overall theoretical yield was enhanced by 20.7% due to the bioconversion of a significant portion of cell wall polysaccharides to ethanol. The process was found promising for further investigation. (Author)

  17. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    Science.gov (United States)

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  18. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of

  20. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    Science.gov (United States)

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  1. Possible anti-diarrhoeal potential of ethanol leaf extract of Chromolaena odorata in castor oil-induced rats.

    Science.gov (United States)

    Aba, Patrick Emeka; Joshua, Parker Elija; Ezeonuogu, Francis Chimaobi; Ezeja, Maxwell Ikechukwu; Omoja, Valentine Uneojo; Umeakuana, Paschal Ugochukwu

    2015-12-01

    Chromolaena odorata is a plant commonly used traditionally to treat ailments including diarrhoea in Nigeria. The ethanol leaf extract of C. odorata was studied for its anti-diarrhoeal activity using electrolyte test and castor oil-induced diarrhoea rats' models. Acute toxicity effect of the extract was also evaluated. The extract showed a dose-dependent protection against castor oil-induced diarrhoea at the tested doses (200 and 400 mg/kg body weights). The protection offered by pretreatment with 400 mg/kg body weight of the ethanol leaf extract of C. odorata with regards to reductions in the incidences of faecal wetness and rate of defaecations were statistically comparable to that achieved with Lomotil, a known anti-diarrhoeic drug. The result of the electrolyte test showed that the extract pretreated groups had significantly (p<0.05) lower potassium and sodium ions in their intestinal fluid when compared with the diarrhoeic untreated controls. This is well tolerated. The results indicate that the ethanol leaf extract of C. odorata is safe and possesses anti-diarrhoeal activity with electrolyte reabsorption proposed as the possible mechanism of action.

  2. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    Science.gov (United States)

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Membranes for direct ethanol fuel cells: An overview

    International Nuclear Information System (INIS)

    Zakaria, Z.; Kamarudin, S.K.; Timmiati, S.N.

    2016-01-01

    Highlights: • DEFCs have emerged as alternative energy source. • But many issue need to be addressed. • This paper describes current problem and advancement of membrane in DEFC. - Abstract: Direct ethanol fuel cells (DEFCs) are attractive as a power source options because ethanol is a nontoxic, leading to ease of handling and a high energy density fuel, leading to high system energy density. However, to provide practical DEFCs power source there are several issues that still must be addressed including low power density, effect of ethanol crossover on efficiency of fuel utilization, electrical, mechanical and thermal stability and water uptake of the DEFCs electrolyte membrane. This paper describes the proton exchange membrane and alkaline exchange membrane for DEFCs, focusing on current problems and advancements in DEFC membranes. It also presents the specifications and performances of the membranes used in DEFC.

  4. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    Science.gov (United States)

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.

  5. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    Directory of Open Access Journals (Sweden)

    Blake L Joyce

    Full Text Available Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1 to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2 to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass. Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  6. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    Science.gov (United States)

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  7. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  8. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.K.; Bajpai, Pratima (Thapar Corporate Research and Development Center, Patiala (IN). Div. of Chemical and Biochemical Engineering)

    1991-04-01

    Jerusalem artichoke has one of the highest carbohydrate yields of the known agricultural crops and has many distinct advantages over traditional crops. This brief review presents data on the yield and composition of Jerusalem artichoke, techniques of carbohydrate extraction and its utilization for the production of ethanol, single cell protein (SCP), and high-fructose syrup, along with economic considerations. (author).

  9. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  10. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    Science.gov (United States)

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  11. The commercial performance of cellulosic ethanol supply-chains in Europe

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2009-02-01

    Full Text Available Abstract Background The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted. Results The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive. Conclusion Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with

  12. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  13. Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden

    International Nuclear Information System (INIS)

    Pacini, Henrique; Silveira, Semida

    2011-01-01

    The introduction of flex-fuel vehicles since 2003 has made possible for Brazilian drivers to choose between high ethanol blends or gasoline depending on relative prices and fuel economies. In Sweden, flex-fuel fleets were introduced in 2005. Prices and demand data were examined for both Brazil and Sweden. Bioethanol has been generally the most cost-efficient fuel in Brazil, but not for all states. In any case, consumers in Brazil have opted for ethanol even when this was not the optimal economic choice. In Sweden, a different behavior was observed when falling gasoline prices made E85 uneconomical in late 2008. In a context of international biofuels expansion, the example of E85 in Sweden indicates that new markets could experience different consumer behavior than Brazil: demand falls rapidly with reduced price differences between ethanol and gasoline. At the same time, rising ethanol demand and lack of an international market with multiple biofuel producers could lead to higher domestic prices in Brazil. Once the limit curve is crossed, the consumer might react by shifting back to the usage of gasoline. - Research highlights: → Brazil and Sweden both have infrastructure for high fuel ethanol blends. → Flex-fuel vehicles enable competition between ethanol and gasoline in fuel markets. → Data suggests that consumers make their fuel choice based mainly on prices. → Consumers in Sweden appear to be more price-sensitive than their Brazilian counterparts. → In the absence of international markets, high ethanol prices may drive consumers back to gasoline.

  14. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  15. Mechanism of action of ethanol on heart contractility

    International Nuclear Information System (INIS)

    Oquendo-Muriente, I.; De Mello, W.C.

    1986-01-01

    Ethanol depresses heart contractility. To investigate the mechanism of the negative inotropic action of ethanol, rat ventricular strips were dissected and mounted vertically in a transparent chamber. The preparation was superfused initially with normal oxygenated Tyrode solution (32.5 0 C) and electrically stimulated (1 Hz). After 1 hour of equilibration, contractures were elicited by exposing the muscle strips to high K + (100 mM) solution. Studies on the influence of (Ca 2+ ) 0 on K + contractures showed that the first rapid component of the contracture (58 mg/sec - S.E. +/- 8; n = 8) was greatly dependent upon (Ca 2+ ) 0 while the second slow component (20 mg/sec - S.E. +/- 5; n = 8) was slightly altered. The addition of ethanol (400 mg/100 ml) to high K solution abolished the fast component and reduced the amplitude of the second phase of K contractures. Similar results were obtained with verapamil (10 -5 M). These results, as well as studies on the effect of the drug on 45 Ca fluxes support the view that ethanol decreases the permeability of the heart cell membrane to Ca

  16. Mechanism of action of ethanol on heart contractility

    Energy Technology Data Exchange (ETDEWEB)

    Oquendo-Muriente, I.; De Mello, W.C.

    1986-03-05

    Ethanol depresses heart contractility. To investigate the mechanism of the negative inotropic action of ethanol, rat ventricular strips were dissected and mounted vertically in a transparent chamber. The preparation was superfused initially with normal oxygenated Tyrode solution (32.5/sup 0/C) and electrically stimulated (1 Hz). After 1 hour of equilibration, contractures were elicited by exposing the muscle strips to high K/sup +/ (100 mM) solution. Studies on the influence of (Ca/sup 2 +/)/sub 0/ on K/sup +/ contractures showed that the first rapid component of the contracture (58 mg/sec - S.E. +/- 8; n = 8) was greatly dependent upon (Ca/sup 2 +/)/sub 0/ while the second slow component (20 mg/sec - S.E. +/- 5; n = 8) was slightly altered. The addition of ethanol (400 mg/100 ml) to high K solution abolished the fast component and reduced the amplitude of the second phase of K contractures. Similar results were obtained with verapamil (10/sup -5/ M). These results, as well as studies on the effect of the drug on /sup 45/Ca fluxes support the view that ethanol decreases the permeability of the heart cell membrane to Ca.

  17. Study of ethanol-lysozyme interactions using neutron diffraction

    International Nuclear Information System (INIS)

    Lehmann, M.S.; Mason, S.A.; McIntyre, G.J.

    1985-01-01

    Single-crystal neutron diffraction has been used to observe the interactions between deuterated ethanol (CD3CD2OH) and lysozyme in triclinic crystals of hen egg white lysozyme soaked in 25% (v/v) ethanol solutions. A total of 6047 observed reflections to a resolution of 2 A were used, and 13 possible ethanol sites were identified. The three highest occupied sites are close to locations for bromoethanol found in an earlier study by Yonath et al. [Yonath, A., Podjarny, A., Honig, B., Traub, W., Sielecki, A., Herzberg, O., and Moult, J. (1978) Biophys. Struct. Mech. 4, 27-36]. Structure refinements including a model for the flat solvent lead to a final crystallographic agreement factor of 0.097. Comparison with earlier neutron studies on triclinic lysozyme showed that neither the molecular structure nor the thermal motions were affected significantly by the ethanol. A detailed analysis of the ethanol-lysozyme contacts showed 61% of these to be with hydrophobic sites, in agreement with the dominant hydrophobic nature of ethanol. This, together with the fact that the molecular structure of lysozyme is not perturbed, suggests a model for denaturation of lysozyme by alcohol, which proceeds via a dehydration of the protein at high alcohol concentration

  18. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2.

    Science.gov (United States)

    Kowal, A; Li, M; Shao, M; Sasaki, K; Vukmirovic, M B; Zhang, J; Marinkovic, N S; Liu, P; Frenkel, A I; Adzic, R R

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO(2)/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO(2), which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  19. The effect of ethanol on sup 35 -S-TBPS binding to mouse brain membranes in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liljequist, S.; Culp, S.; Tabakoff, B. (Laboratory for Studies of Neuroadaptive Processes, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda (USA))

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of {sup 35}S-t-butyl-bicyclophosphorothionate ({sup 35}S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal {sup 35}S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action on {sup 35}S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of {sup 35}S-TBPS binding produced by diazepam. {sup 35}S-TBPS binding to cortical brain membranes was inhibited by the putative Cl{sup -} channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol. Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on {sup 35}S-TBPS binding. The enhancement of {sup 35}S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit {sup 35}S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal {sup 35}S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of {sup 35}S-TBPS binding by diazepam.

  20. Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Edita Martini

    2011-05-01

    Full Text Available The whole cell immobilization in ethanol fermentation can be done by using natural carriers or through synthetic carriers. All of these methods have the same purpose of retaining high cell concentrations within a certain defined region of space which leads to higher ethanol productivity. Lignocellulosic plant substance represents one of highly potential sources in ethanol production. Some studies have found that cellulosic substances substances can also be used as a natural carrier in cell immobilization by re-circulating pre-culture medium into a reactor. In this experiment, rice hulls without any treatment were used to immobilize Saccharomyces cerevisiae through semi solid state incubation combined with re-circulating pre-culture medium. The scanning electron microscopy (SEM pictures of the carrier show that the yeast cells are absorbed and embedded to the rice hull pore. In liquid batch fermentation system with an initial sugar concentration of 50 g/L, nearly 100% total sugar was consumed after 48 hours. This resulted in an ethanol yield of 0.32 g ethanol/g glucose, which is 62.7% of the theoretical value. Ethanol productivity of 0.59 g/(L.h is 2.3 fold higher than that of free cells which is 0.26 g/(L.h. An effort to reuse the immobilized cells in liquid fermentation system showed poor results due to cell desorption in the first batch which led to high sugar concentration inhibitory effect in the second batch fermentation. This might be solved by using semi solid fermentation process in the future work.