WorldWideScience

Sample records for high energy-conversion sensing

  1. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  2. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  3. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  4. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  5. Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing.

    Science.gov (United States)

    Wang, Yanhu; Zhang, Lina; Cui, Kang; Xu, Caixia; Li, Hao; Liu, Hong; Yu, Jinghua

    2018-02-15

    One solar-driven electrochromic photoelectrochemical fuel cell (PFC) with highly efficient energy conversion and storage is easily constructed to achieve quantitative self-powered sensing. Layered bismuth oxyiodide-zinc oxide nanorod arrays (ZnO@BiOI NRA) with a core/shell p-n heterostructure are fabricated as the photoanode with electrochromic Prussian blue (PB) as the cathode. The core/shell p-n heterostructure for the ZnO@BiOI photoanode can effectively boost the photoelectrochemical (PEC) performance through the improvement of photon absorption and charge carrier separation. The optimal assembled PFC yields an open-circuit voltage (V OC ) of 0.48 V with the maximum power output density (P max ) as high as 155 μW cm -2 upon illumination. Benefitting from the interactive color-changing behavior of PB, the cathode not only exhibits cathodic catalytic activity in the PFC but also serves as an electrochromic display for self-powered sensing. The as-constructed PFC possesses multiple readable signal output nanochannels through the maximum power output density (P max ) of the PFC or the color change of PB. Meanwhile, the dual-signal-output makes the as-constructed self-powered sensor highly available in various operations demands with the enhanced reliability. With the advantages of high efficiency of PFCs, unique assay ability, and broad environmental suitability, the constructed self-powered platform shows broad application prospects as an integrated smart analytical device.

  6. Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion

    Science.gov (United States)

    Paterno, Leonardo G.; Soler, Maria A. G.

    2013-06-01

    The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device's parts including electrodes, active layers, and auxiliary layers. In both applications, the devices' performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.

  7. Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing

    Science.gov (United States)

    2015-12-02

    Final Report: Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing The views, opinions and/or findings contained in this...ADDRESS. Fisk University 1000 17th Avenue North Nashville, TN 37208 -3045 31-May-2015 ABSTRACT Final Report: Multifunctional ZnO Nanomaterials for...and reproducible nanomaterials growth/synthesis with control of nanostructure size, shape, and functionality, in uniform functionalization with both

  8. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  11. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  12. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  13. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  14. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  15. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  16. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  17. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  18. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  19. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  20. Computational screening of new inorganic materials for highly efficient solar energy conversion

    DEFF Research Database (Denmark)

    Kuhar, Korina

    2017-01-01

    in solar cells convert solar energy into electricity, and PC uses harvested energy to conduct chemical reactions, such as splitting water into oxygen and, more importantly, hydrogen, also known as the fuel of the future. Further progress in both PV and PC fields is mostly limited by the flaws in materials...... materials. In this work a high-throughput computational search for suitable absorbers for PV and PC applications is presented. A set of descriptors has been developed, such that each descriptor targets an important property or issue of a good solar energy conversion material. The screening study...... that we have access to. Despite the vast amounts of energy at our disposal, we are not able to harvest this solar energy efficiently. Currently, there are a few ways of converting solar power into usable energy, such as photovoltaics (PV) or photoelectrochemical generation of fuels (PC). PV processes...

  1. Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.

  2. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  3. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  4. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  5. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  6. Feasibility survey on international cooperation for high efficiency energy conversion technology in fiscal 1993

    Science.gov (United States)

    1994-03-01

    Following cooperative researches on fuel cell jointly conducted by NEDO and EGAT (Electricity Generating Authority of Thailand), the survey on international cooperation relating to high efficiency energy conversion technology was carried out for the ASEAN countries. The paper summed up the results of the survey. The study of the international cooperation is made for the following three items: a program for periodical exchange of information with EGAT, a project for cooperative research on phosphoric acid fuel cell in Indonesia, and a project for cooperative research with EGAT on electric power storage by advanced battery. In Malaysia, which is small in scale of state, part of the Ministry of Energy, Telecommunication and Posts is only in charge of the energy issue. Therefore, the situation is that they cannot answer well to many items of research/development cooperation brought in from Japan. The item of medium- and long-term developmental research in the Philippines is about the problems which are seen subsequently in the Manila metropolitan area where the problem of outage is being settled. Accordingly, it is essential to promote the cooperative research, well confirming policies and systems of the Ministry of Energy and the national electricity corporation.

  7. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Patchy zooplankton grazing and high energy conversion efficiency: ecological implications of sandeel behavior and strategy

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Christensen, Asbjørn; Rindorf, Anna

    2013-01-01

    of prey. Here we studied zooplankton consumption and energy conversion efficiency of lesser sandeel (Ammodytes marinus) in the central North Sea, using stomach data, length and weight-at-age data, bioenergetics, and hydrodynamic modeling. The results suggested: (i) Lesser sandeel in the Dogger area depend...... sandeel densities and growth rates per area than larger habitats...

  9. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  10. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  11. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    OpenAIRE

    Marc A. Rosen; Doru A. Nicola; Cornelia A. Bulucea; Daniel C. Cismaru

    2015-01-01

    Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF) inverters and traction induction motors, these machines with appropriate controls can realize both tra...

  12. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    Science.gov (United States)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region

  13. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-03-01

    Full Text Available Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF inverters and traction induction motors, these machines with appropriate controls can realize both traction and electric braking regimes for electric traction vehicles. In line with this idea, this paper addresses the operation sustainability of electric railway vehicles highlighting the chain of interactions among the main electric equipment on an electrically driven railway system supplied from an a.c. contact line: The contact line-side converter, the machine-side converter and the traction induction motor. The paper supports the findings that electric traction drive systems using induction motors fed by network-side converters and VVVF inverters enhance the sustainable operation of railway trains.

  15. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    Science.gov (United States)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  16. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  17. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  18. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  19. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge

    International Nuclear Information System (INIS)

    Ridout, Angelo J.; Carrier, Marion; Collard, François-Xavier; Görgens, Johann

    2016-01-01

    Highlights: • Vacuum, slow and fast pyrolysis of low and high ash paper waste sludge (PWS) is compared. • Reactor temperature and pellet size optimised to maximise liquid and solid product yields. • Gross energy recovery from solid and liquid was assessed. • Fast pyrolysis of low and high ash PWS offers higher energy conversions. - Abstract: The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (EC_s_u_m), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18–23 MJ kg"−"1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4–7 MJ kg"−"1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

  20. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  1. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  2. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  3. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  4. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  5. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  6. High-quality LaVO3 films as solar energy conversion material

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Brahlek, Matthew; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason

    2017-01-01

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown with defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. Furthermore, this work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.

  7. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2

  8. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  9. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  10. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  11. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  12. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  13. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  14. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion

    International Nuclear Information System (INIS)

    Wu, Wenhao; Huang, Xinyu; Li, Kai; Yao, Ruimin; Chen, Renjie; Zou, Ruqiang

    2017-01-01

    Graphical abstract: The thermal conductivity of PU was enhanced to 43 times of the pristine value by encapsulation in a PGF, PU@PGF can be used for highly efficient electro-to-heat energy conversion and storage with the highest energy storage efficiency up to 85%. - Highlights: • The composite exhibits an in-situ solid-solid phase change behavior. • The enthalpy of polyurethane is enhanced within the matrix. • The thermal conductivity of the composite is 43 times as much as that of the polyurethane. • Supercooling of polyurethane is greatly reduced. • The composite is applied to cold protection as a wear layer. - Abstract: A novel solid-to-solid phase change composite brick was prepared by combination of polyurethane (PU) and pitch-based graphite foam (PGF). The carbonaceous support, which can be used for mass production, not only greatly improves the thermal conductivity but promote electro-to-heat conversion efficiency of organic phase change materials (PCMs). Our composite retained the enthalpy of PCM and exhibited a greatly reduced supercooling temperature. The novel composite was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The enthalpy of polyurethane has increased about 8.6% after infiltrating into graphite foam. The composite was very stable during thermal cycle test, and the electro-to-heat conversion efficiency achieves to 85% at lower voltages (1.5–1.8 V), which can vastly reduce energy consumption. The as-prepared composite was used in a wear layer to test its performance comparing with normal fabric.

  15. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  16. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  17. Energy conversion and concentration in a high-current gaseous discharge: Dense plasma spheromak in plasma focus experiments

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Terentiev, A.R.

    1995-01-01

    Experimental results are presented which verify the possibility of the self-generated transformation of the magnetic field in plasma focus discharges to give a closed, spheromak-like magnetic configuration (SLMC). The energy conversion mechanism suggests a possibility of further concentrating the plasma power density by means of natural compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge

  18. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  19. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  20. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  1. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  2. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  3. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  4. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  6. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  7. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  8. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  9. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  10. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  11. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  12. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  13. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  14. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  15. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  16. Evolution of energy conversion plants

    International Nuclear Information System (INIS)

    Osnaghi, C.

    2001-01-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility [it

  17. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2017-11-08

    Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.

  18. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  19. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  20. Analysis of cost estimation and wind energy evaluation using wind energy conversion systems (WECS) for electricity generation in six selected high altitude locations in Nigeria

    International Nuclear Information System (INIS)

    Ohunakin, S. Olayinka; Ojolo, S. Joshua; Ogunsina, S. Babatunde; Dinrifo, R. Rufus

    2012-01-01

    Two commercial wind turbines namely AN Bonus 300 kW/33 and AN Bonus 1 MW/54 were technically assessed for electricity generation in six selected high altitude sites spreading across the North-West and North-East geopolitical regions of Nigeria by computing their capacity factors, annual power and energy outputs. The economic evaluation of using the two wind energy conversion systems (medium and large) for electric power generation in the selected locations were also estimated using the present value cost method. The results showed that capacity factors of the two turbines in the selected sites ranged between 4.6 and 43%. Average minimum cost per kW h was obtained in Kano as $0.0222/kW h with AN Bonus 1 MW while the highest average cost is $0.2074/kW h with AN Bonus 300 kW in Kaduna. The highest cost in each of the location was obtained with the medium WECs (AN Bonus 300 kW). In addition, Kano and Katsina were also found to be very economical for any of the adopted wind turbine models. Gusau and Kaduna, at cost of unit energy of about $0.30/kW h were found to be more profitable for non-connected electrical and mechanical applications (water pumping, battery charging) than diesel generator. - Highlights: ► All the locations considered have mean wind speeds above 4.8 m/s. ► Economical wind applications are possible in Kano and Katsina. ► Highest capacity factor and energy output are obtained using AN Bonus 1 MW in Kano. ► Specific cost of unit energy per kW h is cheaper using AN Bonus 1 MW.

  1. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  2. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  3. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  4. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  5. Tropospheric effects of energy conversion

    International Nuclear Information System (INIS)

    Derwent, R.G.

    1992-01-01

    The tropospheric concentrations of a number of trace gases are increasing due to man's activities. For some trace gases, their atmospheric life cycles are not fully understood and it is difficult to be certain about the role of man's activities. Emissions from the energy industries and energy conversion processes represent an important subset of source terms in these life cycles, along with agriculture, deforestation, cement manufacture, biomass burning, process industries and natural biospheric processes. Global Warming Potentials (GWPs) allow the tropospheric effects of a range of climate forcing trace gases to be assessed on a comparable basis. If a short term view of the commitment to global warming is adopted then the contribution from other trace gases may approach and exceed that of carbon dioxide, itself. Over longer time horizons, the long atmospheric lifetime of carbon dioxide shows through as a major influence and the contributions from the other trace gases appear to be much smaller, representing an additional 13-18% contribution on top of that from CO 2 itself

  6. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  7. Ocean thermal-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G; Niblett, C; Walker, L

    1983-03-01

    Ocean thermal-energy conversion (OTEC) is a novel 'alternative' energy technology that has created much interest in a number of countries; namely, the USA, Japan, France, Sweden, Holland, India and most recently, the UK. In particular, the first three of these have had programmes to develop the required technology. However, most interest has been centred in the USA, where the current hiatus in Federal funding provides a timely opportunity to assess progress. This paper offers a survey of the prevailing position there; outlining the outstanding technical and associated problems, and likely future developments. Non-USA programmes are only mentioned to contrast them with the American position. At present, it does not appear that OTEC plants will be commercially viable on a widespread basis even in the tropics. This is particularly true of the larger plants (400 MWe, MWe = megawatts of electrical energy, the final output of a power station) towards which the American programme is ultimately geared. There does seem to be a strong possibility that small OTEC plants, around 40 MWe or less, can be commercial in certain circumstances. This would be possible when one or, preferably, more of the following conditions are met: (i) where a land-based rather than 'at sea' plant is possible, (ii) where alternative energy supplies are at a premium, i.e. islands or regions without indigenous energy supplies, and (iii) where conditions are such that an OTEC plant could operate in conjunction with either or both an aquaculture or desalination plant.

  8. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  9. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  10. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  11. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  12. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  13. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  14. Ballistic energy conversion: physical modeling and optical characterization

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; van der Meulen, Mark-Jan; van der Meulen, Mark-Jan; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand for renewable energy stimulates the exploration of new materials and methods for clean energy, a process which is boosted by nanoscience and emerging nanotechnologies. Recently a high efficiency and high power density energy conversion mechanism was demonstrated through the use of

  15. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  16. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  17. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  18. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  19. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  20. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  1. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  2. Advanced energy conversion & mechatronics systems

    NARCIS (Netherlands)

    Lomonova, E.A.

    2015-01-01

    Ultra-high precision systems are encountered in high-tech industrial applications including semiconductor lithography equipment, pick-and-place machines for the manufacturing of electronic components, microsurgery equipment, MRI equipment and calibration devices in electron microscopes. The

  3. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  5. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  6. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  7. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  8. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  9. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  10. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  11. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  12. Principles of energy conversion, second edition

    International Nuclear Information System (INIS)

    Culp, A.W. Jr.

    1991-01-01

    This book is organized under the following headings: Energy classification, sources, utilization, economics and terminology; Principal fuels for energy conversion; Production of thermal energy; Fossil-fuel systems (such as steam generators, etc.); Nuclear reactor design and operation; The environmental impact of power plant operation; Production of mechanical energy; Production of electrical energy; and Energy storage

  13. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  14. Urban energy conversion and its effects

    International Nuclear Information System (INIS)

    Geiger, B.

    1981-01-01

    The extent to which the building up and energy conversion affect the quality and energy economy of living space is shown by the example of Munich. The comparison of the energy economy of various ecological systems give qualified information for assessing the thermal loading in densely inhabited areas and show the basic differences between built-up and country areas. (DG) [de

  15. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  16. Theoretical efficiency limits for thermoradiative energy conversion

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m 2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices

  17. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  18. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    Science.gov (United States)

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  19. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  20. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C

    2017-01-01

    of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...

  1. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  2. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    Science.gov (United States)

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  4. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  5. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  6. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  7. Electrohydrodynamics: a high-voltage direct energy conversion process; L'electrohydrodynamique: Un procede de conversion directe d'energie a haute tension

    Energy Technology Data Exchange (ETDEWEB)

    Brun, S [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-04-15

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [French] Cette analyse est une etude theorique et pratique d'un generateur de puissance electrique a haute tension, base sur le principe du generateur Van de Graaff, la difference principale etant que les charges produites sont transportees pur un gaz en mouvement et non par une courroie. Les proprietes electriques et thermiques d'un tel generateur sont etudiees ainsi que le probleme delicat de la production des particules ionisees utilisees dans la conversion. Un certain nombre de resultats publies sur ce procede de conversion d'energie cinetique en energie electrique sont reproduits, ainsi que les applications possibles aux problemes spatiaux. (auteur)

  8. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Peter Bachant

    2016-01-01

    Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.

  9. The Energy Conversation: The First 3 Years

    Science.gov (United States)

    2009-07-01

    emerging clear and present reality] 7“Facing the Hard Truths about Energy” National Petroleum Council, 2007. www.npchardtruthsreport.org 8 Verrastro and...commuting five days/week, dispersing eight tons of pollutants into the environment and using 233 hours for travel to and from work w Telecommuting three... The Energy Conversation the first 3 years Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  10. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  11. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  12. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  13. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  14. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  15. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  16. Topological energy conversion through the bulk or the boundary of driven systems

    Science.gov (United States)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  17. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  18. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  19. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  20. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  1. Energy conversion of source separated packaging; Energiutvinning ur kaellsorterade foerpackningsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blidholm, O; Wiklund, S E [AaF-Energikonsult (Sweden); Bauer, A C [Energikonsult A. Bauer (Sweden)

    1997-02-01

    The basic idea of this project is to study the possibilities to use source separated combustible material for energy conversion in conventional solid fuel boilers (i.e. not municipal waste incineration plants). The project has been carried out in three phases. During phase 1 and 2 a number of fuel analyses of different fractions were carried out. During phase 3 two combustion tests were carried out; (1) a boiler with grate equipped with cyclone, electrostatic precipitator and flue gas condenser, and (2) a bubbling fluidized bed boiler with electrostatic precipitator and flue gas condenser. During the tests source separated paper and plastic packagings were co-fired with biomass fuels. The mixing rate of packagings was approximately 15%. This study reports the results of phase 3 and the conclusions of the whole project. The technical terms of using packaging as fuel are good. The technique is available for shredding both paper and plastic packaging. The material can be co-fired with biomass. The economical terms of using source separated packaging for energy conversion can be very advantageous, but can also form obstacles. The result is to a high degree guided by such facts as how the fuel is collected, transported, reduced in size and handled at the combustion plant. The results of the combustion tests show that the environmental terms of using source separated packaging for energy conversion are good. The emissions of heavy metals into the atmosphere are very low. The emissions are well below the emission standards for waste incineration plants. 35 figs, 13 tabs, 8 appendices

  2. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  3. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  4. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  5. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  6. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  7. US energy conversion and use characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Liberman, A.; Ashton, W.B.

    1982-02-01

    The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

  8. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  9. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  10. Ocean thermal energy conversion: Perspective and status

    Science.gov (United States)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  11. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  12. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  13. Graphene Paper Based Nanomaterials for Electrochemical Sensing and Energy Conversion

    DEFF Research Database (Denmark)

    Zhang, Minwei

    of graphene-based materials to real world, graphene nanosheets must be assembled into macroscopic architecture with desired structures and functionality. To this end, graphene oxide (GO) is a very useful building block because it contains a significant number of oxygen-containing groups on the planar surface...... of hydrogen peroxide (H2O2). Graphene paper was finally explored as a sacrificial template for the synthesis of 2D ultra-fined nanostructured porous metal oxide (MO), as described in Chapters 6-8. In Chapter 6, we demonstrated that crystalline MO can be prepared by using GO papers as sacrificial templates...

  14. 2nd Workshop on the Chemistry of Energy Conversion

    CERN Document Server

    2016-01-01

    A sustainable energy future that does not rely on fossil fuels requires the advances of new materials design and development with efficient energy conversion. However, materials development is still at its infancy. There is an imperative to develop new energy conversion strategies. In Nature, plants harness sunlight and convert them into chemical energy. The ability to mimic Nature by combining synthetic nanoscopic and molecular components to produce chemical fuels is the Holy Grail to achieve sustainable energy production.​ The Institute of Advanced Studies (IAS) and the School of Physical and Mathematical Sciences (SPMS), NTU, are jointly organizing this workshop. We aim to create dialogues among scientists in the energy conversion field, with the ultimate goal of facilitating breakthroughs in materials design for energy conversion. It will also bring the expertise on Chemistry of Energy Conversion to the door steps of the materials research community in Singapore and also provide a platform for partic...

  15. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  16. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  17. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  18. Overview of SOFC/SOEC development at DTU Energy Conversion

    DEFF Research Database (Denmark)

    Hagen, Anke

    2014-01-01

    According to a broad political agreement in Denmark, the Danish energy system should become independent on fossil fuels like oil, coal and natural gas by the year 2050. This aim requires expansion of electricity production from renewable sources, in particular wind mills. In order to balance...... the fluctuating power production and to cope with the discrepancies between demand and supply of power, solid oxide fuel cells and electrolysis are considered key technologies. DTU Energy Conversion has a strong record in SOFC/SOEC research, with a close collaboration with industry, in particular with Danish...... Topsoe Fuel Cell A/S. Recent achievements will be presented ranging from development of new cell generations, manufacturability, up to testing under realistic operating conditions including degradation studies and high pressure testing. A strong focus will be on development of methodologies, e...

  19. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    Science.gov (United States)

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  20. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  1. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  2. Electronic and optical properties of doped oxides for energy conversion

    International Nuclear Information System (INIS)

    Silva, Antonio Ferreira da

    2016-01-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O 4 , ZnO , SnO 2 , WO 3 and TiO 2 have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO 2 -NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  3. Electronic and optical properties of doped oxides for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio Ferreira da, E-mail: ferreira.fis@gmail.com [Universidade Federal da Bahia (UFBA), Salvador (Brazil)

    2016-07-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O{sub 4}, ZnO , SnO{sub 2}, WO{sub 3} and TiO{sub 2} have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO{sub 2}-NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  4. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  5. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  6. Microfluidic energy conversion by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo

    2013-01-01

    We investigated the energy conversion performance by the streaming potential using totally different approaches. By introducing gas bubbles, which can be considered as perfect insulators, the internal electrical resistance of the system can be increased, decreasing the conduction current. Following

  7. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  8. Dynamic modelling and robust control of a wind energy conversion system

    NARCIS (Netherlands)

    Steinbuch, M.

    1989-01-01

    The application of wind energy conversion systems for the production of electrical energy requires a cheap and reliable operation. Especially at high wind velocities fluctuations from the wind field result in large mechanical loads of the wind turbine. Also fluctuations in the grid voltage may yield

  9. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  10. Characterization of energy conversion of multiferroic PFN and PFN:Mn

    Directory of Open Access Journals (Sweden)

    Lucjan Kozielski

    2013-12-01

    Full Text Available Characterization of energy conversion of multiferroic materials is concerned with multifunctional properties of materials, a topic that is fascinating from the scientific point of view and important for the modern technology. The complex characterization of multiferroic structures suffers at present from lack of a systematic experimental approach and deficiency of multifunctional magnetoelectric properties testing capabilities. Compactness and high frequency energy conversion capacity are the main reasons of invention and improvement of sophisticated materials which are prepared for high-speed computer memories and broadband transducer devices. As a consequence, one can easily notice an intense search for new materials for generation, transformation and amplification of magnetic and electric energies. In this scenario, the combination of excellent piezoelectric and magnetic properties makes lead iron niobate Pb(Fe1/2Nb1/2O3 (PFN an attractive host material for application in integrated magnetoelectric energy conversion applications. PFN multiferroic materials are attractive for commercial electroceramics due to high value of dielectric permittivity and magnetoelectric coefficients as well as relatively easy synthesis process. However, synthesis of PFN ceramics is mostly connected with formation of the secondary unwanted pyrochlore phase associated with dramatic decrease of ferroelectric properties. The authors have successfully reduced this negative phenomenon by Mn doping and finally present high piezoelectric and magnetoelectric energy conversion efficiency in fabricated PMFN ceramics.

  11. One-dimension-based spatially ordered architectures for solar energy conversion.

    Science.gov (United States)

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-07

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

  12. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  13. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  14. Energy Conversion in Imploding Z-Pinch Plasma

    International Nuclear Information System (INIS)

    Fisher, V.I.; Gregorian, L.; Davara, G.; Kroupp, E.; Bernshtam, V.A.; Ralchenko, Yu. V.; Starobinets, A.; Maron, Y.

    2002-01-01

    Due to important applications, Z-pinches became a subject of extensive studies. In these studies, main attention is directed towards improvement in efficiency of electric energy conversion into high-power radiation burst. At present, knowledge available on physics of Z-pinch operation, plasma motion, atomic kinetics, and energy conversion is mainly knowledge of numerical simulation results. We believe further progress require (i) experimental determination of spatial distribution and time history of thermodynamic parameters and magnetic field, as well as (ii) utilization of this data for experiment-based calculation of r,t-distribution of driving forces, mass and energy fluxes, and local energy deposition rates due to each of contributing mechanisms, what provides an insight into a process of conversion of stored electric energy into radiation burst. Moreover, experimentally determined r, t-distribution of parameters may serve for verification of computer programs developed for simulation of Z-pinch operation and optimization of radiation output. Within this research program we performed detailed spectroscopic study of plasmas imploding in modest-size (25 kV, 5 kJ, 1.2 μs quaterperiod) gas-puff Z-pinch. This facility has reasonably high repetition rate and provides good reproducibility of results. Consistent with plasma ionization degree in the implosion period, measurements are performed in UV-visible spectral range. Observation of spectral lines emitted at various azimuthal angles f showed no dependence on f. Dependence on axial coordinate z is found to be weak in near-anode half of the anode-cathode gap. Based on these observations and restricting the measurements to near-anode half of the gap, an evolution of parameters is studied in time and radial coordinate r only. In present talk we report on determination of radial component of plasma hydrodynamic velocity u r (r,t), magnetic field B ζ (r,t), electron density n e (r,t), density of ions in various

  15. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  16. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  17. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  18. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  19. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  20. Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    Kristine A. Zhang

    2015-01-01

    Full Text Available Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.

  1. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  2. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  3. Proceedings of the 25th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th intersociety energy conversion engineering conference. Volume 1 is organized under the following headings: space power systems requirements and issues, space power systems; space power systems 2; space nuclear power reactors space nuclear reactor technology I; space nuclear reactor technology II; reactor technology; isotopic fueled power systems I, isotopic fueled power systems II, space power automation; space power automation II, space power automation III; space power automation IV; space power automation V; power systems hardware and design selection, power components, pulse power, power management and distribution, power management and distribution II, power management and distribution III; space energy conversion: solar dynamic, space energy conversion: static and dynamic, space solar array technology, advanced space solar cells

  4. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  5. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  6. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  7. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  8. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  9. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  10. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  11. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of ≤$400/kW.

  12. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of ≥ 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥ 40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥ 30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of ≥ 30 percent (DC/LHV) and a factory cost of ≤ $400/kW.

  13. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  14. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  15. Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan

    Science.gov (United States)

    Rakbamrung, Prissana; Putson, Chatchai; Muensit, Nantakan

    2014-01-01

    A simple energy conversion system--particularly, the conversion of mechanical energy into electrical energy by using shaker flashlights--has recently been presented. This system uses hand generators, consisting of a magnet in a tube with a coil wrapped around it, and acts as an ac source when the magnet passes back and forth through the coil.…

  16. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  17. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  18. Exploring driving forces and liquid properties for electrokinetic energy conversion

    NARCIS (Netherlands)

    Nguyen, Trieu

    2015-01-01

    This thesis presents an effort to understand electrokinetic energy conversion systems which are based on motion of ionic charges in micro- and nano-confinements. In particular, both experimentally and theoretically the utilization of different kind of liquids was investigated to convert mechanical

  19. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  20. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains papers presented at a conference on energy conversion engineering. Topics covered include: USAF space power requirements, modelling of the dynamics of a low speed gas-liquid heat engine, and comparative assessment of single-axis force generation mechanisms for superconducting suspensions

  1. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  2. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  3. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  4. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  5. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  6. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    Science.gov (United States)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  7. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  8. Determination of the nuclear induced electrical conductivity of 3He for magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Bitteker, L.; Scheuer, J.; Howe, S.

    1996-01-01

    This is the final report for a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The continual need for more efficient, high-output energy conversion techniques has renewed interest in nuclear-driven magnetohydrodynamic (MHD) energy conversion. To provide the fundamental knowledge required to evaluate the potential value of this concept, a one-year project aimed at measuring the nuclear-induced electrical conductivity of a 3 He/ 4 He gas mixture under thermodynamic conditions consistent with the MHD flow conditions was carried out. The range of bulk gas conditions to be considered were: pressure = 0.1 to 3800 Torr and temperature = 300 to 1500 K. The maximum neutron flux to be considered was 10 16 /cm 2 sec. The range of parameters considered surpassed previous experiments in all aspects

  9. Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

    Science.gov (United States)

    Korotchenkov, Oleg; Nadtochiy, Andriy; Kuryliuk, Vasyl; Wang, Chin-Chi; Li, Pei-Wen; Cantarero, Andres

    2014-03-01

    The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

  10. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  11. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  13. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  14. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  15. Expansionary economic effects of energy conversion under stagnation

    International Nuclear Information System (INIS)

    Ono, Yoshiyasu

    2013-01-01

    After the Fukushima disaster, energy conversion such as nuclear power phaseout and deployment of renewable energy or survival of nuclear power had been actively argued pro and con. Both sides admitted extra costs were needed but their economic effects would be contrary dependent on business state. Under better economy, extra costs would be actual burden of total economy. Under stagnation as was long in Japan at present, extra costs brought about expansion of employment and economy with simulated consumption increase. Industry conversion would occur such industry intensively using power would depreciate and energy conserved industry would grow. Difference of power use intensity between industries made difficult in energy conversion because present Japanese industry constitution was mostly formed based on cheap power cost for industry use. Even taking account of international competition, the same would be true by adjusting finance balance sheet and currency exchange rate. (T. Tanaka)

  16. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  17. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  18. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  19. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  20. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  1. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  2. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  3. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  4. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  6. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account

    International Nuclear Information System (INIS)

    Liu, Jizhen; Meng, Hongmin; Hu, Yang; Lin, Zhongwei; Wang, Wei

    2015-01-01

    Highlights: • We discuss the disadvantages of conventional OTC MPPT method. • We study the relationship between enhancing efficiency and power smoothing. • The conversion efficiency is enhanced and the volatility of power is suppressed. • Small signal analysis is used to verify the effectiveness of proposed method. - Abstract: With the increasing capacity of wind energy conversion system (WECS), the rotational inertia of wind turbine is becoming larger. And the efficiency of energy conversion is significantly reduced by the large inertia. This paper proposes a novel maximum power point tracking (MPPT) method to enhance the efficiency of energy conversion for large-scale wind turbine. Since improving the efficiency may increase the fluctuations of output power, power smoothing is considered as the second control objective. A T-S fuzzy inference system (FIS) is adapted to reduce the fluctuations according to the volatility of wind speed and accelerated rotor speed by regulating the compensation gain. To verify the effectiveness, stability and good dynamic performance of the new method, mechanism analyses, small signal analyses, and simulation studies are carried out based on doubly-fed induction generator (DFIG) wind turbine, respectively. Study results show that both the response speed and the efficiency of proposed method are increased. In addition, the extra fluctuations of output power caused by the high efficiency are reduced effectively by the proposed method with FIS

  7. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  8. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  9. Novel silicon phases and nanostructures for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  10. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  11. Hierarchically structured carbon nanotubes for energy conversion and storage

    Science.gov (United States)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  12. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  13. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ( 137 Cs) and strontium ( 90 Sr). The 137 Cs and 90 Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  14. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  15. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  16. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  17. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  18. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  19. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    International Nuclear Information System (INIS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-01-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion. (paper)

  20. Advances in copper-chalcopyrite thin films for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Jess; Gaillard, Nicolas; Rocheleau, Richard; Miller, Eric [Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East-West Road, Post 109, Honolulu, HI 96822 (United States)

    2010-01-15

    Promising alternatives to crystalline silicon as the basic building block of solar cells include copper-chalcopyrite thin films such as copper indium gallium diselenide, a class of thin films exhibiting bandgap-tunable semiconductor behavior, direct bandgaps and high absorption coefficients. These properties allow for the development of novel solar-energy conversion configurations like ultra-high efficiency multi-junction solar cells utilizing combinations of photovoltaic and photoelectrochemical junctions for hydrogen production. This paper discusses the current worldwide status as well as the development and optimization of copper-chalcopyrite thin films deposited onto various substrate types for different photovoltaic and photoelectrochemical applications at the Hawaii Natural Energy Institute. (author)

  1. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  2. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    34 Phys. Rev. B 83, p. 085204, 2011. http://dx.doi.org/10.1103/PhysRevB.83.085204 IF: 3.772 [2] P. Maji, N. J. Takas , D. K. Misra, H...J. Salvador, N. J. Takas , G. Wang, M. R. Shabetai, A. Pant, P. Paudel, C. Uher, K. L. Stokes, and P. F. P. Poudeu, "Thermal and Electronic Charge...dx.doi.Org/10.1016/i.issc.2011.08.036 IF: 2.261 [4] N. Takas , P. Sahoo, D. Misra, H. Zhao, N. Henderson, K. L. Stokes, and P. Poudeu, "Effects of Ir

  3. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  4. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  5. Innovative rubble mound breakwaters for wave energy conversion

    International Nuclear Information System (INIS)

    Contestabile, Pasquale; Vicinanza, Diego; Iuppa, Claudio; Cavallaro, Luca; Foti, Enrico

    2015-01-01

    This paper presents a new Wave Energy Converter named Overtopping BReakwater for Energy Conversion (OBREC) which consists of a rubble mound breakwater with a front reservoir designed with the aim of capturing the wave overtopping in order to produce electricity. The energy is extracted via low head turbines, using the difference in water levels between the reservoir and the mean sea water level. The new design should be capable of adding a revenue generation function to a breakwater while adding cost sharing benefits due to integration. The design can be applied to harbour expansions, existing breakwater maintenance or upgrades due to climate change for a relatively low cost, considering the breakwater would be built regardless of the inclusion of a WEC [it

  6. Direct energy conversion - state of the art in 1981

    International Nuclear Information System (INIS)

    Euler, K.J.

    1981-01-01

    Contemporary research and development of direct energy conversion (D.E.C.) started about 25 years ago. Having considered possibilities, cost, and advantages, the efforts have become more and more steady during the last decade. It has been recognized that, in most cases, D.E.C. methods will serve only as electricity sources for special application. This is true for radioisotopic generators used in space and submarine technologies, for thermoelectric devices used in air defence and along desert pipelines, and for thermionic convertors used in television satellites. Thus, the goal, to introduce these D.E.C. units in large scale manufacture has not been reached, and will not be reached even in the future. Only magneto-hydrodynamic channels exhibit a certain innovation potential as topping devices in advanced thermal power stations. Fuel cells will not be treated here, solar cells only mentioned briefly. (orig.) [de

  7. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  8. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi......-by-wave measurement of couples of hydraulic head-flow rate acting on a virtual turbine inlet. Finally, the influence of draft length on overtopping discharge has been identified....... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  9. Onboard energy conversion and thermal analysis of the MTL system

    International Nuclear Information System (INIS)

    Kadiramangalam, M.N.; Hoffert, M.I.; Miller, G.

    1989-01-01

    A non-nuclear energy conversion concept-MTL (microwave power to low earth orbits) was previously presented in order to supply SDI platforms power in the housekeeping, alert and burst power modes. In this paper the major issues addressed are: system design, integration and analysis. Parametric design of the major subsystems of the MTL bus, which includes the rectenna, the monolithic solid oxide fuel cell etc., is presented. The results of the parametric design, and of computer simulation are used as inputs to construct a comprehensive systems design code. A reference MTL system design which meets the requirements of duty cycles spelled out in open literature is presented. A comparison of mass and power is made between the MTL system and the SP-100 and burst power systems, which demonstrates the competitiveness of the proposed MTL design

  10. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  11. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  12. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  13. Wave loadings acting on Overtopping Breakwater for Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Nørgaard, Jørgen Harck; Contestabile, Pasquale

    2013-01-01

    distributions. Load measurements were compared with the most used prediction method for traditional breakwaters, available in the Coastal Engineering Manual (U.S. Army Corps of Engineers, 2002). These results suggest to use the experimental data as design loadings since the design criteria for the innovative......Any kind of Wave Energy Converter (WEC) requires information on reliability of technology and on time required for the return of the investment (reasonable payback). The structural response is one of the most important parameters to take in to account for a consistent assessment on innovative...... devices. This paper presents results on wave loading acting on an hybrid WEC named Overtopping BReakwater for Energy Conversion (OBREC). The new design is based on the concept of an integration between a traditional rubble mound breakwater and a front reservoir designed to store the wave overtopping from...

  14. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  15. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors

  16. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  17. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  18. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  19. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  20. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  1. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  2. Structure Sense in High School Algebra: The Effect of Brackets

    Science.gov (United States)

    Hoch, Maureen; Dreyfus, Tommy

    2005-01-01

    This paper presents an initial attempt to define structure sense for high school algebra and to test part of this definition. A questionnaire was distributed to 92 eleventh grade students in order to identify those who use structure sense. Presence and absence of brackets was examined to see how they affect use of structure sense. The overall use…

  3. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    Science.gov (United States)

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  4. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  5. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  6. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  7. The role of fluid compression in energy conversion and particle energization during magnetic reconnection

    Science.gov (United States)

    Li, X.; Guo, F.; Li, G.; Li, H.

    2016-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle acceleration and plasma energization. However, the role of compression in particle acceleration during magnetic reconnection is unclear. We use two approaches to study this issue. First, using fully kinetic simulations, we quantitatively calculate the effect of compression in energy conversion and particle energization during magnetic reconnection for a range of plasma beta and guide field. We show that compression has an important contribution for the energy conversion between the bulk kinetic energy and the internal energy when the guide field is smaller than the reconnecting component. Based on this result, we then study the large-scale reconnection acceleration by solving the Parker's transport equation in a background reconnecting flow provided by MHD simulations. Due to the compression effect, the simulations suggest fast particle acceleration to high energies in the reconnection layer. This study clarifies the nature of particle acceleration in reconnection layer, and may be important to understand particle acceleration and plasma energization during solar flares.

  8. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  10. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  11. Efficient energy conversion in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.; Perin-Levasseur, Z.

    2005-07-01

    This yearly report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2005 and the work planned for 2006 within the framework of the Efficient Energy Conversion in the Pulp and Paper Industry project. The results of investigations made at a large pulp and paper facility in Switzerland are presented and analysed. Data models of the steam and condensate networks and of the processes involved are examined. An additional model of the sulphur loop has been also elaborated. From this analysis, a list of required measurements has been developed. Several performance indicators have also been calculated: A systematic analysis method developed to identify sections where condensate could be recovered is discussed. A systematic definition of the hot and cold streams in the process is being developed in order to compute the minimum energy requirements of the process. Evaluating this minimum energy requirement from the data available is to be used to prepare definitions of the energy savings possible.

  12. Aerojet Energy Conversion Company mobile volume reduction system

    International Nuclear Information System (INIS)

    Smith, K.R.

    1984-01-01

    Over the past few years, rapidly increasing costs for the disposal of low level radioactive waste (LLW) have generated the need for utilities to volume-reduce their LLW prior to shipment and burial. Incineration systems have been selected by several utilities to fulfill this need for maximum volume reduction. Until recently, all of the incineration systems selected by utilities were designed to be housed and operated in a facility erected by the utility. Now, however, lack of capital and rising design/erection costs are causing utilities to reevaluate their plans for purchasing incineration systems to process their LLW. The result is a growing demand for incineration services. Once again, Commonwealth Edison Company (Com-Ed) is leading the industry with an ongoing program to utilize incineration services provided by Aerojet Energy Conversion Company (AECC) for the Dresden Quad Cities, LaSalle, and Zion Nuclear Stations. At the stations, combustible dry active waste and contaminated oil will be processed in a Mobile Volume Reduction System (MVRS) designed and fabricated by AECC. The MVRS is a totally self-contained system consisting of a controlled-air incinerator and a liquid offgas cleanup system. No buildings are required to house the system, and the MVRS achieves volume reduction factors similar to systems currently available for permanent in-plant installation. The result is an option for the utility having the benefits of volume reduction without the capital commitment normally required by the utility

  13. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  14. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  15. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  16. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  17. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  18. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  19. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  20. Challenges of Iran's energy conversion agreements in future competitive market

    International Nuclear Information System (INIS)

    Sobhiyah, M.H.; Kashtiban, Y.Kh.

    2008-01-01

    Extensive need for electricity and lack of enough governmental resources for the development of related infrastructures forced the Iranian Government to invite private investors and to sign Energy Conversion Agreement (ECA) in the form of build-operate-transfer (BOT) and build-operate-own (BOO) contracts with them. Accordingly, electricity purchase would be based on a guaranteed price. Changes in some laws in 2007 caused the management of the ECAs and electricity purchase based on guaranteed price to face challenges. Shortening the commercial operation period of the earlier ECAs and signing some new short-term ECAs were the steps taken by the authorities to resolve the problems. By shortening the ECAs' commercial operation period, it is likely to cause serious problems concerning the payments of the project companies, because of shortages in the government's financial resources. The findings of the present viewpoint suggest signing of new long-term contracts (20 years long) in the form of a combinational agreement for buying the produced electricity with a guaranteed price (in the first 5 years) and supplying it in the competitive power market (for the following years) would be a better way to reduce the problems

  1. Liquid metal mist cooling and MHD Ericsson cycle for fusion energy conversion

    International Nuclear Information System (INIS)

    Greenspan, E.

    1989-01-01

    The combination of liquid metal mist coolant and a liquid metal MHD (LMMHD) energy conversion system (ECS) based on the Ericsson cycle is being proposed for high temperature fusion reactors. It is shown that the two technologies are highly matchable, both thermodynamically and physically. Thermodynamically, the author enables delivering the fusion energy to the cycle with probably the highest practical average temperature commensurate with a given maximum reactor design constraint. Physically, the mist cooling and LMMHD ECSs can be coupled directly, thus eliminating the need for primary heat exchangers and reheaters. The net result is expected to be a high efficiency, simple and reliable heat transport and ECS. It is concluded that the proposed match could increase the economic viability of fusion reactors, so that a thorough study of the two complementary technologies is recommended. 11 refs., 3 figs

  2. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  3. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  4. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  5. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency.

    Science.gov (United States)

    Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng

    2013-07-15

    Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Financial problems facing the manufacturers of small wind energy conversion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, T G

    1979-11-01

    The financial barriers faced by the manufacturers of small wind energy conversion systems (SWECS) are assessed and found to be similar to those faced by other start up businesses. However, these problems are found to be aggravated by the high expectations for accelerated SWECS industry growth in the face of moderate government support and lack of investment capital. The underlying conditions of limited SWECS entrepreneur business experience, the highly competitive venture capital market, the inability of existing financial institutions to aid infant busineses and public unawareness of SWECS are reviewed. Specific manufacturer-oriented recommendations and federal, state and regulatory policy-oriented recommendations are made. In addition, the dynamics of the SWECS commercialization process are assessed and the variety of financial institutions playing a role in this process is detailed. Issues related to inflation, tax policy, regulation and federal R and D procurement policies are analyzed.

  7. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    Science.gov (United States)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  8. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  9. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    Science.gov (United States)

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  10. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  11. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  12. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...... constraints in both systems. An iterative method is proposed to deal with the nonlinearity in the proposed model. The models of the natural gas and power system are linearized in every iterative step. Simulation results demonstrate the effectiveness of the approach. Applicability of the proposed method...... is tested in the sample case. Finally, the effect of Power to Gas (P2G) on the daily economic dispatch is also investigated....

  13. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  14. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

    Science.gov (United States)

    Wu, Wenzhuo; Wang, Lei; Li, Yilei; Zhang, Fan; Lin, Long; Niu, Simiao; Chenet, Daniel; Zhang, Xian; Hao, Yufeng; Heinz, Tony F; Hone, James; Wang, Zhong Lin

    2014-10-23

    The piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. Here we report the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. A single monolayer flake strained by 0.53% generates a peak output of 15 mV and 20 pA, corresponding to a power density of 2 mW m(-2) and a 5.08% mechanical-to-electrical energy conversion efficiency. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90°. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. The coupling between piezoelectricity and semiconducting properties in two-dimensional nanomaterials may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.

  15. High order dark wavefront sensing simulations

    Science.gov (United States)

    Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele

    2016-07-01

    Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.

  16. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  18. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  19. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  20. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  1. NLCC controller for SEPIC-based micro-wind energy conversion system

    Science.gov (United States)

    Justin Nayagam, Brintha Jane; Sathi, Rama Reddy; Olimuthu, Divya

    2017-04-01

    The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.

  2. Design and Performance of Energy Conversion Units of Betavoltaic Isotopic Batteries

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Zhang Huaming; Hu Rui; Wei Hongyuan; Xiong Xiaoling; Luo Shunzhong

    2010-01-01

    Based on the single crystal silicon semiconductor junction devices, the relationships between their configurable parameters and the electrical properties were discussed for the purpose of design of energy conversion units of betavoltaic isotopic batteries. Two kinds of silicon semiconductor junction devices as energy conversion units of betavoltaic batteries were designed and customized. The electrical output properties of the devices irradiated by 63 Ni source were measured. The results show that the new designed devices perform better than the existing commercial one in open-circuit voltage, output power and energy conversion efficiency. (authors)

  3. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  4. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    Science.gov (United States)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  5. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  6. Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites

    Science.gov (United States)

    2017-04-19

    AFRL-AFOSR-VA-TR-2017-0090 Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and...TITLE AND SUBTITLE Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites 5a... research with education at all levels across a broad range of materials, and create important opportunities to expose and train undergraduates, women

  7. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  8. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, Friedrich B. [Stanford Univ., CA (United States). Mechanical Engineering. Materials Science and Engineering; Bent, Stacey F. [Stanford Univ., CA (United States). Chemical Engineering

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  9. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  10. Development of an integrated optimization method for analyzing effect of energy conversion efficiency under uncertainty – A case study of Bayingolin Mongol Autonomous Prefecture, China

    International Nuclear Information System (INIS)

    Jin, S.W.; Li, Y.P.; Huang, G.H.; Hao, Q.; Nie, S.

    2015-01-01

    Highlights: • Superiority–inferiority full-infinite mixed-integer method is developed. • The method can tackle uncertainties of fuzzy sets, crisp and functional intervals. • The method is applied to a real case of planning energy system. • Effects of energy-conversion efficiency on energy systems are analyzed. • Results can support policy enactment of conversion efficiency improvement. - Abstract: In this study, a superiority–inferiority full-infinite mixed-integer programming (SFMP) method is developed for analyzing the effect of energy conversion efficiency under uncertainty. SFMP can effectively tackle uncertainties expressed as fuzzy sets, crisp intervals and functional intervals, it also can directly reflect relationships among multiple fuzzy sets through varying superiority and inferiority degrees with a high computational efficiency. Then the developed SFMP is applied to a real case of planning energy system for Bayingolin Mongol Autonomous Prefecture, where multiple scenarios related to different energy-conversion efficiency are concerned. Results for energy processing, energy conversion, capacity expansion, pollutant emission and system cost have been generated. It is proved that SFMP is an effective approach to deal with the uncertainties in energy systems with interactive and uncertain characteristics. A variety of uncertainties existed in energy conversion processes and impact factors could affect the modeling result. Results show that improvement of energy-conversion efficiency can effectively facilitate reducing energy resources consumption, optimizing energy generation pattern, decreasing capacity expansion, as well as mitigating pollutant emissions. Results also reveal that, for the study area, electric power has a highest energy saving potential among heating, oil processing, coal washing and refining. Results can help decision makers to generate desired alternatives that can facilitate policy enactment of conversion efficiency

  11. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  12. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  13. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    Science.gov (United States)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  14. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

    Science.gov (United States)

    Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun

    2016-12-01

    A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  16. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  17. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  18. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion

    DEFF Research Database (Denmark)

    Christiansen, N.; Primdahl, S.; Wandel, Marie

    2013-01-01

    Many years of close collaboration between Topsoe Fuel Cell A/S (TOFC) and Risø (to day DTU Energy Conversion) on SOFC development have ensured an efficient transfer of SOFC basic know how to industrial technology. The SOFC development in the consortium includes material development...... and manufacturing of materials, cells and stacks based on state of the art as well as innovative strategies. Today TOFC provides the SOFC technology platform: Cells, stacks, integrated multi stack module and PowerCore units that integrate stack modules with hot fuel processing units for high electrical efficiency...

  19. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  20. Studies on the Effect of Radio Frequency Field in a Cusp-Type Charge Separation Device for Direct Energy Conversion

    OpenAIRE

    HAMABE, Masaki; IZAWA, Hiroaki; TAKENO, Hiromasa; NAKAMOTO, Satoshi; ICHIMURA, Kazuya; NAKASHIMA, Yousuke

    2016-01-01

    In D-3He fusion power generation, an application of direct energy conversion is expected in which separation of charged particles is necessary. A cusp-type direct energy converter (CuspDEC) was proposed as a charge separation device, but its performance was degraded for a high density plasma. The goal of the present study is to establish an additional method to assist charge separation by using a nonlinear effect of a radio frequency (rf) electric field. Following to the previous study, we ex...

  1. Nanoscale TiO2 and Fe2O3 Architectures for Solar Energy Conversion Schemes

    Science.gov (United States)

    Sedach, Pavel Anatolyvich

    The direct conversion of sunlight into more useable forms of energy has the potential of alleviating the environmental and social problems associated with a dependence on fossil fuels. If solar energy is to be utilized en-masse, however, it must be inexpensive and widely available. In this vein, the focus of this thesis is on nanostructured materials relevant to solar energy conversion and storage. Specifically, this thesis describes the ambient sol-gel synthesis of titanium dioxide (Ti02) nanowires designed for enhanced charge-transfer in solar collection devices, and the synthesis of novel disordered metal-oxide (MOx) catalysts for water oxidation. The introductory chapter of this thesis gives an overview of the various approaches to solar energy conversion. Sol---gel reaction conditions that enable the growth of one-dimensional (1-D) anatase TiO2 nanostructures from fluorine-doped tin oxide (FTO) for photovoltaics (PVs) are described in the second chapter. The generation of these linear nanostructures in the absence of an external bias or template is achieved by using facile experimental conditions (e.g., acetic acid (HOAc) and titanium isopropoxide (Ti(OiPr)4) in anhydrous heptane). The procedure was developed by functionalizing base-treated substrates with Ti-oxide nucleation sites that serve as a foundation for the growth of linear Ti-oxide macromolecules, which upon calcination, render uniform films of randomly oriented anatase TiO2 nanowires. A systematic evaluation of how reaction conditions (e.g., solvent volume, stoichiometry of reagents, substrate base treatment) affect the generation of these TiO 2 films is presented. A photo-organic MO. deposition route (i.e., photochemical metal-organic deposition (PMOD)) used to deposit thin-films of amorphous iron oxide (a-Fe2O3) for water oxidation catalysis is detailed in third chapter. It is shown that the irradiation of a spin-coated metal-organic film produces a film of non-crystalline a-Fe203. It is shown

  2. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil [' ' Dunarea de Jos' ' University of Galati, 47, Domneasca, 800008-Galati (Romania)

    2010-02-15

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results. (author)

  3. A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Yiwang Wang

    2017-11-01

    Full Text Available In this paper, a multifunctional isolated and non-isolated dual-mode low-power converter was designed for renewable energy conversion applications such as photovoltaic power generation to achieve different operating modes under bi-directional electrical conversion. The proposed topology consists of a bidirectional non-isolated DC/DC circuit and an isolated converter with a high-frequency transformer, which merge the advantages of both the conventional isolated converter and non-isolated converter with the combination of the two converter technologies. Compared with traditional converters, the multifunctional converter can not only realize conventional bi-directional functions, but can also be applied for many different operation modes and meet the high output/input ratio demands with the two converter circuits operating together. A novel control algorithm was proposed to achieve the various functions of the proposed converter. An experimental platform based on the proposed circuit was established. Both the simulation and experimental results indicated that the proposed converter could provide isolated and non-isolated modes in different applications, which could meet different practical engineering requirements.

  4. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    International Nuclear Information System (INIS)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil

    2010-01-01

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results.

  5. Solid State Energy Conversion for Deep Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermophotovoltaic (TPV) devices employed in static radioisotope generators show great promise for highly efficient, reliable, and resilient power generation for...

  6. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  7. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    Science.gov (United States)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  9. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  10. High precision 16K, 16 channel peak sensing CAMAC ADC

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaniam, E.T

    2013-01-01

    A high density, peak sensing, analog to digital converter (ADC) double width module with CAMAC back plane has been developed for nuclear physics experiments with a large number of detectors. This module has sixteen independent channels in plug-in daughter card mother board mode

  11. Flow Cells for Scalable Energy Conversion and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.

  12. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  13. Environmental studies related to the operation of wind energy conversion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.E.; Cornaby, B.W.; Rodman, C.W.; Sticksel, P.R.; Tolle, D.A.

    1977-12-01

    This biophysical impact assessment explores the environmental consequences of the emerging wind energy conversion technology through field studies done at the DOE/NASA 100-kW Experimental Wind Turbine located at NASA Lewis Research Center's Plum Brook Station near Sandusky, Ohio. A micrometeorological field program monitored changes in the downwind wake of the wind turbine. Horizontal and/or vertical measurements of wind speed, temperature, carbon dioxide concentration, precipitation, and incident solar radiation showed measurable variation within the wake only for precipitation and wind speed. The changes were minor and not likely to result in any secondary effects to vegetation, including crops, because they are within the natural range of variability in the site environment. Effects are negligible beyond the physically altered area of the tower pad, access, and control structures. The wind turbine has not proved to be a high risk to airborne fauna, including the most vulnerable night-migrating songbirds. Behavioral studies indicate the birds will avoid the turbine if they can see it.

  14. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators

    International Nuclear Information System (INIS)

    Yoo, Jinho; Kim, Wook; Choi, Dukhyun; Cho, Seunghyeon; Kim, Chang-Wan; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk

    2015-01-01

    Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators. (paper)

  15. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  16. Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion

    Science.gov (United States)

    Parameshwaran, Vijay; Enck, Ryan; Chung, Roy; Kelley, Stephen; Sampath, Anand; Reed, Meredith; Xu, Xiaoqing; Clemens, Bruce

    2017-05-01

    III-V materials, which exhibit high absorption coefficients and charge carrier mobility, are ideal templates for solar energy conversion applications. This work describes the photoelectrochemistry research in several IIIV/electrolyte junctions as an enabler for device design for solar chemical reactions. By designing lattice-matched epitaxial growth of InGaP and GaP on GaAs and Si, respectively, extended depletion region electrodes achieve photovoltages which provide an additional boost to the underlying substrate photovoltage. The InGaP/GaAs and GaP/Si electrodes drive hydrogen evolution currents under aqueous conditions. By using nanowires of InN and InP under carefully controlled growth conditions, current and capacitance measurements are obtained to reveal the nature of the nanowire-electrolyte interface and how light is translated into photocurrent for InP and a photovoltage in InN. The materials system is expanded into the III-V nitride semiconductors, in which it is shown that varying the morphology of GaN on silicon yields insights to how the interface and light conversion is modulated as a basis for future designs. Current extensions of this work address growth and tuning of the III-V nitride electrodes with doping and polarization engineering for efficient coupling to solar-driven chemical reactions, and rapid-throughput methods for III-V nanomaterials synthesis in this materials space.

  17. Theoretical Comparison of the Energy Conversion Efficiencies of Electrostatic Energy Harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Kyu [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-02-15

    The characteristics of a new type of electrostatic energy harvesting device, called an out-of plane overlap harvester, are analyzed for the first time. This device utilizes a movable part that vibrates up and down on the surface of a wafer and a changing overlapping area between the vertical comb fingers. This operational principle enables the minimum capacitance to be close to 0 and significantly increases the energy conversion efficiency per unit volume. The characteristics of the out-of-plane overlap harvester, an in-plane gap-closing harvester, and an in-plane overlap harvester are compared in terms of the length, height, and width of the comb finger and the parasitic capacitance. The efficiency is improved as the length or the height increases and as the width or the parasitic capacitance decreases. In every case, the out-of-plane overlap harvester is able to create more energy and is, thus, preferable over other designs. It is also free from collisions between two electrodes caused by random vibration amplitudes and creates more energy from off axis perturbations. This device, given its small feature size, is expected to provide more energy to various types of wireless electronics devices and to offer high compatibility with other integrated circuits and ease of embedment.

  18. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  19. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  20. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC: A Case Study in Western Australia

    Directory of Open Access Journals (Sweden)

    Pasquale Contestabile

    2016-12-01

    Full Text Available This paper constructs an optimal configuration assessment, in terms of the financial returns, of the Overtopping BReakwater for wave Energy Conversion (OBREC. This technology represents a hybrid wave energy harvester, totally embedded in traditional rubble mound breakwaters. Nine case studies along the southern coast of Western Australia have been analysed. The technique provides tips on how to estimate the quality of the investments, for benchmarking with different turbine strategy layouts and overlapping with the costs of traditional rubble mound breakwaters. Analyses of the offshore and nearshore wave climate have been studied by a high resolution coastal propagation model, forced with wave data from the European Centre for Medium-Range Weather Forecasts (ECMWF. Inshore wave conditions have been used to quantify the exploitable resources. It has been demonstrated that the optimal investment strategy is nonlinearly dependent on potential electricity production due to outer technical constraints. The work emphasizes the importance of integrating energy production predictions in an economic decision framework for prioritizing adaptation investments.

  2. Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device

    Science.gov (United States)

    Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan

    2018-03-01

    Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.

  3. Energy conversion in engines and machines. 7. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kalide, W.

    1989-01-01

    In view of the modern engineers training methods in which the emphasis is laid on basic training, the book is a profound and easily understandable introduction to the complex field of energy conversion. First a simple introduction is given to the physical fundamentals of thermodynamics and fluid dynamics. The technical processes in piston engines and turbomachinery are explained with particular regard to a comprehensible and physically correct description of the energy conversion processes. Engines are discussed at length, due to the fact that knowledge on primary and secondary energy conversion is an important part of engineers training in this age of energy crises. Types of engines and machines are presented according to their present importance. The new edition covers further some environmental problems, as waste heat, noise and air pollution. (orig./GL) With 313 figs., 11 tabs [de

  4. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    International Nuclear Information System (INIS)

    Mozer, F. S.; Hull, A.

    2010-01-01

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  5. Scientific Opinion on the energy conversion factor of D-tagatose for labelling purposes

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the energy conversion factor of D-tagatose to be used for calculating the energy value of foods to be declared in nutrition labelling....... Energy conversion factors for nutrients for the purpose of nutrition labelling have been set based on the concept of metabolisable energy (ME). The same methodology has been applied to calculate the energy conversion factor for D-tagatose in this opinion. The assessment is based on a dossier prepared...... for Nutrilab NV and submitted by Bioresco Ltd. At present, data are insufficient to derive an accurate ME value for D-tagatose. Relying on the human data indicating a mean absorption rate of 80% (range 69–88%) and a urinary excretion of either 1% or 5%, the corresponding energy values for D-tagatose would be 2...

  6. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  7. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  8. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  9. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  10. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 1

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 129 papers in Volume 1 deal with aerospace power and are divided into the following topical sections: Aircraft power; Aerospace power systems; Batteries for aerospace power; Computer simulation; Power electronics; Power management; Space solar power; Space power systems; Space energy statics/dynamics; Space power--requirements and issues; Space Station power; Terrestrial applications of space power; Thermal management; Wireless transmission; Space nuclear power; Bimodal propulsion; Electric propulsion; Solar thermal; and Solar bimodal. All papers have been processed separately for inclusion on the data base

  11. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  12. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  13. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  14. 20th intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This volume contains information on the mission and status of the DOE's battery energy storage program, the development of an advanced battery electric energy storage system for electric utility load leveling, and the aluminum-air power cell. Plastic-bonded, nonsintered nickel-cadmium batteries for submarines and the cycle life chemistry of ambient-temperature secondary lithium cells are also discussed. The development of zinc-bromine batteries for stationary energy storage, the development of a zinc-chloride battery for 10-kw electric energy storage, and sodium sulfur cells with high conductivity glass electrolytes are discussed. The recovery of lead/acid batteries from abusive deep discharge, and high rate lithium batteries safety testing for U.L. component recognition are reviewed. Enhanced energy recovery, geothermal power, and heat engine cycles are discussed. Hydrogen energy, magnetohydrodynamics and nuclear fission are examined

  15. Nanostructured hybrid ZnO thin films for energy conversion

    Directory of Open Access Journals (Sweden)

    Samantilleke Anura

    2011-01-01

    Full Text Available Abstract We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc and Eosin-Y (EoY. Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

  16. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  17. Remarks to a process-overlapping description of cost structures of energy conversion processes

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-03-01

    The cost of energy conversion processes are more and more determined by capital expenses. These are partly used to improve the efficiency. With a mathematical formula for the relation between capital costs and efficiency a process-over-laping description is proposed and proved at 10 typically chosen energy conversion processes. The result is a classification of enery conversion processes in categories of efficiency-producing and efficiency-independent capital expenditures. Another result is that process-overlapping the relative capital cost supplement is described by the (1-eta)/eta-law. (orig.) [de

  18. Integrated microcantilevers for high-resolution sensing and probing

    International Nuclear Information System (INIS)

    Li, Xinxin; Lee, Dong-Weon

    2012-01-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations. (topical review)

  19. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    Science.gov (United States)

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  20. Laws governing the energy conversion of ionization curves

    International Nuclear Information System (INIS)

    Gorgoskii, V.I.

    1986-01-01

    The author attempts to determine if ionization curves are structured or smooth, the cause of the smoothing of the curves, the possibility of the curves having maxima and why, how many maxima are on the ionization curve, and which of these maxima is the fundamental maxima. The study shows that ionization curves without and additional maximum, i.e., with one fundamental maximum, can be obtained for potassium, rubidium, and cesium. This requires reduction of the density of the electrons in the stream and the density of the atoms of the target gas. It is also shown that in order to obtain ionization curves with additional maxima in the cases of neon, argon, and krypton, the measurements must be carried out at high densities of the electrons in the stream and of the atoms of the target gas

  1. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  2. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  4. Offshore Hydrokinetic Energy Conversion for Onshore Power Generation

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2009-01-01

    Design comparisons have been performed for a number of different tidal energy systems, including a fully submerged, horizontal-axis electro-turbine system, similar to Verdant Tidal Turbines in New York's East River, a platform-based Marine Current Turbine, now operating in Northern Ireland's Strangford Narrows, and the Rotech Lunar Energy system, to be installed off the South Korean Coast. A fourth type of tidal energy system studied is a novel JPL/Caltech hydraulic energy transfer system that uses submerged turbine blades which are mechanically attached to adjacent high-pressure pumps, instead of to adjacent electrical turbines. The generated highpressure water streams are combined and transferred to an onshore hydroelectric plant by means of a closed-cycle pipeline. The hydraulic energy transfer system was found to be cost competitive, and it allows all electronics to be placed onshore, thus greatly reducing maintenance costs and corrosion problems. It also eliminates the expenses of conditioning and transferring multiple offshore power lines and of building offshore platforms embedded in the sea floor.

  5. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    Science.gov (United States)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  6. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    Science.gov (United States)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  7. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  8. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  9. Open cycle ocean thermal energy conversion system structure

    Science.gov (United States)

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  10. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  11. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  12. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  13. High Data Rate Satellite Communications for Environmental Remote Sensing

    Science.gov (United States)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  14. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  15. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  16. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie; Fu, Hui-chun; Li, Linsen; Cabá n-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-01-01

    photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly

  17. Technical evaluation of Aerojet Energy Conversion Company's topical report on a mobile volume reduction system

    International Nuclear Information System (INIS)

    Henscheid, J.W.

    1984-01-01

    This report summarizes EG and G Idaho's review of Aerojet Energy Conversion Company's (AECC's) topical report on a Mobile Volume Reduction System. The review evaluated compliance with pertinent codes, standards and regulations. The initial review was discussed with AECC by EG and G Idaho and the NRC, and all outstanding issues resolved before this final evaluation was made

  18. Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations

    Science.gov (United States)

    Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).

  19. Influences of external factors on the energy conversion and productivity of Scenedesmus sp. in mass culture

    NARCIS (Netherlands)

    Wesselius, J.C.

    1973-01-01

    Experiments about the influence of external factors on the energy conversion in mass cultures of Scenedesmus are described in this thesis. Several types of culture vessels were used in the laboratory as well as in the open. Demonstration models of Miele washing

  20. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  1. Understanding and exploiting optical properties in semiconductor nanowires for solar energy conversion

    DEFF Research Database (Denmark)

    Frau, Eleonora; Tutuncuoglu, Gozde; Matteini, Federico

    2016-01-01

    Semiconductor nanowires are promising building blocks for next generation solar energy conversion at low cost, due to their large absorption cross-sections. Here, the understanding of their absorption power is explored via computational and experimental methods as well as its use in other fields...

  2. The 20 year evolution of an energy conversion course at the United States Military Academy

    International Nuclear Information System (INIS)

    Bailey, Margaret; Oezer Arnas, A.; Potter, Robert; Samples, Jerry W.

    2004-01-01

    Over the past several years, an energy conversion course offered by the Mechanical Engineering Program at the United States Military Academy in West Point, New York, has evolved into a cohesive series of lessons addressing three general topical areas: advanced thermodynamics, advanced mechanical system analysis, and direct energy conversion systems. Mechanical engineering majors enroll in Energy Conversion Systems (ME 472) during the fall semester of their senior year as an advanced elective. ME 472 builds directly on the material covered in Thermodynamics (EM 301) taken during the student's junior year. In the first segment of ME 472, the students study advanced thermodynamic topics including exergy and combustion analyses. The students then analyze various mechanical systems including refrigeration systems, internal combustion engines, boilers, and fossil fuel fired steam and gas turbine combined power plants. Exergetic efficiencies of various equipment and systems are determined. The final portion of the course covers direct energy conversion technology, including fuel cells, photovoltaics, thermoelectricity, thermionics and magnetohydrodynamics. Supplemental lessons on energy storage, semi-conductors and nonreactive energy sources (such as solar collectors, wind turbines, and hydroelectric plants) are included here. This paper discusses the evolution of ME 472 since its inception and explains the motivations for the course's progress

  3. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    van Beek, J.H.G.M.; Supandi, F.B.; Gavai, Anand; de Graaf, A.A.; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  4. Simulating the physiology of athletes during endurance sports events: Modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    Beek, J.H.G.M. van; Supandi, F.; Gavai, A.K.; Graaf, A.A. de; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  5. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  6. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion

    DEFF Research Database (Denmark)

    Contestabile, Pasquale; Iuppa, Claudio; Lauro, Enrico Di

    2017-01-01

    Highlights •An innovative breakwater for overtopping wave energy conversion has been studied. •Physical model tests have been carried out and analysed. •Breakwater design information on loadings acting on various parts of the structure has been presented. •Design formulae and validation of some t...

  7. Using Articulate Virtual Laboratories in Teaching Energy Conversion at the U.S. Naval Academy.

    Science.gov (United States)

    Wu, C.

    1998-01-01

    The Mechanical Engineering Department at the U.S. Naval Academy is currently evaluating a new teaching method which uses computer software. Utilizing the thermodynamic-based software CyclePad, Intelligent Computer Aided Instruction is incorporated in an advanced energy conversion course for Mechanical Engineering students. The CyclePad software…

  8. Artificial vesicles with incorporated photosynthetic materials for potential solar energy conversion systems

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-07-01

    Full Text Available WITH INCORPORATED PHOTOSYNTHETIC MATERIALS FOR POTENTIAL SOLAR ENERGY CONVERSION SYSTEMS J E Smit1, A F Grobler2, A E Karsten1, R W Sparrow3 1 CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2 Unit for drug development and research, North...

  9. Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines

    International Nuclear Information System (INIS)

    Zhong Junhu; Zheng Yuli; Qing Li; Qiang Li

    2010-01-01

    Thermodynamic cycle transferring heat and work was executed in thermoacoustic engines, when the acoustic resonators substituted the moving mechanical components of the traditional heat engines. Based on the traveling-wave phasing and reversible heat transfer, thermoacoustic Stirling engines could achieve 70% of the Carnot efficiency theoretically, if the inevitable viscous dissipation in resonators was also counted as exported power. It should be pointed out an error on this efficiency evaluation in the previous literatures. More than 70% of the acoustic power production was often consumed by the side-branch resonator that was the essential configuration to build up a thermoacoustic Stirling engine. According to the simulation results and some experimental data, the actual available acoustic power consumed by the acoustic loads was restricted by the operating peak-to-mean pressure ratio, i.e. |p 1 /p m |. When the peak-to-mean pressure ratio operated on 4-6.5%, the thermal efficiency and power density of the available acoustic power reached higher levels. But the available acoustic power would approach zero when |p 1 /p m | attained 10%. It was approved that the turbulence oscillation occurred on the higher |p 1 /p m | (usually >4%) was the main reason of the excess dissipation in the side-branch resonator. This character of the available power limited the wide application of thermoacoustic Stirling engines. The evaluation of thermal efficiency and energy conversion also indicated the improving direction of thermoacoustic Stirling engines. Generators driven by the thermoacoustic Stirling engines were an effective way, due to the elimination of the side-branch resonator. To achieve a high power density and a high pressure ratio on the higher available power efficiency level, the standing-wave thermoacoustic engines might outvie the traveling-wave thermoacoustic engines. To enjoy the best features of standing-wave engines and traveling-wave engines simultaneously

  10. A techno-economic evaluation of a biomass energy conversion park

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Witters, N. [Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Reumermann, P. [BTG Biomass Technology Group, Josink Esweg 34, 7545 PN Enschede (Netherlands); Marquez Luzardo, N. [School of Life Sciences and Environmental Technology, Avans Hogeschool, Hogeschoollaan 1, 4800 RA Breda (Netherlands); Broeze, J. [Agrotechnology and Food Sciences Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen (Netherlands)

    2013-04-15

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production.

  11. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    Science.gov (United States)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  12. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  13. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  14. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  15. An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2016-01-01

    Full Text Available Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high, being of great concern to both population and authorities. Our architecture is composed of three different modules: a mobile sensor for monitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process: (i filtering captured data to reduce the variability of consecutive measurements; (ii converting the sensor output to actual pollution levels; (iii reducing the temporal variations produced by mobile sensing process; and (iv applying interpolation techniques for creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.

  16. Pyroelectric and dielectric energy conversion – A new view of the old problem

    International Nuclear Information System (INIS)

    Poprawski, W.; Gnutek, Z.; Radojewski, J.; Poprawski, R.

    2015-01-01

    The pyroelectric effect is commonly used to construct infrared radiation detectors. In this article we intend to pay attention to a possibility of the pyroelectric effect employment along with the temperature dependence of the dielectric permittivity into a direct conversion of the time-alternating heat flux and the electromagnetic radiation to the electric energy. Converters making use of the mentioned phenomena can be applied in the low-power electric energy generators mounted in autonomous electronic devices. Operation principles for pyroelectric and dielectric generators (PEG and DEG) of the electric energy are presented in this work together with a brief review on ferro- and antiferroelectric materials suitable for the generators. It was shown that for the ferroelectrics with the second-order phase transition the conversion efficiency of PEGs did not depend on temperature in a wide temperature range, and ferroelectrics showing an order–disorder phase transition together with composites and heterostructures based on these ferroelectrics had high conversion efficiency. For the first time ferro- and antiferroelectric materials were extensively reviewed with regard to their applicability in PEGs. It was also shown that ferro- and antiferroelectrics with translation-type phase transition, quantum ferroelectrics, ferro- and antiferroelectric relaxors were good materials for DEGs. Considering literature data the efficiency for the thermal-to-electrical energy conversion was estimated for a few typical material groups. Advantages and disadvantages of the individual groups were presented along with their possible limitations for PEG and DEG usage. - Highlights: • A direct conversion of the alternating heat flux to the electric energy is described. • Order–disorder-type ferroelectrics were found to be suitable for pyroelectric energy generators. • Certain ferro- and antiferroelectrics, quantum ones and relaxors were good for dielectric converters. • The

  17. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  18. High-Density Quantum Sensing with Dissipative First Order Transitions.

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-13

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  19. High-Density Quantum Sensing with Dissipative First Order Transitions

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  20. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    Science.gov (United States)

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  1. Growth of 2D Materials and Application in Electrochemical Energy Conversion

    Science.gov (United States)

    Ye, Gonglan

    The discovery of graphene in 2004 has generated numerous interests among scientists for graphene's versatile potentials. The enthusiasm for graphene has recently been extended to other members of two-dimensional (2D) materials for applications in electronics, optoelectronics, and catalysis. Different from graphene, atomically-thin transition metal dichalcogenides (TMDs) have varied band gaps and would benefit for applications in the semiconductor industry. One of the promising applications of 2D TMDs is for 2D integrated circuits to replace current Si based electronics. In addition to electronic applications, 2D materials are also good candidates for electrochemical energy storage and conversion due to their large surface area and atomic thickness. This thesis mainly focuses on the synthesis of 2D materials and their application in energy conversion. Firstly, we focus on the synthesis of two-dimensional Tin Disulfide (SnS2). SnS2 is considered to be a novel material in 2D family. 2D SnS2 has a large band gap ( 2.8 eV) and high carrier mobility, which makes it a potential applicant for electronics. Monolayer SnS2 with large scale and high crystal quality was successfully synthesized by chemical vapor deposition (CVD), and its performance as a photodetector was examined. The next chapter demonstrated a generic method for growing millimeter-scale single crystals as well as wafer-scale thin films of TMDs. This generic method was obtained by studying the precursors' behavior and the flow dynamics during the CVD process of growing MoSe2, and was extended to other TMD layers such as millimeter-scale WSe2 single crystals. Understanding the growth processes of high quality large area monolayers of TMDs is crucial for further fundamental research as well as future development for scalable complex electronics. Besides the synthesis of 2D materials with high qualities, we further explored the relationship between defects and electrochemical properties. By directly observing

  2. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    Science.gov (United States)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  3. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  4. Research Update: Utilizing magnetization dynamics in solid-state thermal energy conversion

    Directory of Open Access Journals (Sweden)

    Stephen R. Boona

    2016-10-01

    Full Text Available We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.

  5. Photoactuators for Direct Optical-to-Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation.

    Science.gov (United States)

    Hu, Ying; Li, Zhe; Lan, Tian; Chen, Wei

    2016-12-01

    Photoactuators with integrated optical-to-mechanical energy conversion capacity have attracted growing research interest in the last few decades due to their unique features of remote control and their wide applications ranging from bionic robots, biomedical devices, and switches to motors. For the photoactuator design, the energy conversion route and structure assembly are two important parts, which directly affect the performance of the photoactuators. In particular, the architectural designs at the molecular, nano-, micro-, and macro- level, are found to play a significant role in accumulating molecular-scale strain/stress to macroscale strain/stress. Here, recent progress on photoactuators based on photochemical and photothermal effects is summarized, followed by a discussion of the important assembly strategies for the amplification of the photoresponsive components at nanoscale to macroscopic scale motions. The application advancement of current photoactuators is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study of the Energy Conversion Process in the Electro-Hydrostatic Drive of a Vehicle

    Directory of Open Access Journals (Sweden)

    Wiesław Grzesikiewicz

    2018-02-01

    Full Text Available In the paper, we describe a study of an electro-hydrostatic hybrid drive of a utility van intended for city traffic. In this hybrid drive, the electric drive is periodically accompanied by hydrostatic drive, especially during acceleration and regenerative braking of the vehicle. We present a mathematical model of the hybrid drive as a set of dynamics and regulation equations of the van traveling at a given speed. On this basis, we construct a computer program which we use to simulate the processes of energy conversion in the electro-hydrostatic drive. The main goal of the numerical simulation is to assess the possibility of reducing energy intensity of the electric drive through such a support of the hydrostatic drive. The obtained results indicate that it is possible to reduce the load on elements of the electric system and, therefore, improve energy conversion.

  7. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  8. New device architecture of a thermoelectric energy conversion for recovering low-quality heat

    Science.gov (United States)

    Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul

    2014-03-01

    Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.

  9. An Experimental Study on Energy Conversion Process of an in-Space CW Laser Thruster

    International Nuclear Information System (INIS)

    Uehara, Susumu; Inoue, Takayoshi; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-01-01

    CW laser propulsion has been investigated to develop a prospective propulsion system that may be used in space. OTV (Orbit Transfer Vehicle) is placed as one of the most effective applications of the propulsion system. In this study, the energy partitioning of incident laser energy was investigated over the wide range of velocity of the flow field in low pressure. Flow velocity is thought to have significant effects on energy conversion process because the distribution of temperature and the position of a laser sustained plasma in the focusing laser beam should be determined so that flow velocity and propagation velocity of optical discharge balance out. It was found that the higher energy conversion efficiency can be achieved by lowering the pressure and increasing the velocity of the flow field

  10. Electrical energy conversion and transport an interactive computer-based approach

    CERN Document Server

    Karady, George G

    2013-01-01

    Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry. The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use mode

  11. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    OpenAIRE

    Naggar H. Saad; Ahmed A. El-Sattar; Mohamed I. Marei

    2016-01-01

    The main challenges of wind energy conversion systems (WECS) are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG) based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG curren...

  12. Dimensionless Energy Conversion Characteristics of an Air-Powered Hydraulic Vehicle

    OpenAIRE

    Dongkai Shen; Qilong Chen; Yixuan Wang

    2018-01-01

    Due to the advantages of resource conservation and less exhaust emissions, compressed air-powered vehicle has attracted more and more attention. To improve the power and efficiency of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer) is used to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy conversion characteristics of...

  13. Recommended methods for evaluating the benefits of ECUT Program outputs. [Energy Conversion and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Levine, L.O.; Winter, C.

    1986-03-01

    This study was conducted to define and develop techniques that could be used to assess the complete spectrum of positive effects resulting from the Energy Conversion and Utilization Technologies (ECUT) Program activities. These techniques could then be applied to measure the benefits from past ECUT outputs. In addition, the impact of future ECUT outputs could be assessed as part of an ongoing monitoring process, after sufficient time has elapsed to allow their impacts to develop.

  14. Investigation of current university research concerning energy conversion and conservation in small single-family dwellings

    Science.gov (United States)

    Grossman, G. R.; Roberts, A. S., Jr.

    1975-01-01

    An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.

  15. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    OpenAIRE

    Jain, Bhavna; Singh, Sameer; Jain, Shailendra; Nema, R. K.

    2015-01-01

    Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL) and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding...

  16. Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites

    International Nuclear Information System (INIS)

    Fan, Xiaoming; King, Benjamin C; Loomis, James; Panchapakesan, Balaji; Campo, Eva M; Hegseth, John; Cohn, Robert W; Terentjev, Eugene

    2014-01-01

    Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from S optical  = 0.51–0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ∼0.5 MPa W −1 and energy conversion of ∼0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications. (paper)

  17. Electrochemical Systems for Renewable Energy Conversion from Salinity and Proton Gradients

    OpenAIRE

    Morais, William G.; Lima, Gilberto; Gomes, Wellington J. A. S.; Huguenin, Fritz

    2018-01-01

    Ever-rising energy demand, fossil fuel dependence, and climate issues have harmful consequences to the society. Exploring clean and renewable energy to diversify the world energy matrix has become an urgent matter. Less explored or unexplored renewable energy sources like the salinity and proton gradient energy are an attractive alternative with great energy potential. This paper discusses important electrochemical systems for energy conversion from natural and artificial concentration gradie...

  18. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  19. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  20. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  1. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  2. Multivariable H{sub 2} and H{infinity} control for a wind energy conversion system - a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Ronilson; Coutinho, Gilmar Alves; Ferreira, Alexandre Jose; Torga, Flavio Allison [Universidade Federal de Ouro Preto (EM/DECAT/UFOP), MG (Brazil). Escola de Minas. Dept. de Engenharia de Controle e Automacao e de Tecnicas Fundamentais], Emails: rocha@em.ufop.br, gacoutinho@gmail.com, aleengaut@yahoo.com.br, torgautomacao@yahoo.com.br

    2010-10-15

    The Wind Energy Conversion System (WECS) is a nonlinear system, highly dependent on a stochastic variable characterized by sudden variations, and subjected to cyclical disturbances caused by operational phenomena. Thus, the quality of a WECS controller is measured by its capacity to deal with unmodeled dynamics, stochastic signals, and periodic, as well as non-periodic disturbances. Since the WECS' objectives can be easily specified in terms of maximum allowable gain in the disturbance-to-output transfer functions, H2 and H{infinity} methodologies can be good options for designing a WECS stabilizing controller, combining specifications such as: disturbance attenuation, asymptotic tracking, bandwidth limitation, robust stability, and trade-off between performance and control effort. Designs for WECS multivariable feedback controllers based on H2 and H{infinity} methodologies are presented in this paper. The performances of both controllers are computationally simulated, analyzed and compared in order to identify the advantages and drawbacks of each controller design. (author)

  3. Studies on the effect of radio frequency field in a cusp-type charge separation device for direct energy conversion

    International Nuclear Information System (INIS)

    Hamabe, Masaki; Izawa, Hiroaki; Takeno, Hiromasa; Nakamoto, Satoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2016-01-01

    In D- 3 He fusion power generation, an application of direct energy conversion is expected in which separation of charged particles is necessary. A cusp-type direct energy converter (CuspDEC) was proposed as a charge separation device, but its performance was degraded for a high density plasma. The goal of the present study is to establish an additional method to assist charge separation by using a nonlinear effect of a radio frequency (rf) electric field. Following to the previous study, we experimentally examine the effect of an rf field to electron motion in a CuspDEC device. Two ring electrodes were newly installed in a CuspDEC simulator and the current flowing into the electron collector located in the line cusp region was measured on an rf field application. The significant variation in the current was found, and an improvement of the charge separation can be expected by using the phenomenon appropriately. (author)

  4. Clean and efficient energy conversion processes (Cecon-project). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  5. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  6. A proposed strategy for power optimization of a wind energy conversion system connected to the grid

    International Nuclear Information System (INIS)

    Taraft, S.; Rekioua, D.; Aouzellag, D.; Bacha, S.

    2015-01-01

    Highlights: • Wind energy conversion based doubly fed induction generator controlled by matrix converter. • Operation at both sub and super-synchronous regions is possible with the proposed drive system. • Double the power generated by the DFIG at a twice of speed rated. • Sliding mode control is used to achieve active and reactive power control. - Abstract: Many strategies have been developed in last decade to optimize power extracted from wind energy conversion system where many of them can produce only 30% more than the rated power. With the considered strategy, the generated wind power can reach twice its nominal value using a fast and reliable fully rugged electrical control. Indeed, by employing a suitable control technique where the produced power in super-synchronous mode is derived from both the stator and the rotor. Also, the rotor provided power in this case grows up 100% comparing to stator rated power. However, this solution permits to maintain the wind energy conversion system operation in its stable area. The considered system consists of a double fed induction generator whose stator is connected directly to the grid and its rotor is supplied by matrix converter. In this paper, the sliding mode approach to achieve active and reactive power control is used. This latter is combined with de Perturbation and Observation Maximum Power Point Tracking used in the second operation zone. The obtained simulations results are assessed and carried out using Matlab/Simulink package and show the performance and the effectiveness of the proposed control

  7. Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry

    Science.gov (United States)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-01-01

    Magnetic reconnection, a fundamental plasma process, releases magnetic energy and converts it to particle energy, by accelerating and heating ions and electrons. This energy conversion plays an important role in the Earth's magnetotail. A two-dimensional particle-in-cell simulation is performed to study such a conversion in a magnetotail topology, one with a nonzero Bz, and the energy conversion is found to be more efficient in the earthward outflow than in the tailward outflow. Such earthward-tailward asymmetry is manifested not only in j .E but also in Poynting flux, Hall electromagnetic fields, bulk kinetic energy flux, enthalpy flux, heat flux, bulk acceleration, heating, and suprathermal particle energization, all of which are more prevalent on the earthward side. Such asymmetries are consistent with spacecraft observations reported in the literature. Our study shows that in the magnetotail, most of the energy converted by reconnection flows predominantly toward the Earth and has the potential of being geoeffective, rather than being expelled to the solar wind by the tailward flow. The energy conversion asymmetry arises from the presence of the non-zero normal magnetic field, the stronger lobe magnetic field, and the stronger cross-tail current earthward of the reconnection site in the pre-reconnecting thin current sheet.

  8. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  9. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 100 papers in Volume 2 are divided into the following topical sections: (1) Environmental impact--Impacts and technologies; (2) Energy systems--Electric/hybrid vehicle technology; Transportation system assessments; Simulation and modeling of systems; Cogeneration and other energy systems; Thermal energy storage applications; Fluids and heat transfer topics; Demand-side management in buildings; and Energy management; (3) Policy impacts on energy--Developing countries and Global; (4) Renewable energy sources--Solar and geothermal power; Solar thermal power; Photovoltaics; Biomass power; Solar thermal; and Renewable energy--status and future. All papers have been processed separately for inclusion on the data base

  10. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  11. Use of nuclear space technology of direct energy conversion for terrestrial application

    International Nuclear Information System (INIS)

    Chitaykin, V.I.; Meleta, Ye.A.; Yarygin, V.I.; Mikheyev, A.S.; Tulin, S.M.

    2000-01-01

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  12. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    Science.gov (United States)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty

  13. Numerical Study of the Cascading Energy Conversion of the Reconnecting Current Sheet in Solar Eruptions

    Science.gov (United States)

    Ye, J.; Lin, J.; Raymond, J. C.; Shen, C.

    2017-12-01

    In this paper, we present a resistive magnetohydrodynamical study (2D) of the CME eruption based on the Lin & Forbes model (2000) regarding the cascading reconnection by a high-order Godunov scheme code, to better understand the physical mechanisms responsible for the internal structure of the current sheet (CS) and the high reconnection rate. The main improvements of this work include: 1) large enough spatial scale consistent with the stereo LASCO data that yields an observable current sheet 2) A realistic plasma environment (S&G, 1999) adopted rather than an isothermal atmosphere and higher resolution inside CS 3) The upper boundary condition set to be open. The simulation shows a typical acceleration below 2 R⊙, then its speed slightly fluctuated, and the flux rope velocity is estimated to be 100 km/s-250 km/s for a slow CME. The reconnection rates are around 0.02 estimated from inflow and outflow velocities. The dynamic features show a great consistence with the LASCO observations. Looking into the fine structure of CS, magnetic reconnection initializes with a Sweet-Parker stage, and undergoes the time-dependent Petschek/fractural patterns. While the CME continues climbing up, the outflow region becomes turbulent which enhances the reconnection rates furthermore. The local reconnection rates present a simple linear dependence with the length-width ratio of multiple small-scale CSs. The principal X-point is close to the Sun's surface during the entire eruption, causing the energy partition to be unequal. Energy conversion in the vicinity of the principal X-point has also been addressed by simply employing energy equations. And we demonstrate that the dominant energy transfer consists of a conversion of the incoming Poynting flux to enthalpy flux in the sunward direction and bulk kinetic energy in the CME direction. The spectrum of magnetic energy doesn't follow a simple power law after secondary islands appear, and the spectrum index varies from 1.5 to 2

  14. Study of Thermally Responsive Ionic Liquids for Novel Water Desalination and Energy Conversion Applications

    KAUST Repository

    Zhong, Yujiang

    2018-04-01

    The rapidly expanding of the global population in the 21st-century forces people facing two serious problems: water scarcity and energy shortage. Enormous continuous studies focus on providing enough fresh water and energy in a sustainable way. This thesis aims at exploring novel membrane processes based on thermally responsive ionic liquids with the upper critical solution temperature (UCST ILs) for water desalination and energy conversion from low-grade heat energy to electricity. A UCST IL protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was first experimentally studied as a novel draw solute in a thermal forward osmosis (FO). A 3.2 M [Hbet][Tf2N] solution can be obtained via spontaneous phase separation from an IL and water mixture at room temperature. By heating and maintaining the temperature above 56°C, this solution can draw water from high-salinity solution up to 3.0 M, 5 times salty as the sea water. The IL draw solution can be easily regenerated by phase separation. Conducting the FO process at higher temperatures can also increase the water flux. According to the different choices of the freshwater polishing step, the electric energy consumption in this novel process was estimated as 26.3% to 64.2% of conventional one-step sea water reverse osmosis. Two UCST ILs with better performance, [Hbet][Tf2N] and choline bis(trifluoromethylsulfonyl)imide ([Choline][Tf2N]), were selected as the agents in a novel closed-loop thermally responsive IL osmotic heat engine (TRIL-OHE) to convert low-grade thermal energy to electricity. The specific energies of the [Hbet][Tf2N] system and the [Choline][Tf2N] system are 2500 kJ/t and 3700 kJ/t, which are 2.7 and 4.0 times of the seawater and river water system, respectively. The maximum power density measured from a commercial FO membrane is 1.5 W/m2 for the [Hbet][Tf2N] system and 2.3 W/m2 for the [Choline][Tf2N] system, leaving a big room to improve if highly permeable membranes are used. Another

  15. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Science.gov (United States)

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  16. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  17. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.

    Science.gov (United States)

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue

    2018-04-11

    Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.

  18. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  19. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

    Science.gov (United States)

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-09-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources.

  20. Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

    Directory of Open Access Journals (Sweden)

    Franz A. M. Koeck

    2017-12-01

    Full Text Available Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range. These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission. In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to

  1. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  2. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  3. Investigation of Material Problems for High Temperature, High Power Space Energy-Conversion Systems.

    Science.gov (United States)

    1986-07-01

    Ednonds: Segregation to Interphase Boundaries in Liquid-Phase Sintered Tungsten Alloys, Metallurg. Trans. 14A, 667, 1983. 77. N. Adam : The Physics and...case dispersion-strengthening alloys are superior. Theories --’ of dispersion strengthening have been reviewed by Ansell 14]. . In general, the...metals and alloys, ASM, Cleverland, Ohio , 1, 29-37. 4. Ansel , G.S.(1970), Physical Metallurgy (2nd. ed.) (R. W.Cahned) pp.1083-1128, North-Holland

  4. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  5. Survey of Historical and Current Site Selection Techniques for the Placement of Small Wind Energy Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The purpose of this study was to identify and document methods and practices used in siting of wind energy conversion systems (WECS). The study covers the period from the early 1900s to the present day.

  6. Evolution of energy conversion plants; Evoluzione delle macchine per la conversione dell'energia

    Energy Technology Data Exchange (ETDEWEB)

    Osnaghi, C. [Milan Politecnico, Milan (Italy). Dipt. di Energetica

    2001-06-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility. [Italian] L'articolo descrive l'evoluzione recente e lo sviluppo futuro degli impianti di conversione dell'energia, evidenziando la grande importanza del progresso scientifico e tecnologico nella progettazione delle macchine, al fine di ottimizzare l'uso delle risorse energetiche e migliorare la compatibilita' ambientale.

  7. A comparative study between three sensorless control strategies for PMSG in wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Brahmi, Jemaa; Krichen, Lotfi; Ouali, Abderrazak [Advanced Control and Energy Management Research Unit ENIS, Department of Electrical Engineering, University of Sfax, 3038 Sfax (Tunisia)

    2009-09-15

    This paper presents a comparative study of sliding mode, artificial neural network and model reference adaptive speed observers for a speed sensorless permanent magnet synchronous generator (PMSG) in wind energy conversion system (WECS). Wind velocity and position sensorless operating methods for wind generation system using observer are proposed only by measuring phase voltages and currents. Maximum wind energy extraction is achieved by running the wind turbine generator in variable-speed mode. In addition the three speed observers are compared to verify the robustness against parameter variations. (author)

  8. Environmental Monitoring Techniques and Equipment related to the installation and operation of Marine Energy Conversion Systems

    International Nuclear Information System (INIS)

    Scanu, Sergio; Carli, Filippo Maria; Piermattei, Viviana; Bonamano, Simone; Paladini de Mendoza, Francesco; Marcelli, Marco; Peviani, Maximo Aurelio; Dampney, Keith; Norris, Jennifer

    2015-01-01

    Results of activities under project Marine Renewables Infrastructure Network for Emerging Energy Technologies (MaRINET) are reported, which led to DEMTE, a database, created on the basis of standardized monitoring of the marine environment during installation, operation and decommissioning of Marine Energy Conversion Systems. Obtained with the consortium partners’ available techniques and equipment, the database shows that such instruments cover all identified marine environmental compartments, despite the lack of underwater vehicles and the reduced skills in using satellite technologies. These weaknesses could be overcome by an accurate planning of equipment, techniques and knowledge sharing. The approach here presented also leads to an effective analysis even in non-marine contexts

  9. Design rules for donors in bulk-heterojunction solar cells - towards 10 % energy-conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scharber, M.C.; Muehlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Brabec, C.J. [Konarka Austria, Altenbergerstrasse 69, A-4040 Linz (Austria); Heeger, A.J. [Department of Materials Science, Broida Hall 6125, University of California at Santa Barbara, Santa Barbara, CA 3106-5090 (United States)

    2006-03-17

    For bulk-heterojunction photovoltaic cells fabricated from conjugated polymers and a fullerene derivative, the relation between the open-circuit voltage (V{sub oc}) and the oxidation potential for different conjugated polymers is studied. A linear relation between V{sub oc} and the oxidation potential is found (see figure). Based on this relation, the energy-conversion efficiency of a bulk-heterojunction solar cell is derived as a function of the bandgap and the energy levels of the conjugated polymer. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  11. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  12. Integrated automation system for a pilot plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Raceanu, Mircea; Stanciu, Vasile; Stefanescu, Ioan; Enache, Adrian; Lazaro, Pavel Gabriel; Lazaroiu, Gheorghe; Badea, Adrian

    2007-01-01

    Based on Hydrogen and Fuel Cells researches and technological capabilities achieved in the National R and D Programs, ICIT Rm. Valcea built an experimental-demonstrative pilot plant for energy conversion using hydrogen PEMFCs. This pilot plant consists of a fuel processor based on steam methane reforming (SMR) process, a hydrogen purification unit, a PEM fuel cells stack (FCS) and a power electronics unit. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or on-line operational control, gas management, humidification, temperature and flow controls. (authors)

  13. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  14. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  15. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  16. Advanced control of a doubly-fed induction generator for wind energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Poitiers, F.; Bouaouiche, T.; Machmoum, M. [Institut de Recherche en Electronique et Electrotechnique de Nantes Atlantique, rue Christian Pauc, 44306 Nantes (France)

    2009-07-15

    The aim of this paper is to propose a control method for a doubly-fed induction generator used in wind energy conversion systems. First, stator active and reactive powers are regulated by controlling the machine inverter with three different controllers: proportional-integral, polynomial RST based on pole placement theory and Linear Quadratic Gaussian. The machine is tested in association with a wind-turbine emulator. Secondly a control strategy for the grid-converter is proposed. Simulations results are presented and discussed for each converter control and for the whole system. (author)

  17. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  18. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  19. Impact of High Mathematics Education on the Number Sense

    Science.gov (United States)

    Castronovo, Julie; Göbel, Silke M.

    2012-01-01

    In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation. While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a better anchored ENS and better mapping abilities between ENS and ANS. PMID:22558077

  20. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  1. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    Science.gov (United States)

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  2. Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2008-01-01

    New thermal rate equations were developed by taking the temperature dependences of the electrical resistivity ρ and thermal conductivity κ of the thermoelectric (TE) materials into the thermal rate equations on the assumption that they vary linearly with temperature T. The relative energy conversion efficiency η/η 0 for a single TE element was formulated by approximate analysis, where η and η 0 are the energy conversion efficiencies derived from the new and conventional thermal rate equations, respectively. Applying it to Si-Ge alloys, the temperature dependence of ρ is stronger than that of κ, so the former has a more significant effect on η/η 0 than the latter. However, the degree of contribution from both of them to η/η 0 was a little lower than 1% at the temperature difference ΔT of 600 K. When the temperature dependence of κ was increased to become equal to that of ρ, however, it was found that η/η 0 is increased by about 10% at ΔT = 600 K. It is clarified here that the temperature dependences of ρ and κ are also important factors for an improvement in η

  3. Controlling system for an experimental demonstration plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihail; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Patularu, Laurentiu

    2006-01-01

    Full text: In the last decades of the previous century, due to global environmental problems, energy security and supply issues, many studies were conducted to investigate the uses for hydrogen energy and facilitate its penetration as an energy carrier. Subsequently, many industries worldwide began developing and producing hydrogen, hydrogen-powered vehicles, hydrogen fuel cells, and other hydrogen-based technologies. In view of the substantial long-term public and private benefits arising from hydrogen and fuel cells, the European Union and national governments throughout Europe, including the Romanian one, are working towards developing a consistent policy framework preparing the transition to a hydrogen based economy. ICIT Rm Valcea developed a research program on energy conversion using fuel cells, a project supported by the Romanian Ministry of Education and Research within the National R and D Program. An experimental demonstration pilot plant of energy conversion using PEMFCs and hydrogen producing via steam methane reforming (SMR) was achieved in order to investigate the development of small-scale SMR technologies and to allow testing and developing of specific components. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or 'on line' operational control, gas management, humidification, temperature and flow controls of the pilot plant. (authors)

  4. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  5. Data on flow cell optimization for membrane-based electrokinetic energy conversion

    Directory of Open Access Journals (Sweden)

    David Nicolas Østedgaard-Munck

    2017-12-01

    Full Text Available This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC which has been presented in Østedgaard-Munck et al. (2017 [1]. Two main flow cell parameters have been monitored and optimized: A the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane (Rmem, anode charge transfer (RA, cathode charge transfer (RC, and ion diffusion in the porous electrodes (RD.The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property. Keywords: Electrokinetic energy conversion, Electrochemical flow cell, Conversion efficiency

  6. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.

    Science.gov (United States)

    Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie

    2018-06-07

    Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Assessment of control strategies for fault ride through of SCIG-based wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Manaullah

    2016-01-01

    Full Text Available With increasing penetration of wind energy into the power grid, researchers have started focusing more on control and coordination of wind energy conversion systems (WECS with the other components at system level, especially during fault. It is important to implement a suitable fault ride through control strategy to avoid tripping of the generators when the power system is subjected to voltage dips normally below 90% of nominal voltage. The dips below 90% may lead to a significant loss of generation and frequency collapse, followed by a blackout. This article implements and assesses the methodologies to deal with such situations for squirrel cage induction generator-based wind energy conversion systems employing fully rated power electronic converters. Three distinct control techniques—namely, balanced positive sequence control, positive negative sequence control, and dual current control—have been simulated and applied to grid side converter of SCIG-based WECS. The performance of all the three control strategies has been compared and presented in this work. During this study, the system is subjected to the most common unsymmetrical line to ground (LG fault and most severe symmetrical LLL fault on grid for the purpose of anaysis.

  8. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2009-01-01

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of the components and applied control strategy. There are many available patterns of combining the power flows to meet load requirements making it difficult to analyze and evaluate a newly designed HEV. In order to enhance design of HEVs, the paper provides a stand alone analytical framework for evaluating energy conversion phenomena of different HEV topologies. Analytical analysis is based on the energy balance equations and considers the complete energy path in the HEVs from the energy sources to the wheels and to other energy sinks. The analytical framework enables structuring large amount of data in physically meaningful energy flows and associated energy losses, and therefore provides insightful information for HEV optimization. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components, since it reveals and quantifies the instruments that could lead to improved energy conversion efficiency of particular HEV. The analytical framework is also applicable for correcting the energy consumption of the HEV to the value corresponding to balanced energy content of the electric storage devices.

  9. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    Energy Technology Data Exchange (ETDEWEB)

    Whittier, J.; Haase, S.; Milward, R.; Churchill, G.; Searles, M.B. [NEOS Corp., Lakewood, CO (United States); Moser, M. [Resource Conservation Management, Inc., Berkeley, CA (United States); Swanson, D.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specific to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.

  10. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators

    International Nuclear Information System (INIS)

    Sheng, Shiqi; Tu, Z C

    2013-01-01

    A unified χ-criterion for heat devices (including heat engines and refrigerators), which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance (de Tomás et al 2012 Phys. Rev. E 85 010104), is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures T c and T h ( > T c ). By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum χ asymptotically approaches √(ε C ) when the relative temperature difference between two heat baths ε C -1 ≡(T h -T c )/T c is sufficiently small. Correspondingly, the efficiency at maximum χ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be η C /2+η C 2 /8 up to the second order term of η C ≡ (T h − T c )/T h , which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left–right symmetry (Esposito et al 2009 Phys. Rev. Lett. 102 130602). (fast track communication)

  11. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  12. Earless toads sense low frequencies but miss the high notes

    DEFF Research Database (Denmark)

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A

    2017-01-01

    Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternat......Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre......-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared......, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...

  13. Compressive sensing of high betweenness centrality nodes in networks

    Science.gov (United States)

    Mahyar, Hamidreza; Hasheminezhad, Rouzbeh; Ghalebi K., Elahe; Nazemian, Ali; Grosu, Radu; Movaghar, Ali; Rabiee, Hamid R.

    2018-05-01

    Betweenness centrality is a prominent centrality measure expressing importance of a node within a network, in terms of the fraction of shortest paths passing through that node. Nodes with high betweenness centrality have significant impacts on the spread of influence and idea in social networks, the user activity in mobile phone networks, the contagion process in biological networks, and the bottlenecks in communication networks. Thus, identifying k-highest betweenness centrality nodes in networks will be of great interest in many applications. In this paper, we introduce CS-HiBet, a new method to efficiently detect top- k betweenness centrality nodes in networks, using compressive sensing. CS-HiBet can perform as a distributed algorithm by using only the local information at each node. Hence, it is applicable to large real-world and unknown networks in which the global approaches are usually unrealizable. The performance of the proposed method is evaluated by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that CS-HiBet outperforms the best existing methods with notable improvements.

  14. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    Science.gov (United States)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was

  15. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    Science.gov (United States)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  17. Analysis of smear in high-resolution remote sensing satellites

    Science.gov (United States)

    Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud

    2016-10-01

    High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.

  18. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  19. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Naggar H. Saad

    2016-05-01

    Full Text Available The main challenges of wind energy conversion systems (WECS are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG current to extract the maximum power from the wind at a given wind velocity and to inject reactive power to the grid. Reactive power injection during the fault satisfying the grid-codes requirement. The proposed WECS has been modeled and simulated using PSCAD/EMTDC software package.

  20. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  1. Permanent Magnet Synchronous Generator Driven Wind Energy Conversion System Based on Parallel Active Power Filter

    Directory of Open Access Journals (Sweden)

    FERDI Brahim

    2014-05-01

    Full Text Available This paper proposes a novel application of the instantaneous P-Q theory in a wind energy conversion system (WECS. The proposed WECS is formed by permanent magnet synchronous generator (PMSG wind turbine system connected to the grid through parallel active power filter (PAPF. PAPF uses the generated wind energy to feed loads connected at the point of common coupling (PPC, compensates current harmonics and injects the excess of this energy into the grid using P-Q theory as control method. To demonstrate the feasibility and the performance of the proposed control scheme, simulation of this wind system has been realized using MATLAB/SIMULINK software. Simulation results show the accuracy and validity of the proposed control scheme for the PMSGPAPF system.

  2. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  3. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  4. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  5. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011

  6. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    Science.gov (United States)

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  7. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanhui [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027 (China); Liu, Ningning [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Ku, Xiaoke, E-mail: xiaokeku@zju.edu.cn [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Fan, Jianren [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  8. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  9. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  10. The role of geometry in nanoscale rectennas for rectification and energy conversion

    Science.gov (United States)

    Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.

    2013-09-01

    We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).

  11. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  12. Photovoltaic energy conversion and wind power plants creating new jobs; Arbeitsplaetze durch Photovoltaik und Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Hille, G.; Hoffmann, V.U. [Fraunhofer ISE, Freiburg (Germany); Dienhart, H.; Langniss, O.; Nitsch, J. [DLR, Stuttgart (Germany)

    1997-12-01

    Experts are unanimous that opening up new markets through innovative technologies will be the successful strategy for reversing the upward trend of unemployment in Germany. This approach puts renewable energy sources into the foreground, as enhanced use of wind power and photovoltaic energy conversion will no doubt create new jobs. These technologies will, however, require favourable regulatory framework conditions in order to become a significant force in combatting unemployment. (orig./CB) [Deutsch] Es gilt unter Experten als sicher, dass eine Umkehr am Arbeitsmarkt nur dadurch zu schaffen ist, dass innovative Technologien genutzt und damit neue Maerkte erschlossen werden. Demnach koennte etwa dem Ausbau der regenerativen Energietraeger Wind und Photovoltaik zur Schaffung zukunftssicherer Arbeitsplaetze eine grosse Bedeutung zukommen. Einen ernstzunehmenden Beitrag im Kampf gegen die Arbeitslosigkeit koennen diese Technologien allerdings nur unter bestimmten Rahmenbedingungen leisten. (orig./RHM)

  13. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  14. Cotton gin trash in the western United States: Resource inventory and energy conversion characterization

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.G.; Quinn, M.W.; Whittier, J.P. [NEOS Corp., Lakewood, CO (United States); Cohen, T.M.; Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (United States); Craig, J.D. [Cratech Inc., Tahoka, TX (United States); Swanson, D.S.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that will allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.

  15. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    Science.gov (United States)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  16. Hierarchically structured exergetic and exergoeconomic analysis and evaluation of energy conversion processes

    International Nuclear Information System (INIS)

    Hebecker, Dietrich; Bittrich, Petra; Riedl, Karsten

    2005-01-01

    Evaluation of the efficiency and economic benefit of energy conversion processes and technologies requires a scientifically based analysis. The hierarchically structured exergetic analysis provides a detailed characterization of complex technical systems. By defining corresponding evaluation coefficients, the exergetic efficiency can be assessed for units within the whole system. Based on this exergetic analysis, a thermoeconomic evaluation method is developed. A cost function is defined for all units, subsystems and the total plant, so that the cost flow in the system can be calculated. Three dimensionless coefficients, the Pauer factor, the loss coefficient and the cost factor, enable pinpointing cost intensive process units, allocating cost in cases of co-production and gaining insight for future design improvements. The methodology is demonstrated by a biomass gasification plant producing electricity, heat and cold

  17. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  18. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Jin, Hanhui; Liu, Ningning; Ku, Xiaoke; Fan, Jianren

    2017-01-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  19. Current status of self rectifying air turbines for wave energy conversion

    International Nuclear Information System (INIS)

    Setoguchi, Toshiaki; Takao, Manabu

    2006-01-01

    This paper reviews the present state of the art on self rectifying air turbines, which could be used for wave energy conversion. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been evaluated numerically and compared from the viewpoints of their starting and running characteristics. The types of turbine included in the paper are: (a) Wells turbine with guide vanes (WTGV); (b) turbine with self-pitch-controlled blades (TSCB); (c) biplane Wells turbine with guide vanes (BWGV); (d) impulse turbine with self-pitch-controlled guide vanes (ISGV); and (e) impulse turbine with fixed guide vanes (IFGV). As a result, under irregular wave conditions, it is found that the running and starting characteristics of impulse type turbines could be superior to those of the Wells turbine. Moreover, the authors have explained the mechanism of the hysteretic behavior of the Wells turbine and the necessity of links for improvement of the performance of the ISGV

  20. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (