WorldWideScience

Sample records for high energy-density plasmas

  1. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  2. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  3. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  4. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  5. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  6. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  7. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  8. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  9. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  10. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  11. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  12. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    International Nuclear Information System (INIS)

    Rawat, R S

    2015-01-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 10 10 J/m 3 . The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I 4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  13. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  14. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  15. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  16. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  17. Charge modes of pulsed high energy and high density plasma injection source

    International Nuclear Information System (INIS)

    Cheng, D.Y.

    1974-01-01

    Detonation (snowplow), deflagration and other modes of discharge can be produced in a single coaxial plasma gun. Conservation laws of mass, momentum and energy together with the entropy production condition of the discharge phenomena are used to identify dense discharge modes. The Rankine-Hugoniot relation for a magnetized plasma is derived. Discussions of how to design a deflagration plasma gun to yield a prescribed plasma kinetic energy and plasma beam density are given

  18. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  19. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  20. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  1. Magnetic energy density and plasma energy density in the Venus wake

    Science.gov (United States)

    Perez De Tejada, H. A.; Durand-Manterola, H. J.; Lundin, R.; Barabash, S.; Zhang, T.; Reyes-Ruiz, M.; Sauvaud, J.

    2013-05-01

    Magnetic energy density and plasma energy density in the Venus wake H. Pérez-de-Tejada1, H. Durand-Manterola1, R. Lundin2, S. Barabash2, T. L. Zhang3, A. Sauvaud4, M. Reyes-Ruiz5. 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Umea, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted in the Venus wake with the magnetometer and the Aspera-4 plasma instrument of the Venus Express spacecraft show that average values of the kinetic energy density of the plasma in that region are comparable to average local values of the magnetic energy density. Observations were carried out in several orbits of the Venus Express near the midnight plane and suggest that the total energy content in the Venus wake is distributed with nearly comparable values between the plasma and the magnetic field. Processes associated with the solar wind erosion of planetary ions from the polar magnetic regions of the ionosphere are involved in the comparable distribution of both energy components.

  2. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  3. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  4. On the energy confinement in the TM-G tokamak with high plasma density

    International Nuclear Information System (INIS)

    Stefanovskij, A.M.

    1986-01-01

    Energy confinement time τ E , when plasma density changing, has been measured at the TM-G-tokamak device with a graphite discharge chamber. The measurements have been carried out in three different discharge modes with a similar stability margin on the limiter (q L )=3) and with different values of the discharge current of a longitudinal field (I p =20, 40 and 60 kA, V T =0.8; 1.6 and 2.4 T). On the basis of experimental data analysis the conclusion is made that saturation of τ E (n e ) dependence at high plasma density occurs due to current channel compression and violation of a ''self-consistent'' profile of current density. Drift wave excitation at densities similar to the limiting Murakami density can also play an important role

  5. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  6. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  7. Megagauss field generation for high-energy-density plasma science experiments

    International Nuclear Information System (INIS)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-01-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs

  8. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  9. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  10. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  11. Measurements of Ion Stopping around the Bragg Peak in High-Energy-Density Plasmas

    Science.gov (United States)

    Frenje, Johan

    2015-11-01

    Over the last few decades, ion stopping in weakly- to strongly-coupled High-Energy-Density (HED) plasmas has been subject to extensive analytical and numerical studies, but only a limited set of experimental data exists to check the validity of these theories. Most of these experiments also did not probe the detailed characteristics of the Bragg peak (peak ion stopping) where the ion velocity is similar to the average thermal electron velocity. To the best of our knowledge, only one exploratory attempt to do this was conducted by Hicks et al., who were able to describe qualitatively the behavior of the Bragg peak for one plasma condition. The work described in this presentation makes significant advances over previous experimental efforts by quantitatively assessing the characteristics of the ion stopping, ranging from low-velocity stopping, through the Bragg peak, to high-velocity stopping for different HED plasma conditions. This was achieved by measuring the energy loss of DD-tritons, D3He-alphas, DD-protons and D3He-protons, with distinctly different velocities, and the results indicate that the stopping power varies strongly with Te and ne. This effort represents the first experimental test of state-of-art plasma-stopping-power theories around the Bragg peak, which is an important first step in our efforts of getting a fundamental understanding of DT-alpha stopping in HED plasmas, a prerequisite for understanding ignition margins in various implosion designs with varying hot spot areal density at the National Ignition Facility. The work described here was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE (Grant No. DE-FG03- 03SF22691), LLNL (subcontract Grant No. B504974) and LLE (subcontract Grant No. 412160-001G).

  12. Evaporation of carbon using electrons of a high density plasma

    International Nuclear Information System (INIS)

    Muhl, S.; Camps, E.; Escobar A, L.; Garcia E, J.L.; Olea, O.

    1999-01-01

    The high density plasmas are used frequently in the preparation of thin films or surface modification, for example to nitridation. In these processes, are used mainly the ions and the neutrals which compose the plasma. However, the electrons present in the plasma are not used, except in the case of chemical reactions induced by collisions, although the electron bombardment usually get hot the work piece. Through the adequate polarization of a conductor material, it is possible to extract electrons from a high density plasma at low pressure, that could be gotten the evaporation of this material. As result of the interaction between the plasma and the electron flux with the vapor produced, this last will be ionized. In this work, it is reported the use of this novelty arrangement to prepare carbon thin films using a high density argon plasma and a high purity graphite bar as material to evaporate. It has been used substrates outside plasma and immersed in the plasma. Also it has been reported the plasma characteristics (temperature and electron density, energy and ions flux), parameters of the deposit process (deposit rate and ion/neutral rate) as well as the properties of the films obtained (IR absorption spectra and UV/Vis, elemental analysis, hardness and refractive index. (Author)

  13. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  14. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  15. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    International Nuclear Information System (INIS)

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-01-01

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li + ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the

  16. Perspectives on High-Energy-Density Physics

    Science.gov (United States)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  17. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

    International Nuclear Information System (INIS)

    Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2009-01-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156±6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

  18. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    Science.gov (United States)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  19. Bremsstrahlung spectra for Al, Cs, and Au atoms in high-temperature, high-density plasmas

    International Nuclear Information System (INIS)

    Kim, L.; Pratt, R.H.; Tseng, H.K.

    1985-01-01

    Results are presented from a numerical calculation for the bremsstrahlung spectrum and Gaunt factors of Al, Cs, and Au atoms in high-temperature (-T), high-density (-rho) plasmas. Plasma temperatures kT = 0.1 and 1.0 keV and plasma densities rho = rho 0 (the normal solid density) and rho = 100rho 0 are considered. This allows us to determine the generality and identify the origins of features which we had previously identified in calculations for Cs. We also now present results for the total energy loss of an electron in such a plasma. We use a relativistic multipole code which treats the bremsstrahlung process as a single-electron transition in a static screened central potential. We take for the static potential corresponding to an atom in a hot dense plasma the finite-temperature, finite-density Thomas-Fermi model. This approach corresponds to an average atom in local thermodynamic equilibrium. In comparison to isolated-neutral-atom results we observe general suppression of cross sections and a particular suppression in the tip region of the spectrum. Within this model, both superscreening and shape resonances are found in the circumstances of extreme density. At more normal densities and except for the soft-photon end, the spectrum at these energies for an atom in a hot plasma (characterized by an average degree of ionization) can be well represented by the spectrum of the corresponding isolated ion, which has a similar potential shape at the distances which characterize the process

  20. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  1. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Bechet, Sabrina; Borneis, S.; Brabec, Lukáš; Bučka, Martin; Chacon-Golcher, Edwin; Ciappina, Marcelo F.; De Marco, Massimo; Fajstavr, Antonín; Falk, Kateřina; Garcia, E.-R.; Grosz, Jakub; Gu, Yanjun; Hernandez Martin, Juan C.; Holec, M.; Janečka, Pavel; Jantač, Martin; Jirka, Martin; Kadlecová, Hedvika; Khikhlukha, Danila; Klimo, Ondřej; Korn, Georg; Kramer, Daniel; Batheja, Deepak Kumar; Laštovička, Tomáš; Lutoslawski, P.; Morejon, L.; Olšovcová, Veronika; Rajdl, Marek; Renner, Oldřich; Rus, Bedřich; Singh, Sushil K.; Šmíd, Michal; Sokol, Martin; Versaci, Roberto; Vrána, Roman; Vranic, M.; Vyskočil, Jiří; Wolf, Adam; Yu, Q.

    2017-01-01

    Roč. 2, č. 4 (2017), s. 149-176 E-ISSN 2468-080X R&D Projects: GA MŠk LQ1606; GA MŠk LM2015065; GA MŠk EF15_008/0000162; GA MŠk EF15_003/0000449 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; OP VVV - HiFi(XE) CZ.02.1.01/0.0/0.0/15_003/0000449 Institutional support: RVO:68378271 Keywords : high-energy-density- physics * ultra-high-intensity * warm dense matter * laboratory astrophysics * high repetition rate lasers * plasma optics * inertial confinement fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics )

  2. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  3. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  5. Pulsed high-density plasmas for advanced dry etching processes

    International Nuclear Information System (INIS)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  6. Confinement properties of high energy density plasmas in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Twichell, J.C.

    1984-08-01

    The confinement of particles and energy is critically dependent on the plasma-wall interaction. Results of a study detailing this interaction are presented. High power ICRF heated and gun afterglow plasmas were studied to detail the mechanisms determining particle and energy confinement. An extensive zero-D simulation code is used to assist in interpreting the experimental data. Physically reasonable models for plasma surface interactions, time dependent coronal treatment of impurities and multiple region treatment of neutrals are used in modeling the plasma. Extensive diagnostic data are used to verify the model. Non-heated plasmas decay from 28 to 3 eV allowing clear identification of wall impact energy thresholds for desorption and particle reflection. The charge state distribution of impurities verifies the reflux to plasma diffusion rate ratio. Close agreement between the simulation and experimental data is found

  7. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  8. Remarks on saturation of energy confinement in high density regime on LHD

    International Nuclear Information System (INIS)

    Yamada, Hiroshi; Morita, Shigeru; Murakami, Sadayoshi

    2003-01-01

    A study on energy confinement times in currentless helical plasmas has indicated a preferable density dependence like τ E ∝ n-bar e 0.5-0.6 . However, saturation of energy confinement time has been often observed during the density ramping-up phase by gas puffing in NBI heated plasmas in LHD. The power balance analysis indicates that the thermal diffusivity is improved by the increase in local density while the global energy confinement time loses the dependence on the density. The flat or hollow density profile, which is distinguished in the density-ramping phase, promotes a broad heat power deposition. This change explains the apparent contradiction between the density dependence of the thermal diffusivity and the global energy confinement time. This result suggests that central heating can maintain a favorable density dependence of the energy confinement time in the high density regime. (author)

  9. Preparation of Ta(C)N films by pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Yan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Gu Weichao [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Zhang Guling [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100080 Beijing (China)

    2007-04-07

    The pulsed high energy density plasma (PHEDP) is generated in the working gas due to a high-voltage high-current discharge, within a coaxial gun. In PHEDP surface modification, discharge is applied for preparing the amorphous and nanostructured high-melting materials as thin films deposited on various substrates. In this investigation, Ta(C)N films were deposited using PHEDP on stainless steel. Pure tantalum and graphite were used as the inner and outer electrodes of the PHEDP coaxial gun, respectively. Nitrogen was used as the working gas and also one of the reactants. Preliminary study on the films prepared under different conditions shows that the formation of Ta(C)N is drastically voltage dependent. At lower gun voltage, no Ta(C)N was detected in the films; when the gun voltage reaches or exceeds 3.0 kV, Ta(C)N occurred. The films are composed of densely stacked nanocrystallines with diameter less than 30 nm, and some grains are within 10 nm in diameter.

  10. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  11. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  12. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  13. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    Science.gov (United States)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  14. Is the bulk mode conversion important in high density helicon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Shogo; Hada, Tohru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, Takao [Research Institute of Science and Technology, Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included in the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.

  15. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  16. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  17. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  18. High-energy-density physics researches based on pulse power technology

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko; Nakajima, Mitsuo; Kawamura, Tohru; Sasaki, Toru; Kondo, Kotaro; Yano, Yuuri

    2006-01-01

    Plasmas driven by pulse power device are of interest, concerning the researches on high-energy-density (HED) physics. Dense plasmas are produced using pulse power driven exploding discharges in water. Experimental results show that the wire plasma is tamped and stabilized by the surrounding water and it evolves through a strongly coupled plasma state. A shock-wave-heated, high temperature plasma is produced in a compact pulse power device. Experimental results show that strong shock waves can be produced in the device. In particular, at low initial pressure condition, the shock Mach number reaches 250 and this indicates that the shock heated region is dominated by radiation processes. (author)

  19. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  20. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  1. Report of the Interagency Task Force on High Energy Density Physics

    International Nuclear Information System (INIS)

    2007-01-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community

  2. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  3. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  4. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  5. High-energy-density physics foundation of inertial fusion and experimental astrophysics

    CERN Document Server

    Drake, R Paul

    2018-01-01

    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation ...

  6. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  7. Evaporation of carbon using electrons of a high density plasma; Evaporacion de carbono usando los electrones de un plasma de alta densidad

    Energy Technology Data Exchange (ETDEWEB)

    Muhl, S.; Camps, E.; Escobar A, L.; Garcia E, J.L.; Olea, O. [Instituto de Investigaciones en Materiales, UNAM, C.P. 04510 Mexico D.F. (Mexico)

    2000-07-01

    The high density plasmas are used frequently in the preparation of thin films or surface modification, for example to nitridation. In these processes, are used mainly the ions and the neutrals which compose the plasma. However, the electrons present in the plasma are not used, except in the case of chemical reactions induced by collisions, although the electron bombardment usually get hot the work piece. Through the adequate polarization of a conductor material, it is possible to extract electrons from a high density plasma at low pressure, that could be gotten the evaporation of this material. As result of the interaction between the plasma and the electron flux with the vapor produced, this last will be ionized. In this work, it is reported the use of this novelty arrangement to prepare carbon thin films using a high density argon plasma and a high purity graphite bar as material to evaporate. It has been used substrates outside plasma and immersed in the plasma. Also it has been reported the plasma characteristics (temperature and electron density, energy and ions flux), parameters of the deposit process (deposit rate and ion/neutral rate) as well as the properties of the films obtained (IR absorption spectra and UV/Vis, elemental analysis, hardness and refractive index). (Author)

  8. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  9. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  10. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  11. Characteristics of (Ti,Ta)N thin films prepared by using pulsed high energy density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenran [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Guangliang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Li Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Lv Guohua [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Xianhui [College of Science, Changchun University of Science and Technology, Changchun 130022, Jilin Province (China); Niu Erwu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Liu Chizi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-07-21

    (Ti,Ta)N films were prepared by pulsed high energy density plasma (PHEDP) from a coaxial gun in N{sub 2} gas. The coaxial gun is composed of a tantalum inner electrode and a titanium outer one. Material characteristics of the (Ti,Ta)N film were investigated by x-ray photoelectron spectroscopy and x-ray diffraction. The microstructure of the film was observed by a scanning electron microscope. The elemental composition and the interface of the film/substrate were analysed using Auger electron spectrometry. Our results suggest that the binary metal nitride film (Ti,Ta)N, can be prepared by PHEDP. It also shows that dense nanocrystalline (Ti,Ta)N film can be achieved.

  12. Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas

    International Nuclear Information System (INIS)

    Hammer, David

    2008-01-01

    Abstract for the Final Technical Report, DOE Grant DE-FG02-98ER54496 An X-pinch plasma is produced by driving a high current (100-500 kiloamperes) through two or more fine wires that cross and touch at a point, forming an X in the case of two wires. The wires explode because of the high current, and then the resulting plasma is imploded radially inward by the magnetic field from the current. When the imploding material briefly stagnates at very small radius and high density, an intense burst of x-rays is produced and the plasma disassembles as rapidly as it imploded. When this project began, we could confidently state that at its minimum radius, X pinch plasmas made from such materials as titanium and molybdenum might be as hot as 10,000,000 K and had densities almost as high as the solid wire density, but their X-ray pulse durations were below one billionth of a second. We could also say that the X pinch was useful for point-projection imaging of rapidly changing objects, such as exploding wires, with high resolution, indicative of a very small X-ray source spot size. We can now confidently say that X-pinch plasma temperatures at the moment of the X-ray burst are 10-25 million K in titanium, molybdenum and several other wire X-pinches based upon the spectrum of emitted X-rays in the radiation burst. By the same means, as well as from the penetration of X-rays through the dense plasma, we know that ion densities are close to or higher than one-tenth of the density of the original (solid) wire material in molybdenum and a few other X-pinch plasmas. Furthermore, using the diffraction of X-rays radiated by the X-pinch when it reaches minimum radius, we have determined that the x-ray source size is about 1 thousandth of a millimeter for such wire materials as molybdenum and niobium, while it is 2-10 times larger for tungsten, titanium and aluminum wires. Finally, using a very high speed X-ray imaging 'streak camera,' we have determined that X pinch X-ray pulses can be

  13. Vacuum heating evaluation for plasmas of exponentially decreasing density profile

    International Nuclear Information System (INIS)

    Pestehe, S.J.; Mohammadnejad, M.

    2008-01-01

    Ultra-short pulse lasers have opened a regime of laser-plasma interaction where plasmas have scale lengths shorter than the laser wavelength and allow the possibility of generating near-solid density plasmas. The interaction of high-intensity laser beams with sharply bounded high-density and small scale length plasmas is considered. Absorption of the laser energy associated with the mechanism of dragging electrons out of the plasma into the vacuum and sending them back into the plasma with the electric field component along the density gradient, so called vacuum heating, is studied. An exponentially decreasing electron density profile is assumed. The vector potential of the electromagnetic field propagating through the plasma is calculated and the behaviour of the electric and magnetic components of the electromagnetic field is studied. The fraction of laser power absorbed in this process is calculated and plotted versus the laser beam incidence angle, illumination energy, and the plasma scale length

  14. High density plasmas and new diagnostics: An overview (invited)

    International Nuclear Information System (INIS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-01-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines

  15. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  16. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  17. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  18. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  19. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  20. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    Directory of Open Access Journals (Sweden)

    Casali L.

    2014-01-01

    Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  1. Fueling requirements of super-high-density plasmas towards innovative ignition regime

    International Nuclear Information System (INIS)

    Sakamoto, Ryuichi; Yamada, Hiroshi

    2014-01-01

    Highlights: • Self-burning scenario with internal diffusion barrier is investigated. • Peaked density profiles allow to sustain self-burning plasma at lower temperature. • Core fueling beyond internal diffusion barrier is essential to sustain peaked density. • Acceptable pellet size becomes small to prevent fusion out perturbation. • Very high velocity pellet injection beyond 10 km/s is inevitable for this scenario. - Abstract: Super-high-density plasma with an internal diffusion barrier which is observed in the Large Helical Device has been extrapolated to a fusion reactor grade plasma to explore an innovative ignition regime and to clarify essential requirements for pellet fueling. The peaked density profiles due to the internal diffusion barrier formation allow reduction in the required minimum temperature to sustain a self-burning plasma down to 10 keV. Direct core fueling beyond the internal diffusion barrier is essential to sustain the peaked density profile. Furthermore, the acceptable pellet size becomes small in terms of fusion output perturbation because the effective volume of the burning plasma becomes small with the peaked density profile. In order to sustain a self-burning plasma with an internal diffusion barrier, therefore, extremely high velocity pellet injection beyond 10 km/s is inevitable unless another solution to the core fueling is found

  2. Plasma heating in collisionless plasma at low plasma density

    International Nuclear Information System (INIS)

    Wulf, H.O.

    1977-01-01

    The high frequency heating of a collisionless, fully ionized low density plasma is investigated in the range: 2ωc 2 2 under pumping frequencies. A pulsed 1 MHz transmitter excites a fast standing, magneto-acoustical wave in the plasma, via the high frequency magnetic field of a Stix solenoid. The available modulation degrees are between 0.7 and 7.0%. As power consumption measurements show, there appears at all investigated pumping frequencies an effective energy transfer to the plasma that cannot be explained with the classical MHD models. Measurements with electrostatic probes and further with a miniature counter-field spectrometer yield an electron and ion temperature gain of two to three factors and 15-18, compared to the corresponding values in the initial plasma. (orig./HT) [de

  3. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  4. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  5. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  6. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Carlson, G.; Hoffman, M.; Werner, R.

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no ''first wall'', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low re-circulated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10. The conceptual reactors are characterized by simplicity, small minimum size (100MW(e)) and by the potential for minimal radioactivity hazards. (author)

  7. Gap formation processes in a high-density plasma opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Swanekamp, S.B.; Ottinger, P.F.; Commisso, R.J.; Hinshelwood, D.D.; Weber, B.V.

    1995-01-01

    A gap opening process in plasma opening switches (POS) is examined with the aid of numerical simulations. In these simulations, a high density (n e =10 14 --5x10 15 cm -3 ) uniform plasma initially bridges a small section of the coaxial transmission line of an inductive energy storage generator. A short section of vacuum transmission line connects the POS to a short circuit load. The results presented here extend previous simulations in the n e =10 12 --10 13 cm -3 density regime. The simulations show that a two-dimensional (2-D) sheath forms in the plasma near a cathode. This sheath is positively charged, and electrostatic sheath potentials that are large compared to the anode--cathode voltage develop. Initially, the 2-D sheath is located at the generator edge of the plasma. As ions are accelerated out of the sheath, it retains its original 2-D structure, but migrates axially toward the load creating a magnetically insulated gap in its wake. When the sheath reaches the load edge of the POS, the POS stops conducting current and the load current increases rapidly. At the end of the conduction phase a gap exists in the POS whose size is determined by the radial dimensions of the 2-D sheath. Simulations at various plasma densities and current levels show that the radial size of the gap scales roughly as B/n e , where B is the magnetic field. The results of this work are discussed in the context of long-conduction-time POS physics, but exhibit the same physical gap formation mechanisms as earlier lower density simulations more relevant to short-conduction-time POS. copyright 1995 American Institute of Physics

  8. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  9. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  10. Impurity screening in high density plasmas in tokamaks with a limiter configuration

    International Nuclear Information System (INIS)

    Ferro, C.; Zanino, R.

    1992-01-01

    Impurity screening in high density plasmas in tokamaks with a limiter configuration is investigated by means of a simple semi-analytical model. An iterative scheme is devised, in order to determine self-consistently the values of scrape-off layer thickness, edge electron density and temperature, and main plasma contamination parameter Z eff , as a function of given average electron density and temperature in the main plasma and given input power. The model is applied to the poloidal limiter case of the Frascati Tokamak Upgrade, and results are compared with experimental data. A reasonable agreement between the trends is found, emphasizing the importance of a high edge plasma density for obtaining a clean main plasma in limiter tokamaks. (orig.)

  11. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  12. High density low-q discharges with D-shaped plasmas in Doublet III

    International Nuclear Information System (INIS)

    Nagami, Masayuki; Yoshida, Hidetoshi; Shinya, Kichiro; Yokomizo, Hideaki; Shimada, Michiya; Ioki, Kimihiro; Izumi, Shigeru; Kitsunezaki, Masao; Jahns, G.

    1981-07-01

    The maximum plasma current in Doublet III is found to be limited by disruptions when the limiter safety factor is approximately 2. However, due to the strong toroidal and shaping field effect on rotational transform at the outer plasma edge associated with a D-shape formation having a vertical elongation of 1.5, the safety factor q sub(a) * estimated from simple geometric considerations for D-shaped plasmas corresponds to values as low as 1.5. These discharges operate stably with considerably higher plasma current than most reactor design studies assume. These low-q discharges show excellent plasma performance: very flat spatial electron temperature progiles, high density operation with anti n sub(e)R/B sub(T) up to 7.8, and good energy confinement producing a volume average β of up to 1% with ohmic heating only. This operational regime appears to be applicable to future high β tokamaks with D-shaped cross section. (author)

  13. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  14. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  15. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  16. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  17. Investigation of the energy loss and the charge state of high energy heavy ions in a hydrogen plasma

    International Nuclear Information System (INIS)

    Dietrich, K.G.

    1991-07-01

    For heavy ions with energy of 1.4 to 5.9 MeV/u the energy loss and charge state after transmission through a totally ionized hydrogen plasma are investigated. Plasma target was a Z-pinch device incorporated in the beam optics of the accelerator by a pumping system. In the 20 cm long pinch hydrogen plasmas with densities up to 1.5x10 19 cm -3 and temperatures above 5 eV are produced, with ionization efficiency higher than 99%. The ions pass the plasma on the symmetry axis of the plasma column through small apertures in the electrodes. The energy loss was measured by time-of-flight method, the plasma density by interferometry along the pinch axis. For the first time the ion charge after transmission through the plasma has been determined by a charge spectrometer being a combination of a dipole magnet and a position sensitive detector with high time resolution. A growth of the average charge of heavy ions in plasma higher than the equilibrium charge in cold gas was discovered, caused by a reduction of electron capture by fast heavy ions in ionized matter. The electron loss rates in plasma and cold gas are equal. (orig./AH) [de

  18. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  19. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  20. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  1. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  2. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  3. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  4. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  5. High density turbulent plasma processes from a shock tube

    International Nuclear Information System (INIS)

    Oyedeji, O.; Johnson, J.A. III

    1991-01-01

    We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report

  6. Behavior of a plasma in a high-density gas-embedded Z-pinch configuration

    International Nuclear Information System (INIS)

    Shlachter, J.S.

    1982-05-01

    The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models

  7. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  8. Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas

    Science.gov (United States)

    Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana

    2017-10-01

    MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.

  9. An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas

    International Nuclear Information System (INIS)

    Del-Sorbo, Dario

    2015-01-01

    Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion require a detailed description of energy fluxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolai and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model

  10. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  11. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  12. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  13. High density turbulent plasma processes from a shock tube. Final performance report

    International Nuclear Information System (INIS)

    Johnson, J.A. III.

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions

  14. Interferometric measurements of plasma density in highplasmas

    International Nuclear Information System (INIS)

    Quinn, W.E.

    1977-01-01

    The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma

  15. High density plasma heating in the Tokamak à configuration variable

    International Nuclear Information System (INIS)

    Curchod, L.

    2011-04-01

    The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation

  16. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  17. Study of density limit in JT-60 joule heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Takizuka, Tomonori; Hirayama, Toshio; Azumi, Masafumi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-11-01

    Impurities which mingle in tokamak plasmas cause dominant radiation loss in the high density regime and the energy balance of plasma is lost. This gives rise to MHD instability and results in major disruption. Density limit in joule heated plasmas has been studied by using one dimensional transport code combined with MHD instability analysis code. When the diffusion of impurity is taken into account, the numerically obtained density limit diagram or Hugill diagram quantitatively agrees well with that obtained in the experiment. It is also clarified that the corona-equilibrium model overestimates the density limit. (author).

  18. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng; Xia, Chuan; Emwas, Abdul-Hamid M.; Anjum, Dalaver H.; Miao, Xiaohe; Alshareef, Husam N.

    2018-01-01

    , the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention

  19. Optimization of laser parameters to obtain high-energy, high-quality electron beams through laser-plasma acceleration

    International Nuclear Information System (INIS)

    Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Upadhyay, Ajay K.; Jha, Pallavi

    2010-01-01

    The propagation of an intense (a 0 =3), short-pulse (L∼λ p ) laser through a homogeneous plasma has been investigated. Using two-dimensional simulations for a 0 =3, the pulse-length and spot-size at three different plasma densities were optimized in order to get a better quality beam in laser wakefield accelerator. The study reveals that with increasing pulse-length the acceleration increases, but after a certain pulse-length (L>0.23λ p ) the emittance blows-up unacceptably. For spot-sizes less than that given by k p0 r s =2√(a 0 ), trapping is poor or nonexistent, and the optimal spot-size is larger. The deviation of the optimal spot-size from this formula increases as the density decreases. The efficacy of these two-dimensional simulations has been validated by running three-dimensional simulations at the highest density. It has been shown that good quality GeV-class beams can be obtained at plasma densities of ∼10 18 cm -3 . The quality of the beam can be substantially improved by selecting only the high-energy peak; in this fashion an energy-spread of better than 1% and a current in tens of kA can be achieved, which are important for applications such as free-electron lasers.

  20. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  1. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  2. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  3. A new quasi-stationary, very high density plasma regime on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Jaenicke, R; Baeumel, S; Baldzuhn, J; Brakel, R; Burhenn, R; Ehmler, H; Endler, M; Erckmann, V; Feng, Y; Gadelmeier, F; Geiger, J; Giannone, L; Grigull, P; Hartfuss, H J; Hartmann, D; Hildebrandt, D; Hirsch, M; Holzhauer, E; Kick, M; Kisslinger, J; Klinger, T; Klose, S; Knauer, J; Koenig, R; Kuehner, G; Laqua, H; Maassberg, H; McCormick, K; Narayanan, R; Niedermeyer, H; Pasch, E; Ruhs, N; Rust, N; Saffert, J; Sardei, F; Schneider, F; Schubert, M; Speth, E; Wagner, F; Weller, A; Wenzel, U; Werner, A; Wuersching, E

    2002-01-01

    Stellarators have the intrinsic property of steady state operation. However, on present-day stellarators the pulse length is usually not only limited due to technical reasons, but also by physical problems. Lack of density control and a subsequent radiation collapse terminate the discharges quite often at high densities. To improve the control of the plasma-wall interaction, the island divertor concept was developed for optimized stellarators. To test this divertor concept on W7-AS, all limiters were removed and replaced by ten divertor modules. In subsequent divertor experiments a promising new plasma operational regime has been discovered which is termed 'high density H-mode' (HDH-mode). During the transition into that regime a clear reduction of ELM-like events and turbulent fluctuations is observed. The HDH-mode combines good energy confinement with very low impurity confinement resulting in low core radiation, but high edge-localized radiation. Consequently, stationary discharges at densities of typically 2x10 20 m -3 can be performed within the accessible pulse length of about 1 s. At densities above 3x10 20 m -3 a controlled transition from attached to partially detached plasmas is observed. The still edge-localized radiation reaches 90% of the heating power so that the power load onto the divertor target plates is further reduced. At a lower toroidal field of 0.9 T average β-values could be raised from earlier 2% to more than 3% in magnetic field configurations with rather smooth flux surfaces at the plasma boundary. The recently obtained results render excellent prospects for W7-X, the larger superconducting successor experiment of W7-AS

  4. Numerical Studies of Electron Acceleration Behind Self-Modulating Proton Beam in Plasma with a Density Gradient

    CERN Document Server

    Petrenko, A.; Sosedkin, A.

    2016-01-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...

  5. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  6. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  7. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  8. Modelling of density limit phenomena in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  9. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  10. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  11. Computational Simulation of High Energy Density Plasmas

    Science.gov (United States)

    2009-10-30

    the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in

  12. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  13. Density and energy distribution of epithermal secondary electrons in a plasma with fast charged particles

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.

    1989-01-01

    The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)

  14. Chemical modeling of a high-density inductively-coupled plasma reactor containing silane

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan

    We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy

  15. Measurements of Pfirsch-Schlueter current and pressure profile for the high density ECH plasmas in Heliotron DR

    International Nuclear Information System (INIS)

    Morimoto, S.; Yanagi, N.; Nakasuga, M.; Obiki, T.; Iiyoshi, A.; Uo, K.

    1988-01-01

    The Pfirsch-Schlueter current and pressure profiles are estimated from magnetic measurements for high density electron cyclotron heating (ECH) plasmas (n-bar e =(2-3)x10 13 cm -3 , T e0 =200-400 eV, (β) 0 (1-(r/a) 2 ) s , is about two in macroscopically stable plasmas. A fast loss of plasma energy from the centre to the periphery is observed during the onset of the MHD instability. This method of measuring the pressure profile shape is simple and useful for heliotron type devices. (author). 20 refs, 8 figs, 1 tab

  16. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  17. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-01

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  18. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    Science.gov (United States)

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  19. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  20. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.

    2015-01-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  1. Scaling of energy confinement with minor radius, current and density in Doublet III Ohmically heated plasmas

    International Nuclear Information System (INIS)

    Ejima, S.; Petrie, T.W.; Riviere, A.C.

    1982-01-01

    The dependence of plasma energy confinement on minor radius, density and plasma current is described for Ohmically heated near-circular plasmas in Doublet III. A wide range of parameters is used for the study of scaling laws; the plasma minor radius defined by the flux surface in contact with limiter is varied by a factor of 2 (a = 44, 32, and 23 cm), the line average plasma density, nsub(e)-bar, is varied by a factor of 20 from 0.5 to 10 x 10 13 cm -3 (nsub(e)-bar R 0 /Bsub(T) = 0.3 to 6 x 10 14 cm -2 .kG -1 ) and the plasma current, I, is varied by a factor of 6 from 120 to 718 kA. The range of the limiter safety factor, qsub(L), is from 2 to 12. - For plasmas with a = 23 and 32 cm, the scaling law at low nsub(e)-bar for the gross electron energy confinement time can be written as (s, cm) tausub(Ee)sup(G) approx.= 3.6 x 10 -19 nsub(e)-bar a 2 qsub(c)sup(3/4), where qsub(c) = 2πa 2 Bsub(T)/μ 0 IR 0 . For the 44-cm plasmas, tausub(Ee)sup(G) is about 1.8 times less than predicted by this scaling, possibly owing to the change in limiter configuration and small plasma-wall separation and/or the aspect ratio change. At high nsub(e)-bar, tausub(Ee)sup(G) saturates and in many cases decreases with nsub(e)-bar but increases with I in a classical-like manner. The dependence of tausub(Ee)sup(G) on a is considerably weakened. The confinement behaviour can be explained by taking an ion thermal conductivity 2 to 7 times that given by Hinton-Hazeltine's neoclassical theory with a lumped-Zsub(eff) impurity model. Within this range the enhancement factor increases with a or a/R 0 . The electron thermal conductivity evaluated at half-temperature radius where most of the thermal insulation occurs sharply increases with average current density within that radius, but does not depend on a within the uncertainties of the measurements. (author)

  2. Energy conversion and concentration in a high-current gaseous discharge: Dense plasma spheromak in plasma focus experiments

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Terentiev, A.R.

    1995-01-01

    Experimental results are presented which verify the possibility of the self-generated transformation of the magnetic field in plasma focus discharges to give a closed, spheromak-like magnetic configuration (SLMC). The energy conversion mechanism suggests a possibility of further concentrating the plasma power density by means of natural compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge

  3. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  4. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    International Nuclear Information System (INIS)

    Altamore, C; Tringali, C; Sparta', N; Marco, S Di; Grasso, A; Ravesi, S

    2010-01-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10 5 ) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10 1 Hz to 10 6 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl 2 /Ar chemistry. The relationship between the etch rate and the Cl 2 /Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl 2 /Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  5. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)

    2010-02-15

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  6. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  7. A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2012-05-15

    A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

  8. Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity

    International Nuclear Information System (INIS)

    Choi, Cheong R.; Lee, Nam C.

    2004-01-01

    The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion

  9. Cylindrical implosion to measure the radiative properties of high density and temperature plasmas

    International Nuclear Information System (INIS)

    Xu Yan; Rose, S.J.

    2000-01-01

    Cylindrical implosion is of great interest because of its excellent diagnostic access. The authors present one-dimensional numerical simulations to explore the plasma conditions that may be achieved. Combined with the numerical data, the development of Rayleigh-Taylor instabilities and Richtmyer-Meshkov instabilities in those targets are estimated. The authors found that it is possible to achieve a high density and temperature plasma with a relatively low temperature and density gradient using a cylindrical implosion directly-driven by a high-power laser

  10. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  11. Modeling high-density-plasma deposition of SiO{sub 2} in SiH{sub 4}/O{sub 2}/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Larson, R.S. [Sandia National Labs., Livermore, CA (United States); Ho, P.; Apblett, C. [Sandia National Labs., Albuquerque, NM (United States); Han, S.M.; Edelberg, E.; Aydil, E. [Univ. of California, Santa Barbara, CA (United States)

    1997-03-01

    The authors have compiled sets of gas-phase and surface reactions for use in modeling plasma-enhanced chemical vapor deposition of silicon dioxide from silane, oxygen and argon gas mixtures in high-density-plasma reactors. They have applied the reaction mechanisms to modeling three different kinds of high-density plasma deposition chambers, and tested them by comparing model predictions to a variety of experimental measurements. The model simulates a well mixed reactor by solving global conservation equations averaged across the reactor volume. The gas-phase reaction mechanism builds from fundamental electron-impact cross section data available in the literature, and also includes neutral-molecule, ion-ion, and ion-molecule reaction paths. The surface reaction mechanism is based on insight from attenuated total-reflection Fourier-transform infrared spectroscopy experiments. This mechanism describes the adsorption of radical species on an oxide surface, ion-enhanced reactions leading to species desorption from the surface layer, radical abstractions competing for surface sites, and direct energy-dependent ion sputtering of the oxide material. Experimental measurements of total ion densities, relative radical densities as functions of plasma operating conditions, and net deposition-rate have been compared to model predictions to test and modify the chemical kinetics mechanisms. Results show good quantitative agreement between model predictions and experimental measurements.

  12. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  13. Density fluctuations due to Raman forward scattering in quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punit, E-mail: punitkumar@hotmail.com; Singh, Shiv; Rathore, Nisha Singh, E-mail: nishasingh-rathore@yahoo.com [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  14. Recent development in high energy plasma production techniques by the deflagration plasma gun

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Chang, C.N.; Tripathi, P.P.

    1983-01-01

    This chapter reports experimental data and experience which establish the phenomenon of deflagration in plasma as unique and with quite different properties from the normal snowplow modes. Demonstrates that extremely high velocities and energies in plasma beams are possible with obvious applications in many field and, in particular, in fusion. Suggests that the potential of deflagration beams' scalability to very high energy quasi-neutral plasma beam is possible with present day technology. Discusses plasma deflagration in a T-tube; coaxial deflagration plasma guns; a typical deflagration gun and its operating procedures; electrical design considerations; kinetic theory point of view of the deflagration acceleration of particles; measurements and results; properties of the deflagration gun; applications; inertial confinement experiments; injection into magnetic confinement systems; interaction experiments; and highly energetic beams

  15. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  16. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  17. Determination of Jupiter's electron density profile from plasma wave observations

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.

    1981-01-01

    This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/

  18. Detection of an electron beam in a high density plasma via an electrostatic probe

    Science.gov (United States)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.

  19. The National Ignition Facility: Ushering in a new age for high energy density science

    International Nuclear Information System (INIS)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-01-01

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  20. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  1. Interaction of a high-power laser pulse with supercritical-density porous materials

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Rozanov, Vladislav B; Caruso, A; Strangio, C

    2000-01-01

    The properties of a nonequilibrium plasma produced by high-power laser pulses with intensities I L ∼ 10 14 -10 15 W cm -2 irradiating plane targets made of a porous material are investigated. The mean density of matter in targets was substantially higher than the critical plasma density corresponding to a plasma resonance. The density of porous material was ρ a ∼ 1 - 20 mg cm -3 , whereas the critical density at the wavelength of incident radiation was ρ cr ∼ 3 mg cm -3 . An anomalously high absorption (no less than 80%) of laser radiation inside a target was observed. Within the first 3 - 4 ns of interaction, the plasma flow through the irradiated target surface in the direction opposite of the direction of the laser beam was noticeably suppressed. Only about 5% of absorbed laser energy was transformed into the energy of particles in this flow during the laser pulse. Absorbed energy was stored as the internal plasma energy at this stage (the greenhouse effect). Then, this energy was transformed, similar to a strong explosion, into the energy of a powerful hydrodynamic flow of matter surrounding the absorption region. The specific features of the formation and evolution of a nonequilibrium laser-produced plasma in porous media are theoretically analysed. This study allows the results of experiments to be explained. In particular, we investigated absorption of laser radiation in the bulk of a target, volume evaporation of porous material, the expansion of a laser-produced plasma inside the pores, stochastic collisions of plasma flows, and hydrothermal energy dissipation. These processes give rise to long-lived oscillations of plasma density and lead to the formation of an internal region where laser radiation is absorbed. (invited paper)

  2. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  3. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  4. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  5. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  6. Radicals mediated magnetism in Ar plasma treated high-density polyethylene

    Science.gov (United States)

    Orendáč, M.; Čižmár, E.; Kažiková, V.; Orendáčová, A.; Řezníčková, A.; Kolská, Z.; Švorčík, V.

    2018-05-01

    Electron-spin resonance of high-density polyethylene treated by Ar plasma at 300 K was performed in X-band at temperatures from 2.1 K to 290 K. The observed spectra suggest presence of allyl radicals, whereas the central peak may be attributed to polyenyl radicals or dangled bonds. Pronounced narrowing of the resonance line observed above glassy temperature of polyethylene may be ascribed to thermally activated motional effect with the activation energy Ea /kB = 160 K. The absence of strong exchange interactions is suggested by negligible exchange narrowing found at 2.1 K. The suggestion is supported by the analysis of the temperature dependence of the intensity at low temperatures, which is explicable assuming the coexistence of non-interacting radicals and S = 1/2 dimers with a distribution of antiferromagnetic couplings varying from 2 K to nominally 25 K.

  7. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  8. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  9. Exploring nuclear reactions relevant to Stellar and Big-Bang Nucleosynthesis using High-Energy-Density plasmas at OMEGA and the NIF

    Science.gov (United States)

    Gatu Johnson, M.

    2017-10-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of accelerator experiments, which are difficult to execute at conditions relevant to Stellar Nucleosynthesis (SN) and Big Bang Nucleosynthesis (BBN). High-Energy-Density (HED) plasmas closely mimic astrophysical environments and are an excellent complement to accelerator experiments in exploring SN and BBN-relevant nuclear reactions. To date, our work using HED plasmas at OMEGA and NIF has focused on the complementary 3He+3He, T+3He and T +T reactions. First studies of the T +T reaction indicated the significance of the 5He ground-state resonance in the T +T neutron spectrum. Subsequent T +T experiments showed that the strength of this resonance varies with center-of-mass (c-m) energy in the range of 16-50 keV, a variation that is not fundamentally understood. Studies of the 3He+3He and T+3He reactions have also been conducted at OMEGA at c-m energies of 165 keV and 80 keV, respectively, and the results revealed three things. First, a large cross section for the T+3He- γ branch can be ruled out as an explanation for the anomalously high abundance of 6Li in primordial material. Second, the results contrasted to theoretical modeling indicate that the mirror-symmetry assumption is not enough to capture the differences between T +T and 3He+3He reactions. Third, the elliptical spectrum assumed in the analysis of 3He+3He data obtained in accelerator experiments is incorrect. Preliminary data from recent experiments at the NIF exploring the 3He+3He reaction at c-m energies of 60 keV and 100 keV also indicate that the underlying physics changes with c-m energy. In this talk, we describe these findings and future directions for exploring light-ion reactions at OMEGA and the NIF. The work was supported in part by the US DOE, LLE, and LLNL.

  10. Energy confinement and transport of H-mode plasmas in tokamak

    International Nuclear Information System (INIS)

    Urano, Hajime

    2005-02-01

    A characteristic feature of the high-confinement (H-mode) regime is the formation of a transport barrier near the plasma edge, where steepening of the density and temperature gradients is observed. The H-mode is expected to be a standard operation mode in a next-step fusion experimental reactor, called ITER-the International Thermonuclear Experimental Reactor. However, energy confinement in the H-mode has been observed to degrade with increasing density. This is a critical constraint for the operation domain in the ITER. Investigation of the main cause of confinement degradation is an urgent issue in the ITER Physics Research and Development Activity. A key element for solving this problem is investigation of the energy confinement and transport properties of H-mode plasmas. However, the influence of the plasma boundary characterized by the transport barrier in H-modes on the energy transport of the plasma core has not been examined sufficiently in tokamak research. The aim of this study is therefore to investigate the energy confinement properties of H-modes in a variety of density, plasma shape, seed impurity concentration, and conductive heat flux in the plasma core using the experimental results obtained in the JT-60U tokamak of Japan Atomic Energy Research Institute. Comparison of the H-mode confinement properties with those of other tokamaks using an international multi-machine database for extrapolation to the next step device was also one of the main subjects in this study. Density dependence of the energy confinement properties has been examined systematically by separating the thermal stored energy into the H-mode pedestal component determined by MHD stability called the Edge Localized Modes (ELMs) and the core component governed by gyro-Bohm-like transport. It has been found that the pedestal pressure imposed by the destabilization of ELM activities led to a reduction in the pedestal temperature with increasing density. The core temperature for each

  11. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  12. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  13. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2018-04-12

    We report a phosphine (PH3) plasma activation strategy for significantly boosting the electrochemical performance of supercapacitor electrodes. Using Fe2O3 as a demonstration, we show that the plasma activation simultaneously improves the conductivity, creates atomic-scale vacancies (defects), as well as increases active surface area, and thus leading to a greatly enhanced performance with a high areal capacitance of 340 mF cm-2 at 1 mA cm-2, compared to 66 mF cm-2 of pristine Fe2O3. Moreover, the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention after 9000 cycles at 10 mA cm-2). Our work provides a simple yet effective strategy to greatly enhance the electrochemical performance of Fe2O3 anodes and to further promote their application in asymmetric supercapacitors.

  14. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  15. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  16. AMODS and High Energy Density Sciences

    International Nuclear Information System (INIS)

    Rhee, Y.-J.

    2011-01-01

    Following a brief introduction to the Lab for Quantum Optics (LFQO) in KAERI, which has been devoted to the research on atomic spectroscopy for more than 20 years with precision measurement of atomic parameters such as isotope shift, hyperfine structures, autoionization levels and so on as well as with theoretical analysis of atomic systems by developing relativistic calculation methodologies for laser propagation and population dynamics, electron impact ionization, radiative transitions of high Z materials, etc for the application to isotope separation, the AMODS (Atomic Molecular and Optical Database Systems) which was established in 1997 and has been a member of International Data Center Network of IAEA since then is explained by giving an information on the data sources and internal structure of the compilation of AMODS. Since AMODS was explained in detail during last DCN meeting, just a brief introduction is given this time. Then more specific research themes carried out in LFQO in conjunction with A+M data are discussed, including (1) electron impact ionization processes of W, Mo, Be, C, etc, (2) spectra of highly charged ions of W, Xe, and Si, (3) dielectronic recombination process of Fe ion. Also given are the talk about research activities about the simulations of high energy density experiments such as those performed at (1) GEKKO laser facility (Japan) for X-ray photoionization of low temperature Si plasma, which can explain the unsolved arguments on the X-ray spectra of black holes and/or neutron stars, (2) VULCAN laser facility (UK) for two dimensional compression of cylindrical target and investigation of hot electron transport in the compressed target plasma to understand the fast ignition process of laser fusion, (3) LULI laser facility (France) and TITAN laser facility (USA) for one dimensional compression of aluminum targets with different laser energies, and (4) PALS facility (Czech Republic) for 'Laser Induced Cavity Pressure Acceleration' to

  17. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  18. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  19. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  20. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  1. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  2. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  3. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  4. High-frequency emissions during the propagation of an electron beam in a high-density plasma

    International Nuclear Information System (INIS)

    Lalita and Tripathi, V.K.

    1988-01-01

    A relativistic annular electron beam passing through a high-density plasma excites Langmuir waves via Cerenkov interaction. The Langmuir waves are backscattered off ions via nonlinear ion Landau damping. At moderately high amplitudes these waves are parametrically up-converted by the beam into high-frequency electromagnetic radiation, as observed in some recent experiments. A nonlocal theory of this process is developed in a cylindrical geometry. It is seen that the growth rate of the Langmuir wave scales as one-third power of beam density. The growth rate of parametric instability scales as one-fourth power of beam density and the square root of beam thickness

  5. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    International Nuclear Information System (INIS)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean-Baptiste; Smith, William L.; Ali, Suzanne J.

    2017-01-01

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3 ) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3 ) along a length of <100 µm. Taking full advantage of this technology, however, is a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.

  6. Novel nanostructured materials for high energy density supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.Z.; Zhang, X.G. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Material Science and Engineering

    2010-07-01

    Researchers are currently examining methods of improving energy density while not sacrificing the high power density of supercapacitors. In this study, nanostructured materials assembled from nanometer-sized building blocks with mesoporosity were synthesized in order investigate diffusion time, kinetics, and capacitances. Petal-like cobalt hydroxide Co(OH){sub 2} mesocrystals, urchin-like Co(OH){sub 2} and dicobalt tetroxide (Co{sub 2}O{sub 4}) ordered arrays as well as N{sub i}O microspheres were assembled from 0-D nanoparticles, 1-D mesoporous nanowires and nanobelts, and 2-D mesoporous nanopetals. The study showed that all the synthesized nanostructured materials delivered larger energy densities while showing electrochemical stability at high rates.

  7. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  8. Compression of a mixed antiproton and electron non-neutral plasma to high densities

    Science.gov (United States)

    Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano

    2018-04-01

    We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

  9. Plasma diagnostics using the He I 447.1 nm line at high and low densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Manuel A [Departamento de Fisica Aplicada, E.T.S.I. Informatica, Universidad de Valladolid, 47071 Valladolid (Spain); Ivkovic, Milivoje; Jovicevic, Sonja; Konjevic, Nikola [Institute of Physics, University of Belgrade, 11081 Belgrade, PO Box 68 (Serbia); Gigosos, Marco A; Lara, Natividad, E-mail: manuelgd@termo.uva.es, E-mail: gigosos@coyanza.opt.cie.uva.es [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain)

    2011-05-18

    The broadening of the He I 447.1 nm line and its forbidden components in plasmas is studied using computer simulation techniques and the results are compared with our and other experiments. In these calculations wide ranges of electron densities and temperatures are considered. Experimental measurements are performed with a high electron density pulsed discharge and with a low electron density microwave torch at atmospheric pressure. Both calculations and experimental measurements are extended from previous works towards low electron densities in order to study the accuracy of plasma diagnostics using this line in ranges of interest in different practical applications. The calculation results are compared with experimental profiles registered in plasmas diagnosed using independent techniques. The obtained agreement justifies the use of these line parameters for plasma diagnostics. The influence of self-absorption on line parameters is also analysed. It is shown that the separation between the peaks of the allowed and forbidden components exhibits a clear dependence upon plasma electron density free of self-absorption influence. This allows the peak separation to be used as a good parameter for plasma diagnostics. From the simulation results, a simple fitting formula is applied that permits obtaining the electron number density plasma diagnostics in the range 5 x 10{sup 22}-7 x 10{sup 23} m{sup -3}. At lower densities the fitting of simulated to experimental full profiles is a reliable method for N{sub e} determination.

  10. Scaling of energy confinement and poloidal beta in high density tokamaks

    NARCIS (Netherlands)

    Schram, D.C.; Schüller, F.C.

    1980-01-01

    A semi-empirical analysis of the heat balance of ohmically heated, high density Tokamak plasmas, shows that the observed heat transport can be explained by neoclassical (plateau) ion heat conduction in the central part of the plasma. Experimental values for Te, ß¿e, and tEe and the variation of

  11. Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe

    Science.gov (United States)

    Eddy, C. R.; Leonhardt, D.; Shamamian, V. A.; Butler, J. E.

    2001-05-01

    High density plasma etching of zinc selenide using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry, using through-the-platen sampling, is used to identify and monitor etch products evolving from the surface during etching. The identifiable primary etch products are Zn, Se, ZnH2, SeH2, Zn(CH3)2, and Se(CH3)2. Their concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy, and substrate temperature are varied. General insights about the surface chemistry mechanisms of the etch process are given from these observations. Regions of process parameter space best suited for moderate rate, anisotropic, and low damage etching of ZnSe are proposed.

  12. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  13. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  14. Dosimetric Properties of Plasma Density Effects on Laser-Accelerated VHEE Beams Using a Sharp Density-Transition Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hoon; Cho, Sungho; Kim, Eun Ho; Park, Jeong Hoon; Jung, Won-Gyun; Kim, Geun Beom; Kim, Kum Bae [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Min, Byung Jun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jaehoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeong, Hojin [Gyeongsang National University Hospital, Jinju (Korea, Republic of); Lee, Kitae [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Park, Sung Yong [Karmanos Cancer Institute, Michigan (United States)

    2017-01-15

    In this paper, the effects of the plasma density on laser-accelerated electron beams for radiation therapy with a sharp density transition are investigated. In the sharp density-transition scheme for electron injection, the crucial issue is finding the optimum density conditions under which electrons injected only during the first period of the laser wake wave are accelerated further. In this paper, we report particle-in-cell simulation results for the effects of both the scale length and the density transition ratio on the generation of a quasi-mono-energetic electron bunch. The effects of both the transverse parabolic channel and the plasma length on the electron-beam's quality are investigated. Also, we show the experimental results for the feasibility of a sharp density-transition structure. The dosimetric properties of these very high-energy electron beams are calculated using Monte Carlo simulations.

  15. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    International Nuclear Information System (INIS)

    Umar, Z.A.; Rawat, R.S.; Tan, K.S.; Kumar, A.K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-01-01

    Highlights: •The energetic ions and electron beams are used to synthesize TiC x /SiC/a-C:H films. •As-deposited crystalline and hard nanocomposite TiC x /SiC/a-C:H films are synthesized. •Very high average deposition rates of 68 nm/shot are achieved using dense plasma focus. •The maximum hardness of 22 GPa is achieved at the surface of the film. -- Abstract: Thin films of TiC x /SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiC x /SiC/a-C:H nanocomposite thin films using CH 4 :Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH 4 :Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiC x /SiC phases for thin film synthesized using different number of focus shots with CH 4 :Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH 4 :Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH 4 :Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiC x /SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiC x /SiC/a-C:H coatings

  16. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  17. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    Science.gov (United States)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  18. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Banine, V Y; Osorio, E A

    2015-01-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure. (fast track communication)

  19. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  20. High precision measurement of fuel density profiles in nuclear fusion plasmas

    NARCIS (Netherlands)

    Svensson, J.; von Hellermann, M.; Konig, R.

    2002-01-01

    This paper presents a method for deducing fuel density profiles of nuclear fusion plasmas in realtime during an experiment. A Multi Layer Perceptron (MLP) neural network is used to create a mapping between plasma radiation spectra and indirectly deduced hydrogen isotope densities. By combining

  1. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  2. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  3. Electron density measurement of a colliding plasma using soft x-ray laser interferometry

    International Nuclear Information System (INIS)

    Wan, A.S.; Back, C.A.; Barbee, T.W.Jr.; Cauble, R.; Celliers, P.; DaSilva, L.B.; Glenzer, S.; Moreno, J.C.; Rambo, P.W.; Stone, G.F.; Trebes, J.E.; Weber, F.

    1996-05-01

    The understanding of the collision and subsequent interaction of counter-streaming high-density plasmas is important for the design of indirectly-driven inertial confinement fusion (ICF) hohlraums. We have employed a soft x-ray Mach-Zehnder interferometer, using a Ne- like Y x-ray laser at 155 angstrom as the probe source, to study interpenetration and stagnation of two colliding plasmas. We observed a peaked density profile at the symmetry axis with a wide stagnation region with width of order 100 μm. We compare the measured density profile with density profiles calculated by the radiation hydrodynamic code LASNEX and a multi-specie fluid code which allows for interpenetration. The measured density profile falls in between the calculated profiles using collisionless and fluid approximations. By using different target materials and irradiation configurations, we can vary the collisionality of the plasma. We hope to use the soft x-ray laser interferometry as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy- density physics experiments

  4. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  5. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  6. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  7. Plasma response to electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-01-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma

  8. Micro-texturing into DLC/diamond coated molds and dies via high density oxygen plasma etching

    Directory of Open Access Journals (Sweden)

    Yunata Ersyzario Edo

    2015-01-01

    Full Text Available Diamond-Like Carbon (DLC and Chemical Vapor Deposition (CVD-diamond films have been widely utilized not only as a hard protective coating for molds and dies but also as a functional substrate for bio-MEMS/NEMS. Micro-texturing into these hard coated molds and dies provides a productive tool to duplicate the original mother micro-patterns onto various work materials and to construct any tailored micro-textures for sensors and actuators. In the present paper, the high density oxygen plasma etching method is utilized to make micro-line and micro-groove patterns onto the DLC and diamond coatings. Our developing oxygen plasma etching system is introduced together with characterization on the plasma state during etching. In this quantitative plasma diagnosis, both the population of activated species and the electron and ion densities are identified through the emissive light spectroscopy and the Langmuir probe method. In addition, the on-line monitoring of the plasmas helps to describe the etching process. DLC coated WC (Co specimen is first employed to describe the etching mechanism by the present method. Chemical Vapor Deposition (CVD diamond coated WC (Co is also employed to demonstrate the reliable capacity of the present high density oxygen plasma etching. This oxygen plasma etching performance is discussed by comparison of the etching rates.

  9. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  10. High performance H-mode plasmas at densities above the Greenwald limit

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Osborne, T.H.; Leonard, A.W.

    2001-01-01

    Densities up to 40 percent above the Greenwald limit are reproducibly achieved in high confinement (H ITER89p =2) ELMing H-mode discharges. Simultaneous gas fueling and divertor pumping were used to obtain these results. Confinement of these discharges, similar to moderate density H-mode, is characterized by a stiff temperature profile, and therefore sensitive to the density profile. A particle transport model is presented that explains the roles of divertor pumping and geometry for access to high densities. Energy loss per ELM at high density is a factor of five lower than predictions of an earlier scaling, based on data from lower density discharges. (author)

  11. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  12. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  13. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  14. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  15. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  16. Experimental studies and modelling of high radiation and high density plasmas in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Livia

    2015-11-24

    establish an the radiation increases in this region. To account for these effects, an empirical non-coronal model was developed which takes the impurity residence time at the pedestal into account. The validity of this assumption was verified by modelling the evolution of the impurities and radiation for ASDEX Upgrade H-modes with nitrogen seeding by coupling the ASTRA transport code with STRAHL. The time-dependent simulations include impurity radiation due to nitrogen and tungsten and the transport effects induced at the edge by the ELMs. The modelling results have been validated against the experimental data. The modelled radiation profiles show a very good agreement with the measured ones over both radius and time. In particular, the strong enhancement of the nitrogen radiation caused by non-coronal effects through the ELM-induced transport is well reproduced. The radiation properties of tungsten are very weakly influenced by non-coronal effects due to the faster equilibration. W radiation, which is highly dependent on the f{sub ELM}, strongly increases when f{sub ELM} is decreased, due to the lack of sufficiently strong flush out of this impurity. This is in agreement with the experimental observations and indicates that maintaining high ELM frequency is essential for the stability and performance of the discharges. Analyses of the high density scenario with pellets indicate that several processes take place when pellets are injected into the plasma. In particular, due to their cooling effect, the temperature drops as soon as pellets are injected. This is compensated by an increase in density. These processes occur mainly at the edge and are propagated to the core via stiffness. This explains why the confinement stays approximately constant during the whole discharge. Both experiments and transport calculations reveal that the energy confinement time is independent of the density indicating that the currently used scaling is not valid in this regime. The results of this

  17. Hydrogen retention properties of co-deposition under high-density plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Tokitani, M.; Miyamoto, M.; Tokunaga, K.; Fujiwara, T.; Yoshida, N.; Sakamoto, M.; Zushi, H.; Hanada, K.; TRIAM Group,; Nagata, S.; Tsuchiya, B.

    2007-01-01

    Retention of hydrogen in co-deposits formed under high-density plasma discharge in TRIAM-1M was studied. In order to quantify the retained hydrogen, material probe experiments were performed under the high-density (n at e ∼10 19 m -3 ) discharges. After the exposure to the plasma, the quantitative analysis of deposition, hydrogen retention, and microscopic modification of specimens were performed by means of ion beam analysis and transmission electron microscopy. The co-deposits mainly consisted of Mo. The deposition rate of Mo was about ten times higher than that of the low-density discharge case. The hydrogen concentrations (H/Mo) retained in the co-deposits were 0.06-0.17, which was much higher than that in bulk-Mo and almost equal to the low-density case. These results indicate that as long as the co-deposition layers are continuously formed, strong wall pumping in TRIAM-1M is maintained during the discharges

  18. Dielectronic recombination of carbon, oxygen and iron in low-density and high-temperature plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Kasai, Satoshi; Tazima, Teruhiko

    1977-03-01

    The coefficient of dielectronic recombination, which is one of the important atomic processes in tokamak plasmas, is evaluated by a semiclassical method neglecting the effects of the density and the radiation fields. Those of carbon, oxygen and iron, which play important roles in such as plasma resistivity and energy losses, are calculated numerically in the range of the electron temperature of 10 eV - 10 keV. Compared with the results obtained from Burgess equation, which is most useful for the ions with effective nuclear charge z 25 such as molybdenum. (auth.)

  19. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  1. High-rate synthesis of microcrystalline silicon films using high-density SiH4/H2 microwave plasma

    International Nuclear Information System (INIS)

    Jia, Haijun; Saha, Jhantu K.; Ohse, Naoyuki; Shirai, Hajime

    2007-01-01

    A high electron density (> 10 11 cm -3 ) and low electron temperature (1-2 eV) plasma is produced by using a microwave plasma source utilizing a spoke antenna, and is applied for the high-rate synthesis of high quality microcrystalline silicon (μc-Si) films. A very fast deposition rate of ∼ 65 A/s is achieved at a substrate temperature of 150 deg. C with a high Raman crystallinity and a low defect density of (1-2) x 10 16 cm -3 . Optical emission spectroscopy measurements reveal that emission intensity of SiH and intensity ratio of H α /SiH are good monitors for film deposition rate and film crystallinity, respectively. A high flux of film deposition precursor and atomic hydrogen under a moderate substrate temperature condition is effective for the fast deposition of highly crystallized μc-Si films without creating additional defects as well as for the improvement of film homogeneity

  2. Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems

    International Nuclear Information System (INIS)

    Shumaev, V. V.

    2016-01-01

    The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures T > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.

  3. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  4. RF compensation of single Langmuir probe in low density helicon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumen, E-mail: soumen@ipr.res.in; Chattopadhyay, Prabal K.; Ghosh, Joydeep; Bora, Dhiraj

    2016-11-15

    Highlights: • Appropriate density and temperature measurement with Langmuir probe in RF Eenvironment. • Necessity of large auxiliary electrode for RF compensation at low densities (∼10{sup 16} m{sup −3}). • Measured two temperature electrons in low pressure helicon antenna produced RF plasma. • Tail electrons are localized only at off-axis in our cylindrical plasma system. - Abstract: Interpretations of Single Langmuir probe measurements in electrode-less radio frequency (RF) plasmas are noteworthy tricky and require adequate compensation of RF. Conventional RF compensation technique is limited only at high density (>10{sup 17} m{sup −3}) RF plasmas. RF compensation of single Langmuir probe at low density RF plasmas (∼10{sup 16} m{sup −3}) is presented in this paper. In RF driven plasmas, where the RF voltage is high (∼50 V) and density is in the range (∼10{sup 16} m{sup −3}), the primary RF compensation condition (Z{sub ck} > >Z{sub sh}) is very difficult to fulfill, because of high sheath impedance (Z{sub sh}) at 13.56 MHz and the construction limitation of a self-resonant tiny chock (Z{sub ck}) with very high impedance. Introducing a large auxiliary electrode (A{sub x}), (A{sub x} >>> A{sub p}), close to the small Langmuir probe (A{sub p}) tip, connected in parallel with probe via a coupling capacitor (C{sub cp}), significantly reduces the effective sheath impedance (Z{sub sh}) and allows probe bias to follow the RF oscillation. Dimensional requirements of the auxiliary electrode and the role of suitable coupling capacitor are discussed in this paper. Observations show proper compensation leads to estimation of more positive floating potentials and lower electron temperatures compared to uncompensated probe. The electron energy probability function (EEPF) is also obtained by double differentiating the collected current with respect to the applied bias voltage using an active analog circuit.

  5. The Energy Balance of Plasma in a Coaxial Plasma Opening Switch

    International Nuclear Information System (INIS)

    Xu Xiang; Wang Younian

    2006-01-01

    The two-dimensional energy balance in a coaxial plasma opening switch (POS) is studied based on the single-fluid magnetohydrodynamic (MHD) equations coupled with the generalized Ohm's law. The energy transfers between the plasma and the magnetic field are considered during the penetration of the magnetic field as the Ohmic heating is included in the energy-balance equation. The focus is on the energy partition between the magnetic-field energy and the dissipated magnetic-field energy in a high-density POS with different rise-in-time electric currents at the generator boundary. The simulation code is tested in two cases: the constant-in-time current case and the linear rise-in-time current case. For the sinusoidally rise-in-time current similar to that of the experiments, it is shown that at the end of the conduction phase the dissipated magnetic-field energy is 36.5% of the input electromagnetic energy, which is consistent with the experimental results

  6. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  7. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  8. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  10. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Modification of K-line emission profiles in laser-created solid-density plasmas

    International Nuclear Information System (INIS)

    Sengebusch, A.; Reinholz, H.; Roepke, G.

    2010-01-01

    Complete text of publication follows. X-ray emissions in the keV energy range have shown to be suitable radiation to investigate the properties of laser-created solid-density plasmas. We use the modifications of inner shell transitions due to the environment to characterize these plasmas. A theoretical treatment of spectral line profiles based on a self-consistent ion sphere model is applied on moderately ionized mid-Z materials, such as titanium, silicon and chlorine. We observe large contributions of satellite transitions due to M-shell ionization and excitation. To determine the composition a mixture of various excited and ionized ionic states embedded in a plasma has to be considered. Plasma polarization effects that cause shifts of the emission and ionization energies are taken into account. K-line profiles are calculated for bulk temperatures up to 100 eV and free electron densities up to 10 24 cm -3 in order to analyze recent measurements with respect to the plasma parameters of electron heated target regions. Moreover, in high-intensity laser-matter interactions, inevitable prepulses are likely to create preplasma and shocks within the target before the main pulse arrives. We investigate the influence of density gradients due to prepulses on the spectral profiles. Further, radial bulk temperature distributions as well the composition of the created warm dense matter are inferred.

  12. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  13. High density internal transport barriers for burning plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfini, V Pericoli [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Barbato, E [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Buratti, P [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy)] (and others)

    2005-12-15

    A tokamak plasma with internal transport barriers (ITBs) is the best candidate for a steady ITER operation, since the high energy confinement allows working at plasma currents (I{sub p}) lower than the reference scenario. To build and sustain an ITB at the ITER high density ({>=}10{sup 20} m{sup -3}) and largely dominant electron (e{sup -}) heating is not trivial in most existing tokamaks. FTU can instead meet both requests, thanks to its radiofrequency heating systems, lower hybrid (LH, up to 1.9 MW) and electron cyclotron (EC up to 1.2 MW). By the combined use of them, ITBs are obtained up to peak densities n{sub e0} > 1.3 x 10{sup 20} m{sup -3}, with central e{sup -} temperatures T{sub e0} {approx} 5.5 keV, and are sustained for as long as the heating pulse is applied (>35 confinement times, {tau}{sub E}). At n{sub e0} {approx} 0.8 x 10{sup 20} m{sup -3} T{sub e0} can be larger than 11 keV. Almost full current drive (CD) and an overall good steadiness is attained within about one {tau}{sub E}, 20 times faster than the ohmic current relaxation time. The ITB extends over a central region with an almost flat or slightly reversed q profile and q{sub min} {approx} 1.3 that is fully sustained by off-axis lower hybrid current drive. Consequent to this is the beneficial good alignment of the bootstrap current, generated by the ITB large pressure gradients, with the LH driven current. Reflectometry shows a clear change in the turbulence close to the ITB radius, consistent with the reduced e{sup -} transport. Ions (i{sup +}) are significantly heated via collisions, but thermal equilibrium with electrons cannot be attained since the e{sup -}-i{sup +} equipartition time is always 4-5 times longer than {tau}{sub E}. No degradation of the overall ion transport, rather a reduction of the i{sup +} heat diffusivity, is observed inside the ITB. The global confinement has been improved up to 1.6 times over the scaling predictions. The ITB radius can be controlled by adjusting the

  14. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  15. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  16. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  17. Laser produced plasma density measurement by Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.

    1976-06-01

    This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change

  18. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  19. The influence of plasma density decreasement by pre-pulse on the laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Ke-Gong Dong

    2011-12-01

    Full Text Available In the laser wakefield acceleration, the generation of electron beam is very sensitive to the plasma density. Not only the laser-wakefield interaction, but also the electron trapping and acceleration would be effected by the plasma density. However, the plasma density could be changed in the experiment by different reasons, which will result in the mismatch of parameters arranged initially. Forward Raman scattering spectrum demonstrated that the interaction density was decreased obviously in the experiment, which was verified by the pre-pulse conditions and two-dimensional particle-in-cell simulations. It was demonstrated that the plasma density was very important on the self-evolutions and energy coupling of laser pulse and wakefield, and eventually the energy spectrum of electron beam.

  20. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  1. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  2. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  3. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2003-01-01

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma

  4. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  5. Cholesteryl ester transfer activity in plasma measured by using solid-phase-bound high-density lipoprotein

    International Nuclear Information System (INIS)

    Sparks, D.L.; Frohlich, J.; Cullis, P.; Pritchard, P.H.

    1987-01-01

    We studied the ability of lipid-transfer factors in plasma to promote transfer, to endogenous lipoproteins, of [ 3 H]cholesteryl ester from high-density lipoprotein (HDL) covalently bound to Sepharose 4B beads. After incubation for 2 h at 37 degrees C, 12 to 14% of the [ 3 H]cholesteryl ester had been transferred to the lipoproteins of the plasma, in the proportions 57% to HDL and 43% to low- and very-low-density lipoproteins. This process was a function of the amount of plasma present and was stimulated by addition of partly purified lipid-transfer protein. Transfer also depended on the concentration of donor HDL but was independent of the amount of acceptor lipoprotein. This simple evaluation of cholesteryl ester transfer does not require removal of lipoproteins from the plasma before incubation

  6. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  7. Energy Conversion in Imploding Z-Pinch Plasma

    International Nuclear Information System (INIS)

    Fisher, V.I.; Gregorian, L.; Davara, G.; Kroupp, E.; Bernshtam, V.A.; Ralchenko, Yu. V.; Starobinets, A.; Maron, Y.

    2002-01-01

    Due to important applications, Z-pinches became a subject of extensive studies. In these studies, main attention is directed towards improvement in efficiency of electric energy conversion into high-power radiation burst. At present, knowledge available on physics of Z-pinch operation, plasma motion, atomic kinetics, and energy conversion is mainly knowledge of numerical simulation results. We believe further progress require (i) experimental determination of spatial distribution and time history of thermodynamic parameters and magnetic field, as well as (ii) utilization of this data for experiment-based calculation of r,t-distribution of driving forces, mass and energy fluxes, and local energy deposition rates due to each of contributing mechanisms, what provides an insight into a process of conversion of stored electric energy into radiation burst. Moreover, experimentally determined r, t-distribution of parameters may serve for verification of computer programs developed for simulation of Z-pinch operation and optimization of radiation output. Within this research program we performed detailed spectroscopic study of plasmas imploding in modest-size (25 kV, 5 kJ, 1.2 μs quaterperiod) gas-puff Z-pinch. This facility has reasonably high repetition rate and provides good reproducibility of results. Consistent with plasma ionization degree in the implosion period, measurements are performed in UV-visible spectral range. Observation of spectral lines emitted at various azimuthal angles f showed no dependence on f. Dependence on axial coordinate z is found to be weak in near-anode half of the anode-cathode gap. Based on these observations and restricting the measurements to near-anode half of the gap, an evolution of parameters is studied in time and radial coordinate r only. In present talk we report on determination of radial component of plasma hydrodynamic velocity u r (r,t), magnetic field B ζ (r,t), electron density n e (r,t), density of ions in various

  8. Semi-analytical model of laser resonance absorption in plasmas with a parabolic density profile

    International Nuclear Information System (INIS)

    Pestehe, S J; Mohammadnejad, M

    2010-01-01

    Analytical expressions for mode conversion and resonance absorption of electromagnetic waves in inhomogeneous, unmagnetized plasmas are required for laboratory and simulation studies. Although most of the analyses of this problem have concentrated on the linear plasma density profile, there are a few research works that deal with different plasma density profiles including the parabolic profile. Almost none of them could give clear analytical formulae for the electric and magnetic components of the electromagnetic field propagating through inhomogeneous plasmas. In this paper, we have considered the resonant absorption of laser light near the critical density of plasmas with parabolic electron density profiles followed by a uniform over-dense region and have obtained expressions for the electric and magnetic vectors of laser light propagating through the plasma. An estimation of the fractional absorption of laser energy has also been carried out. It has been shown that, in contrast to the linear density profile, the energy absorption depends explicitly on the value of collision frequency as well as on a new parameter, N, called the over-dense density order.

  9. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  10. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.

    2003-01-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control

  11. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  12. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  13. INTOR rescaling for non-intended plasma shape applying preliminary scalings for energy confinement and density limit

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1986-11-01

    On the basis of a simplified rescaling procedure with INTOR, as of Phase IIA Part 1, serving as reference case, alternative design points are discussed that take into account more recent findings on β-limits, density limits and possible extrapolations with respect to plasma elongation. Two tentative scalings for the energy confinement time as derived from ASDEX results and by Goldston are applied to find minimum size INTOR alternatives, which, of course, could be quite different for the two scalings. Large plasma elongation is needed for getting close to the original outlay for INTOR. The density limit according to some possible scalings requires some adjustment of the plasma temperature to above 10 keV. The neutron wall load, being the important parameter with respect to the INTOR test programme, can be practically kept at the reference level. For ASDEX confinement scaling this requires that an ignition margin of about 2 be adhered to. A sensitivity study on the impact of individual modifications in input assumptions of the order of 10% shows that only a limited range of such alternatives remains acceptable. (orig.)

  14. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  15. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  16. In depth fusion flame spreading with a deuterium—tritium plane fuel density profile for plasma block ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2012-01-01

    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10 12 J/m 2 , has been reached. Recently, fast ignition by employing clean petawatt—picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium—tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electron—ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, E* t , for the x ≠ 0 layers is 1.95 × 10 12 J/m 2 . Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent. (physics of gases, plasmas, and electric discharges)

  17. Photon-exchange energy transfer of an electron–hole plasma between quasi-two-dimensional semiconductor layers

    International Nuclear Information System (INIS)

    Lyo, S.K.

    2012-01-01

    Photon-mediated energy transfer is shown to play an important role for transfer of an electron–hole plasma between two quasi-two-dimensional quantum wells separated by a wide barrier. The magnitude and the dependence of the transfer rate of an electron–hole plasma on the temperature, the well-to-well distance, and the plasma density are compared with those of the standard Förster (i.e., dipolar) rate and also with the exciton transfer rate. The plasma transfer rate through the photon-exchange mechanism decays very slowly as a function of the well-to-well distance and is larger than the dipolar rate except for short distances. The transfer rate of plasmas saturates at high densities and decays rapidly with the temperature. - Highlights: ► We study energy transfer (ET) between two two-dimensional semiconductor quantum wells. ► We compare the ET rates of an electron–hole plasma (at a high density) and Mott excitons. ► We show that the proposed photon-exchange rate is practically dominant over the Förster rate. ► We examine the dependences of the ET rate on the temperature, density, and well-to-well distance.

  18. Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors

    International Nuclear Information System (INIS)

    Cao, Yi; Lin, Baoping; Sun, Ying; Yang, Hong; Zhang, Xueqin

    2015-01-01

    Highlights: • The electrode made by LNF-0.7 possessed excellent performance (719 F g −1 ) at Na 2 SO 4 electrolyte • LNF-0.7//LNF-0.7 symmetric supercapacitor device were firstly prepared • The maximum energy density of 81.4 Wh·kg −1 are achieved at a power density of 500W·kg −1 • This symmetric supercapacitor also shows an excellent cycling life - Abstract: The series La x Sr 1−x NiO 3−δ (0.3≤x≤1) nanofibers (LNF-x) samples are prepared by using electrospun method. We investigate the structure and the electrochemical properties of LNF-x in detail. As a result, LNF-x nanofibers present a perovskite structure, and the LNF-0.7 sample with high specific surface area display remarkable performance as an electrode material for supercapacitors. The maximum specific capacitance value of 719 F·g −1 at a current density of 2 A·g −1 , which retains 505 F·g −1 at a high current density of 20 A·g −1 , is obtained for LNF-0.7 electrode in 1 M Na 2 SO 4 aqueous electrolyte. Moreover, the LNF-0.7//LNF-0.7 symmetric supercapacitor device using 1 M Na 2 SO 4 aqueous solution is successfully demonstrated. The capacitor device can operate at a cell voltage as high as 2 V, and it exhibits an energy density of 30.5 Wh·kg −1 at a high power density of 10 kW·kg −1 and a high energy density of 81.4 Wh·kg −1 at a low power density of 500 W·kg −1 . More importantly, this symmetric supercapacitor also shows an excellent cycling performance with 90% specific capacitance retention after 2000 charging and discharging cycles. Those results offer a suitable design of electrode materials for high-performance supercapacitors

  19. Development on the National Ignition Facility of a High Energy Density Opacity Platform

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dodd, Evan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cardenas, Tana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Thomas Nick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sherrill, Manolo Edgar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Bernhard Heinz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Douglas, Melissa Rae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liedahl, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, B. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iglesias, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martin, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahmed, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emig, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zika, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opachich, Y. P. [Nevada National Security Site (NNSS), NV (United States); King, J. A. [Nevada National Security Site (NNSS), NV (United States); Ross, P. W. [Nevada National Security Site (NNSS), NV (United States); Huffman, E. J. [Nevada National Security Site (NNSS), NV (United States); Knight, R. A. [Nevada National Security Site (NNSS), NV (United States); Koch, J. A. [Nevada National Security Site (NNSS), NV (United States); Pond, T. D. [Nevada National Security Site (NNSS), NV (United States); Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Zhang, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Garcia, E. M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bailey, J. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, G. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, S. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-02

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results, but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.

  20. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  1. A Guillemin type E pulse forming network as the driver for a pulsed, high density plasma source.

    Science.gov (United States)

    Rathod, Priyavandna J; Anitha, V P; Sholapurwala, Z H; Saxena, Y C

    2014-06-01

    A Guillemin type E pulse forming network (PFN) has been designed, developed, and tested for its application in generating high density (~1 × 10(18) m(-3)) plasmas. In the present study, plasma thus generated is utilized to investigate the interaction of high power microwaves (HPMs) with plasma in an experimental architecture known as SYMPLE (System for Microwave PLasma Experiment). Plasma discharges of ~100 μs (max) duration are to be produced, by delivering energy of 5 kJ stored in a PFN to the plasma source, a washer gun. The output of the PFN, in terms of its rise time, flat top and amplitude, needs to be tailored, depending on the experimental requirements. An ignitron (NL8900) trigger generator (ITG) is developed in-house to control the PFN discharge through the gun. This ITG is also to be used in a circuit that synchronizes the HPM and plasma shots, to ensure that HPM-plasma interaction takes place during a temporal regime where appropriate parametric conditions are satisfied. Hence it is necessary to retain the jitter within ±2.5 μs. Further, requirement on plasma quiescence (~10%) necessitates maintaining the ripple within 5%. The developmental work of the PFN, keeping in view the above criteria and the test results, is presented in this paper. The parameters of the PFN have been analytically approximated and verified with PSPICE simulation. The test results presented include rise time ~5-8 μs, flat top variable in the range 20-100 μs, ripple within ~1.5%, and jitter within ±2.5 μs, producing quiescent (plasma discharge meeting the experimental requirements.

  2. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  3. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  4. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    International Nuclear Information System (INIS)

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-01-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ∼1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  5. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  6. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    Science.gov (United States)

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  7. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    Science.gov (United States)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  8. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  9. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  10. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Rizzoli, R. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); CNR–Istituto per la Microelettronica ed i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L. [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy)

    2016-02-15

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  11. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    Science.gov (United States)

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  12. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  13. Plasma density control in real-time on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: filip.janky.work@gmail.com [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Havlicek, J. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Varavin, M.; Zacek, F.; Seidl, J.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic)

    2015-10-15

    Highlights: • We fitted length of the chord of the interferometry crossing plasma in the different plasma scenarios. • We add correction to the actual length of the chord of the interferometry according to plasma shape and position in real-time code. • We used this correction to control plasma density in real-time. - Abstract: The electron density on COMPASS is measured using 2 mm microwave interferometer. Interferometer signal is used as an input for the feedback control loop, running under the MARTe real-time framework. Two different threads are used to calculate (fast 50 μs thread) and to control (slow 500 μs thread) the electron density. The interferometer measures a line averaged density along a measurement chord. This paper describes an approach to control the line-averaged electron density in a real-time loop, using a correction to the real plasma shape, the plasma position, and non-linear effects of the electron density measurement at high densities. Newly developed real-time electron density control give COMPASS the chance to control the electron density more accurately which is essential for parametric scans for diagnosticians, for physics experiments and also for achieving plasma scenarios with H-mode.

  14. Impact of gas puffing location on density control and plasma parameters in TJ-II

    International Nuclear Information System (INIS)

    Tabares, F.L.; Garcia-Cortes, I.; Estrada, T.; Tafalla, D.; Hidalgo, A.; Ferreira, J.A.; Pastor, I.; Herranz, J.; Ascasibar, E.

    2005-01-01

    Under pure Electron Cyclotron Resonance Heating (ECRH) conditions in TJ-II plasmas (P<300 kW, 53.2 GHz, 2nd harmonic X-mode, power density < 25 W/m''3), plasma start-up and good density control are obtained only by the proper combination of wall conditions and gas puffing characteristics. Such a control is particularly critical for the optimisation of the NBI power transfer to the target plasmas. The relatively low cut-off limit is easily reached due not only to the unfavourable wall/puffing-fuelling ratio but also due to the steep density profiles developed during the Enhanced Particle Confinement (EPC) modes. These modes are triggered by the gas puffing waveform, and they cannot be achieved for high iota magnetic configurations in TJ-II. Comparative experiments under metallic and boronised wall conditions have shown that the sensitivity of the EPC modes to the puffing rate is at least partially related to the energy balance at the plasma periphery under central heating scenarios. In this work, the impact of gas-fuelling location on the plasma parameters and density control is described. For that purpose, three different fuelling locations have been investigated; broad distribution from a side ports, localized injection from long tubes at different poloidal positions and highly localized injection through a movable limiter. Edge density and temperature profiles from a broad set of diagnostics (atomic beams, reflectometry, Thompson Scattering ECE, etc...) are analysed and compared. It has been found that preventing from transition to the EPC mode is achieved by using slow puffing rates, while neutral penetration into the plasma core can be enhanced for highly localized gas sources. Wall inventory, however, has been found to pl ay a dominant role in the fuelling of the plasma under most conditions. (author)

  15. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  16. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  17. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  18. In vivo transfer of cholesteryl ester from high and low density plasma lipoproteins into human aortic tissue

    International Nuclear Information System (INIS)

    Stender, S.; Hjelms, E.

    1988-01-01

    For the study of cholesteryl ester transfer from different plasma lipoproteins into human aortic tissue, patients scheduled for reconstructive aortic surgery were intravenously injected with autologous in vitro labeled lipoproteins 20 to 24 hours before aortic intima-media samples were obtained during the operation. The injectate contained high density lipoproteins (d greater than 1.063) labeled with 3H-cholesteryl ester and lipoproteins of lower density (d less than 1.063) labeled with 14C-cholesteryl ester or lipoproteins with the opposite labeling. In 16 aortic tissue samples (some with visible atherosclerosis) from 11 normocholesterolemic patients, the aortic influx of total cholesteryl ester was 1 to 50 nmol x cm-2 x day-1. Some 39% +/- 3% (mean +/- SEM) of the influx was derived from high density lipoproteins, which in plasma accounted for only 22% +/- 2% (mean +/- SEM) of the esterified cholesterol. The findings suggest that: 1) esterified cholesterol from the two lipoprotein fractions in plasma enter the aortic intima by the same mechanism, and 2) influx of cholesteryl ester from the smaller, high density lipoproteins is greater than influx from the larger, lower density lipoproteins considering their concentrations in plasma. In some patients, the cholesterol content in the intima-media tissue with no visible atherosclerosis corresponded to only a few months of continuous cholesteryl ester influx. This time is short considering the age of the patients and, therefore, indicates that removal of esterified cholesterol from the intima-media is of major importance in preventing cholesterol deposition in the arterial wall

  19. Experiments on the indirect heating of low density aerogels for applications in heavy ion stopping in plasma

    International Nuclear Information System (INIS)

    Rosmej, O.N.; Blazevic, A.; Suslov, N.; Kunin, A.; Pinegin, A.; Schaefer, D.; Nisius, Th.; Zhao, Y.; Rinecker, T.; Wiechula, J.

    2010-01-01

    Complete text of publication follows. The unique combination of a Petawatt High-Energy Laser System for Ion beam eXperiments - 'Phelix' (Nd:glass, 1053 nm, 300-500 J, 1-15 ns) and intense heavy ion beams of the UNILAC accelerator at GSI-Darmstadt allow creating and probing of hot plasma with a density of some percentage of solid-state density. The experimental program aims at the investigation of fundamental features of heavy ion stopping in ionized matter in view of promising applications for the Heavy Ion Fusion and astrophysics. For combined experiments on the interaction of heavy ion beams with ionized matter (GSI) a high density plasma target with homogeneous in time (∼ 5 ns) and space (∼ 1 mm) plasma parameters in required. For these purposes we are developing the combined target which consists on the Gold hohlraum (converter) and low Z foam target heated by the hohlraum radiation before probed by an ion bunch. Foam targets are rather promising due to the effective conversion of the deposited radiation energy into the internal plasma energy and slow hydrodynamic response on the heating. Direct irradiation of the Gold converter walls with a nanosecond pulse delivered by the PHELIX-laser system (GSI) leads to hohlraum radiation spectra in the photon energy range of 50-500 eV. Expected temperatures of the foam targets heated by this radiation amount to 20-30 eV at electron densities of 10 21 cm -3 . The results of the last hohlraum experiments carried out at PHELIX-laser energies of 200-250 J will be presented. In experiments the hohlraum radiation field, the conversion efficiency of the laser energy into soft X-rays, duration of the soft X-ray pulse, and parameters of the heated with X-rays foam targets have been measured. Acknowledgements. This work is supported by ISTC 2264 grant.

  20. Study on the behaviour of high energy electrons in REPUTE-1 ULQ plasmas

    International Nuclear Information System (INIS)

    Ogawa, Y.; Morikawa, J.; Nihei, H.; Nakajima, T.; Ozawa, D.; Ohno, M.; Suzuki, T.; Himura, H.; Yoshida, Z.; Morita, S.; Shirai, Y.

    2001-01-01

    In REPUTE-1 Ultra-Low-q (ULQ) plasmas, behaviors of high energy electrons have been studied through a low-Z pellet injection experiment, in addition to the measurements of soft-X ray PHA and Electron Energy Analyzer (EEA). The high energy tail has been measured in the soft-X ray spectrum, and EEA signal has shown a strong anisotropy of the electron distribution function (i.e., the electron flux to the electron drift side is dominant). To study temporal and spatial information on these high energy electrons, a low-Z pellet injection experiment has been conducted. A small piece of plastic pellet is injected from the top of the REPUTE-1 device, and the trajectory of the pellet inside the plasma is measured by CCD camera. We have observed a large deflection of the pellet trajectory to the toroidal direction opposite to the plasma current (i.e., the electron drift side). This suggests that a pellet is ablated selectively only from one side due to the high energy electrons with a large heat flux. We have calculated the heat flux carried by high energy electrons. Since the repulsion force to the pellet can be calculated with the 2 nd derivative of the pellet trajectory, we have estimated the heat flux of high energy electrons to be a few tens MW/m 2 around the plasma center. Experimental data by EEA measurement and low-Z pellet ablation show the large population of the high energy electrons at the core region in comparison with the edge region, suggesting a MHD dynamo mechanism for the production of the high energy electrons. (author)

  1. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  2. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  3. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  4. Interferometric characterization of density dynamics of an ultradense Z-pinch plasma

    International Nuclear Information System (INIS)

    Ackenhusen, J.G.; Bach, D.R.

    1979-01-01

    We have measured the spatially and temporally resolved density in a Z-pinch plasma by holographic interferometry. The high electron density (4 x 10 19 e/cm 3 ), short density scale length (100 μm), and low temperature (about 20 eV) make the plasma source suitable for simulation of laser-pellet interaction experiments at 10.6-μm laser wavelengths. A cinema of density evolution, indicating plasma pinching and subsequent relaxation, provides an experimental view of plasma dynamics which is then compared to simple theoretical models

  5. The implementation of real-time plasma electron density calculations on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.C., E-mail: zzc@ipp.ac.cn; Xiao, B.J.; Wang, F.; Liu, H.Q.; Yuan, Q.P.; Wang, Y.; Yang, Y.

    2016-11-15

    Highlights: • The real-time density calculation system (DCS) has been applied to the EAST 3-wave polarimeter-interferometer (POINT) system. • The new system based on Flex RIO acquires data at high speed and processes them in a short time. • Roll-over module is developed for density calculation. - Abstract: The plasma electron density is one of the most fundamental parameters in tokamak experiment. It is widely used in the plasma control system (PCS) real-time control, as well as plasma physics analysis. The 3-wave polarimeter-interferometer (POINT) system had been used to measure the plasma electron density on the EAST since last campaign. This paper will give the way to realize the real-time measurement of plasma electron density. All intermediate frequency (IF) signals after POINT system, in the 0.5–3 MHz range, stream to the real-time density calculation system (DCS) to extract the phase shift information. All the prototype hardware is based on NI Flex RIO device which contains a high speed Field Programmable Gate Array (FPGA). The original signals are sampled at 10 M Samples/s, and the data after roll-over module are transmitted to PCS by reflective memory (RFM). With this method, real-time plasma electron density data with high accuracy and low noise had been obtained in the latest EAST tokamak experiment.

  6. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  7. Temporal evolution of electron energy distribution function and plasma parameters in the afterglow of drifting magnetron plasma

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2005-01-01

    The temporal behaviour of the electron energy distribution function (EEDF) and the plasma parameters such as electron density, electron temperature and plasma and floating potentials in a mid-frequency pulsed dc magnetron plasma are investigated using time-resolved probe measurements. A negative-voltage dc pulse with an average power of 160 W during the pulse-on period, a repetition frequency of 20 kHz and a duty cycle of 50% is applied to the cathode of a planar unbalanced magnetron discharge with a grounded substrate. The measured electron energy distribution is found to exhibit a bi-Maxwellian distribution, which can be resolved with the low-energy electron group and the high-energy tail part during the pulse-on period, and a Maxwellian distribution only with low-energy electrons as a consequence of initially rapid decay of the high-energy tail part during the pulse-off period. This characteristic evolution of the EEDF is reflected in the decay characteristics of the electron density and temperature in the afterglow. These parameters exhibit twofold decay represented by two characteristic decay times of an initial fast decay time τ 1 , and a subsequent slower decay time τ 2 in the afterglow when approximated with a bi-exponential function. While the initial fast decay times are of the order of 1 μs (τ T1 ∼ 0.99 μs and τ N1 ∼ 1.5 μs), the slower decay times are of the order of a few tens of microseconds (τ T2 ∼ 7 μs and τ N2 ∼ 40 μs). The temporal evolution of the plasma parameters are qualitatively explained by considering the formation mechanism of the bi-Maxwellian electron distribution function and the electron transports of these electron groups in bulk plasma

  8. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  9. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  10. Investigation of the Energy Confinement in Ohmic and LHCD Plasmas in HT-7

    International Nuclear Information System (INIS)

    Zhang Xiaoqing; Wan Baonian; Shen Biao; Hu Xiwei; Qian Jinping; Fan Hengyu; Ding Yonghua

    2006-01-01

    Investigation of the energy confinement in ohmic and lower hybrid current drive (LHCD) plasmas in HT-7 has been performed. In ohmic discharges at low densities the global energy confinement time τ E increases almost linearly with the density, saturates at a critical density (2.5 x 10 13 /cm 3 for HT-7) and is nearly constant at higher densities. The energy confinement time is in good agreement with the Neo-Alcator scaling law at different densities and currents. In the LHCD plasmas the global energy confinement time similar to that of the L-mode discharges has been observed to be in good agreement with the low confinement mode (L mode) scaling law of ITER89-P in higher electron density and plasma current

  11. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Spencer M.; Yao, Tiankai [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lu, Fengyuan [Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Xin, Guoqing; Zhu, Weiguang [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lian, Jie, E-mail: lianj@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2017-03-15

    Abstract: High-energy ball milling was used to synthesize Th{sub 1-x}La{sub x}O{sub 2-0.5x} (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO{sub 2} powders. Dense La-doped ThO{sub 2} pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO{sub 2} pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C. - Highlights: • Lanthanum incorporation into ThO{sub 2} by high energy ball milling and rapid consolidation by spark plasma sintering. • Elucidation of phase behavior of the La-doped ThO{sub 2} and the contributions of La incorporation and SPS sintering conditions. • Investigation of the effects of La incorporation and high energy ball milling on the thermal behavior of La-doped ThO{sub 2}.

  12. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    Science.gov (United States)

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-01-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366

  13. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    Science.gov (United States)

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-05-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.

  14. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  15. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  16. Stationary Density Variation Produced by a Standing Plasma Wave

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....

  17. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  18. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    Science.gov (United States)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  19. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  20. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Science.gov (United States)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  1. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  2. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  3. Simultaneous realization of high density edge transport barrier and improved L-mode on CHS

    International Nuclear Information System (INIS)

    Minami, Takashi; Okamura, Shoichi; Suzuki, Chihiro

    2008-10-01

    An edge transport barrier (ETB) formation and an improved L-mode (IL mode) have been simultaneously realized in high density region (n-bar e - 1.2x10 20 m -3 ) on Compact Helical System (CHS). When the ETB is formed during the IL mode, the density reduction in the edge region is suppressed by the barrier formation. As a result of the continuous increasing of the temperature by the IL mode, the stored energy during the combined mode increased up to the maximum stored energy (W p - 9.4 kJ) recorded in CHS experiments. The plasma pressure in the peripheral region increases up to three times larger than that of the L-mode, and the large edge plasma pressure gradient is formed accompanying the pedestal structure. That is caused by the anomalous transport reduction that is confirmed from the sharp drop of the density fluctuation in the edge region. The neutral particle reduction in the peripheral region and the metallic impurity accumulation in the core plasma are simultaneously observed during the high density ETB formation. (author)

  4. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  5. Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Baumel, S.

    2003-01-01

    Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper,...

  6. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  7. Spatial distribution of ion energy related on electron density in a plasma channel generated in gas clusters by a femtosecond laser

    International Nuclear Information System (INIS)

    Nam, S. M.; Han, J. M.; Cha, Y. H.; Lee, Y. W.; Rhee, Y. J.; Cha, H. K.

    2008-01-01

    Neutron generation through Coulomb explosion of deuterium contained gas clusters is known as one of the very effective methods to produce fusion neutrons using a table top terawatt laser. The energy of ions produced through Coulomb explosions is very important factor to generate neutrons efficiently. Until the ion energy reaches around∼MeV level, the D D fusion reaction probability increases exponentially. The understanding of laser beam propagation and laser energy deposition in clusters is very important to improve neutron yields. As the laser beam propagates through clusters medium, laser energy is absorbed in clusters by ionization of molecules consisting clusters. When the backing pressure of gas increases, the average size of clusters increases and which results in higher energy absorption and earlier termination of laser propagation. We first installed a Michelson interferometer to view laser beam traces in a cluster plume and to measure spatial electron density profiles of a plasma channel which was produced by a laser beam. And then we measured the energy of ions distributed along the plasma channel with a translating slit to select ions from narrow parts of a plasma channel. In our experiments, methane gas was used to produce gas clusters at a room temperature and the energy distribution of proton ions for different gas backing pressure were measured by the time of flight method using dual micro channel plates. By comparing the distribution of ion energies and electron densities, we could understand the condition for effective laser energy delivery to clusters

  8. Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures

    NARCIS (Netherlands)

    de Boer, Meint J.; Gardeniers, Johannes G.E.; Jansen, Henricus V.; Gilde, M.J.; Roelofs, Gerard; Sasserath, Jay N.; Elwenspoek, Michael Curt

    This paper presents guidelines for the deep reactive ion etching (DRIE) of silicon MEMS structures, employing SF6/O2-based high-density plasmas at cryogenic temperatures. Procedures of how to tune the equipment for optimal results with respect to etch rate and profile control are described. Profile

  9. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  10. Variation of the Plasma Density in a Glow Discharge Upon the Application of A High Voltage

    International Nuclear Information System (INIS)

    Akman, S.

    2004-01-01

    It is emphasized and demonstrated that, during the formation of an ion-matrix sheath in a glow discharge upon the application of a high voltage pulse, the existing neutral plasma density should change as well. An explicit and practical expression for the neutral plasma density in terms of the gas pressure, secondary electron emission coefficient and the applied voltage is derived, so that the consequent sheath behavior can be formulated correctly. The theoretical result is compared with the data of an experiment, particularly designed and performed to test its validity, and found to be in good agreement with the latter

  11. Line profiles of hydrogenic ions from high-temperature and high-density plasmas

    International Nuclear Information System (INIS)

    Hou Qing; Li Jianming

    1991-01-01

    Applying the Hooper's first-order theory, the authors calculate the static micro-electric field distributions in plasmas containing various multiply-charged ions. The influences of the impurity concentrations on the micro electric field distributions and on the Lyman profiles (n→1) from hydrogenic ions are analysed. Based on the optical-thin line profiles, the radiation transfer equation in sphere plasmas with various optical depths is solved. The results confirm that the opacity-broadening of the line profiles has almost no effect on the separation of Lyman β splitted peaks. Such separation is determined by electric field at which the static micro-electric field distribution has a maximum. The separation can be utilized for spatially resolved and temporally resolved density diagnostic of fusion plasmas

  12. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  13. Simulation of a two-dimensional sheath over a flat insulator-conductor interface on a radio-frequency biased electrode in a high-density plasma

    International Nuclear Information System (INIS)

    Kim, Doosik; Economou, Demetre J.

    2004-01-01

    A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced

  14. Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  15. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges

    International Nuclear Information System (INIS)

    Haruki, Takayuki; Yousefi, Hamid Reza; Masugata, Katsumi; Sakai, Jun-Ichi; Mizuguchi, Yusuke; Makino, Nao; Ito, Hiroaki

    2006-01-01

    In an experimental plasma, high-energy particles were observed by using a plasma focus device, to obtain energies of a few hundred keV for electrons, up to MeV for ions. In order to study the mechanism of high-energy particle production in pinched plasma discharges, a numerical simulation was introduced. By use of a three-dimensional relativistic and fully electromagnetic particle-in-cell code, the dynamics of a Z-pinch plasma, thought to be unstable against sausage and kink instabilities, are investigated. In this work, the development of sausage and kink instabilities and subsequent high-energy particle production are shown. In the model used here, cylindrically distributed electrons and ions are driven by an external electric field. The driven particles spontaneously produce a current, which begins to pinch by the Lorentz force. Initially the pinched current is unstable against a sausage instability, and then becomes unstable against a kink instability. As a result high-energy particles are observed

  16. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  17. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Lucas, E-mail: lschaper01@qub.ac.uk [Universität Hamburg, FB Physik, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2014-03-11

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 10{sup 17} cm{sup −3} pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 µm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 10{sup 17} cm{sup −3} density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  18. Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma

    Science.gov (United States)

    Arif Malik, Muhammad; Hughes, David

    2016-04-01

    Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.

  19. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M.; Brambrink, E.; Vogt, K.; Bagnoud, V.

    2011-01-01

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  20. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  1. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  2. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  3. Density functional and many-body theories of Hydrogen plasmas

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1983-11-01

    This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state

  4. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  5. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  6. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  7. Scalings of energy confinement and density limit in stellarator/heliotron

    International Nuclear Information System (INIS)

    Sudo, S.; Takeiri, Y.; Zushi, H.; Sano, F.; Itoh, K.; Kondo, K.; Iiyoshi, A.

    1989-04-01

    Empirical scaling of energy confinement observed experimentally in stellarator/heliotron (Heliotron E, Wendelstein 7A, L2, Heliotron DR) under the condition that plasmas are heated by ECH and/or NbI is proposed. Empirical scaling of density limit obtainable under the optimum condition is proposed. These scalings are compared with those of tokamaks. The energy confinement scaling has similar power dependence as 'L mode scaling' of tokamaks. The density limit scaling seems also to indicate the upper limit of achievable density in many tokamaks. Combining the energy confinement time and the density limit scaling a transport-limited beta value is also deduced. Thus, from the viewpoint of designing a machine, there should be some compromise in determing magnetic field strength on plasma axis, average minor radius and major radius, because their dependence on confinement time and transport-limited beta value is contradicting. (J.P.N.)

  8. Energy balance in turbulent weakly ionized ionospheric plasma

    International Nuclear Information System (INIS)

    Dyatko, N.A.; Mishin, E.V.; Telegin, V.A.

    1994-01-01

    On the base of numerical solution of the Boltzmann equation are determined the electron distribution function and energy balance in the case if the longitudinal current exceeds the critical one and the resistance becames anomalously high one. In the equation are accounted for both electron scattering by plasma density fluctuations and electron elastic and inelastic collisions with atoms and molecules and electron-electron collisions

  9. Dark-ground illumination: a quantitative diagnostic for plasma density

    International Nuclear Information System (INIS)

    Paul, S.F.

    1981-01-01

    Radial electron density profiles of a toroidal belt pinch plasma have been obtained by a single measurement. Collimated ruby laser light, incident on the plasma, is focused to a diffraction limited spot (100 μm). The technique, a variation of the dark-ground microscope, involves masking the center of the plasma diffraction pattern with a thin wire. Undiffracted light is blocked by a thin wire, whereas light diffracted by the plasma passes around the wire and onto a photoplate. The resulting interference generates a high contrast fringe pattern whose intensity varies as 1-cosΔ phi, where Δ phi is the phase shift induced by the plasma. The fringes are recorded on Polaroid type 46L transparency film. Using this technique, radial density profiles of the plasma produced in the Columbia Torus I belt pinch have been measured. The plasma minor cross section is elliptical with a approx. 2 cm, b approx. 30 cm and approx. 3 x 10 16 /cm 3 . Average densities as low as 2 x 10 15 /cm 3 have been measured

  10. Magnetic cusp and electric nested- or single-well configurations for high density antihydrogen and fusion nonneutral plasma applications

    International Nuclear Information System (INIS)

    Ordonez, C. A.

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  11. Magnetic Cusp and Electric Nested- or Single-Well Configurations for High Density Antihydrogen and Fusion Nonneutral Plasma Applications

    International Nuclear Information System (INIS)

    C.A. Ordonez

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  12. Measurement of density and electron temperature of a decaying plasma in 4.2 K helium gases

    International Nuclear Information System (INIS)

    Kimura, T.; Minami, K.

    1986-01-01

    As is well known, the coupling constant Γ of a plasma is defined as the ratio of the average Coulomb energy to the average kinetic energy. Plasmas with Γ not much less than unity are called strongly coupled plasmas or non-ideal plasmas. Such plasmas, high density or low temperature, can be produced by laser implosion, shock waves etc. In the present report, the authors' attempt to generate a non-ideal plasma in a different way from previous ones. They observe a late period of a decaying plasma in helium gases at a temperature less than 4.2 K. An afterglow in cryogenic helium gases was studied previously. In that study, the authors measured the density of the order of 10/sup 12/ cm/sup -3/ by the method of transmission of X-band microwaves. In the present case, plasma is observed in a cylindrical cavity of TE/sub 011/ mode at 2.83 GHz immersed in liquid helium. The size of the cavity is 166 mm inner diameter and 83 mm length. One end wall is made by thin mesh through which plasmas produced by pulse discharge of 750 A, 1 μsec are fed. The loaded Q without plasma is 5300. The pressure of helium gas is changed from 0.03 to 1.3 Torr

  13. High density operation in pulsator

    International Nuclear Information System (INIS)

    Klueber, O.; Cannici, B.; Engelhardt, W.; Gernhardt, J.; Glock, E.; Karger, F.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Morandi, P.

    1976-03-01

    This report summarizes the results of experiments at high electron densities (>10 14 cm -3 ) which have been achieved by pulsed gas inflow during the discharge. At these densities a regime is established which is characterized by βsub(p) > 1, nsub(i) approximately nsub(e), Tsub(i) approximately Tsub(e) and tausub(E) proportional to nsub(e). Thus the toroidal magnetic field contributes considerably to the plasma confinement and the ions constitute almost half of the plasma pressure. Furthermore, the confinement is appreciably improved and the plasma becomes impermeable to hot neutrals. (orig.) [de

  14. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  15. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  16. How does the Quark-Gluon Plasma know the collision energy?

    Science.gov (United States)

    McInnes, Brett

    2018-02-01

    Heavy ion collisions at the LHC facility generate a Quark-Gluon Plasma (QGP) which, for central collisions, has a higher energy density and temperature than the plasma generated in central collisions at the RHIC. But sufficiently peripheral LHC collisions give rise to plasmas which have the same energy density and temperature as the "central" RHIC plasmas. One might assume that the two versions of the QGP would have very similar properties (for example, with regard to jet quenching), but recent investigations have suggested that they do not: the plasma "knows" that the overall collision energy is different in the two cases. We argue, using a gauge-gravity analysis, that the strong magnetic fields arising in one case (peripheral collisions), but not the other, may be relevant here. If the residual magnetic field in peripheral LHC plasmas is of the order of at least eB ≈ 5mπ2, then the model predicts modifications of the relevant quenching parameter which approach those recently reported.

  17. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  18. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  19. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  20. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    International Nuclear Information System (INIS)

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-01

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'(β) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter β ep ) of the energetic ions'(20 keV to ∼5 MeV) to the magnetic field's in order to find occurrences of high-beta (β ep >1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  1. Feasibility Studies of the Two Filters Method in TJ-II for Electron Temperature Measurements in High Density Plasmas

    International Nuclear Information System (INIS)

    Baiao, D.; Medina, F.; Ochando, M.; Varandas, C.

    2009-01-01

    The TJ-II plasma soft X-ray emission was studied in order to establish an adequate setup for an electron temperature diagnostic suitable for high density, with spatial and temporal resolutions, based on the two-filters method. The preliminary experimental results reported were obtained with two diagnostics (an X-ray PHA based on a Ge detector and a tomography system) already installed in TJ-II stellarator. These results lead to the conclusion that the two-filters method was a suitable option for an electron temperature diagnostic for high-density plasmas in TJ-II. We present the design and fi rst results obtained with a prototype for the measurement of electron temperature in TJ-II plasmas heated with energetic neutral beams. This system consists in two AXUV20A detectors which measure the soft X-ray plasma emissivity trough beryllium filters of different thickness. From the two-filters technique it is possible to estimate the electron temperature. The analyses carried out allowed concluding which filter thicknesses are most suited for TJ-II plasmas, and enhanced the need of a computer code to simulate signals and plasma compositions. (Author) 7 refs.

  2. Feasibility Studies of the Two Filters Method in TJ-II for Electron Temperature Measurements in High Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baiao, D.; Medina, F.; Ochando, M.; Varandas, C.

    2009-07-01

    The TJ-II plasma soft X-ray emission was studied in order to establish an adequate setup for an electron temperature diagnostic suitable for high density, with spatial and temporal resolutions, based on the two-filters method. The preliminary experimental results reported were obtained with two diagnostics (an X-ray PHA based on a Ge detector and a tomography system) already installed in TJ-II stellarator. These results lead to the conclusion that the two-filters method was a suitable option for an electron temperature diagnostic for high-density plasmas in TJ-II. We present the design and fi rst results obtained with a prototype for the measurement of electron temperature in TJ-II plasmas heated with energetic neutral beams. This system consists in two AXUV20A detectors which measure the soft X-ray plasma emissivity trough beryllium filters of different thickness. From the two-filters technique it is possible to estimate the electron temperature. The analyses carried out allowed concluding which filter thicknesses are most suited for TJ-II plasmas, and enhanced the need of a computer code to simulate signals and plasma compositions. (Author) 7 refs.

  3. On the origin of plasma density blobs

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I., E-mail: skrash@mae.ucsd.edu

    2016-12-01

    By keeping nonlinear Boltzmann factor in electron density dependence on electrostatic potential it is demonstrated that large plasma density blobs, often seen in experiment inside separatrix, can exist within the framework of drift wave dynamics. The estimates show that plasma density in a blob can be ∼3 times higher that average plasma density, but hardly exceeds this limit, which in a ball park is in agreement with experimental observations.

  4. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1986-10-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for a Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasmas and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  5. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1985-02-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for an Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasma and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  6. Plasma Doping - Enabling Technology for High Dose Logic and Memory Applications

    International Nuclear Information System (INIS)

    Miller, T.; Godet, L.; Papasouliotis, G. D.; Singh, V.

    2008-01-01

    As logic and memory device dimensions shrink with each generation, there are more high dose implants at lower energies. Examples include dual poly gate (also referred to as counter-doped poly), elevated source drain and contact plug implants. Plasma Doping technology throughput and dopant profile benefits at these ultra high dose and lower energy conditions have been well established [1,2,3]. For the first time a production-worthy plasma doping implanter, the VIISta PLAD tool, has been developed with unique architecture suited for precise and repeatable dopant placement. Critical elements of the architecture include pulsed DC wafer bias, closed-loop dosimetry and a uniform low energy, high density plasma source. In this paper key performance metrics such as dose uniformity, dose repeatability and dopant profile control will be presented that demonstrate the production-worthiness of the VIISta PLAD tool for several high dose applications.

  7. Sn ion energy distributions of ns- and ps-laser produced plasmas

    Science.gov (United States)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  8. Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-01-01

    In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics

  9. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  10. Confinement improvement in high-ion temperature plasmas heated with high-energy negative-NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Ikeda, K.

    2006-10-01

    The increase in the ion temperature due to transport improvement has been observed in plasmas heated with high-energy negative-NBI, in which electrons are dominantly heated, in Large Helical Device (LHD). When the centrally focused ECRH is superposed on the NBI plasma, the ion temperature is observed to rise, accompanied by formation of the electron-ITB. This is ascribed to the ion transport improvement with the transition to the neoclassical electron root with a positive radial electric field. In high-Z plasmas, the ion temperature is increased with an increase in the ion heating power, and reaches 13.5keV. The central ion temperature increases with an increase in a gradient of the electron temperature in an outer plasma region of ρ=0.8, suggesting the ion transport improvement in the outer plasma region induced by the neoclassical electron root. These results indicate the effectiveness of the electron-root scenario for obtaining high-ion temperature plasmas in helical systems. (author)

  11. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of Physical Processes Limiting Plasma Density in DIII--D

    Science.gov (United States)

    Maingi, R.

    1996-11-01

    Understanding the physical processes which limit operating density is crucial in achieving peak performance in confined plasmas. Studies from many of the world's tokamaks have indicated the existence(M. Greenwald, et al., Nucl. Fusion 28) (1988) 2199 of an operational density limit (Greenwald limit, n^GW_max) which is proportional to the plasma current and independent of heating power. Several theories have reproduced the current dependence, but the lack of a heating power dependence in the data has presented an enigma. This limit impacts the International Thermonuclear Experimental Reactor (ITER) because the nominal operating density for ITER is 1.5 × n^GW_max. In DIII-D, experiments are being conducted to understand the physical processes which limit operating density in H-mode discharges; these processes include X-point MARFE formation, high core recycling and neutral pressure, resistive MHD stability, and core radiative collapse. These processes affect plasma properties, i.e. edge/scrape-off layer conduction and radiation, edge pressure gradient and plasma current density profile, and core radiation, which in turn restrict the accessible density regime. With divertor pumping and D2 pellet fueling, core neutral pressure is reduced and X-point MARFE formation is effectively eliminated. Injection of the largest-sized pellets does cause transient formation of divertor MARFEs which occasionally migrate to the X-point, but these are rapidly extinguished in pumped discharges in the time between pellets. In contrast to Greenwald et al., it is found that the density relaxation time after pellets is largely independent of the density relative to the Greenwald limit. Fourier analysis of Mirnov oscillations indicates the de-stabilization and growth of rotating, tearing-type modes (m/n= 2/1) when the injected pellets cause large density perturbations, and these modes often reduce energy confinement back to L-mode levels. We are examining the mechanisms for de

  13. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  14. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Science.gov (United States)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  15. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Directory of Open Access Journals (Sweden)

    Kuroda Yusuke

    2013-11-01

    Full Text Available A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  16. Resonant transducers for solid-state plasma density modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, Gary A., E-mail: hallock@ece.utexas.edu [The University of Texas at Austin, Austin, Texas 78701 (United States); Meier, Mark A., E-mail: mark.a.meier@exxonmobil.com [ExxonMobil Upstream Research Company, Houston, Texas 77389 (United States)

    2016-04-15

    We have developed transducers capable of modulating the plasma density and plasma density gradients in indium antimonide. These transducers make use of piezoelectric drivers to excite acoustic pressure resonance at 3λ/2, generating large amplitude standing waves and plasma density modulations. The plasma density has been directly measured using a laser diagnostic. A layered media model shows good agreement with the experimental measurements.

  17. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  18. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    Science.gov (United States)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  19. Relativistic many-body theory of high density matter

    International Nuclear Information System (INIS)

    Chin, S.A.

    1977-01-01

    A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined

  20. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  1. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  2. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    International Nuclear Information System (INIS)

    Vagin, E S; Grigoriev, V P

    2015-01-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed. (paper)

  3. The density limit in JET diverted plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D J; Clement, S; Gottardi, N; Gowers, C; Harbour, P; Loarte, A; Horton, L; Lingertat, J; Lowry, C G; Saibene, G; Stamp, M; Stork, D [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Monk, R [Royal Holloway Coll., London (United Kingdom). Dept. of Physics

    1994-07-01

    In JET limiter plasmas the density limit is associated with radiated power fractions of 100% and, in plasmas with carbon limiters, it is invariably disruptive. However, in discharges with solid beryllium limiters the limit is identified with the formation of a MARFE and disruptions are less frequent. In addition, the improved conditioning of the vessel arising from the use of beryllium has significantly improved the density limit scaling, so that the maximum density rises with the square root of the input power. In diverted plasmas several confinement regimes exist, making the characterization of the density limit more complex. While the density limit in L-mode plasmas is generally disruptive, the limit in ELMy and ELM-free H-modes generally prompts a return to the L-mode and a disruption is not inevitable. The density limit does rise with the increasing power, but the L-to-H transition complicates the analysis. Nevertheless, at low plasma currents (<2 MA), densities significantly above the Greenwald limit can be achieved, while at higher currents power handling limitations have constrained the range of density which can be achieved. (authors). 7 refs., 4 figs.

  4. Development of dispersion interferometer for magnetic confinement plasmas and high-pressure plasmas

    Science.gov (United States)

    Akiyama, T.; Yasuhara, R.; Kawahata, K.; Nakayama, K.; Okajima, S.; Urabe, K.; Terashima, K.; Shirai, N.

    2015-09-01

    A CO2 laser dispersion interferometer (DI) has been developed for both magnetically fusion plasmas and high pressure industrial plasmas. The DI measures the phase shift caused by dispersion in a medium. Therefore, it is insensitive to the mechanical vibrations and changes in the neutral gas density, which degrade the resolution of the electron density measurement. We installed the DI on the Large Helical Device (LHD) and demonstrated a high density resolution of 2× 1017 m-3 without any vibration-free bench. The measured electron density with the DI shows good agreement with results of the existing far infrared laser (a wavelength of 119 μ m) interferometer. The DI system is also applied to the electron density measurement of high-pressure small-scale plasmas. The significant suppression of the phase shift caused by the neutral gas is proven. The achieved density resolution was 1.5× 1019 m-3 with a response time of 100 μ s. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  5. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  6. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high

  7. Fluorescent Fe K Emission from High Density Accretion Disks

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  8. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake.

    Science.gov (United States)

    Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A

    1993-12-01

    To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.

  9. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  10. Flexible Aqueous Li-Ion Battery with High Energy and Power Densities.

    Science.gov (United States)

    Yang, Chongyin; Ji, Xiao; Fan, Xiulin; Gao, Tao; Suo, Liumin; Wang, Fei; Sun, Wei; Chen, Ji; Chen, Long; Han, Fudong; Miao, Ling; Xu, Kang; Gerasopoulos, Konstantinos; Wang, Chunsheng

    2017-11-01

    A flexible and wearable aqueous symmetrical lithium-ion battery is developed using a single LiVPO 4 F material as both cathode and anode in a "water-in-salt" gel polymer electrolyte. The symmetric lithium-ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li 2 CO 3 -LiF, which enables fast Li-ion transport. Energy densities of 141 Wh kg -1 , power densities of 20 600 W kg -1 , and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the "water-in-salt" gel polymer electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Maximum thermal energy density in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coppi, B.

    1977-01-01

    The consequences of the limiting value of β that follows from analyzing the onset of high temperature ballooning modes is examined in high temperature regimes where the ideal MHD approximation is not strictly valid and for finite-β configurations exhibiting the main features of those that are obtained by magnetic flux conservation. These modes are localized over periodically space intervals of a given magnetic field line and are driven by the combined effects of finite plasma pressure and the locally unfavorable magnetic curvature. The effects of finite β, insofar as they shorten the effective connection length, steepen the pressure gradient, and influence the magnetic well dug by the plasma, are studied using a model dispersion relation. 14 references

  12. Spatiotemporal response of plasma edge density and temperature to non-axisymmetric magnetic perturbations at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Fischer, R; Fuchs, J C; McDermott, R; Rathgeber, S K; Suttrop, W; Wolfrum, E; Willensdorfer, M

    2012-01-01

    Non-axisymmetric magnetic perturbations (MPs) were successfully applied at ASDEX Upgrade to substantially reduce the plasma energy loss and peak divertor power load that occur concomitant with type-I edge localized modes (ELMs). The response of electron density edge profiles and temperature and pressure pedestal-top values to MPs are reported. ELM mitigation is observed above an edge density threshold and independent of the MPs being resonant or non-resonant with the edge safety factor. The edge electron collisionality appears not to be appropriate to separate mitigated from non-mitigated discharges for the present high-collisionality plasmas. No significant change in the position or gradient of the edge density profile could be observed for the transition into the ELM-mitigated phase, except from the effect of the three-dimensional MP field which leads to an apparent profile shift. An increase in the density and decrease in the temperature at the pedestal-top balance such that the pressure saturates at the value of the pre-mitigated phase. The plasma stored energy, the normalized plasma pressure, and the H-mode quality factor follow closely the evolution of the pedestal-top pressure and thus remain almost unaffected. The temporal evolution of the ion effective charge shows that the impurity content does not increase although flushing through type-I ELMs is missing. The type-I ELMs are replaced in the mitigated phase by small-scale and high-frequency edge perturbations. The effect of the small bursts on the density profile, which is correlated with a transient increase of the divertor thermoelectric current, is small compared with the effect of the type-I ELMs. The residual scatter of the profiles in the mitigated phase is small directly after the transition into the ELM-mitigated phase and increases again when the pressure saturates at the value of the pre-mitigated phase. (paper)

  13. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  14. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  15. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  17. Operational limits of high density H-modes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mertens, V.; Borrass, K.; Kaufmann, M.; Lang, P.T.; Lang, R.; Mueller, H.W.; Neuhauser, J.; Schneider, R.; Schweinzer, J.; Suttrop, W.

    2001-01-01

    Systematic investigations of H-mode density limit (H→L-mode back transition) plasmas with gas fuelling and alternatively with additional pellet injection from the magnetic high-field-side HFS are being performed in the new closed divertor configuration DV-II. The resulting database covering a wide range of the externally controllable plasma parameters I p , B t and P heat confirms that the H-mode threshold power exceeds the generally accepted prediction P L→H heat ∝B-bar t dramatically when one approaches Greenwald densities. Additionally, in contrast to the Greenwald scaling a moderate B t -dependence of the H-mode density limit is found. The limit is observed to coincide with divertor detachment and a strong increase of the edge thermal transport, which has, however, no detrimental effect on global τ E . The pellet injection scheme from the magnetic high-field-side HFS, developed recently on ASDEX Upgrade, leads to fast particle drifts which are, contrary to the standard injection from the low-field-side, directed into the plasma core. This improves markedly the pellet particle fuelling efficiency. The responsible physical mechanism, the diamagnetic particle drift of the pellet ablatant was successfully verified recently. Other increased particle losses on respectively different time scales after the ablation process, however, still persist. Generally, a clear gain in achievable density and plasma stored energy is achieved with stationary HFS pellet injection compared to gas-puffing. (author)

  18. Strongly Interacting Matter at Very High Energy Density

    International Nuclear Information System (INIS)

    McLerran, L.

    2011-01-01

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  19. Plasma accelerators at the energy frontier and on tabletops

    CERN Document Server

    Joshi, Chandrashekhar

    2003-01-01

    New approaches to charged-particle acceleration by collective fields in plasma were discussed. These approaches show considerable promise for realizing plasma accelerators at the energy frontier as well as table-top electron and ion accelerators. Charged particles surfing on electron density waves in plasmas can experience enormous accelerating gradients. (Edited abstract) 45 Refs.

  20. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    International Nuclear Information System (INIS)

    Shadwick, Bradley A.; Kalmykov, S. Y.

    2016-01-01

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  1. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shadwick, Bradley A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Kalmykov, S. Y. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  2. Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys with delayed adolescence: correlation with plasma testosterone levels

    International Nuclear Information System (INIS)

    Kirkland, R.T.; Keenan, B.S.; Probstfield, J.L.; Patsch, W.; Lin, T.L.; Clayton, G.W.; Insull, W. Jr.

    1987-01-01

    A three-phase study tested the hypothesis that the decrease in the high-density lipoprotein cholesterol (HDL-C) level observed in boys at puberty is related to an increase in the plasma testosterone concentration. In phase I, 57 boys aged 10 to 17 years were categorized into four pubertal stages based on clinical parameters and plasma testosterone levels. These four groups showed increasing plasma testosterone values and decreasing HDL-C levels. In phase II, 14 boys with delayed adolescence were treated with testosterone enanthate. Plasma testosterone levels during therapy were in the adult male range. Levels of HDL-C decreased by a mean of 7.4 mg/dL (0.20 mmol/L) and 13.7 mg/dL (0.35 mmol/L), respectively, after the first two doses. In phase III, 13 boys with delayed adolescence demonstrated increasing plasma testosterone levels and decreasing HDL-C levels during spontaneous puberty. Levels of HDL-C and apolipoprotein A-1 were correlated during induced and spontaneous puberty. Testosterone should be considered a significant determinant of plasma HDL-C levels during pubertal development

  3. Interaction between a high density-low temperature plasma and a frozen hydrogen pellet in a railgun injector

    International Nuclear Information System (INIS)

    Grapperhaus, M.J.

    1993-01-01

    A model has been developed which describes the ablation process of frozen hydrogen pellets in an electromagnetic railgun. The model incorporates the neutral gas shielding model in which the pellet surface is heated by incident electrons from the plasma arc. The heated surface then ablates, forming a neutral cloud which attenuates the incoming electrons. The energy lost in the cloud by the electrons heats the ablatant material as it flows into the plasma arc. Under steady-state conditions, a scaling law for the ablation rate was derived as a function of plasma-arc temperature and density. In addition, flow conditions and the criteria for the existence of a steady-state solution were formulated and subsequently examined under simplifying assumptions. Comparison with experimentally observed ablation rates shows good qualitative agreement

  4. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  5. Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf plasmas

    International Nuclear Information System (INIS)

    Rutkevych, P.P.; Ostrikov, K.; Xu, S.

    2005-01-01

    Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas

  6. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    Science.gov (United States)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  7. Numerical studies on the ramped density plasma lens

    International Nuclear Information System (INIS)

    Williams, R.L.; Katsouleas, T.

    1992-01-01

    We consider the so-called adiabatic plasma lens when the plasma density is ramped too quickly to be considered adiabatic. The lens length can be much shorter in such a case, but the final spot size is shown to be larger by a factor of √1+α 2 than for a slowly ramped plasma lens with the same initial and final density (where α=-β'/2 is proportional to the plasma density gradient). We find that the final spot size is the same whether or not the Courant-Snyder parameters of the beam (α and β) are matched to the lens. However, matched beams allow the plasma density to be lower while unmatched beams allow the lens to be shorter (for the same α and for the same final to initial plasma density ratio). Finally, we find that a smaller spot size can be obtained for a given lens length and density ratio by starting at smaller α and increasing α along the lens

  8. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ''X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers''

    International Nuclear Information System (INIS)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.; Libby, S.B.; Moreno, J.C.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ''X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,'' tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 angstrom as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate and benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas

  9. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  10. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  11. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup

  12. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  13. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  14. New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors

    DEFF Research Database (Denmark)

    Liu, Zhiting; Ma, Peng; Ulstrup, Jens

    2017-01-01

    Currently, the application of supercapacitors (SCs) in portable electronic devices and vehicles is limited by their low energy density. Developing high-energy density SCs without sacrificing their advantages, such as their long-term stability and high power density, has thus become an increasing...... and a 96.1% retention of the initial capacitance over 5,000 cycles. We exploited the novel 2D nanoplatelets as cathode materials to assemble a hybrid SC for full-cell tests. The resulting SCs operated in a wide potential window of 0 - 1.7 V, exhibited a high energy density over 50 Wh·kg-1, and sustained...

  15. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  16. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  17. High-power plasma dynamic systems of quasi-stationary type in IPP NSK KIPT: results and prospects

    International Nuclear Information System (INIS)

    Solyakov, D.G.

    2015-01-01

    This paper is devoted to brief review of main experimental results of investigations of high-power quasi-stationary plasma dynamic systems in the IPP NSC KIPT. In experiments were shown that to received accelerated plasma streams with high value of energy in quasi-stationary modes all conditions on the accelerating channel boundary should be controlled independently. As a results of optimizations of the modes of operation all QSPA active elements quasi-stationary plasma flow in the channel during 480 μs at discharge durations 550μs was obtained. The plasma streams velocity was close to theoretical limit for present experimental conditions. Plasma streams with maximum velocity up to 4.2 · 10 7 cm/s and total value of energy containment in the stream 0.4...0.6 MJ were received. The main properties of compression zone formation in the plasma streams generated by magneto-plasma compressor in quasi-stationary modes were investigated. In experiments were shown that initial conditions, namely residual pressure in the vacuum chamber made a big influence on the value of plasma density in compression zone. Compressive plasma streams with density (2...4)·10 18 cm -3 during 20...25μs at discharge duration 10μs were obtained. This value of plasma density is close to theoretical limit for present experimental conditions

  18. Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments

    Science.gov (United States)

    Eisenmann, Shmuel; Peñano, Joseph; Sprangle, Phillip; Zigler, Arie

    2008-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed.

  19. Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments

    International Nuclear Information System (INIS)

    Eisenmann, Shmuel; Penano, Joseph; Sprangle, Phillip; Zigler, Arie

    2008-01-01

    The ability to select and stabilize a single filament during propagation of an ultrashort, high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present the first detailed measurements and numerical 3-D simulations of the longitudinal plasma density variation in a laser-plasma filament after it passes through an iris that blocks the surrounding energy reservoir. Since no compensation is available from the surrounding background energy, filament propagation is terminated after a few centimeters. For this experiment, simulations indicate that filament propagation is terminated by plasma defocusing and ionization loss, which reduces the pulse power below the effective self-focusing power. With no blockage, a plasma filament length of over a few meters was observed

  20. Silicon micromachining using a high-density plasma source

    International Nuclear Information System (INIS)

    McAuley, S.A.; Ashraf, H.; Atabo, L.; Chambers, A.; Hall, S.; Hopkins, J.; Nicholls, G.

    2001-01-01

    Dry etching of Si is critical in satisfying the demands of the micromachining industry. The micro-electro-mechanical systems (MEMS) community requires etches capable of high aspect ratios, vertical profiles, good feature size control and etch uniformity along with high throughput to satisfy production requirements. Surface technology systems' (STS's) high-density inductively coupled plasma (ICP) etch tool enables a wide range of applications to be realized whilst optimizing the above parameters. Components manufactured from Si using an STS ICP include accelerometers and gyroscopes for military, automotive and domestic applications. STS's advanced silicon etch (ASE TM ) has also allowed the first generation of MEMS-based optical switches and attenuators to reach the marketplace. In addition, a specialized application for fabricating the next generation photolithography exposure masks has been optimized for 200 mm diameter wafers, to depths of ∼750 μm. Where the profile is not critical, etch rates of greater than 8 μm min -1 have been realized to replace previous methods such as wet etching. This is also the case for printer applications. Specialized applications that require etching down to pyrex or oxide often result in the loss of feature size control at the interface; this is an industry wide problem. STS have developed a technique to address this. The rapid progression of the industry has led to development of the STS ICP etch tool, as well as the process. (author)

  1. A comparative study on the direct deposition of μc-Si:H and plasma-induced recrystallization of a-Si:H: Insight into Si crystallization in a high-density plasma

    Science.gov (United States)

    Zhou, H. P.; Xu, M.; Xu, S.; Feng, Y. Y.; Xu, L. X.; Wei, D. Y.; Xiao, S. Q.

    2018-03-01

    Deep insight into the crystallization mechanism of amorphous silicon is of theoretical and technological significance for the preparation of high-quality microcrystalline/polycrystalline silicon. In this work, we intensively compare the present two plasma-involved routes, i.e., the direct deposition and recrystallization of precursor amorphous silicon (a-Si) films, to fabricate microcrystalline silicon. Both the directly deposited and recrystallized samples show multi-layered structures as revealed by electronic microscopy. High-density hydrogen plasma involved recrystallization process, which is mediated by the hydrogen diffusion into the deep region of the precursor a-Si film, displays significantly different nucleation configuration, interface properties, and crystallite shape. The underlying mechanisms are analyzed in combination with the interplay of high-density plasma and growing or treated surface.

  2. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  3. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  4. Picosecond Streaked K-Shell Spectroscopy of Near Solid-Density Aluminum Plasmas

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2016-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019W/Wcm2 cm2 . A streaked x-ray spectrometer recorded the Al Heα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E/E ΔE 700). Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Line widths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic model to provide the average plasma conditions in the buried layer as a function of time. It was observed that the resonance line tends toward lower photon energies at high electron densities. The measured shifts will be compared to predicted shifts from Stark-operator calculations at the inferred plasma conditions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the office of Fusion Energy Sciences Award Number DE-SC0012317, and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.

  5. DAQ system for low density plasma parameters measurement

    International Nuclear Information System (INIS)

    Joshi, Rashmi S.; Gupta, Suryakant B.

    2015-01-01

    In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

  6. Effect of beam density and of higher harmonics on beam-plasma interaction

    International Nuclear Information System (INIS)

    Lacina, J.; Krlin, L.; Koerbel, S.

    1974-10-01

    The interaction in a cold electron beam-plasma system is investigated numerically in a density ratio region of nsub(B)/nsub(P) = 2 x 10 -3 to 2 x 10 -2 . The one-dimensional model of a collisionless plasma is used. The time development of the wave with maximal growing rate and its spatial harmonics is studied. The plasma effect is simulated by direct computation of plasma particle trajectories (this being different from the usual plasma simulation by means of a dielectric). The calculations show the following effects of the finite parameter (nsub(B)/nsub(P))sup(1/3): the ratio of the plasma energy to the electric field energy is increased, the damping character of the field and macroscopic amplitudes reveals, and the influence of the second harmonic is not negligible for nsub(B)/nsub(P) >= 10 -2 . (author)

  7. Plasma heating by magneto-electrostatic trapping of high-energy ions

    International Nuclear Information System (INIS)

    Leung, K.N.; Saadatmand, K.; Taylor, G.R.; Kribel, R.E.

    1977-01-01

    The confinement of plasma was studied by three different full-line cusp geometries obtained by arranging permanent magnets in three different orientations. The efficiency in primary electron confinement was shown to account for the difference in plasma density for these three geometries. Some of the experimental results are described

  8. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  9. Disruption simulation experiments in a pulsed plasma accelerator - energy absorption and damage evolution on plasma facing materials

    International Nuclear Information System (INIS)

    Bolt, H.; Barabash, V.; Gervash, A.; Linke, J.; Lu, L.P.; Ovchinnikov, I.; Roedig, M.

    1995-01-01

    Plasma accelerators are used as test beds for disruption simulation experiments on plasma facing materials, because the incident energy fluxes and the discharge duration are of similar order as those expected during disruptions in ITER. The VIKA facility was used for the testing of materials under incident energies up to 5 kJ/cm 2 . Different carbon materials, SiC, stainless steel, TZM and tungsten have been tested. From the experimental results a scaling of the ablation with incident energy density was derived. The resulting ablation depth on carbon materials is roughly 2 μm per kJcm -2 of incident energy density. For metals this ablation is much higher due to the partial loss of the melt layer from splashing. For stainless steel an ablation depth of 9.5 μm per kJcm -2 was determined. The result of a linear scaling of the ablation depth with incident energy density is consistent with a previous calorimetric study. (orig.)

  10. Comparison of particle confinement in the high confinement mode plasmas with the edge localized mode of the Japan Atomic Energy Research Institute Tokamak-60 Upgrade and the DIII-D tokamak

    International Nuclear Information System (INIS)

    Takenaga, H.; Mahdavi, M.A.; Baker, D.R.

    2001-01-01

    Particle confinement was compared for the high confinement mode plasmas with the edge localized mode in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) [S. Ishida, JT-60 Team, Nucl. Fusion 39, 1211 (1999)] and the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] considering separate confinement times for particles supplied by neutral beam injection (NBI) (center fueling) and by recycling and gas-puffing (edge fueling). Similar dependence on the NBI power was obtained in JT-60U and DIII-D. The particle confinement time for center fueling in DIII-D was smaller by a factor of 4 in the low density discharges and by a factor of 1.8 in the high density discharges than JT-60U scaling, respectively, suggesting the stronger dependence on the density in DIII-D. The particle confinement time for edge fueling in DIII-D was comparable with JT-60U scaling in the low density discharges. However, it decreased to a much smaller value in the high density discharges

  11. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  12. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  13. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  14. Drift resonance in high density non-neutral plasmas

    International Nuclear Information System (INIS)

    Kaup, D.J.

    2006-01-01

    Theoretical studies of the operation of crossed-field electron vacuum devices such as magnetrons and crossed-field amplifiers (CFA) have usually centered on their initial growth, taking this as an indication of their operating modes. In such an analysis one solves the equations for the density profile, the operating frequency, the growth rate, and other features of these devices. What one really obtains then are only the conditions for the device to turn on. The dominant interaction in this stage is a Rayleigh-type instability which initiates a quasilinear diffusion process whereby the electron density profile redistributes itself into a profile which will be in equilibrium with the ponderomotive-like forces produced by the growing rf fields. Eventually the rf fields will saturate and an operating device will settle into a stationary operating regime. This stage of a device's operation is called the ''saturation stage.'' This latter stage involves a different set of physical interactions from the initiation stage. No longer is there a growth rate; rather the rf amplitudes have saturated and as a result, the ponderomotive-like forces have also vanished along with the quasilinear diffusion. In this saturation stage, we find that new rf modes appear. In fact, there are a total of five rf modes, two of which are the usual slow modes of the initiation stage, and three of which have fast oscillations in the vertical direction. One fast mode corresponds to a drift plasma oscillation while the other two fast modes are drift cyclotron modes. In this paper, we will describe how the drift plasma oscillation interacts and couples with the slow rf modes at the diocotron resonance

  15. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  16. Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

    International Nuclear Information System (INIS)

    Ding Siye; Wan Baonian; Ti Ang; Zhang Xinjun; Liu Zixi; Qian Jinping; Zhong Guoqiang; Duan Yanmin; Wang Lu

    2014-01-01

    Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST. (magnetically confined plasma)

  17. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current-density

  18. Plasma characteristics of a high power helicon discharge

    International Nuclear Information System (INIS)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S

    2006-01-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m 2 ) of uniform high-density, of at least 5 x 10 17 m -3 , plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show ΔB perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 μs

  19. Interferometric density measurements in the divertor and edge plasma regions for the additionally heated JT-60 plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshida, H.; Nagashima, A.; Ishida, S.; Kikuchi, M.; Yokomizo, H.

    1989-01-01

    The first divertor plasma density measurement and the interferometric edge plasma density measurement with boundary condition preserving millimeter waveguides were demonstrated to elucidate the mutual correlation among the divertor plasma, scrape-off layer plasma and the bulk plasma properties in the additionally heated JT-60 plasmas. The electron density in the divertor region exhibited a nonlinear dependence on the bulk plasma density for the joule-heated plasmas. When neutral beam heating is applied on the plasmas with the electron density above 2x10 19 /m 3 , however, the bulk plasma density is scraped off from the outer region to lead to density clamping, and the electron density in the divertor region rapidly increases over 1x10 20 /m 3 , from which we can deduce that the particle flow along the magnetic field is dominant, resulting in the apparent degradation of the particle confinement time. As for the case when neutral beam injection is applied to low-density plasmas, the bulk plasma electron density profile becomes flattened to yield a smaller density increase in the divertor region and no density clamping of the bulk plasma was observed. Simulation analysis which correlates the transport of the divertor plasma and the scrape-off layer plasma was also carried out to find the consistency with the experimental results. (orig.)

  20. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  2. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  3. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  4. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  5. Use of imaging plates at near saturation for high energy density particles

    International Nuclear Information System (INIS)

    Tanimoto, Tsuyoshi; Ohta, Kazuhide; Habara, Hideaki; Kodama, Ryousuke; Tanaka, Kazuo A.; Yabuuchi, Toshinori; Tampo, Motonobu; Zheng Jian

    2008-01-01

    Since an imaging plate (IP) is sensitive to electron, ion, and x rays, it can be used as a detector for laser plasma experiment using ultraintense laser. Moreover, an IP has the advantageous features such as high sensitivity, wide dynamic range, and high spatial resolution. Even though IP itself has a considerable wide dynamic range up to 10 5 , the IP data have appeared often saturated at an IP reading device. We propose a reading technique by inserting optical density filters so that an apparently saturated IP data can be saved.

  6. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, Keith [Farasis Energy Inc; Slater, Michael [Farasis Energy Inc

    2018-03-14

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The major technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.

  7. Interferometer for electron density measurement in exploding wire plasma

    International Nuclear Information System (INIS)

    Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.

    2016-12-01

    Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)

  8. Potential and electron density calculated for freely expanding plasma by an electron beam

    International Nuclear Information System (INIS)

    Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.

    2011-01-01

    This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.

  9. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  10. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  11. Measurements of electron density profiles using an angular filter refractometer

    Energy Technology Data Exchange (ETDEWEB)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  12. Measurements of electron density profiles using an angular filter refractometer

    International Nuclear Information System (INIS)

    Haberberger, D.; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-01-01

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10 21  cm −3 with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres

  13. Direct evidence of plasma - density structuring in the auroral F-region ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.; Haeggstroem, I.; Pellinen-Wannberg, A.; Steen, Aa.; Wannberg, G.

    1985-03-01

    We investigate the hypothesis that large-scale plasma-density enhancements found in the auroral F layer become structured via a magnetic-flux-tube interchange (MFTI) process. In such a process, plasma structure is produced when spatially irregular electric fields transport higher number-density plasma into a region containing lower number-density plasma, and vice versa. Direct experimental evidence of this process can be obtained by measuring concurrently the spatial distributions of F-region plasma density and electric field. Using the tristatic EISCAT radar facility, we measured these quantities in a two-dimensional plane transverse to the geomagnetic field, at 300-km altitude. We show, in a case study, that plasma-density structure found along the poleward wall of a blob was indeed accompanied by similar-scale variations in the ionospheric electric field, and that the sense of relative motion between high- and low-number-density plasma is consistent with ongoing structuring of the plasma via a MFTI process. From the estimated growth rate of 3 x 10 -3 s -1 , the observed plasma structure could have been produced in several minutes by the irregular electic field pattern. The source of the MFTI process, however, is not clear. The MFTI process did not appear to be driven by F-region polarization electric fields, a conclusion based on (1) the apparent lack of inverse correlation between plasma density and 'slip' velocity patterns, and (2) the positive growth rate found along the poleward wall of the blob in the presence of a westward Pedersen current. This conclusion excludes (at least for this data set) the gradient-drift and current-convective instabilities as primary sources of the ongoing structuring process. (Author)

  14. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  15. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  16. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  17. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  18. High energy density physics issues related to Future Circular Collider

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  19. Plasma confinement of Nagoya high-beta toroidal-pinch experiments

    International Nuclear Information System (INIS)

    Hirano, K.; Kitagawa, S.; Wakatani, M.; Kita, Y.; Yamada, S.; Yamaguchi, S.; Sato, K.; Aizawa, T.; Osanai, Y.; Noda, N.

    1977-01-01

    Two different types of high-β toroidal pinch experiments, STP [1] and CCT [2,3], have been done to study the confinement of the plasma produced by a theta-pinch. The STP is an axisymmetric toroidal pinch of high-β tokamak type, while the CCT consists of multiply connected periodic toroidal traps. Internal current-carrying copper rings are essential to the CCT. Since both apparatuses use the same fast capacitor bank system, they produce rather similar plasma temperatures and densities. The observed laser scattering temperature and density is about 50 eV and 4x10 15 cm -3 , respectively, when the filling pressure is 5 mtorr. In the STP experiment, strong correlations are found between the βsub(p) value and the amplitude of m=2 mode. It has a minimum around the value of βsub(p) of 0.8. The disruptive instability is observed to expand the pinched plasma column without lowering the plasma temperature. Just before the disruption begins, the q value around the magnetic axis becomes far less than 1 and an increase of the amplitude of m=2 mode is seen. The CCT also shows rapid plasma expansion just before the magnetic field reaches its maximum. Then the trap is filled up with the plasma by this irreversible expansion and stable plasma confinement is achieved. The energy confinement time of the CCT is found to be about 35 μs. (author)

  20. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  1. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

    Science.gov (United States)

    Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.

    2018-01-01

    In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

  2. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    Science.gov (United States)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  3. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  4. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  5. Temporal evolution of plasma density in femtosecond light filaments

    International Nuclear Information System (INIS)

    Wang Haitao; Fan Chengyu; Shen Hong; Qiao Chunhong; Zhang Jinghui; Zhang Pengfei; Ma Huimin; Xu Huiling

    2012-01-01

    By using a legible and comprehensive physical model describing the generation and evolvement of ion densities in the plasma channel induced by intense femtosecond laser pulse, the work studied the temporal evolution of the plasma densities in femtosecond light filaments. It shows that the contribution of the ionization of oxygen and nitrogen molecules to the total electron densities varies much for different laser pulse shapes, and the pulse shapes have more effects on the lifetime of the higher density plasma. It is necessary to control the pulse shape for efficient using of the plasma channel. Pulses of long duration and short wavelength can obtain a plasma channel with higher electron density, but the channel lifetime thoroughly depends on the later evolution of the self-guided channel. (authors)

  6. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  7. Angular dependence of energy and particle fluxes in a magnetized plasma

    International Nuclear Information System (INIS)

    Koch, B.; Bohmeyer, W.; Fussmann, G.

    2005-01-01

    A flat probe allowing simultaneous measurements of energy flux and current density as functions of a bias voltage was rotated in a spatially homogeneous plasma. The experiments were conducted at the PSI-2 facility, a linear divertor simulator with moderate magnetic field strength. Sheath parameters (ion current density j i , floating potential U f , energy flux density q, ion energy reflection coefficient R E and sheath energy transmission coefficient γ) were determined as functions of the angle α between the probe surface normal and the magnetic field. A geometric model has been developed to explain the ion flux density at grazing incidence

  8. Measurement of continuous x-radiation and determination of the energy distribution function of high-energy electrons from an ECR plasma

    International Nuclear Information System (INIS)

    Bernhardi, K.

    1980-01-01

    Investigations were made on the x-radiation emitted by a plasma. The methods applied here represent a further development of experimental and numerical methods used hitherto for determining the bremsstrahlung emitted by a plasma, and makes possible a more precise determination of the high-energy electron component of a plasma

  9. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  10. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  11. High Densities of Tumor-Associated Plasma Cells Predict Improved Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Joe Yeong

    2018-05-01

    Full Text Available Breast cancer is the most common malignancy affecting women, but the heterogeneity of the condition is a significant obstacle to effective treatment. Triple negative breast cancers (TNBCs do not express HER2 or the receptors for estrogen or progesterone, and so often have a poor prognosis. Tumor-infiltrating T cells have been well-characterized in TNBC, and increased numbers are associated with better outcomes; however, the potential roles of B cells and plasma cells have been large. Here, we conducted a retrospective correlative study on the expression of B cell/plasma cell-related genes, and the abundance and localization of B cells and plasma cells within TNBCs, and clinical outcome. We analyzed 269 TNBC samples and used immunohistochemistry to quantify tumor-infiltrating B cells and plasma cells, coupled with NanoString measurement of expression of immunoglobulin metagenes. Multivariate analysis revealed that patients bearing TNBCs with above-median densities of CD38+ plasma cells had significantly better disease-free survival (DFS (HR = 0.44; 95% CI 0.26–0.77; p = 0.004 but not overall survival (OS, after adjusting for the effects of known prognostic factors. In contrast, TNBCs with higher immunoglobulin gene expression exhibited improved prognosis (OS p = 0.029 and DFS p = 0.005. The presence of B cells and plasma cells was positively correlated (p < 0.0001, R = 0.558, while immunoglobulin gene IGKC, IGHM, and IGHG1 mRNA expression correlated specifically with the density of CD38+ plasma cells (IGKC p < 0.0001, R = 0.647; IGHM p < 0.0001, R = 0.580; IGHG1 p < 0.0001, R = 0.655. Interestingly, after adjusting the multivariate analysis for the effect of intratumoral CD38+ plasma cell density, the expression levels of all three genes lost significant prognostic value, suggesting a biologically important role of plasma cells. Last but not least, the addition of intratumoral CD38+ plasma cell

  12. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    International Nuclear Information System (INIS)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.

    1999-01-01

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications

  13. Modeling of plasma flow switches at low, intermediate and high energies

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.; Roderick, N.; Turchi, P.

    1992-01-01

    Inductively stored pulsed power technology has been used over the past thirty years to produce multi-megaamp currents to implode low inductance loads and produce x-radiation. Because of the large difference in timescales for the delivery of magnetic energy to the load and the desire for high power x-radiation output (short timescale for the implosion), most inductively stored systems require at least one opening switch. The design and understanding of fast, efficient opening switches for multi-megaamp systems represents a long standing problem in pulsed power research. The Los Alamos Foil Implosion Project uses inductively stored magnetic energy to implode thin metallic liners. A plasma flow switch (PFS) has been investigated as the final pulse shaping step for this systems. The PFS consists of a wire array and a barrier foil located upstream from the load region. Several stages can be identified in the performance of the plasma flow switch. These are: (1) the vaporization of the wire array; (2) the assembly of the initiated plasma on tie barrier foil to form the switch plasma; (3) the motion of the switch plasma down the coaxial barrel; and (4) current switching to the load (the actual switching stage). The fourth stage affects the switch's efficiency, as well as the quality of the load implosion. Instabilities may develop during any of these four stages, and their presence may seriously degrade the structure of the switch plasma. Two primary criteria may be used to characterize good switching. The first is switching efficiency. A second criterion is transferred to the load during or after switching. This paper summarizes the computational design of the PFS experiments carried out on Pegasus 1. We conclude by considering the implications of these results for the design of a PFS for the higher energy regime (Procyon) regime

  14. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  15. X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment

    Science.gov (United States)

    Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.

    2000-10-01

    We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.

  16. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  17. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  18. Interacting Eigenmodes of a plasma diode with a density gradient

    International Nuclear Information System (INIS)

    Loefgren, T.; Gunell, H.

    1997-08-01

    The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation

  19. Very high energy probes of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Ludlam, T.; Paige, F.; Madansky, L.

    1984-01-01

    Among the penetrating probes of nuclear matter the most frequently discussed have been those which involve the detection of photons or leptons with m/sub T/ approx. = P/sub T/ < 3 GeV. This is the expected range of emission from a hot, thermalized plasma of quarks and gluons. The suggestion has been made that in very high energy collisions of nuclei the properties of high P/sub T/ jets may also reflect the characteristics of the nuclear medium through which the parent partons have propagated just after the collision. In this note we expand on the possible uses of such a probe

  20. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  1. Density and geometry of single component plasmas

    International Nuclear Information System (INIS)

    Speck, A.; Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W.S.; McConnell, R.; Wrubel, J.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; George, M.C.; Hessels, E.A.; Storry, C.H.; Weel, M.; Walz, J.

    2007-01-01

    The density and geometry of p-bar and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H-bar) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials

  2. Density and geometry of single component plasmas

    CERN Document Server

    Speck, A; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; McConnell, R; Wrubel, J; Grzonka, D; Oelert, W; Sefzick, T; Zhang, Z; Comeau, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Walz, J

    2007-01-01

    The density and geometry of p¯ and e+ plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H¯) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.

  3. Plasma characteristics of a high power helicon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ziemba, T; Euripides, P; Slough, J; Winglee, R; Giersch, L; Carscadden, J; Schnackenberg, T; Isley, S [Box 351310, University of Washington, Seattle WA, 98195 (United States)

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m{sup 2}) of uniform high-density, of at least 5 x 10{sup 17} m{sup -3}, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show {delta}B perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 {mu}s.

  4. 2.5-dimensional numerical modeling of the formation of a plasma channel due to ion redistribution during the propagation of a finite sequence of relativistic electron bunches through high-density and low-density plasmas

    International Nuclear Information System (INIS)

    Karas, V.I.; Karas, I.V.; Levchenko, V.D.; Sigov, Yu.S.; Fainberg, Ya.B.

    1997-01-01

    Results of numerical simulations of the excitation of wake fields in high- and low-density plasmas are presented. The propagation of relativistic electron bunches in a plasma is described by a closed set of relativistic Vlasov equations for two spatial coordinates and three velocity coordinates for each plasma component and the nonlinear Maxwell equations for self-consistent electromagnetic fields. Numerical modeling shows that, under ordinary experimental conditions (when the length and radius of the bunch are much less than the skin depth), the radius of the bunches propagating in a plasma varies over a wide range. In this case, the dynamics of both the plasma and the bunches is nonlinear. The radial redistribution of the plasma ions in self-consistent fields leads to the formation of a plasma channel. Incorporating this phenomenon is important for studying the propagation of relativistic electron bunches in a plasma

  5. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  6. High Energy Density Solid State Li-ion Battery with Enhanced Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  7. Measurement of plasma-surface energy fluxes in an argon rf-discharge by means of calorimetric probes and fluorescent microparticles

    International Nuclear Information System (INIS)

    Maurer, H. R.; Kersten, H.; Hannemann, M.; Basner, R.

    2010-01-01

    Measured energy influx densities toward a tungsten dummy substrate in an argon rf-plasma are presented and a model for the description of the energy influx density based on plasma parameters, which have been obtained by Langmuir probe measurements, is applied. Furthermore, temperature measurements of microparticles are presented, which are confined in the plasma sheath. An extension of the model is developed for the description of the energy influx density to the particles. The comparison of model and experimental results offer the possibility to obtain an improved understanding of plasma-surface interactions.

  8. Electron current generated in a toroidal plasma on injection of high-energy neutrals

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Reznik, S.N.

    1981-01-01

    Problem of generation of electron current in toroidal plasma with a high-energy ion beam produced during neutral injection has been considered. The analysis was performed on the assumption that plasma is in the regime of rare collisions (banana regime) and ion beam velocity is considerably lower than thermal velocity of plasma ions. Formulae establishing the relation between beam current and electron current have been derived. It follows from them that toroidal affect considerably plasma current generated with the beam and under certain conditions result in changing this current direction in an area remoted from magne-- tic axis [ru

  9. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  10. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  11. The density and velocity of plasma bullets propagating along one dielectric tube

    Directory of Open Access Journals (Sweden)

    Longfei Ji

    2015-08-01

    Full Text Available This study shows that the propagation of plasma bullets along one dielectric tube is strongly affected by many discharge parameters, such as the waveform of applied voltage (AC or pulsed DC, peak voltage, He flow rate, and the frequency of AC voltage. Analysis indicates that the density and velocity of plasma bullets are mainly determined by the electric field at the front of plasma bullets. These discharge parameters may significantly influence the distribution of plasma potential along the tube, thus control the electric field at the front of plasma bullets and their propagation. An increase in the pulsed DC voltage with its rise time of <40-50 ns can lead to an obvious improvement in the electric field at the front of plasma bullets, resulting in generation of a plasma in the high density gas and a fast propagation of plasma bullets. He flowing through the tube can contribute to the surface diffusion of charged species, and greatly increase the electric field at the front of plasma bullets. During the propagation of plasma bullets, their density is decreased due to the surface recombination of charged species, such as electrons and ions.

  12. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  13. High-Energy Gun-Injected Toroidal Quadrupole

    International Nuclear Information System (INIS)

    Hammel, J.E.; Henins, I.; Kewish, R.W. Jr.; Marshall, J.; Sherwood, A.R.

    1971-01-01

    A quadrupole device is being used to investigate the trapping and containment of an energetic gun plasma. The quadrupole is designed to contain a peak density of 5 x 10 13 cm -3 at 2.5 keV within the MHD-stable region. At design field there are 5 gyro-radii for 2. 5-keV protons from the separatrix to the ψ crit . The interior conductors are directly driven with a 0.8-MJ capacitor bank. The current to the coils is fed through a single pair of dipole-guarded conductors to each coil. The coils are also supported from the current feed, The dipole guard is in a force-free configuration with 5 gyro-radii for 2. 5-keV protons from the separatrix (between the dipole and quadrupole fields) to the dipole surface. The dipole is designed so that loss of plasma from the dipole region will be directed away from the interior conductors. This feature is necessary for the prevention of contamination by secondary gas produced by plasma lost at the dipole guard. Experiments at one-half design value of magnetic field have shown that the kilovolt energy gun plasma is trapped by depolarization currents around the coils, and that a very high percentage (>50%) of the gun output can be trapped. The plasma density is measured by a unique Michelson interferometer using CO 2 laser light. The energy of the plasma is derived from magnetic pickup loops placed outside the containment region. The leak caused by the dipole guard Held has been examined by double electric probe measurements. The plasma drift thus inferred is an order of magnitude less than that predicted by a model of Meade's or by calculations by us. This casts doubt upon the validity of any such simple model and emphasizes the necessity of further experimental investigation of the matter. New coils which are being built to operate at full design magnetic field strength will allow a check on the containment time of the device for kilovolt energy plasma. (author)

  14. Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.; Beg, F. N. [Center for Energy Research, University of California, San Diego, California 92093 (United States); Leblanc, P.; Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Wei, M. S. [General Atomics, San Diego, California 92121 (United States)

    2013-07-15

    Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.

  15. High-β, improved confinement reversed-field pinch plasmas at high density

    International Nuclear Information System (INIS)

    Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.

    2008-01-01

    In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n e =4x10 19 m -3 . Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch

  16. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    Science.gov (United States)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  17. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  18. Interaction of modulated REB with plasma, formed at its transit through high-density neutral gases

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Sotnikov, G.V.; Uskov, V.V.

    2003-01-01

    The theoretical and experimental results of investigations of the relativistic electron beam interactions with plasma, created during its penetration into neutral gas of large pressure, are presented. It is shown that by using of deeply modulated beam it is possible to avoid the depressive influence of dissipation and longitudinal nonuniform plasma density on the beam-plasma interaction efficiency

  19. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  20. High-Q plasmas in the TFTR tokamak

    International Nuclear Information System (INIS)

    Jassby, D.L.; Barnes, C.W.; Bell, M.G.; Bitter, M.; Boivin, R.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Dylla, H.F.; Efthimion, P.C.; Fredrickson, E.D.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.C.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S.J.; LaMarche, P.H.; LeBlanc, B.; Mansfield, D.K.; Marmar, E.S.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mueller, D.; Owens, D.K.; Park, H.K.; Paul, S.F.; Pitcher, S.; Ramsey, A.T.; Redi, M.H.; Sabbagh, S.A.; Scott, S.D.; Snipes, J.; Stevens, J.; Strachan, J.D.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Terry, J.L.; Timberlake, J.R.; Towner, H.H.; Ulrickson, M.; von Goeler, S.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.

    1991-01-01

    In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength S n and D--D fusion power gain Q DD are realized in the neutral-beam-fueled and heated ''supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, S n increases approximately as P 1.8 b . The highest-Q shots are characterized by high T e (up to 12 keV), T i (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad T e profiles, and lower Z eff . Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ''carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, Q DD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [n e (0)/left-angle n e right-angle] during the beam pulse. To date, the best fusion results are S n =5x10 16 n/sec, Q DD =1.85x10 -3 , and neutron yield=4.0x10 16 n/pulse, obtained at I p =1.6--1.9 MA and beam energy E b =95--103 keV, with nearly balanced co- and counter-injected beam power. Computer simulations of supershot plasmas show that typically 50%--60% of S n arises from beam--target reactions, with the remainder divided between beam--beam and thermonuclear reactions, the thermonuclear fraction increasing with P b

  1. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  2. High energy density, long life energy storage capacitor dielectric system

    International Nuclear Information System (INIS)

    Nichols, D.H.; Wilson, S.R.

    1977-01-01

    The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order

  3. Density measurements of microsecond-conduction-time POS plasmas

    International Nuclear Information System (INIS)

    Hinshelwood, D.; Goodrich, P.J.; Weber, B.V.; Commisso, R.J.; Grossmann, J.M.; Kellogg, J.C.

    1993-01-01

    Measurements of the electron density in a coaxial microsecond conduction time plasma opening switch during switch operation are described. Current conduction is observed to cause a radial redistribution of the switch plasma. A local reduction in axial line density of more than an order of magnitude occurs by the time opening begins. This reduction, and the scaling of conduction current with plasma density, indicate that current conduction in this experiment is limited by hydrodynamic effects. It is hypothesized that the density reduction allows the switch to open by an erosion mechanism. Initial numerical modeling efforts have reproduced the principal observed results. A model that predicts accurately the conduction current is presented

  4. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  5. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. I. Theory and description of model capabilities

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.

    1997-01-01

    For pt.II see ibid., p.101-30, 1997. RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case. (orig.)

  6. Development of 2D laser-induced fluorescence (LIF) system in high-density helicon plasma

    International Nuclear Information System (INIS)

    Teshigahara, Naoto; Shinohara, Shunjiro; Kuwahara, Daisuke; Watanabe, Masaki; Yamagata, Yukihiko

    2014-01-01

    Lifetimes of most electric propulsion devices are limited owing to electrode erosion and contamination by plasmas. To overcome this problem, a Helicon Electrodeless Advanced Thruster (HEAT) was proposed by our research team. This scheme employs a high-density (∼10 13 cm -3 ) helicon plasma accelerated by the Lorentz force, which is produced by various acceleration methods. For feasibility of this method, a Laser-Induced Fluorescence (LIF) system was developed. The LIF is a powerful tool for plasma diagnostics because it is a non-invasive method that allows high spatial resolution. Using the LIF, it is possible to deduce velocity distribution functions of different particles (ions, atoms, and molecules). In this paper, we report the details of our novel 2D LIF system as well as some preliminary experimental results. Argon ion velocity distributions at different axial and radial locations were obtained using the novel 2D system. Ion velocity was greatest (∼ 2.8 km/s) at z = -24 cm among all the points measured along the z-axis. Velocity values were approximately 2.7 and 3.2 km/s for radial positions of r = 0 and 3 cm, respectively. Ion temperature values were approximately 0.56 and 0.61 eV at r = 0 and 3 cm, respectively. (author)

  7. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  8. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  9. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.

    Science.gov (United States)

    Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi

    2017-09-26

    With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.

  10. Design of a novel high efficiency antenna for helicon plasma sources

    Science.gov (United States)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  11. Beam energy control device for thermonuclear device

    International Nuclear Information System (INIS)

    Arimoto, Kimiko.

    1991-01-01

    The present invention comprises a setting section for the previously allowed penetration ratio, a correlation graph setting section for the penetration ratio, a beam energy and a plasma density, a control clock output section for transmitting clocks for every control period, a plasma density collecting section for collecting a plasma density from a plasma main body and a calculating section for a beam energy based on the plasma density. Since the value of the beam energy is controlled on real time based on the density of the plasma main body and the correlation graph of the penetration rate, the beam energy and the plasma density is used as a calculation parameter to conduct calculation such that the penetrating ratio is constant, there is no worry that beams at a high energy are entered to plasmas of low density, to damage a vacuum vessel. Further, when a state of plasmas is satisfactory, beams at an effective energy value can be entered as much as possible, thereby enabling to improve heating efficiency. (N.H.)

  12. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density.

    Science.gov (United States)

    Wang, Faxing; Wang, Xiaowei; Chang, Zheng; Wu, Xiongwei; Liu, Xiang; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Huang, Wei

    2015-11-18

    A quasi-solid-state sodium-ion capacitor is demonstrated with nanoporous disordered carbon and macroporous graphene as the negative and positive electrodes, respectively, using a sodium-ion-conducting gel polymer electrolyte. It can operate at a cell voltage as high as 4.2 V with an energy density of record high 168 W h kg(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  14. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  15. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)

    2011-09-15

    A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  17. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T-e=0.1-2.5 eV and electron density n(e)=(0.5-5) X 10(20) m(-3)] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to

  18. Study of plasma-maser instability in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Singh, Mahinder

    2006-01-01

    The plasma-maser, an interesting nonlinear process in plasmas, is an effective means of energy up-conversion in frequency from low-frequency turbulence to a high-frequency wave. A theoretical study is made of the amplification mechanism of an electrostatic Bernstein mode wave in presence of Langmuir wave turbulence in a magnetized inhomogeneous plasma on the basis of a plasma-maser interaction. It is shown that a test high-frequency electrostatic Bernstein mode wave is unstable in the presence of low-frequency Langmuir wave turbulence. The growth rate of a test high-frequency Bernstein mode wave is calculated with the involvement of a spatial density gradient parameter. A comparative study on the role of density gradient in the generation of the Bernstein mode on the basis of the plasma-maser effect is presented

  19. High energy density plasma physics using high intensity lasers: past and future

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1999-01-01

    Inertial Confinement Fusion (ICF) research in the US is in a dynamic upswing based on the construction of the National Ignition Facility (NIF). The US Congress has appropriated more than two-thirds of the funds necessary to build NIF. The NIF laser building shell is complete, the concrete structure for the target area is rising above ground level, and contracts for producing the laser hardware are rapidly going into place. The entire facility will be complete by the end of 2003 with eight beams becoming operational at the end of 2001 to begin experiments. All external reviews have recommended that the DOE encourage international collaborations on NIF and the DOE has directed the Project Team to design the facility so that is possible. The DOE has begun expanding several bilateral agreements on fusion energy to include inertial fusion energy (IFE). The DOE has also proposed to the International Energy Agency that its fusion energy activities include IFE. This paper will describe how NIF and the ICF Program intend to implement these changes and outlines some of the proposed experiments

  20. Study of a decaying helium plasma having a high neutral particle density; Etude d'un plasma d'helium, a forte densite de neutres, en regime de relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Deloche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have shown theoretically, in a high pressure, decaying helium plasma, the effect at low energy of inelastic collisions between neutral particles on the population densities of excited molecules and electron-ion recombination coefficient. The formalism of Bates (1962) has been used, taking into account simultaneously collisional mechanisms with electrons, collisional mechanisms with neutrals and radiative processes. The variation of the population densities and electron-ion recombination coefficient with respect to the pressure is given for different values of electron density and temperature. These theoretical results indicate an effect of pressure large enough to be measured and allow us to define the most favorable experimental conditions. (author) [French] L'effet des collisions inelastiques entre particules neutres dans un plasma d'helium, en regime de relaxation, a basse temperature electronique et forte densite de neutres, a ete mis en evidence, theoriquement, aussi bien dans le calcul des densites de population des molecules excitees que dans la determination du coefficient de recombinaison electron-ion. Nous avons utilise le formalisme de Bates (1962) en tenant compte simultanement des mecanismes collisionnels avec les electrons, des mecanismes collisionnels avec les neutres et des phenomenes radiatifs. La variation des densites de population et du coefficient de recombinaison electron-ion en fonction de la pression est donnee pour differentes valeurs de la densite electronique et de la temperature. Ces resultats theoriques laissent prevoir un effet de la pression suffisamment important pour qu'il puisse etre mesure et permettent de definir les conditions experimentales les plus favorables. (auteur)