WorldWideScience

Sample records for high energy short

  1. The early high-energy afterglow emission from short GRBs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We calculate the high energy afterglow emission from short Gamma-Ray Bursts(SGRBs) in the external shock model.There are two possible components contributing to the high energy afterglow:electron synchrotron emission and synchrotron self-Compton(SSC) emission.We find that for typical parameter values of SGRBs,the early high-energy afterglow emission in 10 MeV-10 GeV is dominated by synchrotron emission.For a burst occurring at redshift z = 0.1,the high-energy emission can be detectable by Fermi LAT if the blast wave has energy E ≥ 1051 ergs and the fraction of electron energy εe≥ 0.1.This provides a possible explanation for the high energy tail of SGRB 081024B.

  2. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    Science.gov (United States)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  3. Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability

    Science.gov (United States)

    Kumar, Manoj; Reghu, T.; Biswas, A. K.; Bhargav, Pankaj; Pakhare, J. S.; Kumar, Shailesh; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.

    2014-12-01

    The design, development and operational characteristics of a 1 J, repetitively pulsed, line tunable TEA CO2 laser producing nearly tail free short pulses (~170 ns) suitable for laser isotope separation is discussed. Tail free short laser pulses were generated by employing a nitrogen lean gaseous active medium. Use of an indigenously developed stable pulsed power supply, uniform and intense UV spark pre-ionization and optimum gas purging with catalytic regeneration to control the deleterious oxygen accumulation helps generate laser pulses with high energy stability. Integration of a sensitive arc detection system allows long term arc-free operation of the laser and protects it from catastrophic failure. Laser pulses in more than 90 lines in 10.6 μm and 9.6 μm bands of CO2 laser spectrum with energy about 1 J in as many as 50 lines could be generated with a typical efficiency of about 4%. A typical pulse to pulse energy stability of ±1.4% was obtained during one hour of continuous operation of the TEA CO2 laser at 75 Hz.

  4. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    Science.gov (United States)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL Z target via bremsstrahlung into low-divergence (Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  5. High-energy emission in short GRBs and the role of magnetar central engines

    NARCIS (Netherlands)

    A. Rowlinson; P.T. O'Brien

    2013-01-01

    A significant number of long Gamma-ray Bursts (GRBs) detected by the Swift Satellite have a plateau phase signifying ongoing energy injection. Using BAT and XRT observations, we find that many short GRBs show similar behavior which challenges the typical short GRB progenitor model. We suggest the re

  6. Milagro Constraints on Very High Energy Emission from Short Duration Gamma-Ray Bursts

    CERN Document Server

    Abdo, A A; Berley, D; Blaufuss, E; Casanova, S; Dingus, B L; Ellsworth, R W; González, M M; Goodman, J A; Hays, E; Hoffman, C M; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Némethy, P; Noyes, D; Ryan, J M; Samuelson, F W; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Xu, X W; Yodh, G B

    2007-01-01

    Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led to the observation of the first afterglows and the measurement of the first redshifts from this type of burst. Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Seventeen short duration (100 GeV counterparts to these GRBs and find no significant emission correlated with these bursts. Due to the absorption of high-energy gamma rays by the extragalactic background light (EBL), detections are only expected for redshifts less than ~0.5. While most long duration GRBs occur at redshifts higher than 0.5, the opposite is thought to be true of short GRBs. Lack of a detected VHE signal thus allows setting meaningful fluence limits. One GRB in the sample (050509b) has a likely association with a galaxy at a redshift of 0.225, while another (051103) has been tentatively linked to the nearby galaxy M81. Fluence limits are corrected for EBL absorption, either using the known measu...

  7. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    CERN Document Server

    Sonoda, T; Tomita, H; Sakamoto, C; Takatsuka, T; Furukawa, T; Iimura, H; Ito, Y; Kubo, T; Matsuo, Y; Mita, H; Naimi, S; Nakamura, S; Noto, T; Schury, P; Shinozuka, T; Wakui, T; Miyatake, H; Jeong, S; Ishiyama, H; Watanabe, Y X; Hirayama, Y; Okada, K; Takamine, A

    2012-01-01

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN's fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa - 10^-3 Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by ...

  8. Observation of nuclear dechanneling length reduction for high energy protons in a short bent crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2015-04-01

    Full Text Available Deflection of 400 GeV/c protons by a short bent silicon crystal was studied at the CERN SPS. It was shown that the dechanneling probability increases while the dechanneling length decreases with an increase of incident angles of particles relative to the crystal planes. The observation of the dechanneling length reduction provides evidence of the particle population increase at the top levels of transverse energies in the potential well of the planar channels.

  9. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  10. Nanostructured MgH2 Obtained by Cold Rolling Combined with Short-time High-energy Ball Milling

    OpenAIRE

    Ricardo Floriano; Daniel Rodrigo Leiva; Stefano Deledda; Bjørn Christian Hauback; Walter José Botta

    2013-01-01

    MgH2 was processed by short time high-energy ball milling (BM) and cold rolling (CR). A new alternative processing route (CR + BM) using the combination of CR followed by short time BM step was also applied. The effects on the final morphology, crystalline structure and H-sorption properties were evaluated. The CR + BM processing (compared to BM and CR process) resulted in an inhomogeneous particle size distribution and the biggest crystallite size of MgH2, showing that there is a clear depen...

  11. Simulation of Short-Term High-Temperature Impact Processes by Using a High-Energy Laser Beam

    Science.gov (United States)

    Ebert, M.; Hecht, L.; Hamann, C.

    2016-08-01

    This study applies high-energy laser beam experiments to better understand the high-temperature chemical interaction processes between iron meteorite projectiles and siliceous target material analog to meteorite impacts.

  12. Nanostructured MgH2 obtained by cold rolling combined with short-time high-energy ball milling

    Directory of Open Access Journals (Sweden)

    Ricardo Floriano

    2012-01-01

    Full Text Available MgH2 was processed by short time high-energy ball milling (BM and cold rolling (CR. A new alternative processing route (CR + BM using the combination of CR followed by short time BM step was also applied. The effects on the final morphology, crystalline structure and H-sorption properties were evaluated. The CR + BM processing (compared to BM and CR process resulted in an inhomogeneous particle size distribution and the biggest crystallite size of MgH2, showing that there is a clear dependence between the size/shape of the particles which compose the starting material and the efficiency of crystallite size reduction during the BM process. On the other hand, we observed that a short BM step improved the kinetic properties of the cold rolled material. It shows that the particle size reduction of MgH2 obtained by CR combined with the increase in specific surface area attained by short BM step could be key factors to allow the use of the CR + BM route.

  13. Nanostructured MgH2 obtained by cold rolling combined with short-time high-energy ball milling

    Directory of Open Access Journals (Sweden)

    Ricardo Floriano

    2013-02-01

    Full Text Available MgH2 was processed by short time high-energy ball milling (BM and cold rolling (CR. A new alternative processing route (CR + BM using the combination of CR followed by short time BM step was also applied. The effects on the final morphology, crystalline structure and H-sorption properties were evaluated. The CR + BM processing (compared to BM and CR process resulted in an inhomogeneous particle size distribution and the biggest crystallite size of MgH2, showing that there is a clear dependence between the size/shape of the particles which compose the starting material and the efficiency of crystallite size reduction during the BM process. On the other hand, we observed that a short BM step improved the kinetic properties of the cold rolled material. It shows that the particle size reduction of MgH2 obtained by CR combined with the increase in specific surface area attained by short BM step could be key factors to allow the use of the CR + BM route.

  14. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  15. Storm impacts on a high energy sandy beach system, northwest Ireland: short (event) to long term (decadal) behaviour

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek; Cooper, Andrew; O'Connor, Marianne

    2017-04-01

    Long-term monitoring of beach dynamics is an important element in risk prevention and management of both natural and human resources at the coast. The predicted intensification in storminess (frequency, duration and magnitude), partly associated with climate change, represents a pressing concern for coastal communities globally and has undoubtedly led to an improvement in available techniques and technologies for observation and analysis. Here we examine a high energy Atlantic beach system at Five Fingers strand (NW Ireland) to help understand hydrodynamic forcing on beach response under various wave energy scenarios. The system, which has been modally attuned to a large swell wave environment, periodically undergoes significant morphological changes over various spatial and temporal scales manifest in the development and movements of dynamic nearshore bars and a nearshore ebb-tide delta. A combination of field and laboratory techniques (GPS, Terrestrial Laser Scanning (TLS) Instrumentation, Drone surveys) implemented from the shoreface to the beach, captures the response and evolution of the system over the short (event), medium (weeks to months) and long-term (multiyear) timescale. Numerical modelling of nearshore wave hydrodynamics (using SWAN wave simulation model) helps understanding wave forcing across shoreface area and is ran under a number of iterative time intervals. Here, we investigate the role of infrequent and sometimes extreme events in the system to understand the importance of clustering of storminess and the occurrence of single high-magnitude storm events that perturb the inlet-beach system and thus induce key morphodynamic changes. Preliminary results show that ultimately the configuration of the ebb-tide channel influences the geomorphic response of the system. In the short term, a storm induced erosion of the shoreface is observed, which also appears to lead to changes in the ebb-tide channel, and ultimately the welding of a nearshore bar

  16. Pulse compression below 40fs at 1μm: The first step towards a short-pulse, high-energy beam line at LULI

    Science.gov (United States)

    Chen, Xiaowei; Zou, Jiping; Martin, Luc; Simon, Francois; Lopez-Martens, Rodrigo; Audebert, Patrick

    2010-08-01

    We present the upgrading project ELFIE (Equipement Laser de Forte Intensité et Energie) based on the "100TW" mixed Nd:glass CPA laser system at 1μm at LULI, which includes an energy enhancement and the development of a short-pulse, high-energy, good temporal contrast beam line (50fs/5J). We report the first experimental step towards the short-pulse, high-energy beam line: spectral broadening above 60nm from 7nm and temporal pulse compression below 40fs from 300fs at 1μm through a Krypton-filled hollow fiber compressor.

  17. Phase-Stabilized Terawatt High Energy Ultra-Short (PhaSTHEUS) Laser Facility

    Science.gov (United States)

    2014-11-25

    OPCPA output to 5 fs at the end of the system. However Schott has discontinued stock of this type of glass , and making a custom melt would not be cost...38,140 Not purchased $0 N/A Glass Compressor $4,350 Not Purchased $0 N/A Total $302,800 $302,800 3. Description of Equipment: The...crystals. e. Glass Compressor A compressor made of highly dispersive SF57 glass ($4,350) was to be used along with chirped mirrors to compress the

  18. Microscopic Deformation of Tungsten Surfaces by High Energy and High Flux Helium/Hydrogen Particle Bombardment with Short Pulses

    Science.gov (United States)

    Tokitani, Masayuki; Yoshida, Naoaki; Tokunaga, Kazutoshi; Sakakita, Hajime; Kiyama, Satoru; Koguchi, Haruhisa; Hirano, Yoichi; Masuzaki, Suguru

    The neutral beam injection facility in the National Institute of Advanced Industrial Science and Technology was used to irradiate a polycrystalline tungsten specimen with high energy and high flux helium and hydrogen particles. The incidence energy and flux of the beam shot were 25 keV and 8.8 × 1022 particles/m2 s, respectively. The duration of each shot was approximately 30 ms, with 6 min intervals between each shot. Surface temperatures over 1800 K were attained. In the two cases of helium irradiation, total fluence of either 1.5 × 1022 He/m2 or 4.0 × 1022 He/m2 was selected. In the former case, large sized blisters with diameter of 500 nm were densely observed. While, the latter case, the blisters were disappeared and fine nanobranch structures appeared instead. Cross-sectional observations using a transmission electron microscope (TEM) with the focused ion beam (FIB) technique were performed. According to the TEM image, after irradiation with a beam shot of total fluence 4.0 × 1022 He/m2 , there were very dense fine helium bubbles in the tungsten of sizes 1-50 nm. As the helium bubbles grew the density of the tungsten matrix drastically decreased as a result of void swelling. These effects were not seen in hydrogen irradiation case.

  19. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    Science.gov (United States)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  20. Detection of the ultra-high z short GRB 080913 and its implications on progenitors and energy extraction mechanisms

    CERN Document Server

    Pérez-Ramírez, D; Gorosabel, J; Aloy, M A; Guerrero, M A; Osborne, J P; Page, K L; Warwick, R S; Horváth, I; Veres, P; Jelinek, M; Kubánek, P; Guziy, S; Bremer, M; Winters, J M; Castro-Tirado, A J

    2008-01-01

    Aims: We present multiwavelength observations of the most distant gamma-ray burst detected so far GRB 080913 and study whether it can be considered a short-duration GRB and the implications for the progenitor nature and energy extraction mechanisms. Methods: Multiwavelength (X-ray/nIR/millimetre) observations were made between 20.7 hours and ~16.8 days after the event. Results: Whereas a very faint afterglow was seen at the 3.5m CAHA telescope in the nIR, the X-ray afterglow was clearly detected in our XMM-Newton observations. An upper limit is reported in the mm range. At typical redshifts of other bursts, GRB 080913 would be found in the locus of short-duration GRBs on a hardness-duration diagram, thus strengthening its membership of this class. We also report that GRB 080913 shows lower isotropic luminosities than GRB 060121, another likely member of the short-duration class of GRB at z~4.6. Regarding the nature of the progenitor, we find that a NS+BH is slightly preferred over a double NS merger, with the...

  1. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  2. Compression and radiation of high-power short rf pulses. I. Energy accumulation in direct-flow waveguide compressors

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    Proper design of efficient requires precise understanding of the physics pertinent to energy accumulation and exhaust processes in resonant waveguide cavities. In this paper, practically for the first time these highly non-monotonic transient processes are studied in detail using a rigorous time-domain approach. Additionally, influence of the geometrical design and excitation parameters on the compressor\\'s performance is quantified in detail.

  3. Short review on solar energy systems

    Science.gov (United States)

    Herez, Amal; Ramadan, Mohamad; Abdulhay, Bakri; Khaled, Mahmoud

    2016-07-01

    Solar energy can be utilized mainly in heat generation and electricity production. International energy agency (IEA) shows, in a comparative study on the world energy consumption that in 2050 solar arrays installation will provide about 45% of world energy demand. Solar energy is one of the most important renewable energy source which plays a great role in providing energy solutions. As known there is wide variety of types of collectors and applications of solar energy. This paper aimed to make a short review on solar energy systems, according to types of collectors and applications used.

  4. Woody biomass from short rotation energy crops

    Science.gov (United States)

    R.S. Zalesny; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; John Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  5. Short-term energy outlook, January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

  6. Short-term energy outlook, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

  7. Short-term energy outlook, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

  8. Short-term energy outlook, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The forecast period for this issue of the Outlook extends from April 1999 through December 2000. Data values for the first quarter 1999, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the April 1999 version of the Short-Term Integrated forecasting system (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 25 figs., 19 tabs.

  9. Short-term energy outlook annual supplement, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-06

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  10. High Power Short Wavelength Laser Development

    Science.gov (United States)

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  11. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  12. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  13. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ≥ 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  14. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ≥ 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  15. High energy astrophysical neutrinos

    OpenAIRE

    Athar, H.

    2002-01-01

    High energy neutrinos with energy typically greater than tens of thousands of GeV may originate from several astrophysical sources. The sources may include, for instance, our galaxy, the active centers of nearby galaxies, as well as possibly the distant sites of gamma ray bursts. I briefly review some aspects of production and propagation as well as prospects for observations of these high energy astrophysical neutrinos.

  16. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  17. The IEA Model of Short-term Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Ensuring energy security has been at the centre of the IEA mission since its inception, following the oil crises of the early 1970s. While the security of oil supplies remains important, contemporary energy security policies must address all energy sources and cover a comprehensive range of natural, economic and political risks that affect energy sources, infrastructures and services. In response to this challenge, the IEA is currently developing a Model Of Short-term Energy Security (MOSES) to evaluate the energy security risks and resilience capacities of its member countries. The current version of MOSES covers short-term security of supply for primary energy sources and secondary fuels among IEA countries. It also lays the foundation for analysis of vulnerabilities of electricity and end-use energy sectors. MOSES contains a novel approach to analysing energy security, which can be used to identify energy security priorities, as a starting point for national energy security assessments and to track the evolution of a country's energy security profile. By grouping together countries with similar 'energy security profiles', MOSES depicts the energy security landscape of IEA countries. By extending the MOSES methodology to electricity security and energy services in the future, the IEA aims to develop a comprehensive policy-relevant perspective on global energy security. This Working Paper is intended for readers who wish to explore the MOSES methodology in depth; there is also a brochure which provides an overview of the analysis and results.

  18. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  19. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  20. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  1. Intermittent nutritional stimulus by short-term treatment of high-energy diet promotes ovarian performance together with increases in blood levels of glucose and insulin in cycling goats.

    Science.gov (United States)

    Zabuli, Jahid; Tanaka, Tomomi; Lu, Wengeng; Kamomae, Hideo

    2010-12-01

    The aim of this study was to determine if short-term intermittent treatments of high-energy diet have any stimulatory effects on ovarian function and metabolic status in goat. Cycling Shiba goats were divided into treatment (TG; n=6) and control (CG; n=6) groups. After the detection of ovulation (1st ovulation, Day 0) by ultrasonography, a high-energy diet (250% of maintenance) was fed to the TG from Day 12 to Day 15 (4 days) and from Day 18 to Day 21 (4 days). The high-energy diet comprised 1000 g hay-cubes and 300 g of concentrated feed/head/day (approximately 15 MJ of digestible energy/day). The CG was offered maintenance diet throughout the experiment. Transrectal ultrasound examinations were conducted every other day during the luteal phase and were conducted daily during the follicular phase. Blood samples were collected daily from Day -2 to 7 days after ovulation (2nd ovulation) following the nutritional treatment for analysis of follicle stimulating hormone (FSH), progesterone, oestradiol, glucose and insulin in plasma. Two wave-like rises in the concentrations of glucose and insulin appeared in response to the intermittent nutritional stimulus. Mean plasma concentrations of glucose and insulin were significantly (Pintermittent nutritional stimulus from the luteal phase increased the total number of ovulatory follicles and the ovulation rate in association with increasing plasma concentrations of glucose and insulin in goats.

  2. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  3. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  4. High-Energy Physics.

    Science.gov (United States)

    Creutz, Michael

    1983-01-01

    Experimentalists in particle physics have long regarded computers as essential components of their apparatus. Theorists are now finding that significant advances in some areas can be accomplished only in partnership with a machine. Needs of experimentalists, interests of theorists, and specialized computers for high-energy experiments are…

  5. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  6. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  7. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  8. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  9. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  10. Short-term energy outlook, Annual supplement 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-25

    This supplement is published once a year as a complement to the Short- Term Energy Outlook, Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. Chap. 2 analyzes the response of the US petroleum industry to the recent four Federal environmental rules on motor gasoline. Chap. 3 compares the EIA base or mid case energy projections for 1995 and 1996 (as published in the first quarter 1995 Outlook) with recent projections made by four other major forecasting groups. Chap. 4 evaluates the overall accuracy. Chap. 5 presents the methology used in the Short- Term Integrated Forecasting Model for oxygenate supply/demand balances. Chap. 6 reports theoretical and empirical results from a study of non-transportation energy demand by sector. The empirical analysis involves the short-run energy demand in the residential, commercial, industrial, and electrical utility sectors in US.

  11. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  12. Energy injection in short GRBs and the role of magnetars

    NARCIS (Netherlands)

    A. Rowlinson; P.T. O'Brien

    2012-01-01

    A significant fraction of the Long Gamma-ray Bursts (GRBs) in the Swift sample show a plateau phase which may be due to ongoing energy injection. We find many Short GRBs detected by the Swift satellite show similar behavior. The remnant of NS-NS mergers may not collapse immediately to a BH (or even

  13. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  14. Design and Evaluation of an Energy-Dense, Light-Weight Combat Ration to Sustain Land Forces Involved in High-Intensity, Short-Duration Operations

    Science.gov (United States)

    2015-03-01

    2009). The effects of geography, climate, stress and sleep deprivation are all likely to be detrimental to performance, however they have not been...UNCLASSIFIED UNCLASSIFIED Design and Evaluation of an Energy–Dense, Light– Weight Combat Ration to Sustain Land Forces Involved in High...Evaluation of an Energy–Dense, Light– Weight Combat Ration to Sustain Land Forces Involved in High–Intensity, Short–Duration Operations Executive

  15. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  16. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  17. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  18. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  19. Metabolic efficiency and energy expenditure during short-term overfeeding.

    Science.gov (United States)

    Joosen, Annemiek M C P; Bakker, Arjen H F; Westerterp, Klaas R

    2005-08-07

    To investigate whether efficiency of weight gain during a short period of overfeeding is related to adaptive differences in basal metabolic rate (BMR) and physical activity. Fourteen healthy females (age 25+/-4 years, BMI 22.1+/-2.3 kg/m2). Subjects were overfed with a diet supplying 50% more energy than baseline energy requirements for 14 days. Overfeeding diets provided 7% of energy from protein, 40% from fat and 53% from carbohydrates. Body composition was determined using hydrodensitometry and isotope dilution, total energy expenditure (TEE) with doubly labeled water and basal metabolic rate (BMR) with indirect calorimetry. Physical activity (PA) was recorded with a tri-axial accelerometer. Body weight increased by 1.45+/-0.86 kg (mean+/-S.D.) (P<0.0001), fat mass increased by 1.05+/-0.75 kg. Energy storage was 57.0+/-17.9 MJ, which is the difference between energy intake (207.2 MJ) and energy expenditure (150.2 MJ) during overfeeding. There was no difference between metabolically efficient and metabolically inefficient subjects in changes in BMR and PA. These results indicate that the metabolic efficiency of weight gain was not related to adaptive changes in energy expenditure.

  20. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  1. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  2. Free energy estimation of short DNA duplex hybridizations

    Directory of Open Access Journals (Sweden)

    Leger Serge

    2010-02-01

    Full Text Available Abstract Background Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one. Results We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions. Conclusions Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate

  3. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  4. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  5. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  6. Renewable Energy Riding High

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  7. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  8. Flare physics at high energies

    Science.gov (United States)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  9. Energy spectra of high energy atmospheric neutrinos

    Science.gov (United States)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  10. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  11. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  12. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  13. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  14. Very high energy neutrinos

    Science.gov (United States)

    Moscoso, Luciano; Spiering, Christian

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km 3) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of the ice of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projects are underway. Their status will be reviewed in this paper.

  15. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  16. Electron Dynamics During High-Power, Short-Pulsed Laser Interactions with Solids and Interfaces

    Science.gov (United States)

    2016-06-28

    PAPER ALSO RECEIVED EXTERNAL MEDIA COVERENCE FROM SIGNAL MAGAZINE : http://www.afcea.org/content/?q=Article-scientists-harness- energy -heat Edited...AFRL-AFOSR-VA-TR-2016-0234 Electron Dynamics During High- Power , Short-Pulsed Laser Interactions with Solids and Interfaces Patrick Hopkins...Dynamics During High- Power , Short-Pulsed Laser Interactions with Solids and Interfaces 5a. CONTRACT NUMBER FA9550-13-1-0067 5b. GRANT NUMBER 5c

  17. The AAVSO High Energy Network

    Science.gov (United States)

    Price, Aaron

    2004-06-01

    The AAVSO is expanding its International Gamma-Ray Burst Network to incorporate other high energy objects such as blazars and magnetic cataclysmic variables (polars). The new AAVSO High Energy Network will be collaborating with the Global Telescope Network (GTN) to observe bright blazars in support of the upcoming GLAST mission. We also will be observing polars in support of the XMM mission. This new network will involve both visual and CCD obsrvers and is expected to last for many years.

  18. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra......-fast optical packet switching, with the constraint that there must be potential energy savings, which is also evaluated. A survey of the current trends in data centers is given and state-of-the-art research approaches are mentioned. Optical time-division multiplexing is proposed and demonstrated to generate...

  19. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  20. Introduction to nanotechnology: a short course for high school students

    Science.gov (United States)

    Markin, Alexey V.

    2016-04-01

    This report devoted to presenting results of development and implementation of a short course (4 hours) entitled "Introduction to Nanotechnology" that was specially designed for familiarizing high school students with nanomaterials and nanotechnology. The course contains introduction to nanotechnology, essential definitions, short overview of history, descriptions for various examples of nanomaterials and their classifications, performing demonstration experiments. All these parts of the course are briefly analyzed from pedagogical effectiveness point of view. Finally, results of course testing, problems and perspectives of nano-oriented education at high school are also discussed shortly.

  1. High-energy kink in high-temperature superconductors

    Science.gov (United States)

    Johnson, Peter; Valla, Tonica; Kidd, Tim; Yin, W. G.; Gu, Genda; Pan, Z.-H.; Fedorov, Alexei

    2007-03-01

    Photoemission studies show the presence of a high energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O4+δand La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be doping and momentum independent. The magnitude of the effect is momentum dependent. Scattering from short range or nearest neighbour spin excitations is found to supply an adequate description of the observed phenomena.

  2. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  3. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  4. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  5. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  6. High-energy neutrino astrophysics

    Science.gov (United States)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  7. Simulation of High Energy Muons

    CERN Document Server

    Mashtakov, Konstantin

    2015-01-01

    Under the scope of a CERN summer student project, a Geant4 physical model has been developed and committed to the Geant4 repository to allow precise simulation of high-energy muons and hadrons transport inside a material. Resulted angular distributions produced by this model have small deviations from those that were obtained by the Geant4 model used by default. High-energetic muons energy losses inside the CMS tracker have also been estimated and may vary from 0.05% up to 2.5%.

  8. High Energy Astrophysics Program (HEAP)

    Science.gov (United States)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  9. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  10. Mexican High Energy Physics Network

    Science.gov (United States)

    D'Olivo, J. C.; Napsuciale, M.; Pérez-Angón, M. A.

    2016-10-01

    The Mexican High Energy Physics Network is one of CONACYT's thematic research networks, created with the aim of increasing the communication and cooperation of the scientific and technology communities of Mexico in strategic areas. In this report we review the evolution, challenges, achievements and opportunities faced by the network.

  11. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  12. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  13. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  14. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  15. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  16. Spontaneous radiation emission from short, high field strength magnetic devices

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2006-01-01

    Full Text Available Since the earliest papers on undulators were published, it has been known how to calculate the spontaneous emission spectrum from short undulators when the magnetic field strength parameter is small compared to unity, or in “single” frequency sinusoidal undulators where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulator. Fewer general results have been obtained in the case where the magnetic device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field magnetic devices. It is used to calculate the emission from some designs of recent interest.

  17. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  18. A Short Essay on the Uses of Free Energy

    Science.gov (United States)

    Koutandos, Spyridon

    2013-01-01

    In this article we examine cases of more classical and less classical nature compared to results found by quantum mechanics and attribute a form of Free Energy discontinuity for each case within a boundary layer. The concept of a boundary layer is broadened as to include areas of first or second variations of the Gibbs free energy. It is…

  19. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  20. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  2. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  3. Newporter Apartments. Deep Energy Retrofit Short Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Andrew [BA-PIRC, Cocoa, FL (United States); Howard, Luke [BA-PIRC, Cocoa, FL (United States); Kunkle, Rick [BA-PIRC, Cocoa, FL (United States); Lubliner, Michael [BA-PIRC, Cocoa, FL (United States); Auer, Dan [BA-PIRC, Cocoa, FL (United States); Clegg, Zach [BA-PIRC, Cocoa, FL (United States)

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost-effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960’s vintage low-rise multi-family apartment community (120 units in three buildings).

  4. Newporter Apartments: Deep Energy Retrofit Short-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

  5. Newporter Apartments. Deep Energy Retrofit Short Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Andrew [BA-PIRC, Cocoa, FL (United States); Howard, Luke [BA-PIRC, Cocoa, FL (United States); Kunkle, Rick [BA-PIRC, Cocoa, FL (United States); Lubliner, Michael [BA-PIRC, Cocoa, FL (United States); Auer, Dan [BA-PIRC, Cocoa, FL (United States); Clegg, Zach [BA-PIRC, Cocoa, FL (United States)

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost-effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960’s vintage low-rise multi-family apartment community (120 units in three buildings).

  6. Newporter Apartments: Deep Energy Retrofit Short-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

  7. Very Short-term Nonparametric Probabilistic Forecasting of Renewable Energy Generation - with Application to Solar Energy

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Gooi, Hoay Beng

    2016-01-01

    Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only...... approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power...... generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts...

  8. Short path length pQCD corrections to energy loss in the quark gluon plasma

    CERN Document Server

    Kolbe, Isobel

    2015-01-01

    Recent surprising discoveries of collective behaviour of low-$p_T$ particles in $pA$ collisions at LHC hint at the creation of a hot, fluid-like QGP medium. The seemingly conflicting measurements of non-zero particle correlations and $R_{pA}$ that appears to be consistent with unity demand a more careful analysis of the mechanisms at work in such ostensibly minuscule systems. We study the way in which energy is dissipated in the QGP created in $pA$ collisions by calculating, in pQCD, the short separation distance corrections to the well-known DGLV energy loss formulae that have produced excellent predictions for $AA$ collisions. We find that, shockingly, due to the large formation time (compared to the $1/\\mu$ Debye screening length) assumption that was used in the original DGLV calculation, a highly non-trivial cancellation of correction terms results in a null short path length correction to the DGLV energy loss formula. We investigate the effect of relaxing the large formation time assumption in the final ...

  9. Short and long-term energy intake patterns and their implications for human body weight regulation.

    Science.gov (United States)

    Chow, Carson C; Hall, Kevin D

    2014-07-01

    Adults consume millions of kilocalories over the course of a few years, but the typical weight gain amounts to only a few thousand kilocalories of stored energy. Furthermore, food intake is highly variable from day to day and yet body weight is remarkably stable. These facts have been used as evidence to support the hypothesis that human body weight is regulated by active control of food intake operating on both short and long time scales. Here, we demonstrate that active control of human food intake on short time scales is not required for body weight stability and that the current evidence for long term control of food intake is equivocal. To provide more data on this issue, we emphasize the urgent need for developing new methods for accurately measuring energy intake changes over long time scales. We propose that repeated body weight measurements can be used along with mathematical modeling to calculate long-term changes in energy intake and thereby quantify adherence to a diet intervention and provide dynamic feedback to individuals that seek to control their body weight.

  10. Developments in high energy theory

    Indian Academy of Sciences (India)

    Sunil Mukhi; Probir Roy

    2009-07-01

    This non-technical review article is aimed at readers with some physics back-ground, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical paradigm of String Theory – have been made to go beyond the Standard Model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors.

  11. Photoproduction at High Energy and High Intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  12. A Short Essay on the Uses of Free Energy

    OpenAIRE

    Koutandos, Spyridon

    2013-01-01

    In this article we examine cases of more classical and less classical nature compared to results found by quantum mechanics and attribute a form of Free Energy discontinuity for each case within a boundary layer. The concept of a boundary layer is broadened as to include areas of first or second variations of the Gibbs free energy. It is constructive to think not only of implosions like boundary layers but also of explosion like ones. Situations such as boiling and the passage of electric cur...

  13. Green Codes: Energy-Efficient Short-Range Communication

    CERN Document Server

    Grover, Pulkit

    2008-01-01

    A green code attempts to minimize the total energy per-bit required to communicate across a noisy channel. The classical information-theoretic approach neglects the energy expended in processing the data at the encoder and the decoder and only minimizes the energy required for transmissions. Since there is no cost associated with using more degrees of freedom, the traditionally optimal strategy is to communicate at rate zero. In this work, we use our recently proposed model for the power consumed by iterative message passing. Using generalized sphere-packing bounds on the decoding power, we find lower bounds on the total energy consumed in the transmissions and the decoding, allowing for freedom in the choice of the rate. We show that contrary to the classical intuition, the rate for green codes is bounded away from zero for any given error probability. In fact, as the desired bit-error probability goes to zero, the optimizing rate for our bounds converges to 1.

  14. New energy Era: Short Term and Long Term.

    Science.gov (United States)

    Beckwith, Robert

    This paper examines the causes and effects of the 1973 oil embargo imposed by OPEC. The author notes that since the embargo, little positive action has been taken to reduce American dependence upon a very limited and very expensive energy source. In order to achieve any degree of independence, it will be necessary to repidly expand coal and…

  15. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  16. High Energy Gas Fracturing Test

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  17. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    Science.gov (United States)

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  18. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to

  19. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths...

  20. Probing QCD at high energy

    CERN Document Server

    Voutilainen, Mikko

    2012-01-01

    We review recent experimental work on probing QCD at high $p_{T}$ at the Tevatron and at the LHC. The Tevatron has just finished a long and illustrious career at the forefront of high energy physics, while the LHC now has its physics program in full swing and is producing results at a quick rate in a new energy regime. Many of the LHC measurements extend well into the TeV range, with potential sensitivity to new physics. The experimental systematics at the LHC are also becoming competitive with the Tevatron, making precision measurements of QCD possible. Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test perturbative QCD predictions and to constrain parton distribution functions, as well as to measure the strong coupling constant. More exclusive topologies are used to constrain aspects of parton shower modeling, initial and final state radiation. Interest in boosted heavy resonances has resulted in novel studies of jet mass and subjet structure that also test pertu...

  1. Energy product options for Eucalyptus species grown as short rotation woody crops

    Science.gov (United States)

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  2. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  3. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  4. High Energy Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  5. A Short Primer on Collecting and Analyzing Energy R&D Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.

    2000-02-01

    This report presents a short overview of various data sources available for understanding investment levels in energy research and development (R&D). The report describes some of the strengths and weaknesses of these data sources. The report also discusses some issues that still need to be resolved in using energy R&D statistics for decision-making purposes.

  6. High sensitivity fluid energy harvester

    CERN Document Server

    Morarka, Amit

    2016-01-01

    An ambient energy harvesting device was design and fabricated. It can harness kinetic energy of rain droplets and low velocity wind flows. The energy converted into electrical energy by using a single device. The technique used by the device was based on the principles of electromagnetic induction and cantilever. Readily available materials were characterized and used for the fabrication of cantilever. Under the laboratory conditions, water droplets having diameter 4mm and wind with speed 0.5m/s were used as the two distinct sources. Without making any changes in the geometry or the materials used, the device was able to convert kinetic energy from both the sources to provide voltage in the range of 0.7-1VAC. The work was conceptualized to provide an autonomous device which can harness energy from both the renewable energy sources.

  7. Intersections of potential energy surfaces of short-lived states: the complex analogue of conical intersections.

    Science.gov (United States)

    Feuerbacher, Sven; Sommerfeld, Thomas; Cederbaum, Lorenz S

    2004-02-15

    Whereas conical intersections between potential energy surfaces of bound states are well known, the interaction of short-lived states has been investigated only rarely. Here, we present several systematically constructed model Hamiltonians to study the topology of intersecting complex potential energy surfaces describing short-lived states: We find the general phenomenon of doubly intersecting complex energy surfaces, i.e., there are two points instead of one as in the case of bound states where the potential energy surfaces coalesce. In addition, seams of intersections of the respective real and imaginary parts of the potential energy surfaces emanate from these two points. Using the Sigma* and Pi* resonance states of the chloroethene anion as a practical example, we demonstrate that our complete linear model Hamiltonian is able to reproduce all phenomena found in explicitly calculated ab initio complex potential energy surfaces.

  8. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 815 Technical Report AREIS-TR-16006 HIGH ENERGY COMPUTED TOMOGRAPHIC INSPECTION OF MUNITIONS...REPORT DATE (DD-MM-YYYY) November 2016 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE HIGH ENERGY COMPUTED...otherwise be accomplished by other nondestructive testing methods. 15. SUBJECT TERMS Radiography High energy Computed tomography (CT

  9. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  10. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  11. A new short-anoded IGBT with high emission efficiency

    Institute of Scientific and Technical Information of China (English)

    Chen Weizhong; Zhang Bo; Li Zehong; Ren Min; Li Zhaoji

    2012-01-01

    A novel short-anoded insulated-gate bipolar transistor (SA-IGBT) with double emitters is proposed.At the on-state,the new structure shows extraordinarily high emission efficiency.Moreover,with a short-contacted anode,it further enhances the hole emission efficiency because of the crowding of the electrons.The forward voltage drop VF of this structure is 1.74 V at a current density 100 of A/cm2.Compared to the conventional NPT IGBT (1.94 V),segment-anode IGBT (SA-NPN 2.1 V),and conventional SA-IGBT (2.33 V),VF decreased by 10%,17% and 30%,respectively.Furthermore,no NDR has been detected comparing to the SA-IGBT.At the offstate,there is a channel for extracting excessive carriers in the drift region.The turn-off loss Eoff of this proposed structure is 8.64 mJ/cm2.Compared to the conventional NPT IGBT (15.3 mJ/cm2),SA-NPN IGBT (12.8 mJ/cm2),and SA-IGBT (12.1 mJ/cm2),Eoff decreased by 43.7%,32% and 28%,respectively.

  12. A new short-anoded IGBT with high emission efficiency

    Science.gov (United States)

    Weizhong, Chen; Bo, Zhang; Zehong, Li; Min, Ren; Zhaoji, Li

    2012-11-01

    A novel short-anoded insulated-gate bipolar transistor (SA-IGBT) with double emitters is proposed. At the on-state, the new structure shows extraordinarily high emission efficiency. Moreover, with a short-contacted anode, it further enhances the hole emission efficiency because of the crowding of the electrons. The forward voltage drop VF of this structure is 1.74 V at a current density 100 of A/cm2. Compared to the conventional NPT IGBT (1.94 V), segment-anode IGBT (SA-NPN 2.1 V), and conventional SA-IGBT (2.33 V), VF decreased by 10%, 17% and 30%, respectively. Furthermore, no NDR has been detected comparing to the SA-IGBT. At the off-state, there is a channel for extracting excessive carriers in the drift region. The turn-off loss Eoff of this proposed structure is 8.64 mJ/cm2. Compared to the conventional NPT IGBT (15.3 mJ/cm2), SA-NPN IGBT (12.8 mJ/cm2), and SA-IGBT (12.1 mJ/cm2), Eoff decreased by 43.7%, 32% and 28%, respectively.

  13. High-Energy Astrophysics: An Overview

    Science.gov (United States)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  14. Ultra high energy cosmic rays: the highest energy frontier

    CERN Document Server

    Neto, João R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  15. Channels of energy redistribution in short-pulse laser interactions with metal targets

    Science.gov (United States)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-07-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence.

  16. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

    Science.gov (United States)

    Mallick, D.; Amann, A.; Roy, S.

    2016-11-01

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  17. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  18. The Blackholic energy and the canonical Gamma-Ray Burst IV: the "long", "genuine short" and "fake - disguised short" GRBs

    CERN Document Server

    Ruffini, Remo; Bernardini, Maria Grazia; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Dainotti, Maria Giovanna; De Barros, Gustavo; Guida, Roberto; Izzo, Luca; Patricelli, Barbara; Lemos, Luis Juracy Rangel; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng; 10.1063/1.3151839

    2009-01-01

    (Shortened) [...] After recalling the basic features of the "fireshell model", we emphasize the following novel results: 1) the interpretation of the X-ray flares in GRB afterglows as due to the interaction of the optically thin fireshell with isolated clouds in the CircumBurst Medium (CBM); 2) an interpretation as "fake - disguised" short GRBs of the GRBs belonging to the class identified by Norris & Bonnell [...] consistent with an origin from the final coalescence of a binary system in the halo of their host galaxies with particularly low CBM density [...]; 3) the first attempt to study a genuine short GRB with the analysis of GRB 050509B, that reveals indeed still an open question; 4) the interpretation of the GRB-SN association in the case of GRB 060218 via the "induced gravitational collapse" process; 5) a first attempt to understand the nature of the "Amati relation", a phenomenological correlation between the isotropic-equivalent radiated energy of the prompt emission E_{iso} with the cosmological...

  19. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  20. On high energy tails in inelastic gases

    OpenAIRE

    Lambiotte, R.; Brenig, L.; Salazar, J. M.

    2005-01-01

    We study the formation of high energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic Maxwell Model. We introduce a time- discretized version of the stochastic process, and show that continuous time implies larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions undergone by a particle and its average energy. This feature is responsible for the high energy tails in the model, as shown ...

  1. Long-ranged contributions to solvation free energies from theory and short-ranged models

    Science.gov (United States)

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-03-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.

  2. High energy hadrons in extensive air showers

    Science.gov (United States)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  3. High Energy Laser for Space Debris Removal

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and

  4. Theory of high-energy messengers

    CERN Document Server

    Dermer, Charles D

    2016-01-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  5. Theory of high-energy messengers

    Science.gov (United States)

    Dermer, Charles D.

    2016-05-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  6. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  7. High Energy Sources Observed with OMC

    CERN Document Server

    Risquez, D; Mas-Hesse, J M; Kuulkers, E

    2008-01-01

    The INTEGRAL Optical Monitoring Camera, OMC, has detected many high energy sources. We have obtained V-band fluxes and light curves for their counterparts. In the cases of previously unknown counterparts, we have searched for characteristic variations in optical sources around the high-energy target position. Results about the Galactic Bulge Monitoring, INTEGRAL Gamma-Ray sources (IGR), and other high energy sources are presented.

  8. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  9. Fast Electronics in High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, Clyde

    1958-08-08

    A brief review of fast electronics is given, leading up to the present state of the art. Cherenkov counters in high-energy physics are discussed, including an example of a velocity-selecting Cherenkov counter. An electronic device to aid in aligning external beams from high-energy accelerators is described. A scintillation-counter matrix to identify bubble chamber tracks is discussed. Some remarks on the future development of electronics in high-energy physics experiments are included.

  10. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  11. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  12. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  13. High-pressure (>1-bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Mildren, R P; Ward, B K; Kane, D M [Short Wavelength Interactions with Materials (SWIM), Physics Department, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2004-09-07

    We have investigated the scaling of peak vacuum ultraviolet output power from homogeneous Xe dielectric barrier discharges excited by short voltage pulses. Increasing the Xe fill pressure above 1-bar provides an increased output pulse energy, a shortened pulse duration and increases in the peak output power of two to three orders of magnitude. High peak power pulses of up to 6 W cm{sup -2} are generated with a high efficiency for pulse rates up to 50 kHz. We show that the temporal pulse characteristics are in good agreement with results from detailed computer modelling of the discharge kinetics.

  14. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  15. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  16. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nanto, Dwi [Physics Education, Syarif Hidayatullah States Islamic University, Jakarta 15412 (Indonesia); Tuyen, Ngo Thi Uyen [Department of Natural Science, Nha Trang Pedagogic College, Nguyen Chanh, Nha Trang, Khanh Hoa (Viet Nam); Nan, Wen-Zhe [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yu, YiKyung [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Yu, S.C., E-mail: scyu@cbnu.ac.kr [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam)

    2015-11-15

    In this work, we prepared nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic–paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order. - Highlights: • Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al nanocrystals were prepared by a high energy ball milling method. • A coexistence of the short- and long-range FM order in the nanocrystals. • Cu doping favors establishing a long-range FM order in the nanocrystals. • All the ΔS{sub m}(T, H) data are followed a universal master curve.

  17. A High Voltage High Frequency Resonant Inverter for Supplying DBD Devices with Short Discharge Current Pulses

    OpenAIRE

    Bonnin, Xavier; Brandelero, Julio; Videau, Nicolas; Piquet, Hubert; Meynard, Thierry

    2014-01-01

    International audience; In this paper, the merits of a high-frequency resonant converter for supplying dielectric barrier discharges (DBD) devices are established. It is shown that, thanks to its high-frequency operating condition, such a converter allows to supply DBD devices with short discharge current pulses, a high repetition rate, and to control the injected power. In addition, such a topology eliminates the matter of connecting a high-voltage transformer directly across the DBD device ...

  18. Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    Directory of Open Access Journals (Sweden)

    O. Boine-Frankenheim

    2012-05-01

    Full Text Available The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10  ns proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D electromagnetic PIC code.

  19. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  20. Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.

  1. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  2. Non-constant ponderomotive energy in above threshold ionization by intense short laser pulses

    CERN Document Server

    Della Picca, Renata; Garibotti, Carlos Roberto; López, Sebastián David; Arbó, Diego

    2015-01-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field to the energy balance in atomic ionization processes by a short laser pulse. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to maintain a stationary energy conservation rule. This rule is used to predict the position of the peaks observed in the photo electron spectra (PE). For a flat top pulse envelope, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy $U_{p}$. However for a short pulse with a fast changing field intensity a stationarity approximation could not be precise. We check these concepts by studying first the photoelectron (PE) spectrum within the Semiclassical Model (SCM) for a multiple steps pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times ma...

  3. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  4. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  5. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  6. Italian parliamentary debates on energy sustainability: How argumentative 'short-circuits' affect public engagement.

    Science.gov (United States)

    Brondi, Sonia; Sarrica, Mauro; Caramis, Alessandro; Piccolo, Chiara; Mazzara, Bruno M

    2016-08-01

    Public engagement is considered a crucial process in the transition towards sustainable energy systems. However, less space has been devoted to understand how policy makers and stakeholders view citizens and their relationship with energy issues. Nonetheless, together with technological advancements, policies and political debates on energy affect public engagement as well as individual practices. This article aims at tackling this issue by exploring how policy makers and stakeholders have socially constructed sustainable energy in Italian parliamentary debates and consultations during recent years (2009-2012). Results show that societal discourses on sustainable energy are oriented in a manner that precludes public engagement. The political debate is characterised by argumentative 'short-circuits' that constrain individual and community actions to the acceptance or the refusal of top-down decisions and that leave little room for community empowerment and bottom-up innovation. © The Author(s) 2015.

  7. Short Term Energy Storage for Grid Support in Wind Power Applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Stan, Ana-Irina; Diosi, Robert

    2012-01-01

    to increase the power system stability and the energy quality, is to integrate energy storage devices into wind power plants. This paper gives an overview of the state-of-the-art short-term energy storage devices and presents several applications which can be provided by the energy storage device - wind power......The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration, and thus...... plant combined system. Moreover, two methods for estimating the remaining useful lifetime of the energy storage devices are presented....

  8. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  9. A short pulse, high rep-rate microdischarge VUV source

    Science.gov (United States)

    Stephens, Jacob; Fierro, Andrew; Dickens, James; Neuber, Andreas; CenterPulsed Power; Power Electronics Team

    2013-09-01

    A MOSFET based high voltage pulser is utilized to excite a microdischarge (MD), or microdischarge array (MDA) with pulsed voltages of up to 1 kV, with risetime and FWHM on the order of 10 ns and 30 ns, respectively. Additionally, the pulser is capable of pulsing at rep-rates in excess of 35 MHz. However, for these experiments the rep-rate was set on the order of 1 MHz, so as to limit excess energy deposition into the background gas and optimize the energy efficiency of VUV generation. Using VUV capable spectral diagnostics, the VUV emission of the MDs for various pressures (50-800 + Torr) and gases, focused on argon, argon-hydrogen mixtures, and neon-hydrogen mixtures (all of which provide strong emission at λ VUV emission is characterized and compared to results from transient fluid modeling of the MDA. For instance, the MDA turn-on time is recorded to be about 15 ns, which matches the full plasma development time in the model, and the MDA self- capacitance largely determines the turn-off behavior. This research was supported by an AFOSR grant on the Physics of Distributed Plasma Discharges and fellowships from the National Physical Sciences Consortium, supported by Sandia National Laboratories.

  10. An adaptive short-term prediction scheme for wind energy storage management

    Energy Technology Data Exchange (ETDEWEB)

    Blonbou, Ruddy, E-mail: ruddy.blonbou@univ-ag.f [Geosciences and Energy Research Laboratory, Universite des Antilles et de la Guyane, Guadeloupe (France); Monjoly, Stephanie; Dorville, Jean-Francois [Geosciences and Energy Research Laboratory, Universite des Antilles et de la Guyane, Guadeloupe (France)

    2011-06-15

    Research highlights: {yields} We develop a real time algorithm for grid-connected wind energy storage management. {yields} The method aims to guarantee, with {+-}5% error margin, the power sent to the grid. {yields} Dynamic scheduling of energy storage is based on short-term energy prediction. {yields} Accurate predictions reduce the need in storage capacity. -- Abstract: Efficient forecasting scheme that includes some information on the likelihood of the forecast and based on a better knowledge of the wind variations characteristics along with their influence on power output variation is of key importance for the optimal integration of wind energy in island's power system. In the Guadeloupean archipelago (French West-Indies), with a total wind power capacity of 25 MW; wind energy can represent up to 5% of the instantaneous electricity production. At this level, wind energy contribution can be equivalent to the current network primary control reserve, which causes balancing difficult. The share of wind energy is due to grow even further since the objective is set to reach 118 MW by 2020. It is an absolute evidence for the network operator that due to security concerns of the electrical grid, the share of wind generation should not increase unless solutions are found to solve the prediction problem. The University of French West-Indies and Guyana has developed a short-term wind energy prediction scheme that uses artificial neural networks and adaptive learning procedures based on Bayesian approach and Gaussian approximation. This paper reports the results of the evaluation of the proposed approach; the improvement with respect to the simple persistent prediction model was globally good. A discussion on how such a tool combined with energy storage capacity could help to smooth the wind power variation and improve the wind energy penetration rate into island utility network is also proposed.

  11. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  12. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  13. CD 150 - short wheat cultivar with high quality and high yield

    Directory of Open Access Journals (Sweden)

    Ivan Schuster

    2011-01-01

    Full Text Available The industrial quality and lodging resistance of CD 150, a cross between CD104 and CD108, are high and the plant heightis short. The average yield was 10 % higher than of the controls in the regions II, III and IV. It is suitable for cultivation in the states of PR,SP, MS and GO, MG, and DF.

  14. INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A J

    2004-01-15

    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.

  15. Ultra high energy cosmic rays: the highest energy frontier

    Science.gov (United States)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  16. Short Rotation Forestry (SRF) in a Mediterranean Environment Under Limited Energy Inputs

    OpenAIRE

    Stella Lovelli; Nicola Moretti; Teodoro Di Tommaso; Luigi Todaro; Antonio Sergio De Franchi

    2010-01-01

    The aim of this work is comparing the two year performance (diameter, total height and mortality) of twenty tree and shrub species in a semi arid environment. The research also wants to supply recommendation on the agronomic cropping techniques in areas where rainfall is the main limiting factor and water use is strictly limited. Woody biomass is gaining increasing importance for energy production in Italy. During the last five years, roughly 5000 ha of Short Rotation Forestry (SRF) have been...

  17. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  18. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  19. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  20. CERN and the high energy frontier

    Science.gov (United States)

    Tsesmelis, Emmanuel

    2014-04-01

    This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC), this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  1. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  2. Short-term energy outlook, October 1998. Quarterly projections, 1998 4. quarter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from October 1998 through December 1999. Values for third quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the October 1998 version of the Short-term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

  3. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  4. Why do short term workers have high mortality?

    DEFF Research Database (Denmark)

    Kolstad, Henrik; Olsen, Jørn

    1999-01-01

    Increased mortality is often reported among workers in short term employment. This may indicate either a health-related selection process or the presence of different lifestyle or social conditions among short term workers. The authors studied these two aspects of short term employment among 16......,404 Danish workers in the reinforced plastics industry who were hired between 1978 and 1985 and were followed to the end of 1988. Preemployment hospitalization histories for 1977-1984 were ascertained and were related to length of employment between 1978 and 1988. Workers who had been hospitalized prior...... to employment showed a 20% higher risk of early termination of employment than those never hospitalized (rate ratio (RR) = 1.20, 95% confidence interval (Cl) 1.16-1.29), and the risk increased with number of hospitalizations. For workers with two or more preemployment hospitalizations related to alcohol abuse...

  5. Energy absorption is reduced with oleic acid supplements in human short bowel syndrome.

    Science.gov (United States)

    Compher, Charlene W; Kinosian, Bruce P; Rubesin, Stephen E; Ratcliffe, Sarah J; Metz, David C

    2009-01-01

    Oleic acid premeal supplements have been described as a method to trigger the ileal brake and thus lengthen transit time and the opportunity for nutrient absorption. The aims of this study were to determine whether oleic acid supplements would lengthen transit time and improve absorption of nutrients in study participants with short bowel syndrome as well as affect diarrhea or patient weight. A double-blind, controlled, random-order crossover trial was conducted in 8 study participants with longstanding and severe short bowel syndrome, employing blue food color appearance, breath hydrogen testing, and radio-opaque markers as measures of transit time. Absorption of energy, protein, fat, and fluid was conducted by classic nutrient balance methods. Diarrhea was estimated by daily stool weight and number of bowel actions. Although 8 patients were enrolled, only 7 completed the study. Transit time was not significantly different between oleic acid and placebo treatment, although peptide YY levels trended higher with the oleic acid treatment. Energy absorption was reduced 14% by oleic acid, significantly more than the 3% reduction by placebo. Fat, protein, and fluid absorption was not changed significantly. Neither diarrhea nor patient body weight was changed by oleic acid. Energy absorption is reduced by oleic acid supplements in severe short bowel syndrome. The study may have lacked power to determine whether oleic acid affects diarrhea or body weight.

  6. Cosmic absorption of ultra high energy particles

    Science.gov (United States)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  7. High Energy Processes in Pulsar Wind Nebulae

    CERN Document Server

    Bednarek, W

    2006-01-01

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation ...

  8. Resonance estimates of O(p^6) low-energy constants and QCD short-distance constraints

    CERN Document Server

    Knecht, M; Knecht, Marc; Nyffeler, Andreas

    2001-01-01

    Starting from the study of the low-energy and high-energy behaviours of the QCD three-point functions , and , several O(p^6) low-energy constants of the chiral Lagrangian are evaluated within the framework of the lowest meson dominance (LMD) approximation to the large-N_C limit of QCD. In certain cases, values that differ substantially from estimates based on a resonance Lagrangian are obtained. It is pointed out that the differences arise through the fact that QCD short-distance constraints are in general not correctly taken into account in the approaches using resonance Lagrangians. We discuss the implications of our results for the O(p^6) counterterm contributions to the vector form factor of the pion and to the decay \\pi -> e \

  9. High Bandwidth Short Stroke Rotary Fast Tool Servo

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  10. Advanced concepts for high-power, short-pulse CO2 laser development

    Science.gov (United States)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  11. Using Fairy Tales To Generate High Interest in Short Fiction.

    Science.gov (United States)

    McKenna, Barbara J.

    2001-01-01

    Discusses how fairy tales provide the vehicle by which students become genuinely engaged in reading and writing short fiction. Outlines a three-step process moving students from familiar stories, to variations on traditional tales, finally to new stories. Details how writing, revising, illustrating, and binding a fairy tale engages students. (PM)

  12. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  13. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  14. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  15. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  16. High-Mileage Runners Expend Less Energy

    Science.gov (United States)

    ... news/fullstory_163289.html High-Mileage Runners Expend Less Energy Extra movement seems to lead to changes ... efficient at running compared to those who run less, a new study finds. Jasper Verheul and colleagues ...

  17. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  18. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  19. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  20. JACEE results on very high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); JACEE Collaboration

    1996-12-31

    Direct observations of cosmic ray interactions in emulsion chambers of the JACEE experiment at energies above 1 TeV/nucleon are presented. An analysis of two decay of short lived particles produced in cosmic ray interactions is described. The known decay modes of bottom and charged particles do not account satisfactorily for the observations. This could possibly indicate a new decay channel of a heavy particle. The JACEE results support the hypothesis of existence of a long-flying component in cosmic ray showers. An interaction event was observed which may be the first direct observation of (mini)anticentauro interaction. (author) 13 refs, 12 figs, 1 tab

  1. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  2. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  3. A unified treatment of high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Hladik, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[SAP AG, Berlin (Germany); Ostapchenko, S. [Moscow State Univ. (Russian Federation). Inst. of Nuclear Physics]|[Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1999-11-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author) 19 refs.

  4. The Blackholic energy and the canonical Gamma-Ray Burst IV: the ``long,'' ``genuine short'' and ``fake-disguised short'' GRBs

    Science.gov (United States)

    Ruffini, Remo; Aksenov, Alexey G.; Bernardini, Maria Grazia; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Dainotti, Maria Giovanna; de Barros, Gustavo; Guida, Roberto; Izzo, Luca; Patricelli, Barbara; Lemos, Luis Juracy Rangel; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2009-05-01

    We report some recent developments in the understanding of GRBs based on the theoretical framework of the ``fireshell'' model, already presented in the last three editions of the ``Brazilian School of Cosmology and Gravitation.'' After recalling the basic features of the ``fireshell model,'' we emphasize the following novel results: 1) the interpretation of the X-ray flares in GRB afterglows as due to the interaction of the optically thin fireshell with isolated clouds in the CircumBurst Medium (CBM) 2) an interpretation as ``fake-disguised'' short GRBs of the GRBs belonging to the class identified by Norris & Bonnell; we present two prototypes, GRB 970228 and GRB 060614; both these cases are consistent with an origin from the final coalescence of a binary system in the halo of their host galaxies with particularly low CBM density ncbm~10-3 particles/cm3 3) the first attempt to study a genuine short GRB with the analysis of GRB 050509B, that reveals indeed still an open question; 4) the interpretation of the GRB-SN association in the case of GRB 060218 via the ``induced gravitational collapse'' process; 5) a first attempt to understand the nature of the ``Amati relation,'' a phenomenological correlation between the isotropic-equivalent radiated energy of the prompt emission Eiso with the cosmological rest-frame νFν spectrum peak energy Ep,i. In addition, recent progress on the thermalization of the electron-positron plasma close to their formation phase, as well as the structure of the electrodynamics of Kerr-Newman Black Holes are presented. An outlook for possible explanation of high-energy phenomena in GRBs to be expected from the AGILE and the Fermi satellites are discussed. As an example of high energy process, the work by Enrico Fermi dealing with ultrarelativistic collisions is examined. It is clear that all the GRB physics points to the existence of overcritical electrodynamical fields. In this sense we present some progresses on a unified approach to

  5. High Energy Particles in the Solar Corona

    CERN Document Server

    Widom, A; Larsen, L

    2008-01-01

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  6. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero

    2016-01-01

    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  7. Cosmic Physics: The High Energy Frontier

    CERN Document Server

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies $10^8$ times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violation of Lorentz invariance, as well as Planck scale physics and quantum gravity.

  8. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M T

    2015-01-01

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  9. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  10. Energy spectra of cosmic-ray nuclei at high energies

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Barbier, L; Beatty, J J; Bigongiari, G; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Maestro, P; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S W; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Walpole, P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2009-01-01

    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $\\sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 \\pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 \\pm 0.025 $(stat.)$ \\pm 0.025 $(sys.) at $\\sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.

  11. Biomass energy in organic farming - the potential role of short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Dalgaard, Tommy [Danish Inst. of Agricultural Sciences (DIAS), Dept. of Agroecology, Research Centre Foulum, Tjele (Denmark); Kristensen, Erik Steen [Danish Research Centre for Organic Farming (DARCOF), Research Centre Foulum, Tjele (Denmark)

    2005-02-01

    One of the aims of organic farming is to 'reduce the use of non-renewable resources (e.g. fossil fuels) to a minimum'. So far, however, only very little progress has been made to introduce renewable energy in organic farming. This paper presents energy balances of Danish organic farming compared with energy balances of conventional farming. In general, the conversion to organic farming leads to a lower energy use (approximately 10% per unit of product). But the production of energy in organic farming is very low compared with the extensive utilisation of straw from conventional farming in Denmark (energy content of straw used for energy production was equivalent to 18% of total energy input in Danish agriculture in 1996). Biomass is a key energy carrier with a good potential for on-farm development. Apart from utilising farm manure and crop residues for biogas production, the production of nutrient efficient short rotation coppice (SRC) is an option in organic farming. Alder (Alnus spp.) is an interesting crop due to its symbiosis with the actinomycete Frankia, which has the ability to fix up to 185 kg/ha nitrogen (N{sub 2}) from the air. Yields obtained at different European sites are presented and the R and D needed to implement energy cropping in organic farming is discussed. Possible win-win solutions for SRC production in organic farming that may facilitate its implementation are; the protection of ground water quality in intensively farmed areas, utilisation of wastewater for irrigation, or combination with outdoor animal husbandry such as pigs or poultry. (Author)

  12. A High Energy Nuclear Database Proposal

    CERN Document Server

    Brown, D A; Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interace. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for intertial confinement fusion and target a...

  13. Proposal for a High Energy Nuclear Database

    CERN Document Server

    Vogt, D A B R

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

  14. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  15. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  16. Short pulse mid-infrared amplifier for high average power

    CSIR Research Space (South Africa)

    Botha, LR

    2006-09-01

    Full Text Available @csir.co.za Telephone number of main author: +27-12-841-3447 Fax number of main author: +27-12-841-3152 Complete mailing address of main author: L R Botha, P O Box 395, Building 46, 2 nd Floor, Pretoria, 0001, South Africa Topic Area: Gas lasers including metal....1  Hz. If the relationship 4.0 vt is used then pulses as short as 0.5 ps can be amplified. The gain bandwidth can be increased by using isotopic mixtures and consequently this will allow pulses shorter than 0.5ps to be amplified. Gas lasers...

  17. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  18. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    Science.gov (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  19. Introduction to High-Energy Astrophysics

    Science.gov (United States)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  20. Unexpected properties of interactions of high energy protons

    CERN Document Server

    Dremin, I M

    2016-01-01

    Experimental data on proton-proton interactions in high energy collisions show quite a special and unexpected behaviour of the proportion of elastic scattering compared to inelastic processes with increasing energy. It decreases at the beginning (at comparatively low energies) but then starts increasing. From Intersecting Storage Rings (ISR) energies of 23.5 - 62.5 GeV up to higher energies 7 - 13 TeV at the Large Hadron Collider (LHC) it increases by a factor more than 1.5! According to intuitive classical ideas we would expect a stable tendency with increasing proportion of the break-down of protons compared to their survival probability. One can assume that either the asymptotic freedom or the extremely short time of flight of high energy protons through each other are in charge of such a surprising effect. The unquestionable principle of unitarity combined with the available experimental data on elastic scattering is used to get new conclusions about the shape of the interaction region of colliding proton...

  1. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  2. Why is High Energy Physics Lorentz Invariant?

    CERN Document Server

    Afshordi, Niayesh

    2015-01-01

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...

  3. Future high energy colliders symposium. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  4. [High Energy Physics: Research in high energy physics]. Annual report, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1982-12-31

    This report discusses high energy physics research on: Quantum chromodynamics; neutrinos; multiparticle spectrometers; inclusive scattering; Mark III detector; and cascade decays of phi resonances. (LSP)

  5. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  6. Ultra High Energy Electrons Powered by Pulsar Rotation

    CERN Document Server

    Mahajan, Swadesh; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration to ultra high energies, driven by the rotational slow down of a pulsar (Crab pulsar, for example), is explored. The rotation, through the time dependent centrifugal force, can very efficiently excite unstable Langmuir waves in the e-p plasma of the star magnetosphere via a parametric process. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV ($\\sim 100$ TeV) and even PeV energy domain. It is expected that the proposed mechanism may, partially, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  7. Evaluation of Low Energy Pack Ration by Short Term Feeding to Soldiers

    Directory of Open Access Journals (Sweden)

    K.R. Viswanathan

    1991-07-01

    Full Text Available Fifteen soldiers were fed, during intensive training including a patrol operation, on low energy pack(LEP ration for eight days for evaluating the suitability of the LEP ration providing 2100 kcal. Measurements were taken for body weight, skinfold thickness, blood cholesterol and phospholipids, glucose tolerance, and a battery of physical performance tests. Data were compared with another two identical groups of soldiers fed either a normal energy fresh(NEF ration(3631 kcal. The group on LEP ration lost 1.2 kg in body weight while the other two groups maintained their body weight with marginal fluctuations. Besides the slight loss of weight and a transient impairment of glucose tolerance, the subjects on LEP ration showed no other abnormality in any of the parameters studied. The study revealed that the LEP ration was suitable for feeding soldiers for short durations.

  8. High Energy Sources Monitored with OMC

    CERN Document Server

    Risquez, D; Caballero-Garcia, M D; Alfonso-Garzon, J; Mas-Hesse, J M

    2008-01-01

    The Optical Monitoring Camera on-board INTEGRAL (OMC) provides Johnson V band photometry of any potentially variable source within its field of view. Taking advantage of the INTEGRAL capabilities allowing the simultaneous observation of different kind of objects in the optical, X and gamma rays bands, we have performed a study of the optical counterparts of different high-energy sources. Up to now, OMC has detected the optical counterpart for more than 100 sources from the High Energy Catalog (Ebisawa et al., 2003). The photometrically calibrated light curves produced by OMC can be accessed through our web portal at: http://sdc.laeff.inta.es/omc

  9. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  10. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  11. Effect of high-energy neutrons on MuGFETs

    Science.gov (United States)

    Kilchytska, V.; Alvarado, J.; Collaert, N.; Rooyakers, R.; Militaru, O.; Berger, G.; Flandre, D.

    2010-02-01

    This paper investigates, for the first time, the influence of high-energy neutrons on Multiple-Gate FETs (MuGFETs) with various gate lengths and fin widths. Neutron-induced degradation is addressed through the variation of major device parameters such as threshold voltage, subthreshold slope, maximum transconductance and DIBL. We demonstrate that high-energy neutrons result in total-dose effects largely similar to those caused by γ- and proton-irradiations. It is shown that, contrarily to the generally-believed immunity to irradiation, very short-channel MuGFETs can become extremely sensitive to the total-dose effect. The possible reasons of such length-dependent neutron-induced degradation are discussed and finally related to gate edges.

  12. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  13. Interdisciplinary Aspects of High-Energy Astrophysics

    CERN Document Server

    Sigl, Guenter

    2011-01-01

    Modern astrophysics, especially at GeV energy scales and above is a typical example where several disciplines meet: The location and distribution of the sources is the domain of astronomy. At distances corresponding to significant redshift cosmological aspects such as the expansion history come into play. Finally, the emission mechanisms and subsequent propagation of produced high energy particles is at least partly the domain of particle physics, in particular if new phenomena beyond the Standard Model are probed that require base lines and/or energies unattained in the laboratory. In this contribution we focus on three examples: Highest energy cosmic rays, tests of the Lorentz symmetry and the search for new light photon-like states in the spectra of active galaxies.

  14. Transverse Diagnostics For High Energy Hadron Colliders

    CERN Document Server

    Castro Carballo, Maria Elena

    2007-01-01

    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate co...

  15. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin, E-mail: djanders@caltech.edu [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States)

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm{sup 3} lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm{sup 3} LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  16. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Apreysan, Artur [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bornheim, Adi [California Inst. of Technology (CalTech), Pasadena, CA (United States); Duarte, Javier [California Inst. of Technology (CalTech), Pasadena, CA (United States); Newman, Harvey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pena, Cristian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ronzhin, Anatoly [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trevor, Jason [California Inst. of Technology (CalTech), Pasadena, CA (United States); Xie, Si [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  17. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings.

    Science.gov (United States)

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-03-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding.

  18. Optimising the Environmental Sustainability of Short Rotation Coppice Biomass Production for Energy

    Directory of Open Access Journals (Sweden)

    Ioannis Dimitriou

    2014-12-01

    Full Text Available Background and Purpose: Solid biomass from short rotation coppice (SRC has the potential to significantly contribute to European renewable energy targets and the expected demand for wood for energy, driven mainly by market forces and supported by the targets of national and European energy policies. It is expected that in the near future the number of hectares under SRC will increase in Europe. Besides producing biomass for energy, SRC cultivation can result in various benefits for the environment if it is conducted in a sustainable way. This paper provides with an overview of these environmental benefits. Discussion and Conclusions: The review of existing literature shows that SRC helps to improve water quality, enhance biodiversity, prevent erosion, reduce chemical inputs (fertilizers, pesticides and mitigate climate change due to carbon storage. To promote and disseminate environmentally sustainable production of SRC, based on existing literature and own project experience, a set of sustainability recommendations for SRC production is developed. In addition to numerous environmental benefits, sustainable SRC supply chains can bring also economic and social benefits. However, these aspects of sustainability are not addressed in this paper since they are often country specific and often rely on local conditions and policies. The sustainable practices identified in this manuscript should be promoted among relevant stakeholder to stimulate sustainable local SRC production.

  19. Cosmic ray antiprotons at high energies

    Science.gov (United States)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  20. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  1. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  2. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut

  3. Technology arising from High-Energy Physics

    CERN Multimedia

    1974-01-01

    An exibition was held as a part of the Meeting on Technology arising from High- Energy Physics (24-26 April 1974). The Proceedings (including a list of stands) were published as Yellow Report, CERN 74-9, vol. 1-2.

  4. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  5. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  6. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  7. High Energy Proton-Proton Elastic Scattering in Reggeon-Pomeron Exchange Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; HU Zhao-Hui; MA Wei-Xing

    2006-01-01

    We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at high energies is performed without any free parameters. Our new finding from this work is that the Reggeon-Pomeron model gives a perfect fit to experimental data of the total cross section at the whole energy region where experimental data exist.

  8. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  9. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  10. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  11. High-Energy Kink Observed in the Electron Dispersion of High-Temperature Cuprate Superconductors

    Science.gov (United States)

    Valla, T.; Kidd, T. E.; Yin, W.-G.; Gu, G. D.; Johnson, P. D.; Pan, Z.-H.; Fedorov, A. V.

    2007-04-01

    Photoemission studies show the presence of a high-energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O8+δ and La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be anisotropic and relatively weakly doping dependent. Scattering from short range or nearest neighbor spin excitations is found to supply an adequate description of the observed phenomena.

  12. High energy H- ion transport and stripping

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  13. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  14. High energy photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  15. High energy cosmic ray and neutrino astronomy

    CERN Document Server

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  16. High Energy Polarization of Blazars : Detection Prospects

    CERN Document Server

    Chakraborty, Nachiketa; Fields, Brian

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (wit...

  17. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  18. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  19. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  20. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Pavlidou, V. [Department of Physics, University of Crete, 71003 Heraklion (Greece); Fields, B. D. [Department of Astronomy and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  1. Contributions of colonic short-chain fatty acid receptors in energy homeostasis

    Directory of Open Access Journals (Sweden)

    Atsukazu eKuwahara

    2014-09-01

    Full Text Available The gastrointestinal (GI tract is separated from the body’s internal environment by a single layer of epithelial cells, through which nutrients must pass for their absorption into the bloodstream. Besides food and drink, the GI lumen is also exposed to bioactive chemicals and bacterial products including short-chain fatty acids (SCFAs. Therefore, the GI tract has to monitor the composition of its contents continuously to discriminate between necessary and unnecessary compounds. Recent molecular identification of epithelial membrane receptor proteins has revealed the sensory roles of intestinal epithelial cells in the gut chemosensory system. Malfunctioning of these receptors may be responsible for a variety of metabolic dysfunctions associated with obesity and related disorders. Recent studies suggest that SCFAs produced by microbiota fermentation act as signaling molecules and influence the host’s metabolism; uncovering the sensory mechanisms of such bacterial metabolites would help us understand the interactions between the host and microbiota in host energy homeostasis. In this review, the contribution of colonic SCFA receptors in energy metabolism and our recent findings concerning the possible link between SCFA receptors and host energy homeostasis are discussed.

  2. High Energy Cosmic Rays From Supernovae

    CERN Document Server

    Morlino, Giovanni

    2016-01-01

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around $\\sim 10^{17}$ eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerate...

  3. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  4. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  5. Short Pulse Switches for Airborne High Power Supplies

    Science.gov (United States)

    1973-10-01

    recovery of high pressure SF6 circuit breakers by Perkins and Frost* at the Westinghouse Research laboratories. The apparatus is shown schematically... breaker with opposite polarity and will increase the potential across the circuit breaker . The necessary data are not on hand to determine the...A.N., Lee, T.H., Theory and Application of the Commutation Principle for HVDC Circuit Brakers, Transactions Paper IEEE Power Engineering Society, 1972

  6. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  7. International evaluation of Swedish research projects in the field of short rotation forestry for energy

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, W.M. [N.I. Horticulture and Plant Breeding Station, Armagh (Ireland); Isebrands, J. [USDA Forest Service, North Central Forest Experiment Station, Rhinelander, WI (United States); Namkoong, G. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Forest Sciences; Tahvanainen, J. [Univ. of Joensuu (Finland). Dept. of Biology

    1996-11-01

    The purpose of this evaluation was to inform NUTEK of the scientific quality of the research projects, as seen in an international context. The projects were therefore the main elements considered in the evaluation. The main basis of the evaluation was the scientific quality of the research and its relevance to NUTEK`s aims in the application of industrial research and development. The present report is based on the information contained in the written reports submitted by the grant holders, site visits and discussions between the grant holders and the Committee. The report first gives an overview and general recommendations concerning the overall programme in the field of Short Rotation Forestry for Energy. Thereafter, the 16 projects are evaluated separately

  8. Energy Storage on the Grid and the Short-term Variability of Wind

    Science.gov (United States)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and

  9. High Energy Neutrino Astronomy: Status and Perspectives

    CERN Document Server

    Spiering, Christian

    2008-01-01

    The year 2008 has witnessed remarkable steps in developing high energy neutrino telescopes. IceCube at the South Pole has been deployed with 40 of its planned 80 strings and reached half a cubic kilometer instrumented volume, in the Mediterranean Sea the "first-stage" neutrino telescope ANTARES has been completed and takes data with 12 strings. The next years will be key years for opening the neutrino window to the high energy universe. IceCube is presently entering a region with realistic discovery potential. Early discoveries (or non-discoveries) with IceCube will strongly influence the design and the estimated discovery chances of the Northern equivalent KM3NeT. Following theoretical estimates, cubic kilometer telescopes may just scratch the regions of discovery. Therefore detectors presently planned should reach sensitivities substantially beyond those of IceCube.

  10. High-energy ion implantation for ULSI

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, K.; Komori, S.; Kuroi, T.; Akasaka, Y. (LSI R and D Lab., Mitsubishi Electric Corp., Itami (Japan))

    1991-07-01

    The ''well engineering'' of a retrograde twin well formed by high-energy ion implantation for 0.5 {mu}m CMOS is demonstrated to be quite useful in improving many device characteristics, such as leakage current reduction, soft-error immunity, low latchup susceptibility, smaller device isolation dimensions, etc. In forming a heavily doped buried layer by high-energy ion implantation, a drastic reduction in leakage current has been found. This would be caused by gettering of impurities or microdefects by secondary defects which are induced either by implantation of dopant itself (''self-gettering'') or by an additional implantation of oxygen, carbon or fluorine (''proximity gettering''). (orig.).

  11. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  12. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  13. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  14. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  15. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  16. High-efficiency generation in a short random fiber laser

    Science.gov (United States)

    Vatnik, I. D.; Churkin, D. V.; Podivilov, E. V.; Babin, S. A.

    2014-07-01

    We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 W of the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. It is explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons.

  17. High Performance Interconnection Technology in Avionics (Short Communication

    Directory of Open Access Journals (Sweden)

    C. R. Raghunath

    2011-07-01

    Full Text Available Avionics subsystems continue to get smaller and more functional, driving the total circuit package itself to become denser, causing the printed wiring board (PWB to evolve new laminates to meet these needs. There is a continuous scope for improvement to match the requirement of wireability demand from high density and high speed integrated circuits. Development of control processing units and rapid expansion of memory device capabilities were realised by the development of large-scale integrated circuits and other electronic devices with higher integration and with new functionalities. Enormous efforts have been put on the development of the system-on-chip (SOC, where a single semiconductor chip constituting complete system is bonded on substrate. These innovations in packaging technology made a big impact on laminates used in printed circuit boards. Aircraft systems are expected to withstand disturbances due to unexpected threats. Under such situations, passengers' safety, emergency landing and timely information to pilot become of paramount importance, hence, new innovative laminate systems are being developed. Various aspects of laminates and the current developments that are taking place are facilitating scientists and engineers in selecting appropriate laminate systems, have been discussed.Defence Science Journal, 2011, 61(4, pp.354-363, DOI:http://dx.doi.org/10.14429/dsj.61.1085

  18. Data Unfolding Methods in High Energy Physics

    CERN Document Server

    Schmitt, Stefan

    2016-01-01

    A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two procedures to choose the strength of the regularisation are tested, namely the L-curve scan and a scan of global correlation coefficients. The advantages and disadvantages of the unfolding methods and choices of the regularisation strength are discussed using a toy example.

  19. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  20. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  1. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael

    2011-01-01

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  2. Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

    DEFF Research Database (Denmark)

    Serban, Ioan; Teodorescu, Remus; Marinescu, Corneliu

    2013-01-01

    of storing and releasing energy when required by the system. Therefore the need of boosting the MG power reserves by adding energy storage systems is often a requirement. The study highlights the improvement in the MG short-term frequency stability brought by an original BESS control structure enhanced......This study analyses the integration impact of battery energy storage systems (BESSs) on the short-term frequency control in autonomous microgrids (MGs). Short-term frequency stability relates with the primary or speed control level, as defined in the regulations of the classical grids. The focus...... is on autonomous MGs that dynamically behave similarly to the classical power systems. This is the systems case with classical distributed generators (DGs), but which can also contain renewable energy sources (RESs) in a certain penetration level. During MG islanded operation, the local generators take over most...

  3. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  5. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  6. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  7. High field – low energy muon ionization cooling channel

    Directory of Open Access Journals (Sweden)

    Hisham Kamal Sayed

    2015-09-01

    Full Text Available Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300  μm-rad in transverse and ≈1–1.5  mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50–25  μm-rad with an upper limit on the longitudinal emittance of ≈76  mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135  MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel’s optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  8. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes

    Directory of Open Access Journals (Sweden)

    Niu Deng-Ke

    2008-05-01

    Full Text Available Abstract Background In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. Results In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus. Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. Conclusion The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.

  9. A New Population of High Redshift Short-Duration Gamma-Ray Bursts

    CERN Document Server

    Berger, E; Price, P A; Nakar, E; Gal-Yam, A; Holz, D E; Schmidt, B P; Cucchiara, A; Cenko, S B; Kulkarni, S R; Soderberg, A M; Frail, D A; Penprase, B E; Rau, A; Ofek, E; Burnell, S J B; Cameron, P B; Cowie, L L; Dopita, M A; Hook, I; Peterson, B A; Podsiadlowski, P; Roth, K C; Rutledge, R E; Sheppard, S S; Songaila, A; Podsiadlowski, Ph.

    2006-01-01

    The redshift distribution of the short-duration GRBs is a crucial, but currently fragmentary, clue to the nature of their progenitors. Here we present optical observations of seven short GRBs obtained with Gemini, Magellan, and HST. We detect the afterglows and host galaxies of two short bursts, and host galaxies for two additional bursts with known optical afterglow positions, and three with X-ray positions (0.7 (97% confidence level), suggesting that 1/4-2/3 of all short GRBs originate at higher redshifts than previously determined. This has two important implications: (i) We constrain the acceptable age distributions to a wide lognormal (sigma~1) with tau~4-8 Gyr, or to a power law, P(tau)~tau^n, with -1energies, E_{gamma,iso}~10^{50}-10^{52} erg, are significantly larger than 10^{48}-10^{49} erg for the low redshift short GRBs, indicating a large spread in energy release or jet opening angles. Finally, we re-iterate the importance of short GRBs as potential grav...

  10. An Energy-Harvesting Wireless-Interface SoC for Short-Range Data Communication

    Science.gov (United States)

    Mikami, Shinji; Matsuno, Tetsuro; Miyama, Masayuki; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Ono, Hiroaki

    This paper describes design and verification of a wireless-interface SoC (system-on-a-chip) for a wireless battery-less mouse with short-range data-communication capability. The SoC comprises an RF transmitter and microcontroller. The SoC, which is powered by an electric generator that exploits gyration energy by dragging the mouse, was fabricated using a TSMC 0.18-um CMOS process. The features of the SoC are the adoption of a simple FSK modulation scheme, single-end configuration on the RF transmitter, and specific microcontroller design for mouse operation. We verified that the RF transmitter can make data communication within a 1-m range at 2.17 mW, and the microcontroller consumes 0.03 mW at 1 MHz, which exhibits that the total power consumption is 2.2 mW. This is sufficiently low for the SoC to operate with energy harvesting.

  11. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    Science.gov (United States)

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis.

  12. Short primary linear drive designed for synchronous and induction operation mode with on-board energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Tobias Rafael

    2012-06-28

    The idea of a flexible industrial manufacturing system for the transfer of material, tooling, processing/filling, etc., in which several vehicles can travel with high speed, high degree of independency and high precision is proposed in this thesis. Such flexible systems show a meaningful economic potential for modern manufacturing systems. The basic concept is that a linear motor has the secondary part fixed to the track while the primary (moving winding) travels along the track (short primary topology). The same principle can work in the other way around, arranging the primary in segments and letting the secondary (carrier) to move from segment to segment (long primary topology). The concept's implementation involves technical issues, such as: the position measurement, the energy and information transfer, the individual position and speed control of the vehicle in which varying speeds increase the possibility of collision, and the smooth transition between segments or different types of the secondary. Finally, multiple vehicles traveling at high speed, high positioning repeatability and rapid acceleration rates increase the production throughout and the reliability compared to conventional manufacturing conveyor systems. As an example, a transporting and processing system based on linear drives is a continuous and closed structure with multiple loops, which permits the safe transport of fragile loads. Although such solutions often need higher investment costs, the lack of mechanical coupling parts and wearing elements in these motors greatly increases their reliability. The long primary topology allows a passive and lightweight vehicle (secondary), avoiding brushes and cables to transfer energy and information. For long distances, the primary is arranged in several electrical independent segments. On the other hand, the short primary configuration uses the winding mounted on the moving part (active vehicle) to produce the traveling wave, the secondary as

  13. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  14. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  15. Testing Special Relativity at High Energies with Astrophysical Sources

    Science.gov (United States)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  16. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  17. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  18. Short duration high amplitude flares detected on the M dwarf star KIC 5474065

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Garcia-Alvarez, David; Brooks, Adam; Barclay, Thomas; Still, Martin

    2013-01-01

    Using data obtained during the RATS-Kepler project we identified one short duration flare in a 1 hour sequence of ground based photometry of the dwarf star KIC 5474065. Observations made using GTC show it is a star with a M4 V spectral type. Kepler observations made using 1 min sampling show that KIC 5474065 exhibits large amplitude (deltaF/F>0.4) optical flares which have a duration as short as 10 mins. We compare the energy distribution of flares from KIC 5474065 with that of KIC 9726699, which has also been observed using 1 min sampling, and ground based observations of other M dwarf stars in the literature. We discuss the possible implications of these short duration, relatively low energy flares would have on the atmosphere of exo-planets orbiting in the habitable zone of these flare stars.

  19. High-Order Energy Stable WENO Schemes

    Science.gov (United States)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

  20. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  1. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  2. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  3. High energy ion beam analysis at ARRONAX

    Energy Technology Data Exchange (ETDEWEB)

    Koumeir, C.; Haddad, F.; Michel, N. [Subatech, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Guertin, A.; Metivier, V.; Michel, N.; Ragreb, D.; Servagent, N. [Subatech, Nantes (France)

    2013-07-01

    Full text: ARRONAX, acronym for 'Accelerator for Research in Radiochemistry and Oncology at Nantes' is a high energy cyclotron. It is characterized by the acceleration of several types of particle beams: 68 MeV alpha, 15-35 MeV deuterons and 30-68 MeV protons. A platform was implemented on ARRONAX to perform non-destructive materials analysis with X and gamma rays emission (PIXE-PIGE). A proper selection of the projectile type and beam energy allows to analyze heavy and light elements in thin and thick samples. Our research activities are oriented along three axes: 1) Measurements of K X-ray production cross section for various elements to complement the databases at high energy. A first experiment has been conducted to measure these cross sections for copper and gold with protons energy between 34 and 68 MeV. 2) Study of the detection sensitivity which depends on the nuclear background and the Bremsstrahlung radiations. A dedicated shielding has been developed and detection limits below tens of μg/g/μC have been assessed using different referenced samples from IAEA. 3) Determination of concentration profile as function of the depth in a thick target. Using layered samples, we have showed for a target consisting of three different layers, the possibility to determine the sequence and thickness of each layer by using X and gamma rays measured respectively during and after irradiation. During this talk, I will present the characteristics and the capabilities of our platform. In the near future we intend to install the PIGE technique and use it with 15 MeV deuterons to analyze lightweight elements. (author)

  4. An iterative approach for symmetrical and asymmetrical Short-circuit calculations with converter-based connected renewable energy sources

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak-Jensen, Birgitte;

    2012-01-01

    As more renewable energy sources, especially more wind turbines are installed in the power system, analysis of the power system with the renewable energy sources becomes more important. Short-circuit calculation is a well known fault analysis method which is widely used for early stage analysis...... and design purposes and tuning of the network protection equipments. However, due to current controlled power converter-based grid connection of the wind turbines, short-circuit calculation cannot be performed with its current form for networks with power converter-based wind turbines. In this paper......, an iterative approach for short-circuit calculation of networks with power converter-based wind turbines is developed for both symmetrical and asymmetrical short-circuit grid faults. As a contribution to existing solutions, negative sequence current injection from the wind turbines is also taken into account...

  5. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  6. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  7. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  8. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  9. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  10. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    Science.gov (United States)

    Muraoka, K.; Wagner, F.; Yamagata, Y.; Donné, A. J. H.

    2016-01-01

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged

  11. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  12. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  13. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  14. The High Energy Radiation Pattern from BFKLex

    CERN Document Server

    Chachamis, G

    2016-01-01

    We discuss a recent study on high-energy jet production in the multi-Regge limit done with the use of the Monte Carlo event generator BFKLex which includes collinear improvements in the form of double-log contributions. We will show results for the average transverse momentum and azimuthal angle of the final state jets when at least one of them is very forward in rapidity and another one is very backward. We also discuss the introduction of a new observable which accounts for the average rapidity ratio among subsequent emissions.

  15. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  16. Siberian Snakes in high-energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S R [Convergent Computing Inc, PO Box 561, Shoreham, NY 11786 (United States); Shatunov, Yu M [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Yokoya, K [National Laboratory for High-Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-09-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  17. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  18. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M

    1999-01-01

    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  19. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  20. Horndeski/Galileon in High Energy Collisions

    CERN Document Server

    Latosh, B N

    2016-01-01

    Horndeski/Galileons may be considered as a proper generalization of General Relativity in high energy regime. Thus one may search for manifestation of Galileons interaction in collision experiments. In this paper we give arguments supporting this thesis. Galileon scalar field do not interact with matter via Standard Model interactions, we discuss a mechanism that allows Galileons to have influence on particle collisions. We give reasons to narrow the whole class of Horndeski/Galileons models to one particular term - John term from Fab Four subclass - for this particular issue. We were able to establish the constraint on the model coupling constant.

  1. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  2. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the + charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  3. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...... to detect degradation due to the short-circuit current. During the over-current testing the current and voltage along the CC were measured as well as its temperature. Significant warming above the critical temperature occurs for short-circuit currents of 10 kA and above. No critical current degradation...

  4. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...... circuits, i.e., three-phase, phase-phase clear of earth, phase-phase-earth, and phase-earth. The stator current, fault torque, and field current under each short circuit scenario are examined. Also included are the forces experienced by the field winding under short circuits. The results show...

  5. Very-high energy emission from pulsars

    CERN Document Server

    Breed, M; Harding, A K

    2016-01-01

    The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 GeV, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, ...

  6. Highly Efficient Contactless Electrical Energy Transmission System

    Science.gov (United States)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  7. Generation of high energy and good beam quality pulses with a master oscillator power amplifier

    Institute of Scientific and Technical Information of China (English)

    Zhigang Li(李志刚); Z.Xiong; Nicholas Moore; Chen Tao; G.C.Lim; Weiling Huang(黄维玲); Dexiu Huang(黄德修)

    2004-01-01

    A high efficiency and high peak power laser system with short-pulse and good beam quality has been demonstrated by using a master oscillator power amplifier with two-pass amplification configuration. The master oscillator, end-pumped with a fiber-coupled laser diode array, provides low power but excellent beam quality pulses, and the amplifier boosts the pulse energy by orders without significant beam quality degradation. Short pulses of 8.5 ns with energy up to 130 mJ and approximately diffraction limited beam quality have been demonstrated.

  8. Theoretical-research summer: For a new generation of experts on high energy physics

    Science.gov (United States)

    Ramos-Sánchez, Saúl

    2016-10-01

    Motivated by the need to strengthen the comprehensive training of young Mexican physicists interested in theoretical high energy physics, the Theoretical-research summer on high energy physics program was conceived. This program, that celebrates its sixth anniversary, consists in a yearly, nationwide challenging contest in which a board of experts identify the best undergraduate contestants to support them during short research stays in high-energy- theory groups of prestigious international institutions. Out of 80 contestants, the eight awarded students have demonstrated their skills, producing highly advanced (and publicly available) reviews on particle physics, field theory, cosmology and string theory, and a published paper.

  9. First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

    CERN Document Server

    Ettenauer, S; Gallant, A T; Brunner, T; Chowdhury, U; Simon, V V; Brodeur, M; Chaudhuri, A; Mané, E; Andreoiu, C; Audi, G; López-Urrutia, J R Crespo; Delheij, P; Gwinner, G; Lapierre, A; Lunney, D; Pearson, M R; Ringle, R; Ullrich, J; Dilling, J

    2011-01-01

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

  10. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED.

    Science.gov (United States)

    Kaminski, James; Gibson, Molly K; Franzosa, Eric A; Segata, Nicola; Dantas, Gautam; Huttenhower, Curtis

    2015-12-01

    Profiling microbial community function from metagenomic sequencing data remains a computationally challenging problem. Mapping millions of DNA reads from such samples to reference protein databases requires long run-times, and short read lengths can result in spurious hits to unrelated proteins (loss of specificity). We developed ShortBRED (Short, Better Representative Extract Dataset) to address these challenges, facilitating fast, accurate functional profiling of metagenomic samples. ShortBRED consists of two components: (i) a method that reduces reference proteins of interest to short, highly representative amino acid sequences ("markers") and (ii) a search step that maps reads to these markers to quantify the relative abundance of their associated proteins. After evaluating ShortBRED on synthetic data, we applied it to profile antibiotic resistance protein families in the gut microbiomes of individuals from the United States, China, Malawi, and Venezuela. Our results support antibiotic resistance as a core function in the human gut microbiome, with tetracycline-resistant ribosomal protection proteins and Class A beta-lactamases being the most widely distributed resistance mechanisms worldwide. ShortBRED markers are applicable to other homology-based search tasks, which we demonstrate here by identifying phylogenetic signatures of antibiotic resistance across more than 3,000 microbial isolate genomes. ShortBRED can be applied to profile a wide variety of protein families of interest; the software, source code, and documentation are available for download at http://huttenhower.sph.harvard.edu/shortbred.

  11. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED.

    Directory of Open Access Journals (Sweden)

    James Kaminski

    2015-12-01

    Full Text Available Profiling microbial community function from metagenomic sequencing data remains a computationally challenging problem. Mapping millions of DNA reads from such samples to reference protein databases requires long run-times, and short read lengths can result in spurious hits to unrelated proteins (loss of specificity. We developed ShortBRED (Short, Better Representative Extract Dataset to address these challenges, facilitating fast, accurate functional profiling of metagenomic samples. ShortBRED consists of two components: (i a method that reduces reference proteins of interest to short, highly representative amino acid sequences ("markers" and (ii a search step that maps reads to these markers to quantify the relative abundance of their associated proteins. After evaluating ShortBRED on synthetic data, we applied it to profile antibiotic resistance protein families in the gut microbiomes of individuals from the United States, China, Malawi, and Venezuela. Our results support antibiotic resistance as a core function in the human gut microbiome, with tetracycline-resistant ribosomal protection proteins and Class A beta-lactamases being the most widely distributed resistance mechanisms worldwide. ShortBRED markers are applicable to other homology-based search tasks, which we demonstrate here by identifying phylogenetic signatures of antibiotic resistance across more than 3,000 microbial isolate genomes. ShortBRED can be applied to profile a wide variety of protein families of interest; the software, source code, and documentation are available for download at http://huttenhower.sph.harvard.edu/shortbred.

  12. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  13. High-energy astrophysics with neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chiarusi, T.; Spurio, M. [Universita di Bologna, Dipartimento di Fisica, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy)

    2010-02-15

    Neutrino astrophysics offers new perspectives on the Universe investigation: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos with respect to photons. While the small interaction cross section of neutrinos allows them to come from the core of astrophysical objects, it is also a drawback, as their detection requires a large target mass. This is why it is convenient to put huge cosmic neutrino detectors in natural locations, like deep underwater or under-ice sites. In order to supply for such extremely hostile environmental conditions, new frontier technologies are under development. The aim of this work is to review the motivations for high-energy neutrino astrophysics, the present status of experimental results and the technologies used in underwater/ice Cherenkov experiments, with a special focus on the efforts for the construction of a km{sup 3}-scale detector in the Mediterranean Sea. (orig.)

  14. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  15. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  16. HELIX: The High Energy Light Isotope Experiment

    Science.gov (United States)

    Wakely, Scott

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  17. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans.

    Directory of Open Access Journals (Sweden)

    Darcy L Johannsen

    Full Text Available The physiologic effects of triiodothyronine (T3 on metabolic rate are well-documented; however, the effects of thyroxine (T4 are less clear despite its wide-spread use to treat thyroid-related disorders and other non-thyroidal conditions. Here, we investigated the effects of acute (3-day T4 supplementation on energy expenditure at rest and during incremental exercise. Furthermore, we used a combination of in situ and in vitro approaches to measure skeletal muscle metabolism before and after T4 treatment. Ten healthy, euthyroid males were given 200 µg T4 (levothyroxine per day for 3 days. Energy expenditure was measured at rest and during exercise by indirect calorimetry, and skeletal muscle mitochondrial function was assessed by in situ ATP flux ((31P MRS and in vitro respiratory control ratio (RCR, state 3/state 4 rate of oxygen uptake using a Clark-type electrode before and after acute T4 treatment. Thyroxine had a subtle effect on resting metabolic rate, increasing it by 4% (p = 0.059 without a change in resting ATP demand (i.e., ATP flux of the vastus lateralis. Exercise efficiency did not change with T4 treatment. The maximal capacity to produce ATP (state 3 respiration and the coupled state of the mitochondria (RCR were reduced by approximately 30% with T4 (p = 0.057 and p = 0.04, respectively. Together, the results suggest that T4, although less metabolically active than T3, reduces skeletal muscle efficiency and modestly increases resting metabolism even after short-term supplementation. Our findings may be clinically relevant given the expanding application of T4 to treat non-thyroidal conditions such as obesity and weight loss.

  18. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Long, Dirk; Ireland, John; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2013-11-14

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.

  19. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress

    Science.gov (United States)

    Schumann, Tobias; Paul, Suman; Melzer, Michael; Dörmann, Peter; Jahns, Peter

    2017-01-01

    Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m−2 s−1; NL: 100 μmol photons m−2 s−1; HL: 500 μmol photons m−2 s−1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities. PMID:28515734

  20. Short-term digestible energy intake in captive moose (Alces alces) on different diets.

    Science.gov (United States)

    Clauss, Marcus; Kohlschein, Gina-Marie; Peemöller, Andreas; Hummel, Jürgen; Hatt, Jean-Michel

    2013-01-01

    Moose (Alces alces) are regularly described as problematic animals in captivity, mainly because of their particular digestive physiology and resulting feeding demands. According to the literature, moose regularly reject non-browse forages offered in captivity, which may indirectly lead to an overproportional ingestion of easily digestible feeds and thus chronic acidosis, which may in turn be the cause of their low life expectancy in captivity. By feeding experiments in four animals, this study aimed at testing whether maintaining moose on roughage-only diets appears feasible. The diets used consisted of the typical zoo ration with mixed feeds (including alfalfa hay), and exclusive diets of alfalfa hay, combinations of alfalfa hay and grass hay, alfalfa hay and grass hay and dried browse leaves, and dried browse leaves only. Whereas results confirmed that moose do not ingest grass hay in relevant amounts, digestible energy (DE) intake on alfalfa hay was, at 0.67 ± 0.15 DE MJ kg(-0.75) day(-1), above the estimated maintenance requirement of 0.6, and higher on the browse diets. At least for short-time periods, results contradict previous reports in the literature that alfalfa hay only is not a suitable maintenance diet for moose. At the same time the results promote feeding moose in captivity forage-based diets.

  1. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100–140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140–180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  2. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  3. High protein high fibre snack bars reduce food intake and improve short term glucose and insulin profiles compared with high fat snack bars.

    Science.gov (United States)

    Williams, Gemma; Noakes, Manny; Keogh, Jennifer; Foster, Paul; Clifton, Peter

    2006-01-01

    The replacement in the diet of refined carbohydrate and fat with fibre and protein has been shown to promote satiety and improve glucose and insulin profiles. It is less clear whether the macronutrient composition of individual foods such as snacks have any meaningful impact on metabolic parameters and satiety. We examined if the consumption of higher protein higher fibre snack bars would result in reducing outcome measures such as food intake and glucose and insulin patterns compared to a conventional isocaloric high fat high refined carbohydrate snack bar. Twenty three women were randomized in a single blind cross over study with 2 interventions, a high fat high sugar snack bar and a comparatively higher protein, higher fibre snack bar intervention. Snack bars were eaten at mid morning and mid afternoon, and a standard breakfast and ad libitum buffet lunch. The glucose and insulin responses over 9 hours were significantly lower (P = 0.014 and P = 0.012 respectively) during the high protein snack bar intervention. Peak glucose levels were also 16% lower after the morning HP bar (P bar reduced the energy intake at the buffet lunch meal by 5% (4657 +/- 1025KJ vs 4901 +/- 1186KJ, P bar can assist in reducing the energy intake at a subsequent meal and improve short term glucose and insulin profiles.

  4. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  5. The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Directory of Open Access Journals (Sweden)

    César Hernández-Hernández

    2017-06-01

    Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.

  6. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  7. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  8. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  9. Density functional for short-range correlation: Is the random phase approximation accurate for iso-electronic energy changes?

    Science.gov (United States)

    Yan, Zidan; Perdew, John P.; Kurth, Stefan

    2000-03-01

    Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.

  10. Gamma-ray bursts at high and very high energies

    Science.gov (United States)

    Piron, Frédéric

    2016-06-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future. xml:lang="fr"

  11. Gamma-Ray Bursts at high and very high energies

    CERN Document Server

    Piron, F

    2015-01-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.

  12. High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy.

    Science.gov (United States)

    Kujala, N G; Karanfil, C; Barrea, R A

    2011-06-01

    We have developed a compact short focal distance Bent Crystal Laue Analyzer (BCLA) for Cu speciation studies of biological systems with specific applications to cancer biology. The system provides high energy resolution and high background rejection. The system is composed of an aluminum block serving as a log spiral bender for a 15 micron thick Silicon 111 crystal and a set of soller slits. The energy resolution of the BCLA-about 14 eV at the Cu Kα line- allows resolution of the Cu Kα(1) and CuKα(2) lines. The system is easily aligned by using a set of motorized XYZ linear stages. Two operation modes are available: incident energy scans (IES) and emission energy scans (EES). IES allows scanning of the incident energy while the BCLA system is maintained at a preselected fixed position--typically CuKα(1) line. EES is used when the incident energy is fixed and the analyzer is scanned to provide the peak profile of the emission lines of Cu.

  13. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  14. Double charge exchange at high impact energies

    Science.gov (United States)

    Belkić, Dževad

    1994-03-01

    In fast ion-atom collisions, double ionization always dominates the two-electron transfer. For this reason, an adequate description of double charge exchange requires proper inclusion of intermediate ionization channels. This is even more important in two- than in one-electron transitions. First-order Born-type perturbation theories ignore throughout these electronic continuum intermediate states and hence provide utterly unreliable high energy cross sections for two-electron capture processes. Therefore, it is essential to use second- and higher-order theories, which include the intermediate ionization continua of the two electrons in an approximate manner. In the present paper, a new second-order theory called the Born distorted wave (BDW) approximation is introduced and implemented in the case of symmetric resonant double electron capture from the ground state of helium by fast alpha particles. A genuine four-body formalism is adopted, in contrast to the conventional independent particle model of atomic scattering theory. The obtained results for the total cross sections are compared with the available experimental data, and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BDW approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude. This strongly indicates that the role of continuum intermediate states is decisive, even at those incident energies for which the Thomas double scattering effects are not important. This is in sharp contrast to the case of one-electron transfer atomic reactions.

  15. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  16. Subsarcolemmal and intermyofibrillar mitochondrial responses to short-term high-fat feeding in rat skeletal muscle.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    We assessed the alterations in mitochondrial function in skeletal muscle that were elicited by short-term high-fat feeding in sedentary rats. Two groups of rats were pair-fed for 1 wk and received a low-fat or high-fat diet. Body composition, energy balance, and glucose homeostasis were measured. Mitochondrial mass, oxidative capacity, and energetic efficiency as well as parameters of oxidative stress and antioxidant defense were evaluated in subsarcolemmal and intermyofibrillar mitochondria from the skeletal muscle. Body energy, lipid content, and metabolic efficiency were significantly higher and energy expenditure was significantly decreased among rats that were fed a high-fat diet, as compared with controls. Skeletal muscle mitochondrial energetic efficiency, oxidative capacity for lipid substrates, and antioxidant defense were significantly increased in rats that were fed a high-fat diet as compared with controls. Acute isocaloric high-fat feeding is able to induce increased phosphorylation efficiency in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria. This modification implies a reduced oxidation of energy substrates that may contribute to the early onset of obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. High Energy Physics. Ultimate Structure of Matter and Energy.

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. covered are the mounting energy scale, discoveries at thigh energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included.

  18. High Energy Emissions from Young Stellar Objects

    Indian Academy of Sciences (India)

    A. C. Das; Ashok Ambastha

    2012-03-01

    X-ray emissions from Young Stellar Objects (YSO) are detected by many X-ray missions that are providing important information about their properties. However, their emission processes are not fully understood. In this research note, we propose a model for the generation of emissions from a YSO on the basis of a simple interaction between the YSO and its surrounding circumstellar accretion disc containing neutral gas and charged dust. It is assumed that the YSO has a weak dipole type magnetic field and its field lines are threaded into the circumstellar disc. Considering the motion of ions and charged dust particles in the presence of neutral gas, we show that the sheared dust-neutral gas velocities can lead to a current along the direction of ambient magnetic field. Magnitude of this current can become large and is capable of generating an electric field along the magnetic field lines. It is shown how the particles can gain energy up to MeV range and above, which can produce high-energy radiations from the YSO.

  19. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  20. High-energy astroparticle physics with CALET

    CERN Document Server

    Maestro, Paolo

    2013-01-01

    The CALorimetric Electron Telescope (CALET) will be installed on the Exposure Facility of the Japanese Experiment Module (JEM-EF) on the International Space Station (ISS) in 2014 where it will measure the cosmic-ray fluxes for five years. Its main scientific goals are to search for dark matter, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument, under construction, consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 X$_0$-thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 X$_0$-thick lead-tungstate calorimeter (TASC). The CHD can provide single-element separation in the interval of atomic number Z from 1 to 40, while IMC and TASC can measure the energy of cosmic-ray particles with excellent resolution in the range from few GeV up to several hundreds of TeV. Moreover, IMC and TASC provide the longitudin...

  1. Ultra-High Energy Probes of Classicalization

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupat...

  2. The KLOE-2 High Energy Tagger Detector

    CERN Document Server

    Babusci, D; Iafolla, L; Iannarelli, M; Mascolo, M; Messi, R; Moricciani, D; Saputi, A; Turri, E

    2012-01-01

    In order to fully reconstruct to the reaction e+e- to e+e- gamma-gamma in the energy region of the phi meson production, new detectors along the DAFNE beam line have to be installed in order to detect the scattered e+e-. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing so to tag gamma-gamma physics events and disentangle them from background. The HET detectors are placed at the exit of the DAFNE dipole magnets, 11 m away from the IP, both on positron and electron lines. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronics board based on a Xilinx Virtex-5 FPGA have been developed for this detector. It provides a MultiHit TDC with a time resolution of the order of 500 ps and the possibility to acquire data any 2.5 ns, thus allowing to clearly identify the correct bunch crossing. First results of the commissioning run are presented.

  3. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  4. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  5. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  6. High Energy Astrophysics with the HAWC Observatory

    Science.gov (United States)

    Weisgarber, Thomas

    2014-08-01

    The High Altitude Water Cherenkov (HAWC) Observatory detects astrophysical gamma rays and cosmic rays in the energy range from 100 GeV to 100 TeV. Located at an elevation of 4100 meters on the slopes of Sierra Negra in the Mexican state of Puebla, HAWC comprises an array of 300 water Cherenkov tanks covering an area of 22000 square meters and is scheduled for completion in 2014. Using 1200 upward-facing photomultiplier tubes distributed throughout the tanks, HAWC measures the Cherenkov radiation generated by air-shower particles, from which the direction and energy of the primary particle may be determined. The detector has been taking data as a partial array for more than a year. I will highlight cosmic-ray and gamma-ray observations from this initial data set, including measurements of the cosmic-ray anisotropy and searches for transient sources. I will also discuss the expected contributions of HAWC to gamma-ray science as the detector enters full operation in the coming year.

  7. High-intensity sweeteners and energy balance.

    Science.gov (United States)

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  8. Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others

    1994-04-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.

  9. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  10. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States); Wang, Yaqi [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-20

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  11. Transverse Lambda polarization at high energy colliders

    CERN Document Server

    Boer, Daniel

    2010-01-01

    Measurements of transverse polarization of Lambda hyperons produced in high energy pp collisions may help to address several open issues about Lambda production and polarization mechanisms, such as the amount of SU(3) breaking, the importance of gluons and sea quarks, and the origin of spontaneous Lambda polarization. The process p + p -> Lambda^\\uparrow + jet + X at midrapidity is ideally suited for this purpose, for instance at LHC's ALICE experiment. New expressions and predictions are presented for the transverse Lambda polarization in this process, within a factorized description which involves transverse momentum and spin dependence in the fragmentation process. Uncertainties from the unpolarized Lambda fragmentation functions, due to the unknown magnitude of SU(3) breaking and the apparent inconsistency between pp and e^+ e^- data, are investigated.

  12. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  13. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  14. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  15. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  16. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  17. High energy flare physics group summary

    Science.gov (United States)

    Ryan, J. M.; Kurfess, J. D.

    1989-01-01

    The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested.

  18. High energy neutrinos from astrophysical sources

    CERN Document Server

    Perrone, L

    2002-01-01

    Summary form only given. High energy muon neutrinos coming from astrophysical sources could be detected as upward-going muons produced in charged-current interactions of nu /sub mu /'s with the matter surrounding the detector. About 1300 events have been analyzed. We present the results of a search for either a diffuse astrophysical neutrino flux or a point-like source of neutrinos in the sample of upward-going muons gathered by MACRO. We find no evidence for either type of signal. The muon flux upper limit for the diffuse signal has been set at the level of 1.5*10/sup -14/cm/sup -2/ s/sup -1/ sr/sup -1/. (1 refs).

  19. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  20. High energy reactions and string theory

    CERN Document Server

    Peschanski, R

    2002-01-01

    String theory has long ago been initiated by the quest for a theoretical explanation of the observed high-energy ``Reggeization'' of strong interaction amplitudes. In terms of quantum field theory, it is the so-called ``soft'' regime, where the coupling constant is expected to be large and thus perturbative calculations inadequate. However, since then, no convincing derivation of the link between gauge field theory at strong coupling and string theory has come out. This 35-years-old puzzle is thus still unsolved. We discuss how modern tools like the AdS/CFT correspondence give a new insight on the problem by applying it to two-body elastic and inelastic scattering amplitudes. We obtain a geometrical interpretation of Reggeization and its relation with confinement in gauge theory.

  1. High-energy evolution to three loops

    CERN Document Server

    Caron-Huot, Simon

    2016-01-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  2. Non-collinearity in high energy processes

    Indian Academy of Sciences (India)

    P J Mulders

    2009-01-01

    We discuss the treatment of intrinsic transverse momenta in high energy scattering processes. Within the field theoretical framework of QCD, the process is described in terms of correlators containing quark and gluon fields. The correlators, parametrized in terms of distribution and fragmentation functions, contain matrix elements of nonlo-cal field configurations requiring a careful treatment to assure colour gauge invariance. It leads to nontrivial gauge links connecting the parton fields. For the transverse momentum- dependent correlators the gauge links give rise to time reversal odd phenomena, showing up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and final state interactions, depend on the colour flow in the process, challenging universality.

  3. Experiments with high-energy neutrino beams.

    Science.gov (United States)

    Steinberger, J

    1989-09-15

    Experiments in which high-energy neutrinos were used as projectiles have made substantial contributions to our understanding of both weak and strong interactions, as well as the structure of hadrons. This article offers some illustrations. It recalls the discovery of the neutral weak current and some experiments on its nature. The sections on charged-current inclusive scattering recall the important role of these experiments in the understanding of the quark structure of the nucleon and the validity of quantum chromodynamics. The section on dimuon production illustrates the role of neutrino experiments in establishing the Glashow-Iliopoulos-Maiani current as well as the measurement of the structure function of the strange quark in the nucleon.

  4. High-voltage, short-risetime pulse generator based on a ferrite pulse sharpener

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, N.; Thornton, E.

    1988-11-01

    A high-voltage, short-risetime pulse generator is described. The generator consists of a Marx bank, which produces an initial high-voltage pulse, and a ferrite pulse sharpener that reduces the risetime of the pulse. The generator delivers 70-kV, 350-ps risetime pulses into a 50-..cap omega.. load.

  5. Short aramid-fiber reinforced ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Hofste, JM; Bergmans, KJR; deBoer, J; Wevers, R; Pennings, AJ

    1996-01-01

    Ultra-High Molecular Weight Polyethylene (UHMWPE) is frequently used in artificial joints because of its high wear resistance. To extend the lifetime of these joints even further, it is necessary to decrease the wear rate. The wear rate may be decreased by blending UHMWPE with short aramid fibers. O

  6. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    NARCIS (Netherlands)

    Besten, G. den; Eunen, K. van; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass

  7. Potential energy surfaces of short polyenes in the state T1 : analysis of time resolved resonance Raman spectra

    NARCIS (Netherlands)

    Orlandi, G.; Negri, F.; Wilbrandt, R.; Langkilde, F.W.; Brouwer, A.M.

    1993-01-01

    The analysis of T1 resonance Raman spectra of some conjugated compounds is discussed making use of semiempirical quantum chemical calculations. Information obtained about T1 potential energy curve indicates that in short polyenes the perpendicular form is roughly degenerate with the trans isomer. Pr

  8. Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study

    Science.gov (United States)

    William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider

    2011-01-01

    Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...

  9. Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K.; Martin, E.

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  10. Short-Term Test Results. Transitional Housing Energy Efficiency Retrofit in the Hot Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30%-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  11. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  12. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  13. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    Science.gov (United States)

    Berryman, C E; Sepowitz, J J; McClung, H L; Lieberman, H R; Farina, E K; McClung, J P; Ferrando, A A; Pasiakos, S M

    2017-06-01

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [(15)N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg(-1)·day(-1)) were lower and proteolysis (1.1 ± 1.9 g protein·kg(-1)·day(-1)) was higher compared with PRE (P balance (0.4 ± 1.0 g protein·kg(-1)·day(-1)) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST (P balance.NEW & NOTEWORTHY This article demonstrates 1) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg(-1)·day(-1)), energy adequate diet, is not necessary to restore fat-free mass following short-term severe negative energy balance.

  14. Trends in economic growth, poverty and energy in Colombia: long-run and short-run effects

    Energy Technology Data Exchange (ETDEWEB)

    Cotte Poveda, Alexander [University of Goettingen, Department of Economics, Goettingen (Germany); University of La Salle, Faculty of Accounting and Administration, Bogota (Colombia); Pardo Martinez, Clara Ines [Royal Institute of Technology, KTH, Energy and Climate Studies, Department of Energy Technology, Stockholm (Sweden); University of La Salle, Faculty of Engineering, Bogota (Colombia)

    2011-11-15

    This research analyses the long run and short run relationships among economic growth, poverty and energy using the Colombian case. In this study, we use the time-series methodologies. The results regarding the relationship among economic growth, poverty and energy show that increases in gross domestic product and energy supply per capita should lead a decrease of poverty, which should demonstrate that access to modern and adequate energy services help to decrease poverty and to increase economic growth. Moreover, the improvements in energy efficiency have contributed to increase economic growth from an approach of sustainable development. These results are important for the adequate design, formulation and application of policies and strategies that encourage a better energy use to improve economic growth and decrease poverty, especially in developing countries. (orig.)

  15. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  16. Equilibrium Statistical-Thermal Models in High-Energy Physics

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    We review some recent highlights from the applications of statistical-thermal models to different experimental measurements and lattice QCD thermodynamics, that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical-thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948 an almost complete recipe for the statistical-thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analysed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-par...

  17. Long Life, High Energy Cell Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher energy density battery systems to meet the power requirements of future energy devices. In this proposed Phase I program, PSI will...

  18. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... Energy Physics Advisory Panel AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the High Energy Physics Advisory Panel (HEPAP.... FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  19. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... Energy Physics Advisory Panel AGENCY: Office of Science, Department of Energy. ACTION: Notice of Intent... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period beginning...-range planning and priorities in the national high-energy physics program. Additionally, the renewal...

  20. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  1. Phenomenology of hard diffraction at high energies

    CERN Document Server

    Machado, Magno V T

    2016-01-01

    We present some of the topics covered in two lectures under the same title that was given at the "Summer School on High Energy Physics at the LHC: New trends in HEP" in Natal, Brazil. In this contribution we give a brief review on the application of perturbative QCD to the hard diffractive processes. Such reactions involving a hard scale can be understood in terms of quarks and gluons degrees of freedom and have become an useful tool for investigating the low-$x$ structure of the proton and the behavior of QCD in the high-density regime. We start using the information from the $ep$ collisions at HERA concerned to the inclusive diffraction to introduce the concept of diffractive parton distributions. Their interpretation in the resolved pomeron model is addressed and we discuss the limits of diffractive hard-scattering factorization for hadron-hadron collisions. Some examples of phenomenology for the diffractive production of $W/Z$, heavy $Q\\bar{Q}$ and quarkonium in hadron-hadron reactions are presented. We a...

  2. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  3. Feasibility study on temporal-resolved diffraction of high-energy electrons produced in femtosecond laser-plasmas

    CERN Document Server

    Zhang Jun; Cang Yu; Chen Qing; Peng Lian Mao; Wang Huai Bin; Zhong Jia Yong

    2002-01-01

    The high-energy electrons can be produced in the interaction between intense ultra-short laser pulses and Al targets. The diffraction may take place when high-energy electrons pass through an Al single crystal. Feasibility is studied using such diffraction as a method to analyze the structures of crystals

  4. Radio Detection of Ultra High Energy Neutrinos

    Science.gov (United States)

    Beatty, James J.

    2011-05-01

    Ultra high energy cosmic rays interact with the cosmic microwave background radiation, resulting in the production of energetic pions. These interactions result in energy loss by the incident cosmic ray leading to the Greisen-Zatsepin-Kuzmin (GZK) feature in the cosmic ray spectrum at about 4×10^19 eV, and the decay of the charged pions produced in these interactions results in neutrinos known as Berezinskii-Zatsepin (BZ) neutrinos. These neutrinos interact only via the weak interaction, with negligible absorption over cosmic distances but interaction lengths in the Earth of a few hundred kilometers. When these neutrinos interact in a dense medium, the electromagnetic component of the resulting shower develops a negative charge excess due to Compton scattering of the electrons from the medium and depletion of positrons by in-flight annihilation. This macroscopic charge excess moves at nearly the speed of light, and its passage through a dielectric medium results in coherent Cherenkov radiation at radio wavelengths longer than the size of the radiating region. This process is known as the Askaryan mechanism, and has been observed in accelerator experiments. The radio pulse is impulsive, and can be detected over large volumes in materials with long radio attenuation lengths, most notably the cold ice in the Antarctic ice sheet. Upper limits on the neutrino flux obtained by the balloon-borne instrument ANITA are now approaching the expected flux, and prototype in-ice antenna arrays are now being deployed. Prospects for large detectors capable of detecting hundreds of these neutrinos will be discussed. This work is supported by NASA under grants NNX08AC17G and NNX11AC45G, by the NSF under grant PHY-0758082, and by the Ohio State Center for Cosmology and Particle Astrophysics (CCAPP).

  5. The KLOE-2 high energy taggers

    Science.gov (United States)

    Curciarello, F.

    2017-06-01

    The precision measurement of the π0 → γγ width allows to gain insights into the low-energy QCD dynamics. A way to achieve the precision needed (1%) in order to test theory predictions is to study the π0 production through γγ fusion in the e+e- → e+e-γ*γ* → e+e-π0 reaction. The KLOE-2 experiment, currently running at the DAΦNE facility in Frascati, aims to perform this measurement. For this reason, new detectors, which allow to tag final state leptons, have been installed along the DAΦNE beam line in order to reduce the background coming from phi-meson decays. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing. The HET detectors are placed in roman pots just at the exit of the DAΦNE dipole magnets, 11 m away from the IP, both on positron and electron sides. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronic board, based on a Xilinx Virtex-5 FPGA, has been developed for this detector. It provides a MultiHit TDC with a time resolution of 550(1) ps and the possibility to clearly identify the correct bunch crossing (ΔTbunch ~ 2.7 ns). The most relevant features of the KLOE-2 tagging system operation as time performance, stability and the techniques used to determine the time overlap between the KLOE and HET asynchronous DAQs will be presented.

  6. Stimulated recombination of antiproton and positron with ultra-short ultra-high intensity laser pulse

    CERN Document Server

    Ryabinina, M V

    2003-01-01

    Ionization of hydrogen atom in the field of high-intense ultra-short femto-second laser pulse recently became the subject of comprehensive theoretical approaches. On the other hand, there exists experimental evidence that short electric pulses can effectively stimulate electron-proton (as well as antiproton-positron) recombination to high-level (Rydberg) state. In this paper we present the results of the theoretical estimations of antiproton-positron recombination cross-section in cold mixed plasmas in traps in the conditions of ATHENA/ATRAP experiments in CERN under the action of sub-fs laser pulse with TW intensity. (2 refs).

  7. Short-time, high-dosage penicillin infusion therapy of syphilis: an alternative to recommended regimens?

    DEFF Research Database (Denmark)

    Lomholt, Hans; Poulsen, Asmus; Brandrup, Flemming;

    2003-01-01

    The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G intraven......The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G...

  8. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  9. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  10. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  11. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  12. The Swedish energy forestry research programme at the Department of Short Rotation Forestry, SUAS, Uppsala. Summary report prepared for the evaluation of the short-rotation forestry research 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    Ledin, S.; Christersson, L. [eds.

    1996-12-31

    The overall aim of the Department of Short Rotation Forestry is to carry out research for development of basic, theoretical and practical knowledge in the related disciplines of biology, ecology and cultivation techniques in order to reach a high and sustainable production of woody biomass for energy purposes using environmentally acceptable methods. This report gives summaries of nine research programs within the Department, and the reports were prepared for the evaluation of the research during the period 1993-1996. The projects are: 1. Competition in short rotation forests (Theo Verwijst); 2. Carbon allocation as a function of nutrient and water availability (Lars Rytter, Tom Ericsson); 3. States and fluxes of water and carbon dioxide in the soil-plant-atmosphere system (Anders Lindroth); 4. Root dynamics of fast growing deciduous trees (Rose-Marie Rytter); 5. Accumulation and mobilization of root reserves in coppice growth (Lisa Sennerby-Forsse, Lars Bollmark, Yuehua von Fircks); 6. Effects of nutrient supply on frost resistance in fast growing Salix clones (Heinrich von Fircks); 7. Optimizing water and nutrients in poplar and willow plantations for maximum growth (Sune Elowson); 8. Soil biology in relation to energy forestry (Ulf Granhall); and 9. Plant protection in short rotation forestry against fungi and bacteria (Mauritz Ramstedt)

  13. Defining High-Energy Calibration Standards: IACHEC (International Astronomical Consortium for High-Energy Calibration)

    Science.gov (United States)

    Sembay, S.; Guainazzi, M.; Plucinsky, P.; Nevalainen, J.

    2010-07-01

    The International Astronomical Consortium for High-Energy Calibration (IACHEC) aims to provide standards for high energy calibration and supervise cross-calibration between different X-ray and Gamma-ray observatories. This goal is reached through Working Groups, involving around 40 astronomers worldwide. In these Groups, IACHEC members co-operate to define calibration standards and procedures. Their scope is primarily a practical one: a set of astronomical sources, data and results (eventually published in refereed journals) will be the outcome of a co-ordinated and standardized analysis of reference sources (``high-energy standard candles''). We briefly describe here just two of the many studies undertaken by the IACHEC; a cross-calibration analysis of O and Ne line fluxes from the thermal SNR 1E0102.2-7219, and at higher energies a comparison study of a sample of cluster temperatures and fluxes. A more detailed picture of the activities of the IACHEC is available via the information portal at http://web.mit.edu/iachec/.

  14. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  15. Transportable high-energy high-power generator.

    Science.gov (United States)

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  16. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  17. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

    Science.gov (United States)

    Kovermann, Michael; Ådén, Jörgen; Grundström, Christin; Elisabeth Sauer-Eriksson, A.; Sauer, Uwe H.; Wolf-Watz, Magnus

    2015-07-01

    An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or `invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power--a key aspect in rational design of enzymes catalysing novel reactions.

  18. High-Energy Neutrons from the Moon

    Science.gov (United States)

    Maurice, S.; Feldman, W. C.; Lawrence, D. J.; Elphic, R. E.; Gasnault, O.; dUston, C.; Lucey, P. G.

    1999-01-01

    Galactic cosmic rays that impact the lunar soil produce neutrons with energies from fractions of eV's to about 100 MeV. The high-energy band from 0.6 to 8.0 MeV is referred as the "fast neutron" band, which is measured by Lunar Prospector (LP) Gamma Ray Spectrometer. Fast neutrons play an important role in neutron spectroscopy that may be summarized as follows: Fast neutrons define the total neutron input to the moderating process toward low-energy populations, so that epithermal and thermal neutron leakage currents must be normalized to the leakage of fast neutrons; they allow the determination of the burial depth of H, a measure necessary to understand characteristics of water deposits; they provide information on the surface content in heavy elements, such as Ti and Fe; and they provide a direct insight into the evaporation process. As discussed hereafter, fast neutrons may yield information on other oxides, such as Si02. missing data. Mare have numerous features, that are resolved in fast neutrons. For instance, the region extending northwest of Aristarchus (23.7 deg N, 47.4 W) is clearly separated from Montes Harbinger (27.0N, 41.0W) by a high-emission channel, and Mare Vaporum (13.3 N, 3.6 E) is separated from Sinus Aestuun (10.9N, 8.8W) by a low-emission area. We present a new technique to extract information on soil composition from the fast-neutron measurements. The analysis is applied to the central mare region. There are two steps for the development of the technique. 1. For the first step, which has been fully completed, we assume that variations of fast-neutron counting rates are due solely to TiO. and FeO. Upon this assumption, we correlate Clementine Spectral Reflectance Fe and Ti oxide maps with fast measurements. Above 16.5% of FeO, effects of Ti02 variations show in LP data. Below 6.5% of FeO, Fe cannot be discriminated; this is the region of most highland terrains. Under assumption of only two oxides to modulate the signal, we show that fast

  19. Oklahoma Center for High Energy Physics (OCHEP)

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging

  20. Optics of High-Energy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, Owen

    1960-05-01

    Many of the experiments now being conducted on high-energy accelerators requires the use of beams of charged secondary particles. It is worth while at this time to attempt to summarize information about some of the most useful methods of setting up such beams. We are not concerned here with the primary beam of the accelerator. Rather, they assume that a target is struck by the primary beam and that it is desired to form a beam from the secondary charged particles that emerge from collisions within the target. The simplest system of forming this beam of secondary particles involves the use of magnetic fields only. In most cases it is desirable to obtain a beam of particles of known magnetic rigidity, or momentum. The bulk of this article is addressed to this problem. Some comments are also made about the use of electric fields in conjunction with magnetic fields. The inclusion of electric fields allows the separation of a beam of known momentum into its various components according to the velocities of the particles, hence according to the masses of the particles. These are referred to as ''separated beams''.

  1. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  2. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  3. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  4. High-energy radiation from old pulsars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we study nonthermal high energy radiation from old rotation-powered pulsars with ages greater than 106 yr based on the revised outer gap model.In this model,the inclination angle and geometry of the magnetic field have been taken into account,and the fractional size f of the outer gap is determined by the electron/positron pair production process.The cascade process caused by the back-flowing particles moving from the outer gap to the star will produce the observed nonthermal X-ray emission,and the relativistic particles accelerated in the outer gap will produce gamma-rays via curvature radiation.For nine old pulsars which have been detected to have nonthermal X-rays,we first use the observed nonthermal X-ray emission to estimate reasonable inclination angles,and then estimate their gamma-ray emissions.We also study the possibilities of gamma-ray emissions from other old rotation-powered pulsars.We compare our predicted gamma-ray flux with the sensitivities of AGILE and Fermi.

  5. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  6. An experimental high energy physics program

    Science.gov (United States)

    Gaidos, J. A.; Loeffler, F. J.; McIlwain, R. L.; Miller, D. H.; Palfrey, T. R.; Shibata, E. I.

    1989-05-01

    The CLEO detector accumulated, (approximately 480,000 B-mesons) the world's largest sample of B decays, before being shutdown in May 1988 for the installation of CLEO II. This data sample came from 335 pb(-1) accumulated at the upsilon (4S). The Cornell Electron Storage Ring set new luminosity records, reaching 3.5 pb(-1) in a single day. These data are being intensively analyzed and 21 papers were given at the Baltimore APS meeting. Among the highlights are: confirmation of B(sup 0)(bar B)(sup 0) mixing; discovery of the charm-strange baryon xi (sub c)(sup 0); limits on b yields u decay; and non-observation of B yields p(bar p)pi(pi), which was reported by the ARGUS collaboration. The construction of CLEO II is proceeding on schedule. The new 1.5 T superconducting magnet has passed all tests and all of the detector elements have been installed. This includes a 7800 CsI crystals electromagnetic shower calorimeter. The data from the Gamma Ray Astrophysics experiment show a significant signal for high energy gamma ray emission from Cygnus X-3 and also confirm the previously reported anomalous period from Her X-1. Meanwhile, the old 6 mirror telescope has been refitted with 26 high resolution mirrors and improved fast electronics. GRANDE, the next generation detector based on the water Cherenkov technique, has been formally proposed to HEPAP. The detector will search for neutrino emission in the Southern Hemisphere and gamma radiation in the Northern Hemisphere.

  7. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  8. Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

    Directory of Open Access Journals (Sweden)

    Mei-Quan Xie

    2014-01-01

    Full Text Available Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.

  9. Forecasting the short-term passenger flow on high-speed railway with neural networks.

    Science.gov (United States)

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.

  10. A Short Progress Report on High-Efficiency Perovskite Solar Cells

    Science.gov (United States)

    Tang, He; He, Shengsheng; Peng, Chuangwei

    2017-06-01

    Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.

  11. A Short Progress Report on High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Tang, He; He, Shengsheng; Peng, Chuangwei

    2017-12-01

    Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.

  12. High energy astroparticle physics for high school students

    CERN Document Server

    Krause, Maria; Classen, Lew; Holler, Markus; Hütten, Moritz; Raab, Susanne; Rautenberg, Julian; Schulz, Anneli

    2015-01-01

    The questions about the origin and type of cosmic particles are not only fascinating for scientists in astrophysics, but also for young enthusiastic high school students. To familiarize them with research in astroparticle physics, the Pierre Auger Collaboration agreed to make 1% of its data publicly available. The Pierre Auger Observatory investigates cosmic rays at the highest energies and consists of more than 1600 water Cherenkov detectors, located near Malarg\\"{u}e, Argentina. With publicly available data from the experiment, students can perform their own hands-on analysis. In the framework of a so-called Astroparticle Masterclass organized alongside the context of the German outreach network Netzwerk Teilchenwelt, students get a valuable insight into cosmic ray physics and scientific research concepts. We present the project and experiences with students.

  13. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  14. Short Rotation Forestry (SRF in a Mediterranean Environment Under Limited Energy Inputs

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    2010-12-01

    Full Text Available The aim of this work is comparing the two year performance (diameter, total height and mortality of twenty tree and shrub species in a semi arid environment. The research also wants to supply recommendation on the agronomic cropping techniques in areas where rainfall is the main limiting factor and water use is strictly limited. Woody biomass is gaining increasing importance for energy production in Italy. During the last five years, roughly 5000 ha of Short Rotation Forestry (SRF have been planted, mostly in northern Italy, especially using poplar clones. However, in Southern Italy, due to the poor rainfall and the lack of knowledge existing on the species to use, few groves have been established. The studied groves were set in December 2005 in a Mediterranean area where the total year rainfall is not higher than 600 mm (mostly in autumn and winter. Twenty species (Salix cinerea, Ulmus carpinifolia, Corylus avellana, Spartium junceum, Acer saccharinum, Morus alba, Saphora japonica, Eleagnus angustifolia, Fraxinus angustifolia (var oxicarpa, Sambucus nigra, Robinia pseudoacacia, Populus nigra, Albizia julibrissis, Populus alba, Salix alba, Ailanthus altissima, Alnus cordata, Ficus carica, Eucalyptus camaldulensis, Celtis australis were planted in “collection” plots and set in singular plots on single rows (3 m X 0.5 m spacing. Six species (R. pseudoacacia, P. nigra, P. alba, S. nigra, E. camaldulensis, and A. altissima were planted in eighteen random “experimental” split-plots, using single and twin rows (0.5 m spacing between plants. Plots had a rectangular plant spacing (3 m between singular and twin rows, 0.5 m on each row. Plant density was roughly 6670 cuttings ha-1 in “collection” plots with singular rows and 10950 cuttings ha-1 in “experimental” plots using single and twin rows. The expected harvest interval ranges from 2 to 5 years, depending on the first results. In the “collection” plots, the first results showed

  15. A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic - an analysis of a short and long observation period

    Science.gov (United States)

    Slaski, G.; Ohde, B.

    2016-09-01

    The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.

  16. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  17. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...

  18. A Short and Highly Stereoselective Synthesis of Squalamine from Methyl Chenodeoxycholanate

    Institute of Scientific and Technical Information of China (English)

    张冬辉; 蔡峰; 周向东; 周维善

    2005-01-01

    A short and highly stereoselective synthesis of squalamine (1) was accomplished in 9 steps from easily available methyl chenodeoxycholanate (2). The advanced intermediate 7α,24R-dihydroxy-cholestan-3-one (9) was synthesized by using improved dehydrogenation of 4 followed by conjugate reduction and efficient asymmetric isopropylation of aldehyde 7 as key reactions.

  19. Statistical properties of short term price trends in high frequency stock market data

    CERN Document Server

    Sieczka, P; Sieczka, Pawe{\\l}; Ho{\\l}yst, Janusz A.

    2007-01-01

    We investigated distributions of short term price trends for high frequency stock market data. A number of trends as a function of their lengths was measured. We found that such a distribution does not fit to results following from an uncorrelated stochastic process. We proposed a simple model with a memory that gives a qualitative agreement with real data.

  20. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H.; Böswirth, B.; Krieger, K. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, H.Y.; Fu, B.Q.; Li, M. [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-02-15

    Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T{sub max} was found. ► Activation energy for grain growth in T evolution up to T{sub max} in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m{sup 2} were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T{sub max}) was found and accordingly the activation energy for grain growth in temperature evolution up to T{sub max} in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  1. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  2. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  3. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  4. Biomass from Short Rotation Energy Plantations of Black Locust on Tailing Dump of »Field B« Open Pit in »Kolubara« Mining Basin

    OpenAIRE

    Danilović, Milorad; Stojnić, Dušan; Vasiljević, Vladislav; Gačić, Dragan

    2013-01-01

    In recent decades, the establishment of short rotation energy plantations is becoming ever more common in marginal sites, including tailing dumps of open pits in mining basins. During the exploitation cycle, not only do short rotation energy plantations produce woody biomass for energy production, but they also accumulate large amounts of carbon from the soil and air. In this case, the energy plantations are primarily environmentally friendly, which is accompanied by their economic importance...

  5. Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factors other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.

  6. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  7. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  8. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant... Energy Physics Advisory Panel will be renewed for a two-year period, beginning on August 12, 2011. The... priorities in the national High Energy Physics program. Additionally, the renewal of the HEPAP has...

  9. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  10. Clostridial fermentation of high-energy sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.

    1989-01-01

    Pretreatment of biomass has been shown to increase the efficiency of microbial conversion of lignocellulose to energy or chemicals. Most chemical and physical pretreatments, however, are too expensive for practical application. Biological pretreatment during ensilage storage offers the potential for a low cost pretreatment process for herbaceous biomass. A number of cellulolytic microorganisms occurring naturally in silages or inoculated into the biomass during ensiling could result in significant hydrolysis of lignocellulose during storage prior to conversion to the final end products. The overall objective of this research was to induce clostridial fermentation in sorghum during ensiling through either manipulation of environmental conditions or inoculation with clostridium bacteria. The first objective was to determine whether environmental conditions can influence the natural microorganisms population distribution during ensiling, thus leading to clostridial fermentation. The second objective was to determine whether cellulolytic clostridia can compete with lactic acid bacteria in the ensiling process, resulting in a clostridial fermentation. Two studies were conducted to investigate these two objectives. Three levels of water soluble sugars ranging from 180g/kg D.M. to 15g/Kg D.M. and five levels of moisture contents ranging from 58% to 81% were used in the first part of this investigation. The fermentation types were generally heterolactic acid fermentation though sporadic clostridial fermentations were observed. The major products from the fermentations were lactic acid, acetic acid, ethanol, and mannitol. Although the effects of water soluble sugar and moisture content were highly significant for the amount of lactic acid and total products in the fermentations, the two factors were not enough to induce cellulolytic clostridial fermentation.

  11. A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance

    Directory of Open Access Journals (Sweden)

    Ronald Lesley Plaut

    2007-12-01

    Full Text Available Wrought austenitic stainless steels are widely used in high temperature applications. This short review discusses initially the processing of this class of steels, with emphasis on solidification and hot working behavior. Following, a brief summary is made on the precipitation behavior and the numerous phases that may appear in their microstructures. Creep and oxidation resistance are, then, briefly discussed, and finalizing their performance is compared with other high temperature metallic materials.

  12. Influences of Short Discrete Fibers in High Strength Concrete with Very Coarse Sand

    Directory of Open Access Journals (Sweden)

    Mahyuddin Ramli

    2010-01-01

    Full Text Available Problem statement: High Strength Concrete (HSC normally content high cementitous amount and low water binder ratio. However, these would cause substantial volume changes to the concrete and therefore affected the strength development. In addition, the brittleness of HSC was increased when silica fume used as partial cement replacement to achieve high strength. Approach: This study discussed the effects of incorporated short discrete Coconut Fibers (CF, Barchip Fibers (BF and Glass Fibers (GF into HSC to enhance the performance of concrete while kept the binder content at moderate level. Additional specialty to this HSC was casted with very coarse sand with fineness modulus of 3.98. A total of thirteen mixes were casted and tested for slump, density, compressive strength, flexural strength and ultrasonic pulse velocity in accordance with British Standards. Results: The slump was slightly reduced by the short discrete fibers. All of the fibrous specimens had lower density than control. However, the compressive strength of the HSC had increased from 71.8-79.0 MPa using 1.8% of BF, while flexural strength had increased from 5.21-6.50 MPa. All specimens showed that ultrasonic velocity higher than 4.28 km sec-1. Conclusion/Recommendations: In short, combination of incorporated short discrete fibers and applied very coarse sand to produce HSC showed very satisfying results and improvements. Further assessment on durability and impact resistivity will be verified in the coming research.

  13. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  14. Research of the temperature measurement of high-energy laser energy meter and energy loss compensation technique

    Science.gov (United States)

    Yu, Xun; Wang, Hui; Wu, Ji'an; Wang, Fang; Li, Qian

    2009-11-01

    The energy measurement of high energy laser is converts incident laser energy into heat energy, calculates energy utilizing absorber temperature rise, thus the energy value can be gained. Temperature measurement of high-energy laser energy meter and energy loss compensation during the course of the measurement were studied here. Firstly, temperature-resistance characteristics of resistance wire was analyzed, which was winded on exterior surface of the absorbing cavity of high-energy laser energy meter and used in temperature measurement. Least square method was used to process experiment data and a compensation model was established to calibrate the relationship of temperature vs. resistance. Experiment proved that, error between resistance wire and Pt100 is less than 0.01Ω and temperature error is less than 0.02°C. This greatly improves accuracy of the high energy meter measurement result. Secondly, aimed to the compensation of laser energy loss caused by absorbing cavity's heat exchange, the heat energy loss of absorbing cavity, resulted from thermal radiation, heat convection and heat conduction was analyzed based on heat transfer theory. Its mathematics model was established. Least square method was used to fit a curve of experiment data in order to compensate energy loss. Repetitiveness of measurement is 0.7%, which is highly improved.

  15. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm(2) active area and 18% over a 1 cm(2) active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  16. Robust Mechanical-to-Electrical Energy Conversion from Short-Distance Electrospun Poly(vinylidene fluoride) Fiber Webs.

    Science.gov (United States)

    Shao, Hao; Fang, Jian; Wang, Hongxia; Lang, Chenhong; Lin, Tong

    2015-10-14

    Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distanceelectrospinning (spinning distance>8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

  17. Energy management of a university campus utilizing short-term load forecasting with an artificial neural network

    Science.gov (United States)

    Palchak, David

    Electrical load forecasting is a tool that has been utilized by distribution designers and operators as a means for resource planning and generation dispatch. The techniques employed in these predictions are proving useful in the growing market of consumer, or end-user, participation in electrical energy consumption. These predictions are based on exogenous variables, such as weather, and time variables, such as day of week and time of day as well as prior energy consumption patterns. The participation of the end-user is a cornerstone of the Smart Grid initiative presented in the Energy Independence and Security Act of 2007, and is being made possible by the emergence of enabling technologies such as advanced metering infrastructure. The optimal application of the data provided by an advanced metering infrastructure is the primary motivation for the work done in this thesis. The methodology for using this data in an energy management scheme that utilizes a short-term load forecast is presented. The objective of this research is to quantify opportunities for a range of energy management and operation cost savings of a university campus through the use of a forecasted daily electrical load profile. The proposed algorithm for short-term load forecasting is optimized for Colorado State University's main campus, and utilizes an artificial neural network that accepts weather and time variables as inputs. The performance of the predicted daily electrical load is evaluated using a number of error measurements that seek to quantify the best application of the forecast. The energy management presented utilizes historical electrical load data from the local service provider to optimize the time of day that electrical loads are being managed. Finally, the utilization of forecasts in the presented energy management scenario is evaluated based on cost and energy savings.

  18. Identification of mammalian species using the short and highly variable regions of mitochondrial DNA.

    Science.gov (United States)

    Xie, Jianhui; Zhu, Wei; Zhou, Yueqin; Liu, Zhiping; Chen, Yang; Zhao, Ziqin

    2015-08-01

    The mitochondrial DNA (mtDNA) typing is useful for the species determination of degraded samples and the nucleotide diversity of target fragments across species is crucial for the discrimination. In this study, the short and highly polymorphic regions flanked by two conserved termini were sought by the sequence alignment of mtDNA across species and two target regions located at 12S rRNA gene were characterized. Two universal primer sets were developed that appear to be effective for a wide variety of mammalian species, even for domestic birds. The two target regions could be efficiently amplified using their universal primer sets on degraded samples and provide sufficient information for species determination. Therefore, the two short and highly variable target regions might provide a high discriminative capacity and should be suitable for the species determination of degraded samples.

  19. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.; Hassenzahl, William V. (, - Advanced Energy Analysis, Piedmont, CA)

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  20. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review.

    Science.gov (United States)

    Astorino, Todd A; Roberson, Daniel W

    2010-01-01

    Caffeine is the most widely used drug in the world, commonly ingested in coffee, tea, soda, and energy drinks. Its ability to enhance muscular work has been apparent since the early 1900s. Caffeine typically increases endurance performance; however, efficacy of caffeine ingestion for short-term high-intensity exercise is equivocal, which may be explained by discrepancies in exercise protocols, dosing, and subjects' training status and habitual caffeine intake found across studies. The primary aim of this review is to critically examine studies that have tested caffeine's ability to augment performance during exercise dependent on nonoxidative metabolism such as sprinting, team sports, and resistance training. A review of the literature revealed 29 studies that measured alterations in short-term performance after caffeine ingestion. Each study was critically analyzed using the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro score was 7.76 +/- 0.87. Eleven of 17 studies revealed significant improvements in team sports exercise and power-based sports with caffeine ingestion, yet these effects were more common in elite athletes who do not regularly ingest caffeine. Six of 11 studies revealed significant benefits of caffeine for resistance training. Some studies show decreased performance with caffeine ingestion when repeated bouts are completed. The exact mechanism explaining the ergogenic effect of caffeine for short-term exercise is unknown.

  1. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  2. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  3. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  4. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  5. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart Paul [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1999-07-31

    The differential cross section for two-­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles θcm =37°, 53°, 70°, and 90° as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90°. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70° and 90° show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37° and 53°g data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  6. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  7. High-energy photoemission spectroscopy for investigating bulk electronic structures of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, Akira, E-mail: sekiyama@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka (Japan); SPring-8/RIKEN, Sayo 679-5148, Hyogo (Japan)

    2016-04-15

    Progress of high-energy photoemission spectroscopy for investigating the bulk electronic structures of strongly correlated electron systems is reviewed. High-resolution soft X-ray photoemission has opened the door for revealing the bulk strongly correlated spectral functions overcoming the surface contributions. More bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES) enables us to study the electronic structure with negligible surface contribution. The recent development of the polarization-dependent HAXPES is also described in this short review.

  8. Neutral Pion Photoproduction at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Sibirtsev, Alexander; Haidenbauer, J.; Krewald, Siegfried; Meissner, Ulf-G.; Thomas, Anthony

    2009-01-01

    A Regge model with absorptive corrections is employed in a global analysis of the world data on the reactions Å pâ R0p and Å nâ R0n for photon energies from 3 to 18 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single- and double polarization observables at td2 GeV2 allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. A detailed comparison with recent data from the CLAS and CB-ELSA Collaborations in that energy region is presented. Furthermore, the prospects for determining the R0 radiative decay width via the Primakoff effect from the reaction Å pâ R0p are explored.

  9. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  10. Photosynthetic and Biochemical Changes in Response to Short Interval High ``g'' Exposure in Wheat

    Science.gov (United States)

    Dixit, Jyotsana; Vidyasagar, Pandit; Jagtap, Sagar; Kamble, Shailendra

    We have investigated the effect of short interval post imbibition high “g” exposure on wheat seeds (Triticum aestivum var.Lok-1) by evaluating the photosynthetic performance, chlorophyll “a” fluorescence biochemical indices and antioxidant response. Imbibed wheat seeds were exposed to high “g” ranging from 500 g to 2500 g for 10 min, allowed to germinate and grown for 5 days under normal gravity i.e. 1 g. Chlorophyll “a” fluorescence transient was examined in wheat seedling raised from hyper gravity treated seeds. Fv/Fm, PI, Fv/Fo decreased in high “g” treated seeds compared to control. Photosynthetic performance indices such as Transpiration rate, Stomatal conductance, Net photosynthetic rate, Intracellular CO2 concentration, Intrinsic water use efficiency also declined in wheat seedlings raised from High “g” treated seeds suggesting that high g reduces efficiency of photosynthesis in wheat seedlings. Results of Biochemical analysis showed reduced alpha- amylase activity in wheat seeds subjected to high “g” ranging from 500 g to 2500 g in a magnitude dependent manner. Decline in enzyme activity was positively correlated with higher starch content and lower reducing sugars in high “g” exposed wheat seeds. This possibly explains the reduced percent germination and growth in response to high “g”. Antioxidant enzyme activity (CAT and POX) significantly increased as a result of hypergravity exposure In conclusion, short interval high “g” exposure results in reduced growth and photosynthetic activity in wheat seedlings.

  11. Is the electron radiation length constant at high energies?

    Science.gov (United States)

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  12. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  13. Very high energy neutrinos; Les neutrinos de tres haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, L. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); Spiering, Ch. [Desy-Zeuthen (Germany)

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km{sup 3}) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projectsare underway. Their status will be reviewed in this paper. (authors)

  14. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  15. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  16. AMRH and High Energy Reinicke Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Greenough, J A

    2001-05-14

    The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.

  17. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  18. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  19. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC

  20. Fasting ghrelin does not predict food intake after short-term energy restriction

    NARCIS (Netherlands)

    Blom, W.A.M.; Mars, M.; Hendriks, H.F.J.; Groot, de C.P.G.M.; Stafleu, A.; Kok, F.J.; Graaf, de C.

    2006-01-01

    Objective: To study the role of ghrelin as a hunger signal during energy restriction and to test the hypothesis that changes in fasting leptin concentrations during energy restriction are associated with changes in fasting ghrelin concentrations. Research Methods and Procedures: Thirty-five healthy,

  1. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  2. Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity

    Science.gov (United States)

    Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin

    2016-09-01

    We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.

  3. Predicting Time Series from Short-Term High-Dimensional Data

    Science.gov (United States)

    Ma, Huanfei; Zhou, Tianshou; Aihara, Kazuyuki; Chen, Luonan

    The prediction of future values of time series is a challenging task in many fields. In particular, making prediction based on short-term data is believed to be difficult. Here, we propose a method to predict systems' low-dimensional dynamics from high-dimensional but short-term data. Intuitively, it can be considered as a transformation from the inter-variable information of the observed high-dimensional data into the corresponding low-dimensional but long-term data, thereby equivalent to prediction of time series data. Technically, this method can be viewed as an inverse implementation of delayed embedding reconstruction. Both methods and algorithms are developed. To demonstrate the effectiveness of the theoretical result, benchmark examples and real-world problems from various fields are studied.

  4. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge.

    Science.gov (United States)

    Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph

    2017-03-01

    Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  6. Instrumentation for high-energy physics

    CERN Document Server

    Stapnes, S

    2006-01-01

    The rst part of this summary contains a description of the passage of particles through matter. The basic physics processes for charged particles, photons, neutrons and neutrinos are mostly electromagnetic (collision losses described by Bethe-Bloch, bremsstrahlung, photo-electric effect, Compton scattering and pair production) for charged particles and photons; additional strong interactions for hadrons; neutrinos interacting weakly with matter. Concepts like radiation length, electromagnetic showers, nuclear interaction/absorption length and showers are covered. Important processes like multiple scattering, Cherenkov radiation, transition radiation, and dE=dx for particle identi cation are described next. This is followed by a short discussion of momentum measurement in magnetic elds. The last part of the summary covers particle detection by means of ionization detectors, scintillation detectors and semiconductor detectors. Signal processing is brie y discussed at the end.

  7. Mechanical properties of short carbon/glass fiber reinforced high mechanical performance epoxy resins

    Institute of Scientific and Technical Information of China (English)

    张竞; 黄培

    2009-01-01

    To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...

  8. Biological Effects of Short, High-Level Exposure to Gases: Nitrogen Oxides.

    Science.gov (United States)

    1980-07-01

    SUPPLEMENTARY NOT ES3 This project was one of four under the same contract; the others covered ammonia , carbon monoxide, and sulfur dioxide. 3 IS. KEY wOROS...characterize the biological responses to short, high-level exposures to four gases associated with certain Army weapons systems ( ammonia , carbon monoxide...20- i --- 7 (2) Biochemical and Other Effects Buckley and BalchumlO found biochemical changes, principally in enzyme activity of the liver, spleen

  9. Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis.

    Science.gov (United States)

    Harris, L; McGarty, A; Hutchison, L; Ells, L; Hankey, C

    2017-10-04

    This systematic review synthesized the available evidence on the effect of short-term periods of intermittent energy restriction (weekly intermittent energy restriction; ≥7-d energy restriction) in comparison with usual care (daily continuous energy restriction), in the treatment of overweight and obesity in adults. Six electronic databases were searched from inception to October 2016. Only randomized controlled trials of interventions (≥12 weeks) in adults with overweight and obesity were included. Five studies were included in this review. Weekly intermittent energy restriction periods ranged from an energy intake between 1757 and 6276 kJ/d(-1) . The mean duration of the interventions was 26 (range 14 to 48) weeks. Meta-analysis demonstrated no significant difference in weight loss between weekly intermittent energy restriction and continuous energy restriction post-intervention (weighted mean difference: -1.36 [-3.23, 0.51], p = 0.15) and at follow-up (weighted mean difference: -0.82 [-3.76, 2.11], p = 0.58). Both interventions achieved comparable weight loss of >5 kg and therefore were associated with clinical benefits to health. The findings support the use of weekly intermittent energy restriction as an alternative option for the treatment of obesity. Currently, there is insufficient evidence to support the long-term sustainable effects of weekly intermittent energy restriction on weight management. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  10. Response of appetite and potential appetite regulators following intake of high energy nutritional supplements.

    Science.gov (United States)

    Fatima, Sadia; Gerasimidis, Konstantinos; Wright, Charlotte; Tsiountsioura, Melina; Arvanitidou, Eirini-Iro; Malkova, Dalia

    2015-12-01

    The net clinical benefit of high-energy nutritional supplements (HENSDs) consumption is lower than expected. To investigate the extent to which consumption of oral HENSD in the fasted state reduces energy intake in slim females during consecutive breakfast and lunch, and whether this relates to changes in appetite and metabolic appetite regulators. Twenty three females of 24.4 ± 2.8 years with BMI of 18.2 ± 0.8 kg/m(2) consumed HENSD (2.5 MJ) or PLACEBO (0.4 MJ) in fasted state in a single blind randomized cross-over study. Appetite and metabolic rate measurements and blood collection were conducted prior to and during 240 min after the intake of the supplements. Energy intake was recorded during ad libitum buffet breakfast and lunch served 60 min and 240 min post supplementation respectively. Energy intake during breakfast was significantly (P energy intake was 1.07 ± 0.34 MJ higher in the HENSD compared to PLACEBO. Plasma concentration of CCK and PYY and insulin and were significantly (P energy expended above resting metabolic rate was significantly (P energy expenditure was not significantly different between the two trials. Oral high-energy nutritional supplements have a partial and relatively short lived suppressive action on energy intake and can be expected to increase net energy intake by approximately half the energy value of the supplement consumed. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. 77 FR 76959 - Energy Conservation Program: Request for Exclusion of 100 Watt R20 Short Incandescent Reflector...

    Science.gov (United States)

    2012-12-31

    ... characteristic that is required to prevent high heat from damaging the cement that joins the glass envelope and... commented that single-ended and double-ended halogen burners are frequently used in small diameter reflector... MOLs exceeding 3 and \\5/8\\ inches, can accommodate single-ended halogen burners, R20 short lamps could...

  12. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    Science.gov (United States)

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  14. Short rotation coppice as a business field of an energy utility

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T. (RWE Innogy Cogen GmbH, Dortmund (Germany))

    2010-07-01

    Companies that start planting short rotation coppice (SRC), enter a new territory. In fact, this subject is often discussed, but there is - at least in Germany - still comparatively little practical knowledge on that. Since ca. 1 year, RWE Innogy Cogen is doing pioneer work here and starts establishing SRC in Germany and Europe. Therefore, first results and experiences, as well as consequences for practice shall be presented and discussed in this article. (orig.)

  15. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  17. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  18. Requirements for very high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1985-04-01

    In this introductory paper at the second Workshop on Laser Acceleration my main goal is to set what I believe to be the energy and luminosity requirements of the machines of the future. These specifications are independent of the technique of accelerations. But, before getting to these technical questions, I will briefly review where we are in particle physics, for it is the large number of unanswered questions in physics that motivates the search for effective accelerators.

  19. High Energy Effects of Noncommutative Spacetime Geometry

    CERN Document Server

    Sidharth, Burra G

    2016-01-01

    In this paper, we endeavour to obtain a modified form of the Foldy-Wouthuysen and Cini-Toushek transformations by resorting to the noncommutative nature of space-time geometry, starting from the Klein-Gordon equation. Also, we obtain a shift in the energy levels due to noncommutativity and from these results a limit for the Lorentz factor in the ultra-relativistic case has been derived in conformity with observations

  20. Neural Computing in High Energy Physics

    Institute of Scientific and Technical Information of China (English)

    O.D.Joukov; N.D.Rishe

    2001-01-01

    Artifical neural networks (ANN) are now widely used successfully as tools for hith energy physics.The paper covers two aspects.First,mapping ANNs onto the proposed ring and linear systolic array provides an efficient implementation of VLSI-based architectures since in this case all connections among processing elements are local and regular,Second.it is discussed algorthmic organizing of such structures on the base of modular algebra whose use can provide an essential increase of system throughput.