WorldWideScience

Sample records for high energy iron

  1. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  3. High energy argon ion irradiations of polycrystalline iron

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Boulanger, L.

    1986-09-01

    We present here the results of our recent irradiations of polycrystalline iron targets with very energetic (1.76 GeV) Ar ions. The targets consist of piles of thin iron samples, the total thickness of each target being somewhat greater than the theoretical range (450 μm) of the ions. We can thus separate the phenomena which occur at different average energies of the ions and study during the slowing-down process: the different types of induced nuclear reactions. They allow us to determine the experimental range of the ions, the defect profiles in the targets, the structure of the displacement cascades (electron microscopy) and their stability

  4. Pelletized vs. natural iron ore technology: energy, labor, and capital changes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kakela, P.

    1978-09-01

    Total energy requirements per ton of iron-in-ore for natural and pelletized ore were calculated by a hybrid energy analysis. Energy requirements for ore preparation were subsequently considered as one energy input (embodied) to blast furnaces. Total energy requirements per ton molten iron were calculated for each year from 1955 through 1975 to identify changes attributable to the shift in iron ore preparation. Four results were found. (1) In practice, the lean ores are energetically superior. Pelletized ore requires more energy at the mine than natural ore, but pellets produce offsetting energy savings in the blast furnace. (2) Labor changes followed a similar pattern: man-hours per ton of molten iron increased at the mine with pelletization, but decreased at the blast furnance. Net labor required per ton of molten iron has decreased with pelletization. (3) Capital investments per ton of molten iron have increased greatly at iron ore mines with pelletization and decreased moderately at blast furnaces. New capital investment per ton of molten iron has increased with pelletization. (4) In the iron and steel industry, relatively low-priced energy held a substantial advantage over high-priced labor between 1950 and 1969. The industry, however, discovered that capital investments in pellet plants could save both labor and energy up to 1963; after 1963 capital and energy weresubstituted for labor. A sharp reversal of substitutional advantage occurred in 1970; energy jumped to the most costly factor. Thus capital presently shows a strong substitutional advantage over high-priced energy and intermediately-priced labor.

  5. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  6. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    International Nuclear Information System (INIS)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-01-01

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  7. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  8. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  9. High solubility pathway for the carbon dioxide free production of iron.

    Science.gov (United States)

    Licht, Stuart; Wang, Baohui

    2010-10-07

    We report a fundamental change in the understanding of iron oxide thermochemistry, opening a facile, new CO(2)-free route to iron production. The resultant process can eliminate a major global source of greenhouse gas emission, producing the staple iron in molten media at high rate and low electrolysis energy.

  10. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  11. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors.

    Science.gov (United States)

    Qu, Qunting; Yang, Shubin; Feng, Xinliang

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe(3)O(4). The Fe(3)O(4) @RGO nanocomposites exhibit superior capacitance (326 F g(-1)), high energy density (85 Wh kg(-1)), large power, and good cycling performance in 1 mol L(-1) LiOH solution. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High energy iron ion implantation into sapphire

    International Nuclear Information System (INIS)

    Allen, W.R.; Pedraza, D.F.

    1990-01-01

    Sapphire specimens of c-axis orientation were implanted at room temperature with iron ions at energies of 1.2 and of 2 MeV to various fluences up to 8 x 10 16 cm -2 . The damage induced by the implantations was assessed by Rutherford backscattering spectroscopy in random and channeling geometries. Dechanneling in both sublattices was observed to saturate for all implantation conditions. Disorder in the aluminum sublattice was found to increase with depth at a significantly slower rate than in the oxygen sublattice. In the oxygen sublattice, a relative yield, χ, of 0.80 ± 0.11 was attained at a depth of 0.1 μm and remained constant up to the measured depth of 0.45 μm. In the aluminum sublattice, the disorder increased with depth and the dechanneling asymptotically approached χ =0.70 ± 0.04 at 0.45 μm. These results are discussed and compared with those for shallower Fe implantations obtained by other researchers

  13. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  14. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  15. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China

    International Nuclear Information System (INIS)

    Guo, Z.C.; Fu, Z.X.

    2010-01-01

    A survey of the key issues associated with the development in the Chinese iron and steel industry and current situations of energy consumption are described in this paper. The apparent production of crude steel in China expanded to 418.78 million tonnes in 2006, which was about 34% share of the world steel production. The iron and steel industry in China is still one of the major high energy consumption and high pollution industries, which accounts for the consumption of about 15.2% of the national total energy, and generation of 14% of the national total wastewater and waste gas and 6% of the total solid waste materials. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries due to its low energy utilization efficiency. However, the energy efficiency of the iron and steel industry in China has made significant improvement in the past few years and significant energy savings will be achieved in the future by optimizing end-use energy utilization. Finally, some measures for the industry in terms of the economic policy of China's 11th five-year plan are also presented.

  16. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting; Feng, Xinliang [College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Yang, Shubin [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe{sub 3}O{sub 4}. The Fe{sub 3}O{sub 4} rate at RGO nanocomposites exhibit superior capacitance (326 F g{sup -1}), high energy density (85 Wh kg{sup -1}), large power, and good cycling performance in 1 mol L{sup -1} LiOH solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High-energy xenon ion irradiation effects on the electrical properties of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, J.M.; Flament, J.L.; Sinopoli, L.; Trochon, J.; Uzureau, J.L.; Groult, D.; Studer, F.; Toulemonde, M.

    1989-01-01

    Thin monocristalline samples of yttrium iron garnet Y 3 Fe 5 O 12 (YIG) were irradiated at room temperature with 27 MeV/A 132 Xe ions at varying fluences up to 3.5 x 10 12 ions cm -2 . Sample thickness (100 μm) was smaller than the mean projected range of ions (170 μm) so that we were able to study the effects of irradiation damage solely. At such a high ion energy the nuclear energy loss is negligible and damage is mainly due to electronic excitation energy loss. YIG d.c conductivity is found to rise by a factor 40 for the highest dose while the permittivity increases only slightly after irradiation (40% max.). The dielectric losses are also enhanced as the ion fluence increases especially at lower frequencies (by a factor 6 at 10 KHz). No dielectric relaxation peak is observed in the frequency range explored here (10 KHz - 10 MHz)

  18. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China

    Science.gov (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    For the ferrous burden of blast furnaces in China, sinter generally accounts for more than 70% and the sintering process accounts for approximately 6-10% of the total energy consumption of the iron and steel enterprise. Therefore, saving energy during the sintering process is important to reduce the energy consumption in the iron and steel industry. This paper aims to illustrate recent advances and the research status of energy conservation of iron ore sintering in China. It focuses on the development and application of energy-saving technologies such as the composite agglomeration process, sintering with high-proportion flue gas recirculation sintering, recovery of sensible heat from the sinter cooling process, homogeneous deep-bed sintering technology, and comprehensive treatment technology of leakage of sintering. Moreover, some suggestions for the future development of energy-saving technologies are put forward.

  19. Exploring energy efficiency in China's iron and steel industry: A stochastic frontier approach

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Xiaolei

    2014-01-01

    The iron and steel industry is one of the major energy-consuming industries in China. Given the limited research on effective energy conservation in China's industrial sectors, this paper analyzes the total factor energy efficiency and the corresponding energy conservation potential of China's iron and steel industry using the excessive energy-input stochastic frontier model. The results show that there was an increasing trend in energy efficiency between 2005 and 2011 with an average energy efficiency of 0.699 and a cumulative energy conservation potential of 723.44 million tons of coal equivalent (Mtce). We further analyze the regional differences in energy efficiency and find that energy efficiency of Northeastern China is high while that of Central and Western China is low. Therefore, there is a concentration of energy conservation potential for the iron and steel industry in the Central and Western areas. In addition, we discover that inefficient factors are important for improving energy conservation. We find that the structural defect in the economic system is an important impediment to energy efficiency and economic restructuring is the key to improving energy efficiency. - Highlights: • A stochastic frontier model is adopted to analyze energy efficiency. • Industry concentration and ownership structure are main factors affecting the non-efficiency. • Energy efficiency of China's iron and steel industry shows a fluctuating increase. • Regional differences of energy efficiency are further analyzed. • Future policy for energy conservation in China's iron and steel sector is suggested

  20. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    Objectives: To examine the iron status of malnourished children by comparing bone marrow iron deposits in children with protein energy malnutrition with those in well-nourished controls, and measuring chelatable urinary iron excretion in children with kwashiorkor. Design: Bone marrow iron was assessed histologicaHy in ...

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  2. Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network

    International Nuclear Information System (INIS)

    Wu, Junnian; Wang, Ruiqi; Pu, Guangying; Qi, Hang

    2016-01-01

    Highlights: • Exergy, energy and CO_2 emissions assessment of iron and steel industrial network. • Effects of industry symbiosis measures on exergy, energy and CO_2 emissions. • Exploring the environmental impact from exergy losses. • The overall performance indexes are proposed for iron and steel industrial network. • Sinter strand and the wet quenching process have the lowest exergy efficiency. - Abstract: Intensive energy consumption and high pollution emissions in the iron and steel industry have caused problems to the energy system, in the economy, and in the environment. Iron and steel industrial network as an example of energy conservation and emissions reduction, require better analysis and assessment. The present study comprehensively assesses an iron and steel industrial network and its environmental performance with respect to exergy, energy and CO_2 emissions. The results show that the sinter strand needs to be greatly improved and the wet quenching process needs to be completely redesigned. The overall exergy efficiency and energy efficiency can be improved by adopting industrial symbiosis (IS) measures. We found that adjusting the energy structure to use renewable energy and recycling solid waste can greatly reduce CO_2 emissions. Moreover, the maximum exergy losses occurred in the blast furnace with the maximum CO_2 emissions. The iron making plant exerted a strong effect on the environment based on the equivalent CO_2 emission potentials. Many performance indicators of the entire industrial network were also examined in this work. It can be seen that integrated evaluation of energy and CO_2 emissions with exergy is necessary to help to mitigate adverse environmental impacts and more effectively fulfill the goals for energy conservation and emissions reduction.

  3. Work Index and Grinding Energy Assessment of Dilband Iron Ore, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-01-01

    Full Text Available Importance of comminution in mineral processing sector is highly acknowledged from energy perspective. In present study an attempt was made to understand the comminuting behavior of Dilband iron ore and to compute the grinding energy requirement for production of ultrafine particles up to mesh of liberation. In this regard standard grindability tests developed by the Chair of Mineral Processing Leoben Austria was used for calculating work index of Dilband iron ore. The grinding tests were conducted in rod and ball mills. The work index value of two feed size fractions with 80% passing at 3800?m and 5200?m was noted to be 11.85 kwh/t and 9.3 kwh/ton respectively. Ball mill grinding test indicates that dry grinding in open circuit is not efficient and consumes more energy of 88.48kwh/t of ore for grinding 1000/40?m to 80% <40?m size.

  4. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method

    International Nuclear Information System (INIS)

    Rydberg, B.; Loebrich, M.; Cooper, P.K.

    1994-01-01

    The relative effectiveness of high-energy neon and iron ions for the production of DNA double-strand breaks was measured in one transformed and one nontransformed human fibroblast cell line using pulsed-field gel electrophoresis. The DNA released from the gel plug (fraction of activity released: FAR) as well as the size distribution of the DNA entering the gel were used to compare the effects of the heavy-ion exposure with X-ray exposure. Both methods gave similar results, indicating similar distributions of breaks over megabase-pair distances for the heavy ions and the X rays. The relative biological effectiveness (RBE) compared to 225 kVp X rays of initially induced DNA double-strand breaks was found to be 0.85 for 425 MeV/u neon ions (LET 32 keV/μm) and 0.42-0.55 for 250-600 MeV/u iron ions (LET 190-350 keV/μm). Postirradiation incubation showed less efficient repair of breaks induced by the neon ions and the 600 MeV/u iron ions compared to X rays. Survival experiments demonstrated RBE values larger than one for cell killing by the heavy ions in parallel experiments (neon: RBE = 1.2, iron: RBE = 2.3-3.0, based on D 10 values). It is concluded that either the initial yield of DNA double-strand breaks induced by the high-energy particles is lower than the yield for X rays, or the breaks induced by heavy ions are present in clusters that cannot be resolved with the technique used. These results are confirmed in the accompanying paper. 48 refs., 5 figs., 2 tabs

  5. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors

    International Nuclear Information System (INIS)

    Guenther, W.; Leugner, D.; Becker, E.; Flesch, F.; Heinrich, W.; Huentrup, G.; Reitz, G.; Roecher, H.; Streibel, T.

    1999-01-01

    We have exposed stacks of CR-39 plastic nuclear track detectors inside the MIR space craft during the EUROMIR95 space mission for almost 6 months. Over this long period a large number of tracks of high LET events was accumulated in the detector foils. The etching and measuring conditions for this experiment were optimized to detect tracks of stopping iron nuclei. We found 185 stopping iron nuclei inside the stack and identified their trajectories through the material of the experiment. Based on the energy-range relation the energy at the surface of the stack was determined. These particles allow the determination of the low energy part of the spectrum of iron nuclei behind shielding material inside the MIR station

  6. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  7. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  8. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  9. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  10. Adsorption energy of iron-phthalocyanine on crystal surfaces

    International Nuclear Information System (INIS)

    Struzzi, C.; Scardamaglia, M.; Angelucci, M; Massimi, L.; Mariani, C.; Betti, G.

    2013-01-01

    The adsorption energy of iron-phthalocyanine (FePc) deposited on different crystal surfaces is studied by thermal desorption spectroscopy. A thin film of molecules has been absorbed on highly oriented pyrolytic graphite (HOPG), on graphene epitaxially grown on Ir(111), and on Au(110). Activation energies for the desorption of a molecular thin film and for the FePc single layer are determined at the three surfaces. The desorption temperature measured for the thin films is only slightly dependent on the substrate, since it is mostly dominated by molecule-molecule interactions. A definitely different desorption temperature is found at the single-layer coverage: we find an increasing desorption temperature going from HOPG, to graphene/Ir, to the Au(110) surface. The different adsorption energies of the first FePc layer in contact with the substrate surface are discussed taking into account the interaction and the growth morphology.

  11. Structural and compositional characterization of LiNbO{sub 3} crystals implanted with high energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Sada, C., E-mail: cinzia.sada@unipd.i [Universita di Padova and CNISM, Dipartimento di Fisica, Via Marzolo 8, 35131 Padova (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M.V.; Zaltron, A.M.; Mazzoldi, P. [Universita di Padova and CNISM, Dipartimento di Fisica, Via Marzolo 8, 35131 Padova (Italy); Agarwal, D.C.; Avastshi, D.K. [Inter-University Accelerator Centre, Post Box-10502, New Delhi 110067 (India)

    2010-10-01

    Iron ions were implanted with a total fluence of 6 x 10{sup 17} ions/m{sup 2} into lithium niobate crystals by way of a sequential implantation at different energies of 95, 100 and 105 MeV respectively through an energy retarder Fe foil to get a uniform Fe doping of about few microns from the surface. The implanted crystals were then annealed in air in the range 200-400 {sup o}C for different durations to promote the crystalline quality that was damaged by implantation. In order to understand the basic phenomena underlying the implantation process, compositional in-depth profiles obtained by the secondary ion mass spectrometry were correlated to the structural properties of the implanted region measured by the high resolution X-ray diffraction depending on the process parameters. The optimised preparation conditions are outlined in order to recover the crystalline quality, essential for integrated photorefractive applications.

  12. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  13. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  14. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia.

    Directory of Open Access Journals (Sweden)

    Alexander eRakin

    2012-11-01

    Full Text Available Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a prerequisite to become an efficient and successful pathogen. Currently it is assumed that yersiniabactin (Ybt is the solely functional endogenous siderophore iron uptake system in highly virulent Yersinia (Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica biotype 1B. Genes responsible for biosynthesis, transport and regulation of the yersiniabactin (ybt production are clustered on a mobile genetic element, the High Pathogenicity Island (HPI that is responsible for broad dissemination of the ybt genes in Enterobacteriaceae. However, the ybt gene cluster is absent from nearly half of Y. pseudotuberculosis O3 isolates and epidemic Y. pseudotuberculosis O1 isolates responsible for the Far East Scarlet-like Fever. Several potential siderophore-mediated iron uptake gene clusters are documented in Yersinia genomes, however neither of them have been proven to be functional. It has been suggested that at least two siderophores alternative to Ybt may operate in the highly virulent Yersinia pestis / Y. pseudotuberculosis group, and are referred to as pseudochelin (Pch and yersiniachelin (Ych. Furthermore, most sporadic Y. pseudotuberculosis O1 strains possess gene clusters encoding all three iron scavenging systems. Thus, the Ybt system appears not to be the sole endogenous siderophore iron uptake system in the highly virulent yersiniae and may be efficiently substituted and / or supplemented by alternative iron scavenging systems.

  15. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: evidence for deficits in dopaminergic neurons

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Rabin, B.M.

    1990-01-01

    Exposure to low doses of high-energy iron particles can alter motor behavior. The ability of rats to hang from a wire has been reported to be significantly degraded after exposure to doses as low as 0.5 Gy. In addition, deficits in the ability of acetylcholine to regulate dopamine release in the caudate nucleus (an area in the brain important for motor function) have been found. The concentrations of 3-methoxytyramine (3-MT), a metabolite of dopamine whose concentrations reflect dopamine release in vivo, were measured after rats were exposed to different doses of high-energy iron particles to gain further information about the effect of radiation on the dopaminergic system. Concentrations of 3-MT were significantly reduced 3 days after exposure to 5 Gy but returned to control values by 8 days. After 6 months, concentrations were again less than control values. Exposure to 5 Gy of high-energy electrons or gamma photons had no effect 3 days after exposure. Very high doses of electrons were needed to alter 3-MT concentrations. One hundred grays of electrons decreased 3-MT 30 min after irradiation but levels returned to control values by 60 min. Gamma photons had no effect after doses up to 200 Gy. These results provide further evidence that exposure to heavy particles can degrade motor behavior through an action on dopaminergic mechanisms and that this can occur after doses much lower than those needed for low-LET radiation

  16. Calculated performance of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Schmidt, W.

    1976-02-01

    The calculated responses of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV are presented. The responses calculated are energy resolution vs energy, energy resolution vs the thickness of the sampling plates, the angular and spatial root-mean-square deviations (i.e., the ability to determine the incident particle's entrance angle and impact point), and the spatial properties of the average and individual hadronic cascades. Some comparisons are made with experimental data; however, the main purpose of this paper is to provide specific design information for these types of calorimeters

  17. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  19. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  20. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  1. Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian Fu; Yang, Yi; Xie, Xue Qian; Zhang, Huan; Chai, Wei Min; Yan, Fu Hua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Yan, Jing [Siemens Shanghai Medical Equipment Ltd., Shanghai (China); Wang, Li [Fudan University, Center of Analysis and Measurement, Shanghai (China); Schmidt, Bernhard [Siemens AG, Healthcare Sector, Forchheim (Germany)

    2015-09-15

    To assess the accuracy of liver iron content (LIC) quantification and grading ability associated with clinical LIC stratification using virtual iron concentration (VIC) imaging on dual-energy CT (DECT) in an iron overload rabbit model. Fifty-one rabbits were prepared as iron-loaded models by intravenous injection of iron dextran. DECT was performed at 80 and 140 kVp. VIC images were derived from an iron-specific algorithm. Postmortem LIC assessments were conducted on an inductively coupled plasma (ICP) spectrometer. Correlation between VIC and LIC was analyzed. VIC were stratified according to the corresponding clinical LIC thresholds of 1.8, 3.2, 7.0, and 15.0 mg Fe/g. Diagnostic performance of stratification was evaluated by receiver operating characteristic analysis. VIC linearly correlated with LIC (r = 0.977, P < 0.01). No significant difference was observed between VIC-derived LICs and ICP (P > 0.05). For the four clinical LIC thresholds, the corresponding cutoff values of VIC were 19.6, 25.3, 36.9, and 61.5 HU, respectively. The highest sensitivity (100 %) and specificity (100 %) were achieved at the threshold of 15.0 mg Fe/g. Virtual iron concentration imaging on DECT showed potential ability to accurately quantify and stratify hepatic iron accumulation in the iron overload rabbit model. (orig.)

  2. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  3. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  4. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  5. Development of a high-energy x-ray CT and its application to iron and steel analysis

    International Nuclear Information System (INIS)

    Taguchi, Isamu

    1987-01-01

    X-ray computed tomographic scanners are extensively used in medicine but have rarely been applied to non-medical purposes. Steel specimens pose particularly difficult problems - very poor transmission of X-rays and the need for high resolving capability. There have thus been no effective tomographic methods for examining steel specimens. Due to the growing need for non-destructive, non-contact methods for observing and analyzing the internal conditions of steel and raw materials for steel, however, we have developed a new high-energy computed tomographic scanner for steel (CTS). Its major specifications and functions are as follows. Type : 2nd-generation CT, 8-channel, Scanning method : 6deg revolution, 30-time traversing, Slice width : 0.3 mm, Resolving capability : 0.1 x 0.1 mm X-ray source : 420 kV, 3 mA, X-ray detector : BGO scintillator, Standard sample size : 50 mm dia., 50 mm high, Data collection time : 9.5 or 5 min. The CTS was successfully applied to the observation and the analysis of porosities of stainless steel (SUS 304) bloom, pores of iron ore sinters and metallic phases of the meteirites found in Antarctic Continent. (author)

  6. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  7. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  8. Development of instant noodles from high-iron rice and iron-fortified rice flour

    Directory of Open Access Journals (Sweden)

    Suparat Reungmaneepaitoon

    2008-08-01

    Full Text Available Instant high-iron noodles, prepared from wheat flour and high iron brown rice flour, were developed. Three varieties of rice flour, Suphan Buri 90 (SB, Homnin 313 (HW and Homnin 1000 (HP, containing amylose content of 30.40, 19.10 and 15.74% (w/w and iron content of 1.24, 2.04 and 2.22 (mg/100 g respectively, were used to replace wheat flour for instant fried noodle production. To determine the physicochemical properties and acceptability of instant fried noodles,different percentages (30, 40, 50% (w/w of each rice flour sample were used. The instant fried noodles were fortified with ferrous sulphate at levels of 0, 32, 64% iron of RDI per serving. Increasing amount of iron content in the mixtures decreased the L* value, b* value and increased a* value for the color of the instant fried noodle with brown rice flour. The texture characteristic of the noodles with 30, 40, 50% replacement with each variety of brown rice flour were significantly different from those of wheat noodle. Tensile force of the noodles decreased from 11.57±1.30 g to 6.38±1.45 g (SB, 8.36±0.96 g to 5.71±0.57 g (HP and 10.09±1.20 g to 5.46±1.31 g (HW as the rice flour content increased from 30 to 50%. The sensoryacceptability of the noodles made from each variety of 30% brown rice flour fortified with 32% iron of RDI had higher preference scores for elasticity, firmness, color and overall acceptability, than those with 64% iron of RDI. Instant fried noodles with HW and HP brown rice flour were subjected to consumer test using 100 rural primary school children. The frequency percent of the acceptability scores of the noodle with HP and HW were 88 and 84% respectively. Shelf life studyrevealed that the developed products were still acceptable up to 4 months. These products were claimed to be high iron noodle.

  9. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  10. Phenomenon of energy concentration in super-high energy γ-hadron families

    International Nuclear Information System (INIS)

    Dai Zhiqiang; Xue Liang; Li Jinyu; Zhang Xueyao; Feng Cunfeng; Fu Yu; Li Jie; Cao Peiyuan; Zhang Naijian; He Mao; Wang Chengrui; Ren Jingru; Lu Suiling

    2000-01-01

    The family events observed with iron emulsion chambers at Mt. Kanbala are analyzed and compared with the simulations by the COSMOS code and CORSIKA code respectively. A detailed study on the production of super-high energy γ-hadron families with energy concentration behavior is carried out. The preliminary conclusions are: 1) the energy concentration behavior of super-high energy γ-hadron families is the external embodiment of high energy central shower clusters contained in the families. 2) the mean lateral spread of these clusters is about 0.37 cm. 3) the frequency of this phenomenon appeared under the conditions of R≤10 mm and X 10 ≥90% is (20.5 +- 3.1)%. 4) compared to the COSMOS code based on the phenomenological multi-cluster model, the simulation by the CORSIKA code that adopts SIBYLL model is closer to the analytical results of experiment

  11. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  12. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  13. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  14. Effect of phosphorus on hot ductility of high purity iron

    International Nuclear Information System (INIS)

    Abiko, K.; Liu, C.M.; Ichikawa, M..; Suenaga, H.; Tanino, M.

    1995-01-01

    Tensile tests on high purity Fe-P alloys with 0, 0.05 and 0.1 mass%P were carried out at temperatures between 300 K and 1073 K to clarify the intrinsic effect of phosphorus on the mechanical properties of iron at elevated temperatures. Microstructures of as-quenched, interrupted and ruptured specimens were observed. Experimental results show that the addition of phosphorus causes a remarkable increase in proof stress of high purity iron at 300 K, but the increase in proof stress by phosphorus decreases with increasing test temperature. The strengthening effect of phosphorus reduces to zero at 1073 K. High purity iron and Fe-P alloys rupture at almost 100% reduction in area at the whole test temperatures. However, Fe-P alloys show much larger elongation at test temperatures above 773 K than high purity iron. The increased elongation of high purity iron by addition of phosphorus was shown to be related to the effect of phosphorus on dynamic recovery and recrystallization of iron as its intrinsic effect. (orig.)

  15. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  16. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  17. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  18. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  19. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Lithium ion battery technology has the potential to meet the requirements of high energy density and high power density applications. A continuous search for novel materials is pursued continually to exploit the latent potential of this technology. In this review paper, methods for preparation of Lithium Iron Phosphate are discussed which include solid state and solution based synthesis routes. The methods to improve the electrochemical performance of lithium iron phosphate are presented in detail.

  20. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  1. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  2. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  3. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  4. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    Science.gov (United States)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  5. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  6. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  7. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  8. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  9. Preparation of carbon-encapsulated iron nanoparticles in high yield by DC arc discharge and their characterization

    International Nuclear Information System (INIS)

    Zhang, Fan; Cui, Lan; Lin, Kui; Jin, Feng-min; Wang, Bin; Shi, Shu-xiu; Yang, De-an; Wang, Hui; He, Fei; Chen, Xiao-ping; Cui, Shen

    2013-01-01

    Highlights: ► CEINPs with core–shell structure and high Fe content were prepared in high yield by DC arc discharge. ► The anode II with a mass ratio of total iron to carbon 8:1 was used in DC arc discharge. ► The possible process of formation of CEINPs is briefly discussed. ► The uniformity of composition of anode is very important for the formation of CEINPs. ► The MEF and MMF of iron element may also play an important role in the formation of CEINPs. -- Abstract: Carbon-encapsulated iron nanoparticles (CEINPs) were prepared by DC arc discharge under nitrogen atmosphere of high temperature. The products were characterized by transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscope, and X-ray photoelectron spectroscope (XPS), and their magnetic properties were measured by physical property measurement system (PPMS). The product B I , obtained from the anode I, contains the nanoparticles of iron and iron carbide, and carbon coating with imperfect and disordered layer structure. The product B II , obtained from the anode II, mainly consists of CEINPs, whose cores mainly consist of iron and iron carbide and shells contain about 3–7 graphitic layers. The iron contents in the products B I and B II are 44.8 and 82.6 wt.%, respectively. The products B I and B II have similar phase composition which includes carbon, iron, iron carbide, ferrous and ferric oxide, iron nitride, and carbon nitride. The saturation magnetization (Ms) of the products B I and B II are 29.35 and 88.66 emu/g and their coercivity (Hc) are 220 and 240 Oe, respectively. The total yields of all the products formed in the arc discharge chamber from anodes I and II, except for the cylinder-shaped deposits formed on the top of the cathode, are 25.8 and 22.3 wt.%, respectively. The possible process of formation of CEINPs is briefly discussed on the foundation of our results and other

  10. Energy dispersive x-ray fluorescence spectrometric determination of phosphorus, calcium, iron, zinc, and strontium in human bones

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Itoman, Moritoshi

    1981-01-01

    Phosphorus, calcium, iron, zinc and strontium in a human bone extracted by surgery were determined by energy dispersive X-ray fluorescence spectrometry. The bone was decomposed with nitric acid, then diluted with water. A specific quantity of the solution was naturally dried on polyethylene film, and subjected to X-ray analysis. For determining the calibration curves in a mixture of phosphorus, calcium, iron, zinc and strontium, for the analysis of phosphorus and calcium, germanium was used as the secondary target and aluminum as the filter; and for the analysis of iron, zinc and strontium, molybdenum and molybdenum-aluminum were used, respectively. Consequently, the calibration curves were able to be obtained with high precision in the ranges from 5 to 500 μg of phosphorus, from 1 to 50 μg of calcium and from 0.1 to 1.0 μg of iron, zinc and strontium. In this way, in 1 mg of the human bone by wet weight, phosphorus, calcium, iron, zinc and strontium were able to be determined. (J.P.N.)

  11. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    International Nuclear Information System (INIS)

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  12. Fractionated exposure of high energy iron ions has a sparing effect in vivo

    Science.gov (United States)

    Chang, P. Y.; Bakke, J.; Puey, A.

    The radiation environment in deep space is complex and includes a broad spectrum of charged and highly energetic particle radiations. Exposure to these types of radiations may pose potential health risks in manned space missions. The detection of particle radiation-induced genomic alterations in vivo, particularly in slow or non-dividing tissues, is therefore important to provide relevant information in estimating risks. We are using a plasmid-based lacZ transgenic mouse model system to rapidly measure, in a statistically reliable way, the mutagenic potential of charged particle radiations relevant in the space environment. The lacZ transgenic mouse has been constructed so that every cell of the animal contains multiple copies of an integrated target reporter gene, allowing us to measure tissue-specific radiation-induced changes as a function of dosing regime. The nature of these mutations can also be characterized by restriction fragment length polymorphisms (RFLP). To examine the impact of dose protraction, animals were exposed to a single dose or daily fractions of 1 GeV/n iron ions. Cytotoxicity in the peripheral blood was measured by enumerating the frequency of circulating micronucleated reticulocytes (fMN-RET) in a time course from 24 h up to 1 week after completion of the radiation protocol. Brain and spleen tissues were harvested at 8 weeks after exposure and mutant frequencies (MF) in the transgene in these tissues were measured. Results from the fractionated protocol were compared to the responses obtained after the animals were exposed to the single dose treatment. We noted significantly lower levels of micronucleated reticulocytes in peripheral blood at 48 h after fractionated doses of iron ions when compared to the same total dose delivered in a single exposure demonstrating that protracted exposures of particle radiation resulted in an overall sparing effect in cytogenetic toxicity in the hematopoietic system in animals. Transgene mutation analysis

  13. Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.; Schleich, J.

    The iron and steel sector is the largest industrial CO2 emitter and energy consumer in the world. Energy efficiency is key to reduce energy consumption and GHG emissions. To understand future developments of energy use in the steel sector, it is worthwhile to analyze energy efficiency developments

  14. Iron concentration in breast milk normalised within one week of a single high-dose infusion of iron isomaltoside in randomised controlled trial

    DEFF Research Database (Denmark)

    Holm, Charlotte; Thomsen, Lars Lykke; Nørgaard, Astrid

    2017-01-01

    AIM: We compared the iron concentration in breast milk after a single high-dose of intravenous iron isomaltoside or daily oral iron for postpartum haemorrhage. METHODS: In this randomised controlled trial, the women were allocated a single dose of intravenous 1,200mg iron isomaltoside or oral iron...... deviation) iron concentration in breast milk in the intravenous and oral groups were 0.72 ± 0.27 mg/L and 0.40 ± 0.18 mg/L at three days (p birth. CONCLUSION: A single high...

  15. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    Science.gov (United States)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  16. Investigation of effects of boron additives and heat treatment on carbides and phase transition of highly alloyed duplex cast iron

    International Nuclear Information System (INIS)

    Tasgin, Yahya; Kaplan, Mehmet; Yaz, Mehmet

    2009-01-01

    The effect of boron additives and heat treatment on the microstructural morphology of the transition zone in a duplex cast iron, which has an outer shell of white cast iron (with a high Cr-content and containing boron additives) and an inner side composed of normal gray cast iron, has been investigated. For this purpose, two experimental materials possessing different compositions of white-gray duplex cast iron were produced. Subsequently, metallographic investigations were carried out to study the effect of heat treatment applied to the experimental materials by using the scanning electron microscopy technique, along with optical microscopy and energy dispersive X-ray spectroscopy. Moreover, the formation of various phases and carbide composites in the samples and their effects on the hardness were also investigated using X-ray diffraction techniques. The results of investigations, and hardness showed that addition of the elements Cr and B to high-alloyed white cast iron affected carbide formation significantly, while simultaneously hardening the microstructure, and consequently the carbide present in the transition area of white-gray cast iron was spread out and became thinner. However, B additives and heat treatment did not cause any damage to the transition region of high Cr-content duplex cast iron.

  17. An experiment to measure the spectra of primary proton, helium and iron nuclei at the 'knee' region at a high altitude

    CERN Document Server

    Xu, X W; Ding, L K; Zhang, C S; Ohnishi, M

    2003-01-01

    The possibility of measuring the energy spectra of some single elements (proton, helium and iron) in primary cosmic rays at the 'knee' energies, by setting up an air shower (AS) core detector in the AS gamma array (4300 m a.s.l., Tibet, China) is investigated. Taking into account the sensitivity and the acceptance needed for this measurement, the feasibility of construction and operation of the apparatus at a high altitude, and the cost, it is shown that this aim can be achieved by a simple AS core detector that mainly measures the high-energy electromagnetic components in AS cores. In this paper, such a detector is described. With a three-year exposure, proton, helium and iron spectra at the 'knee' energy region can be obtained with three event samples selected by an artificial neural network (ANN).

  18. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  19. Intercomparison of medium-energy neutron attenuation in iron and concrete

    International Nuclear Information System (INIS)

    Hirayama, H.

    1999-01-01

    Neutron attenuation of medium energy below 1 GeV has not been well understood until now. It is desired to obtain common agreements concerning the behaviours of neutrons inside various materials. This is necessary in order to agree on definitions of the attenuation length, which is very important for shielding calculations involving high energy accelerators. As one attempt, it was proposed by Japanese attendants of SATIF-2 to compare the attenuation of medium-energy neutrons inside iron and concrete shields between various computer codes and data, and was cited as a suitable action for SATIF. The first results from three groups were presented at SATIF-3. It has become clear that neutrons above 20 MeV are important for understanding the attenuation inside materials and that the geometry, planar or spherical, does not affect the results very much. Considering the CPU times required for Monte Carlo calculations and this result, revised problems to be calculated were prepared by the Japanese Working Group and sent to the participants of this action. The geometry is only plane, and calculations are required only for neutrons above 20 MeV. The secondary neutrons from high energy protons, which were calculated by H. Nakashima, are also included in the problem. The results from four groups were sent to the organizer at the end of August. This paper presents a comparison between groups concerning the attenuation length together with the neutron spectrum and the future themes which come from this intercomparison. (author)

  20. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electron-beam-induced reduction of Fe3+ in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik; Bleloch, Andrew; Gass, Mhairi; Sader, Kasim; Brown, Andy

    2010-01-01

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L 2,3 -ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H 2 O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  2. Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?

    International Nuclear Information System (INIS)

    Wang, Can; Zheng, Xinzhu; Cai, Wenjia; Gao, Xue; Berrill, Peter

    2017-01-01

    Highlights: •Associated water impacts of individual energy conservation measures were evaluated. •Water-energy tradeoffs exist in the production process adjustment of iron sector. •Considering the water impacts can change the priority ranks of technology choice. -- Abstract: Moving towards integrated governance of water and energy requires balancing tradeoffs and taking advantage of synergies through specific technology choice. However, the water-energy conservation relationships of individual conservation measures in industries other than the water and energy sectors have not been investigated in detail. This study develops a hybrid model to estimate the associated water impacts of individual energy conservation measures, using China’s iron and steel industry as a case study. The results reveal that water-energy tradeoffs exist in the production process adjustment, which is conventionally promoted as a key energy-saving measure in iron and steel industry. It is found that replacing the Blast Oxygen Furnace (BOF) process with the Electric Arc Furnace (EAF) in 2007 could save 131–156 kg coal equivalent (kgce) (13.2–15.7%) of embodied energy per ton of crude steel (tcs) at the expenses of an additional 2.5–3.9 m 3 /tcs (10.6–16.4%) of water footprint. Nineteen energy efficiency technologies are studied in this research, and most of them are identified as having water-saving synergies except for the Low Temperature Rolling Technology. Taking these water impacts into consideration can update the priority ranks of the technology choices and inform policy decisions. Although this study focuses on China’s iron and steel sector, the methods and analysis can be extended to other countries, sectors, technologies and environmental impacts.

  3. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  4. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    Science.gov (United States)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  5. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  6. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    International Nuclear Information System (INIS)

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-01-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time

  7. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  8. Neutrino energy loss rates due to key iron isotopes for core-collapse physics

    International Nuclear Information System (INIS)

    Nabi, J.-U.

    2008-07-01

    Accurate estimates of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for the cooling of neutron stars and white dwarfs. The energy spectra of neutrinos and antineutrinos arriving at the Earth can also provide useful information on the primary neutrino fluxes as well as neutrino mixing scenario. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently being used for a microscopic calculation of stellar weak interaction rates of fp-shell nuclide, particularly iron isotopes, with success. Here I present the calculation of neutrino and antineutrino energy loss rates due to key iron isotopes in stellar matter using the pn-QRPA theory. The rates are calculated on a fine grid of temperature-density scale suitable for core-collapse simulators. The calculated rates are compared against earlier calculations. The neutrino cooling rates due to even-even isotopes of iron, 54,56 Fe, are in good agreement with the rates calculated using the large-scale shell model. The pn-QRPA calculated neutrino energy loss rates due to 55 Fe are enhanced roughly around an order of magnitude compared to the large-scale shell model calculation during the oxygen and silicon shell burning stages of massive stars and favor a lower entropy for the cores of massive stars. (author)

  9. Electron Spectroscopy Studies of Iron, Iron Sulfides and Supported Iron Surfaces: Chemisorption of Simple Gases.

    Science.gov (United States)

    Lee, Yiu Chung

    EELS was used to investigate the chemisorption of oxygen and carbon on iron. The EELS spectra of oxidized iron show characteristic features with strong enhancement of the interband transitions involving the Fe 3d band (4.6 and 7.5 eV) and moderate enhancement of the M(,2,3) transition doublet (54.4 and 58.2 eV). The changes in the electron energy loss structures with an overlayer of graphitic or carbidic carbon were investigated. The adsorption and growth of iron on Ni(100) has been studied using the combined techniques of LEED and EELS. Initially iron grows by a layer-by-layer mechanism for the first few layers. High iron coverages result in the observation of complex LEED patterns with satellites around the main (1 x 1) diffraction sports. This is due to the formation of b.c.c. Fe(110) crystallites arranged in domains with different orientations. EELS studies show the presence of three stages in the growth of iron on Ni(100): low-coverage, film-like and bulk-like. Auger and EELS were used to study the iron sulfide (FeS(,2), Fe(,7)S(,8) and FeS) surfaces. A characteristic M(,2,3) VV Auger doublet with a separation of 5.0 eV was observed on the sulfides. An assignment of the electron energy loss peaks was made based on the energy dependence of the loss peaks and previous photoemission results. The effect of argon ion bombardment was studied. Peaks with strong iron and sulfur character were observed. Heating the damaged sulfides results in reconstruction of the sulfide surfaces. The reactions of the sulfides with simple gases, such as H(,2), CO, CH(,4), C(,2)H(,4), NH(,3) and O(,2) were also studied. Using XPS, the chemisorption of SO(,2) on CaO(100) has been studied. The chemical state of sulfur has been identified as that of sulfate. The kinetics of SO(,2) chemisorption on CaO are discussed. The binding states of Fe and Na on CaO were determined to be Fe('2+) and Na('+) respectively. At low Fe or Na coverages (< 0.5 ML), there is a large increase in the rate of

  10. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  11. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    Science.gov (United States)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  12. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    Directory of Open Access Journals (Sweden)

    Guangjian Wu

    2012-04-01

    Full Text Available This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau. This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5.41% along Qilian Shan and 3.85% in the Southern Tibetan Plateau. The iron fractional solubility averages about 0.25% in Eastern Tien Shan, 0.05–2% along Qilian Shan and 1.5% in the Southern Tibetan Plateau. Among the controlling factors that can affect iron solubility in Asian dust, such as dust composition and particle grain size, acidity seems to be the most significant and can increase the iron solubility by one or two orders of magnitude with acidification of pH=0.66. Our results reveal that iron solubility of dust in the remote downwind sites is higher than that in high-alpine snow, confirming the strong pH-dependence of iron solubility, and indicating that Asian dust shows a large variation in iron solubility on a regional scale.

  13. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  14. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  15. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  16. Synthesis of hydroxide type sorbents from industry high-iron wastes

    International Nuclear Information System (INIS)

    Stepanenko, E.K.; Smirnov, A.L.

    1986-01-01

    Article presents the results of studies on possibility of using of technological iron containing wastes for the obtaining of hydroxide type sorbents in granular form. The scheme of technology of synthesis of hydroxide type sorbents from high-iron wastes is elaborated.

  17. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  18. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  19. High energy particle experiment for the GEOTAIL mission

    International Nuclear Information System (INIS)

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  20. Amorphous structure of iron oxide of bacterial origin

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki; Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Asaoka, Hiroshi [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kusano, Yoshihiro [Department of Fine and Applied Arts, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505 (Japan); Ikeda, Yasunori [Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805 (Japan); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Benino, Yasuhiko; Nanba, Tokuro [Graduate School of Environmental Science, Okayama University, Okayama 700-8530 (Japan); Takada, Jun, E-mail: jtakada@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2012-12-14

    In nature, there are various iron oxides produced by the water-habitant bacterial group called 'iron-oxidizing bacteria'. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units, while SiO{sub 4} tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: Black-Right-Pointing-Pointer The amorphous structure of bacterial iron oxide was investigated. Black-Right-Pointing-Pointer The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. Black-Right-Pointing-Pointer The structure was constructed of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units. Black-Right-Pointing-Pointer SiO{sub 4} tetrahedral units were distributed isolatedly in the framework of FeO{sub 6} octahedral units.

  1. Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector

    International Nuclear Information System (INIS)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2014-01-01

    Highlights: • Use ISEEM to evaluate energy and emission reduction in U.S. Iron and Steel sector. • ISEEM is a new bottom-up optimization model for industry sector energy planning. • Energy and emission reduction includes efficiency measure and international trading. • International trading includes commodity and carbon among U.S., China and India. • Project annual energy use, CO 2 emissions, production, and costs from 2010 to 2050. - Abstract: Using the ISEEM modeling framework, we analyzed the roles of energy efficiency measures, steel commodity and international carbon trading in achieving specific CO 2 emission reduction targets in the U.S iron and steel sector from 2010 to 2050. We modeled how steel demand is balanced under three alternative emission reduction scenarios designed to include national energy efficiency measures, commodity trading, and international carbon trading as key instruments to meet a particular emission restriction target in the U.S. iron and steel sector; and how production, process structure, energy supply, and system costs change with those scenarios. The results advance our understanding of long-term impacts of different energy policy options designed to reduce energy consumption and CO 2 emissions for U.S. iron and steel sector, and generate insight of policy implications for the sector’s environmentally and economically sustainable development. The alternative scenarios associated with 20% emission-reduction target are projected to result in approximately 11–19% annual energy reduction in the medium term (i.e., 2030) and 9–20% annual energy reduction in the long term (i.e., 2050) compared to the Base scenario

  2. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  3. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks

    Science.gov (United States)

    Crossley, Rosalind J.; Evans, Katy A.; Reddy, Steven M.; Lester, Gregory W.

    2017-11-01

    The redox state of iron in high-pressure serpentinites, which host a significant proportion of Fe3+ in subduction zones, can be used to provide an insight into iron cycling and constrain the composition of subduction zone fluids. In this study, we use oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone to constrain the distribution of iron and titanium, and iron oxidation state. These data provide an insight on the oxidation state and composition of fluids at depth in subduction zones. Oxide minerals host the bulk of iron, particularly Fe3+. The increase in mode of magnetite and observation of magnetite within antigorite veins in the investigated ultramafic samples during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidizing fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. However, high Ti contents are not typical of serpentinites and also cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich phases coincide with prograde metamorphism and initial exhumation, implying the early seafloor and/or prograde addition and late mobilization of Ti. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. We explore possible transport vectors for Ti and Fe through mineral texture analysis.

  4. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  5. Current situation of energy conservation in high energy-consuming industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, D.Y.-L.; Yang, K.-H.; Hsu, C.-H.; Chien, M.-H.; Hong, G.-B.

    2007-01-01

    Growing concern in Taiwan has arisen about energy consumption and its adverse environmental impact. The current situation of energy conservation in high energy-consuming industries in Taiwan, including the iron and steel, chemical, cement, pulp and paper, textiles and electric/electrical industries has been presented. Since the energy consumption of the top 100 energy users (T100) comprised over 50% of total industry energy consumption, focusing energy consumption reduction efforts on T100 energy users can achieve significant results. This study conducted on-site energy audits of 314 firms in Taiwan during 2000-2004, and identified potential electricity savings of 1,022,656 MWH, fuel oil savings of 174,643 kiloliters (KL), steam coal savings of 98,620 ton, and natural gas (NG) savings of 10,430 kilo cubic meters. The total potential energy saving thus was 489,505 KL of crude oil equivalent (KLOE), representing a reduction of 1,447,841 ton in the carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 39,131-ha plantation forest

  6. Formation of poorly crystalline iron monosulfides: Surface redox reactions on high purity iron, spectroelectrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, E.B. [Geological Institute, University of Copenhagen, Oster Voldgade 10, Copenhagen K, DK-1350 (Denmark); Odziemkowski, M.S. [Department of Earth Sciences, University of Waterloo, Waterloo, Ont., N2L 3G1 (Canada)]. E-mail: marek@sciborg.uwaterloo.ca; Gillham, R.W. [Department of Earth Sciences, University of Waterloo, Waterloo, Ont., N2L 3G1 (Canada)

    2006-11-15

    In the use of iron for reductive dehalogenation of chlorinated solvents in ground water, due to presence of sulfate-reducing bacteria the formation of hydrogen sulfide is expected. To simulate those processes the interface between 99.99% pure iron and 0.1 M NaHCO{sub 3} deoxygenated solution with 3.1 x 10{sup -5}-7.8 x 10{sup -3} M Na{sub 2}S . 9H{sub 2}O added was studied. The surface processes were characterised by the in situ normal Raman spectroscopy (NRS) and ex situ techniques; X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The open circuit potential (OCP) was monitored during in situ NRS measurements, and potentiodynamic anodic polarization measurements were carried out to reveal electrochemical behaviour of iron electrode. Open circuit potential-time transients indicated that the native oxide is unstable in deaerated bicarbonate solution and undergoes reductive dissolution (i.e. autoreduction) leaving the metallic Fe covered by Fe(OH){sub 2}, adsorbed OH{sup -}, and patches of 'magnetite-like' oxide. Immediately upon injection of the Na{sub 2}S-solution the iron interface undergoes complex redox surface processes and a poorly crystalline FeS film forms. Potentiodynamic anodic polarization measurements indicated a mechanical breakdown of the FeS film. The origin and initiation of this breakdown process is not clear but is probably a result of internal stress developed during film growth. Based on surface studies supported by electrochemical measurements, a conceptual model for the complex redox processes occurring at the iron interface is proposed. This model describes the structural development of a poorly crystalline FeS, which breaks down, allowing further dissolution of the Fe and formation of FeOOH at the interface. Simultaneously and despite the existence of thick layer of FeS the entrance of hydrogen was evident as the typical hydrogen cracks in bulk of the

  7. Electron-beam-induced reduction of Fe{sup 3+} in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); Bleloch, Andrew; Gass, Mhairi [SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Sader, Kasim [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Brown, Andy, E-mail: a.p.brown@leeds.ac.uk [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-07-15

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L{sub 2,3}-ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H{sub 2}O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  8. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  9. Use of near infrared correlation spectroscopy for quantitation of surface iron, absorbed water and stored electronic energy in a suite of Mars soil analog materials

    Science.gov (United States)

    Coyne, Lelia M.; Banin, Amos; Carle, Glenn; Orenberg, James; Scattergood, Thomas

    1989-01-01

    A number of questions concerning the surface mineralogy and the history of water on Mars remain unresolved using the Viking analyses and Earth-based telescopic data. Identification and quantitation of iron-bearing clays on Mars would elucidate these outstanding issues. Near infrared correlation analysis, a method typically applied to qualitative and quantitative analysis of individual constituents of multicomponent mixtures, is adapted here to selection of distinctive features of a small, highly homologous series of Fe/Ca-exchanged montmorillonites and several kalinites. Independently determined measures of surface iron, relative humidity and stored electronic energy were used as constituent data for linear regression of the constituent vs. reflectance data throughout the spectral region 0.68 to 2.5 micrometers. High correlations were found in appropriate regions for all three constituents, though that with stored energy is still considered tenuous. Quantitation was improved using 1st and 2nd derivative spectra. High resolution data over a broad spectral range would be required to quantitatively identify iron-bearing clays by remotely sensed reflectance.

  10. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  11. Preparation of iron sulphides by high energy ball milling

    DEFF Research Database (Denmark)

    Lin, R.; Jiang, Jianzhong; Larsen, R.K.

    1998-01-01

    The reaction of a powder mixture consisting of 50 a.% Fe and 50 a.% S during high energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. After around 19 h of milling FeS2 and FeS havebeen formed. By further milling the FeS compound becomes dominating and only Fe......S with an average crystallite size of about 10 nm was observed after milling times longer than 67 h. Mossbauer spectra obtained with applied fields show that the particles are antiferromagnetic or have a strongly canted spin structure....

  12. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  13. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  14. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    OpenAIRE

    Wu, Guangjian; Zhang, Chenglong; Li, Zhongqin; Zhang, Xuelei; Gao, Shaopeng

    2012-01-01

    This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol) in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau). This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5...

  15. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  16. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  17. Iron and its complexes in silicon

    Science.gov (United States)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  18. Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Otto, G.; Hohmuth, K.; Heera, V.

    1987-01-01

    Boron, phosphorus and arsenic ions have been implanted into evaporated iron and nickel thin films at room temperature, and the implantation-induced microstructure has been investigated by high-voltage electron microscopy and transmission high energy electron diffraction. The metal films were implanted with ions to a constant dose of 1 x 10 17 and 5 x 10 17 ions/cm 2 respectively at energy of 50 keV. An amorphous layer was produced by boron and phosphorus ion implantation. Information on the atomic structure of the amorphous layers was obtained from the elastically diffracted electron intensity. On the basis of the correct scattering curves, the total interference function and the pair correlation function were determined. Finally, the atomic arrangement of the implantation-induced amorphous layers is discussed and structure produced by ion irradiation is compared with amorphous structures formed with other techniques. (author)

  19. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Science.gov (United States)

    Ma, Jing; Song, Zhi-Qiang; Yan, Fu-Hua

    2014-01-01

    To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, pVNC) values were negatively correlated with the fat pathology grading (r = -0.642,pVNC values (F = 25.308,pVNC values were only observed between the fat-present and fat-absent groups. Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  20. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  1. Fundamentals of fast reduction of ultrafine iron ore at low temperature

    Institute of Scientific and Technical Information of China (English)

    Pei Zhao; Peimin Guo

    2008-01-01

    Fundamentals on the fast reduction of ultrafine iron ore at low temperature, including characterization of ultrafine ore, de- oxidation thermodynamics of stored-energy ultrafine ore, kinetics of iron ore deoxidation, and deoxidation mechanism, etc., and a new ironmaking process are presented in this article. Ultrafine ore concentrate with a high amount of stored energy can be produced by mechanical milling, and can be dcoxidated fast below 700℃ by either the coal-based or gas-based process. This novel process has some advantages over others: high productivity, low energy consumption, and environmental friendliness.

  2. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  3. Determination of iron in highly-saline matrices by FIA-ICP-MS

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    Analysis of iron by inductively-coupled-plasma mass-spectrometry (ICP-MS) may be significantly improved by applying a protocol of flow-injection analysis. The iron species of the sample was preconcentrated by an ammonia buffer at pH = 9.2 on a filterless nylon-knotted reactor, and the adsorbed...... species were subsequently eluted by hydrochloric acid and analysed by ICP-MS. During the FIA step of preconcentration, a high degree of salinity did not influence the adsorption mechanism of iron, which may be related to formation of iron-hydroxide complexes at the sites of amide moieties of the nylon...

  4. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    Science.gov (United States)

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  5. Prevalence of Iron Deficiency and Iron Deficiency Anemia in High-School Girl Students of Yazd

    Directory of Open Access Journals (Sweden)

    M Noori Shadkam

    2009-07-01

    Full Text Available Introduction: It is generally assumed that 50% of the cases of anemia are due to iron deficiency. The most severe consequence of iron depletion is iron deficiency anemia (IDA, and it is still considered the most common nutrition deficiency worldwide. The main risk factors for IDA include: inadequate iron intake, impaired absorption or transport, physiologic losses associated with chronological or reproductive age, or acute or chronic blood loss, parasite infections such as hookworms, acute and chronic infections, including malaria, cancer, tuberculosis, HIV and other micronutrient deficiencies, including vitamins A and B12, folate, riboflavin, and copper deficiency. Methods: This work as a cross-sectional study was done in 2007-2008 in Yazd. Two hundred girls who participated in the study were selected randomly from eight girl high schools. Five ml venous blood was collected for determination of serum ferritin and cell blood count (CBC. Serum ferritin was determined by using ECLIA method and CBC by cell counter SYSMEX KX21N. Iron deficiency was defined as having serum ferritin values below 12 μ/l. Anemia was defined as having Hemoglobin levels below12 g/dl. Iron-deficiency anemia was considered to be the combination of both. Results: The3 mean ageyears and body mass index (kg/m2 were 15.19±0.7years and 21.5±4.2, respectively. Distribution in the 14, 15 and 16 years and more age groups were 13, 58.5 and 28.5 percent, respectively. Mean of Hemoglobin(g/dl, Hematocrit(%, MCV (fl, MCH (pg, MCHC (g/dl and ferritin(μ/l were 12.8±0.9, 38.9±3.0, 80.7±4.3, 26.6±1.8, 33.2±3.6 and 23±18.2, respectively. Of the total, 13.5% were anemic, 68% of which had Iron Deficiency Anemia (9.3% of the total. Iron deficiency was present in 34.7% of the population under study. Conclusion: According to world health organization criteria, anemia is a mild public health problem in this region, but iron deficiency is a significant problem and suitable measures for

  6. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  7. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes

    International Nuclear Information System (INIS)

    Che Renchao; Liang Chongyun; Shi Honglong; Zhou Xingui; Yang Xinan

    2007-01-01

    Iron-filled carbon-nitrogen (Fe/CN x ) nanotubes and iron-filled carbon (Fe/C) nanotubes were synthesized at 900 deg. C through a pyrolysis reaction of ferrocene/acetonitrile and ferrocene/xylene, respectively. The differences of structure and composition between the Fe/CN x nanotubes and Fe/C nanotubes were investigated by transmission electron microscopy and electron energy-loss spectroscopy (EELS). It was found that the morphology of Fe/CN x nanotubes is more corrugated than that of the Fe/C nanotubes due to the incorporation of nitrogen. By comparing the Fe L 2,3 electron energy-loss spectra of Fe/CN x nanotubes to those of the Fe/C nanotubes, the electron states at the interface between Fe and the tubular wall of both Fe/CN x nanotubes and Fe/C nanotubes were investigated. At the boundary between Fe and the wall of a CN x nanotube, the additional electrons contributed from the doped 'pyridinic-like' nitrogen might transfer to the empty 3d orbital of the encapsulated iron, therefore leading to an intensity suppression of the iron L 2,3 edge and an intensity enhancement of the carbon K edge. However, such an effect could not be found in Fe/C nanotubes. Microwave absorption properties of both Fe/CN x and Fe/C nanocomposites at 2-18 GHz band were studied

  8. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Directory of Open Access Journals (Sweden)

    Jing Ma

    Full Text Available OBJECTIVE: To explore the feasibility of dual-source dual-energy computed tomography (DSDECT for hepatic iron and fat separation in vivo. MATERIALS AND METHODS: All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. RESULTS: The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, p<0.001. Virtual non-iron contrast (VNC values were negatively correlated with the fat pathology grading (r = -0.642,p<0.0001. Different groups showed significantly different iron enhancement values and VNC values (F = 25.308,p<0.001; F = 10.911, p<0.001, respectively. Among the groups, significant differences in iron enhancement values were only observed between the iron-present and iron-absent groups, and differences in VNC values were only observed between the fat-present and fat-absent groups. CONCLUSION: Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  9. Achievement report on research and development (1st phase) of direct iron making by use of high-temperature; Koon kangen gas riyo ni yoru chokusetsu seitetsu no kenkyu kaihatsu (daiikki) ni kansuru hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-02-01

    Efforts are put into the study of direct iron making for use in a closed system where heat energy from a multi-purpose high-temperature gas furnace expected to be developed in the near future will be utilized for iron making. The researches, carried out for the establishment of technologies necessary for designing, building, and operating a pilot plant dimensionally suitable for connection to a 50MWt multi-purpose high-temperature gas furnace, cover the plant total system, a high-temperature heat exchanger, ultrahigh-temperature alloys, high-temperature insulating materials, a reduced gas generating unit, and a reduced iron making unit. When the effort is evaluated as a whole, it is found that the newly developed system is effective in preventing pollution, emitting but 0.1Nm{sup 3} of SOx per 1 ton of crude iron against the 0.4-0.9Nm{sup 3} emitted by a blast furnace/converter iron making mill. It is also found effective in reducing fossil fuel dependence and in enhancing energy source diversification. When it comes to energy conversion efficiency, furthermore, it is shown that the new system achieves a rate of 60% or more while only approximately 30% is attained by light water reactor power generation and approximately 40% by a high-temperature gas furnace. (NEDO)

  10. Low-energy neutron measurements in an iron calorimeter structure irradiated by 200 GeV/c hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Russ, J S [Carnegie-Mellon University, Pittsburgh, PA (United States); Stevenson, G R; Fasso, A; Nielsen, M C [CERN, Geneva (Switzerland); Furetta, C; Rancoita, P G; Vismara, I [INFN, Milan (Italy)

    1989-04-21

    Of serious concern in the design of detectors for the new high-luminosity hadron-hadron colliders are the radiation damage effects on silicon and other detectors of low-energy neutrons produced by spallation evaporation or fission processes. Because of the lack of experimental information on the number of neutrons with energies between 0.1 and 10 MeV in the cascades originating from high-energy hadrons, an experiment was carried out using activation detector techniques to measure the neutron fluence in a cascade initiated by 200 GeV hadrons in acalorimeter-like iron structure. It was found that at the maximum of the cascade one produces approximately 3 neutrons per GeV of incident energy: some 70% of these are of energies between 0.1 and 5 MeV, the remainder are fairly uniformly distributed in energy between 5 and several hundred MeV. The number of albedo neutrons leaving the front face of the calorimeter structure was about 0.3 neutrons per GeV of incident energy with in energy distribution similar to those at cascade maximum These data confirm that neutron-induced damage will he of concern in the design of detectors for the new colliders and that further measurements and calculations are necessary for a correct assessment of this damage. (author)

  11. Analysis of a neutron scattering integral experiment on iron for neutron energies from 1 to 15 MeV

    International Nuclear Information System (INIS)

    Cramer, S.N.; Oblow, E.M.

    1976-11-01

    Monte Carlo calculations were made to analyze the results of an integral experiment with an iron sample to determine the adequacy of neutron scattering cross section data for iron. The experimental results analyzed included energy-dependent NE-213 detector count rates at a scattering angle of 90 deg and pulse-height spectra for scattered neutrons produced in an iron ring pulsed with a 1- to 20-MeV neutron source. The pulse-height data were unfolded to generate secondary neutron spectra at 90 deg as a function of incident neutron energy. Multigroup Monte Carlo calculations using the MORSE code and ENDF/B-IV cross sections were made to analyze all reported results. Discrepancies between calculated and measured responses were found for inelastic scattering reactions in the range from 1 to 4 MeV. These results were related to deficiencies in ENDF/B-IV iron cross section data

  12. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  13. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  14. Quantification of iron in the presence of calcium with dual-energy computed tomography (DECT) in an ex vivo porcine plaque model

    International Nuclear Information System (INIS)

    Wang Jia; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H; Garg, Nitin; Liu Yu; Kantor, Birgit; Ritman, Erik L

    2011-01-01

    Iron deposits secondary to microbleeds often co-exist with calcium in coronary plaques. The purpose of this study was to quantify iron in the presence of calcium in an ex vivo porcine arterial plaque model using a clinical dual-energy CT (DECT) scanner. A material decomposition method to quantify the mass fractions of iron and calcium within a mixture using DECT was developed. Mixture solutions of known iron and calcium concentrations were prepared to calibrate and validate the DECT-based algorithm. Simulated plaques with co-existing iron and calcium were created by injecting the mixture solutions into the vessel wall of porcine carotid arteries and aortas. These vessel regions were harvested and scanned using a clinical DECT system and iron mass fraction was calculated for each sample. Iron- and calcium-specific staining was conducted on 5 µm thick histological sections of vessel samples to confirm the co-existence of iron and calcium in the simulated plaques. The proposed algorithm accurately quantified iron and calcium amounts in mixture solutions. Maps of iron mass fraction of 60 artery segments were obtained from CT images at two energies. The sensitivity for detecting the presence of iron was 83% and the specificity was 92% using a threshold at an iron mass fraction of 0.25%. Histological analysis confirmed the co-localization of iron and calcium within the simulated plaques. Iron quantification in the presence of calcium was feasible in excised arteries at an iron mass fraction of around 1.5% or higher using current clinical DECT scanners.

  15. Energy and materials flows in the fabrication of iron and steel semifinished products

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J.B. Jr.; Arons, R.M.

    1979-08-01

    The flow of energy and materials in the fabrication of iron and steel semifinished products from molten metal is discussed. The focus is on techniques to reduce the amount of energy required to produce the typical products of integrated steel plants and iron and steel foundries. In integrated steel plants, if only 50% of the steel being cast were continuously cast, industry-wide energy consumption would be reduced by 6 to 15%. Further major energy savings could be achieved by increased use of by-product gases and regenerators in the various reheat operations. Finally, systems optimization studies to maintain the even flow of materials at full capacity should yield further improvements in energy efficiency. In foundry operations, alternate heating methods in forging operations and the use of no-bake molding and core materials should result in substantial energy savings. Studies of specific operations will suggest housekeeping changes to minimize wasted energy. These changes might include fixing heat leaks, reducing floor space requirements, improving temperature regulation, lowering working temperatures in some steel-forming operations, redesigning products, and minimizing scrap generation. There is also a need for new, energy conserving technologies. A good example would be the development of nondestructive testing to determine the existence, location, and size of defects in ingots at elevated temperatures. A second example is the need to reduce, through system studies, the large amount of scrap typical of foundry operations. Finally, computer control of steel mill operations (materials flow, furnace residence times, excessive heating or overheating, and full capacity utilization of all facilities at all times) deserves further study.

  16. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    DEFF Research Database (Denmark)

    Gravesen, Eva; Hofman-Bang, Jacob; Mace, Maria L.

    2013-01-01

    High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased...

  17. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  19. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  20. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  1. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  2. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    Science.gov (United States)

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  3. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  4. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    International Nuclear Information System (INIS)

    Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza

    2012-01-01

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm 2 /kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: ► Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. ► Citric acid acted as reducing agent and surfactant in the route. ► This is a facile, low energy and environmental friendly route. ► The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. ► The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  5. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  6. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  7. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  8. USE OF HIGH-STRENGTH BAINITIC CAST IRON FOR PRODUCING GEAR WHEELS

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2015-01-01

    Full Text Available The advantages and drawbacks of high-strength cast irons with bainitic structure are reviewed basing on the authors’ own experience in the production of critical partsfrom this material and on the analysis of world trends. A possibility of the replacement of alloy steels by bainitic cast iron in manufacturing critical machine parts is discussed.

  9. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  10. Alternative Explanations for Extreme Supersolar Iron Abundances Inferred from the Energy Spectrum of Cygnus X-1

    Science.gov (United States)

    Tomsick, John A.; Parker, Michael L.; García, Javier A.; Yamaoka, Kazutaka; Barret, Didier; Chiu, Jeng-Lun; Clavel, Maïca; Fabian, Andrew; Fürst, Felix; Gandhi, Poshak; Grinberg, Victoria; Miller, Jon M.; Pottschmidt, Katja; Walton, Dominic J.

    2018-03-01

    Here we study a 1–200 keV energy spectrum of the black hole binary Cygnus X-1 taken with NuSTAR and Suzaku. This is the first report of a NuSTAR observation of Cyg X-1 in the intermediate state, and the observation was taken during the part of the binary orbit where absorption due to the companion’s stellar wind is minimal. The spectrum includes a multi-temperature thermal disk component, a cutoff power-law component, and relativistic and nonrelativistic reflection components. Our initial fits with publicly available constant density reflection models (relxill and reflionx) lead to extremely high iron abundances (>9.96 and {10.6}-0.9+1.6 times solar, respectively). Although supersolar iron abundances have been reported previously for Cyg X-1, our measurements are much higher and such variability is almost certainly unphysical. Using a new version of reflionx that we modified to make the electron density a free parameter, we obtain better fits to the spectrum even with solar iron abundances. We report on how the higher density ({n}e=({3.98}-0.25+0.12)× {10}20 cm‑3) impacts other parameters such as the inner radius and inclination of the disk.

  11. Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.

    Science.gov (United States)

    Xiao, Ying; Hwang, Jang-Yeon; Sun, Yang-Kook

    2017-11-15

    Numerous materials have been considered as promising electrode materials for rechargeable batteries; however, developing efficient materials to achieving good cycling performance and high volumetric energy capacity simultaneously remains a great challenge. Considering the appealing properties of iron sulfides, which include low cost, high theoretical capacity, and favorable electrochemical conversion mechanism, in this work, we demonstrate the feasibility of carbon-free microscale Fe 1-x S as high-efficiency anode materials for rechargeable batteries by designing hierarchical intertexture architecture. The as-prepared intertexture Fe 1-x S microspheres constructed from nanoscale units take advantage of both the long cycle life of nanoscale units and the high tap density (1.13 g cm -3 ) of the micro-intertexture Fe 1-x S. As a result, high capacities of 1089.2 mA h g -1 (1230.8 mA h cm -3 ) and 624.7 mA h g -1 (705.9 mA h cm -3 ) were obtained after 100 cycles at 1 A g -1 in Li-ion and Na-ion batteries, respectively, demonstrating one of the best performances for iron sulfide-based electrodes. Even after deep cycling at 20 A g -1 , satisfactory capacities could be retained. Related results promote the practical application of metal sulfides as high-capacity electrodes with high rate capability for next-generation rechargeable batteries.

  12. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    Science.gov (United States)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  13. Ab Initio Predictions of K, He and Ar Partitioning Between Silicate Melt and Liquid Iron Under High Pressure

    Science.gov (United States)

    Xiong, Z.; Tsuchiya, T.

    2017-12-01

    Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein.­­ We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007

  14. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    International Nuclear Information System (INIS)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-01-01

    The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy

  15. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  16. Investigation of sulphides in iron alloys of high purity

    International Nuclear Information System (INIS)

    Wyjadlowski, T.

    1973-01-01

    This research thesis reports the study of the morphology and composition of sulphides in iron alloys with respect to metal composition and to the nature of impurities. In order to understand the specific action of each addition on inclusion morphology, this work has started with high-purity alloys (binary alloys and then ternary alloys). The author studied whether solubility variations would entail either intergranular or intragranular or hybrid iron sulphide precipitation. He examined whether sulphide morphology is depending on thermal treatment, and whether equilibrium precipitates were different in terms of morphology and composition at high and room temperature. He studied the influence of addition elements on sulphide morphology and composition, an important issue as some elements may reduce brittleness. These elements are classified in terms of affinity with sulphur

  17. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores

    International Nuclear Information System (INIS)

    Török, B; Thiele, A

    2013-01-01

    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well

  18. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  19. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chang [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Fang Qingqing, E-mail: physfangqq@126.com [School of Physics and Material Science, Anhui University, Hefei 230036 (China) and Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China)

    2012-05-15

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<-5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<-5 dB and RL<-8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was -29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: Black-Right-Pointing-Pointer We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. Black-Right-Pointing-Pointer ZnO dielectric property increased absorption effect and absorption bandwidth. Black-Right-Pointing-Pointer Absorbing frequence of composites is expanding to low frequency direction. Black-Right-Pointing-Pointer The craft of high energy ball milling is easy to realize commerce production.

  20. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  1. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  2. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  3. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  4. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  5. Radiation Build-Up Of High Energy Gamma In Shielding Of High Atomic Number

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to observe effect of radiation build-up factor (b) in iron (Fe) and lead (Pb) for high energy gamma shielding from exp.137 Cs (E gamma : 662 keV) and exp.60 Co (E gamma : 1332 keV) sources has been carried out. Research was conducted bt counting of radiation intensity behind shielding with its thickness vary from 1 to 5 times of half value thickness (HVT). NaI (TI) detector which connected to multi channel analyzer (MCA) was used for the counting. Calculation result show that all of b value are near to 1 (b∼1) both for Fe and Pb. Without inserting b in calculation, from the experiment it was obtained HVT value of Fe for high gamma radiation of 662 and 1332 keV were : (12,94 n 0,03) mm and (17,33 n 0,01) mm with their deviation standards were 0,2% and 0,06% respectively. Value of HVT for Pb with the same energy were : (6,31 n 0,03) mm and (11,86 n 0,03) mm with their deviation standars were : 0,48% and 0,25% respectively. HVL concept could be applied directly to estimate shielding thickness of high atomic number of high energy gamma radiation, without inserting correction of radiation build-up factor

  6. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  7. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  8. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  9. Thermodynamic data for iron (II) in high-saline solutions at temperatures up to 90 C

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Andres G.; Scharge, Tina; Moog, Helge C.

    2013-12-15

    For natural aqueous systems in general and for the near field of underground nuclear waste repositories in particular thermodynamic properties of iron species and solid phases are of predominant importance. Regardless of the question of the host rock, nuclear waste containment in Germany will be based on massive steel canisters. The total mass of iron present in a repository can be, dependent on the applied variant, sum up to more than 100 000 tons. The overall geochemical milieu including pH and EH will be dominated by the overall abundance of metallic, ferrous, and ferric iron, their aqueous speciation and solid iron-phases. This milieu is imposed on all other equilibria of interest, including those which determine radionuclide solubility. In addition to this, iron bearing corrosion phases due to their shear mass may exhibit a significant sink for radionuclides in terms of incorporation or sorption. As to the evolution of EH it is important to note that application of the Nernst equation requires knowing the electrochemical activities of the involved reactants. Iron is present in aqueous solutions in two oxidation states: +II (ferrous iron) and +III (ferric iron). Ferric iron exhibits a much more complex speciation behavior than ferrous iron, where from a conceptual point of view many species may be neglected. Ferric iron, on the contrary, is subject to considerable complex formation with chloride, sulfate, and - most importantly - with hydroxide. For this reason, experimental and theoretical treatment of ''iron'' at GRS in high saline solutions proceeded along two strings, one for each oxidation state, with the ultimate goal to deliver a thermodynamic model for ''iron'' in high saline solutions.

  10. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  11. Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia

    Directory of Open Access Journals (Sweden)

    Yun-Sheng Liu

    2018-05-01

    Full Text Available Background: Because the pathogenesis of high altitude polycythemia (HAPC is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause.Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR, ferritin, and hepcidin as well as erythropoietin (EPO and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed.Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression.Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.

  12. Neutron scattering on natural iron at incident energies between 9.4 and 15.2 MeV

    International Nuclear Information System (INIS)

    Schmidt, D.; Mannhart, W.; Klein, H.; Nolte, R.

    1994-11-01

    Neutrons were scattered on a sample of natural iron at 12 incident energies in the range between 9.4 MeV and 15.2 MeV. Differential cross sections of the elastic scattering (natural iron) and of the inelastic scattering to the first excited level of 56 Fe (Q=-0.847 MeV) were determined for angles between 12.5 deg and 160 deg with total uncertainties between of 3% and 10%. Legendre polynomial least-squares fits resulted in integrated cross sections with uncertainties of 2% (elastic data) and 7% (inelastic data). The cross sections obtained in this work were compared with data from the literature. Inelastic scattering cross sections were determined within the scope of a pseudolevel analysis up to excitation energies of nearly 5.5 MeV. At higher excitation energies the scattering spectrum is contaminated by scattered breakup neutrons from the D+d source used hampering an analysis of the data. (orig.) [de

  13. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Klencsár, Z. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117 (Hungary); Petrova, E.V.; Grokhovsky, V.I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Shtoltz, A.K. [Department of Electrophysics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maksimova, A.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Kuzmann, E.; Homonnay, Z. [Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Semionkin, V.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation)

    2016-05-01

    Iron sulfide (troilite) inclusion extracted from Sikhote-Alin IIAB iron meteorite was examined for its composition, structure and magnetic properties by means of several complementary analytical techniques such as: powder X-ray diffractometry, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, magnetization measurements, ferromagnetic resonance spectroscopy and {sup 57}Fe Mössbauer spectroscopy with a high velocity resolution. The applied techniques consistently indicated the presence of daubréelite (FeCr{sub 2}S{sub 4}) as a minority phase beside troilite proper (FeS). As revealed by {sup 57}Fe Mössbauer spectroscopy, the Fe atoms in troilite were in different microenvironments associated with either the ideal FeS structure or that of a slightly iron deficient Fe{sub 1–x}S. Phase transitions of troilite were detected above room temperature by ferromagnetic resonance spectroscopy. A novel analysis of 295 and 90 K {sup 57}Fe Mössbauer spectra was carried out and the hyperfine parameters associated with the ideal structure of troilite were determined by considering the orientation of the hyperfine magnetic field in the eigensystem of the electric field gradient at the {sup 57}Fe nucleus. - Highlights: • The presence of daubréelite in iron sulfide inclusion in Sikhote-Alin iron meteorite. • The presence of the ideal FeS and iron deficient Fe{sub 1–x}S in iron sulfide inclusion. • New way of the iron sulfide Mössbauer spectrum approximation.

  14. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    Science.gov (United States)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New insights into iron deficiency and iron deficiency anemia.

    Science.gov (United States)

    Camaschella, Clara

    2017-07-01

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Iron deposition in modern and archaeological teeth

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.-M.M., E-mail: AnneMarie.Williams@utas.edu.au [School of Medicine, Private Bag 34, University of Tasmania, Hobart 7001 (Australia); Siegele, R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2014-09-15

    Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment.

  17. Iron deposition in modern and archaeological teeth

    International Nuclear Information System (INIS)

    Williams, A.-M.M.; Siegele, R.

    2014-01-01

    Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment

  18. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  19. Molecular dynamics simulation of displacement cascades in iron-alpha

    International Nuclear Information System (INIS)

    Vascon, R.

    1997-01-01

    Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a 'cascade effect': a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the 'cascade effect'. (author)

  20. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2011-01-01

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  1. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  2. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  3. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  4. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  5. Effective Processing of the Iron Ores

    Science.gov (United States)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  6. Effective Processing of the Iron Ores

    Directory of Open Access Journals (Sweden)

    Kuskov Vadim

    2017-01-01

    Full Text Available Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats: comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  7. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  8. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials.

    Science.gov (United States)

    Long, Conglai; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun

    2013-12-23

    We report a facile strategy to prepare iron nanosheets directly grown on graphene sheets nanocomposite (C-PGF) through the carbonization of iron ions adsorbed onto polyaniline nanosheet/graphene oxide hybrid material. Because of the synergistic effect of iron nanosheets and graphene sheets, the as-obtained C-PGF exhibits an ultrahigh capacitance of ca. 720 F g(-1) in 6 M KOH aqueous solution. Additionally, the assembled asymmetric supercapacitor (C-PGF//Ni(OH)2/CNTs) delivers a remarkable high power density and a noticeable ultrahigh energy density of ca. 140 Wh kg(-1) (based on the total mass of active materials) and an acceptable cycling performance of 78% retention after 2000 cycles. Therefore, the designed supercapacitors with high energy density, comparable to rechargeable lithium-ion batteries (LIBs), offer an important guideline for future design of advanced next-generation supercapacitors for both industrial and consumer applications.

  9. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  10. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation

    OpenAIRE

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C.; Pourzand, Charareh

    2016-01-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320?400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect...

  11. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  12. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  13. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  14. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  15. Ab Initio Study of the Structure and Stability of High-Pressure Iron-Bearing Dolomite

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2016-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze, all of which often contain dolomite. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5-6 GPa in the temperature range of 800-1200 K [1]. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize high-pressure dolomite over single-cation carbonates above 35 GPa [2,3]. The structure and equation of state of high-pressure dolomite phases have been debated, creating a need for theoretical calculations. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), we have found a monoclinic phase with space group C2/c. The C2/c structure has a lower energy than previously reported dolomite structures at relevant pressures. It is possible that this phase is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. We calculate the equation of state of trigonal dolomite, dolomite III and monoclinic C2/c dolomite to 80 GPa with 0 and 50 mol% CaFe(CO3)2 and compare their enthalpies to single-carbonate assemblages. Although end-member C2/c CaMg(CO3)2 dolomite is not stable relative to single-cation carbonates, C2/c CaMg0.5Fe0.5(CO3)2 is preferred over single-cation carbonates at high pressures. Thus, iron-bearing C2/c dolomite may be an important host phase for carbon in slabs subducted into the lower mantle. [1] Shirasaka, M., et al. (2002) American Mineralogist, 87, 922-930. [2] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [3] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514.

  16. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni; Campagnolo, Paola; Perez, Jose E.; Kosel, Jü rgen; Georgiou, Theoni K.; Regoutz, Anna; Payne, David J; Stevens, Molly M.; Ryan, Mary P.; Porter, Alexandra E; Dunlop, Iain E

    2017-01-01

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  17. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  18. Advanced Electrode Materials for High Energy Next Generation Li ion Batteries

    Science.gov (United States)

    Hayner, Cary Michael

    Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few

  19. Air Quality Co-benefits of Energy Policy in China: Evidence from Iron & Steel and Cement Industries

    Science.gov (United States)

    Qiu, M.; Weng, Y.; Selin, N. E.; Karplus, V. J.; Cao, J.

    2017-12-01

    Previous literature has calculated large air quality co-benefits from policies that reduce CO2 emissions and increase energy efficiency. These (often prospective) studies rely on assumptions about how air pollutant emissions respond to energy use changes. Using a unique firm-level data set from China, we examine how a real-world energy efficiency policy affected SO2 emissions, estimate its actual effects on atmospheric PM2.5, and compare to ex ante theoretical estimates. During the 11th Five-year plan (2006-2010), the Chinese government implemented policies directing large energy-consuming firms to reduce their energy consumption per unit of economic output. The Top 1000 Enterprises Program (T1000P) set binding energy intensity targets for China's 1000 highest energy-consuming firms. This program is widely considered a policy success, as 92% of firms met their energy intensity target. Focusing on the cement and iron and steel industry, we examine how T1000P (and related provincial policies) affected firms' SO2 emissions and coal consumption from 2005 to 2008. By comparing T1000P firms with similar firms not subject to the policy, we find that T1000P had a very limited incremental effect on energy use or on air quality co-benefits. Compared to firms not subject to the policy, T1000P firms had 14.7% (cement) and 24.0% (iron & steel) lower reductions in SO2 emission per unit energy use. We also observe large, heterogeneous changes in emission factors (defined as SO2 emissions per unit of coal consumption) among all firms during this period. In comparison to co-benefits estimates that assume constant emission factors, SO2 emissions from T1000P firms in the post-policy period are 23.2% (iron and steel) and 40.2% (cement) lower, but spatially heterogeneous, with some regions experiencing increases. Using the GEOS-Chem model, we estimate the air quality co-benefits of the T1000P policy with realized SO2 emissions changes and compare them with two theoretical estimations

  20. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Yang, J.; He, X.; Yang, J.; Tian, T. [Hebei University of Engineering, Handan (China)

    2006-12-15

    The characteristics and treatment of mine water with high concentration or iron and manganese were studied with mine water produced in Jiukuang and Siwan belonging to Hebi Coal Industry Group Co., Ltd. Analysis shows that the mine water is abundant in dissolved oxygen and has high TDS and high turbidity so the mine water does not need aeration. The effect of removal of iron and manganese by coagulation-sedimentation and the influence of filter material and influent water flow rate on effluent quality were investigated. It is shown that the removal rate of iron can reach 90% while removal of manganese can only reach about 20%. The concentration of iron and manganese in the effluent is lower than 0.1 mg/L with filter material of manganese sand which was immersed in KMnO{sub 4} solution at a filtration rate of 7 - 9 m/h. The results show that the layer of activated compound substance membrane formed on the surface of the manganese sand plays an important role in the removal of manganese. 7 refs., 2 figs., 3 tabs.

  1. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...

  2. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N.

    2015-01-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method

  3. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N., E-mail: vptuskin@izmiran.ru, E-mail: rogovaya@izmiran.ru, E-mail: zirak@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow, 142190 (Russian Federation)

    2015-03-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method.

  4. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  5. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  6. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  7. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  8. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Characterization of Prochlorococcus clades from iron-depleted oceanic regions.

    Science.gov (United States)

    Rusch, Douglas B; Martiny, Adam C; Dupont, Christopher L; Halpern, Aaron L; Venter, J Craig

    2010-09-14

    Prochlorococcus describes a diverse and abundant genus of marine photosynthetic microbes. It is primarily found in oligotrophic waters across the globe and plays a crucial role in energy and nutrient cycling in the ocean ecosystem. The abundance, global distribution, and availability of isolates make Prochlorococcus a model system for understanding marine microbial diversity and biogeochemical cycling. Analysis of 73 metagenomic samples from the Global Ocean Sampling expedition acquired in the Atlantic, Pacific, and Indian Oceans revealed the presence of two uncharacterized Prochlorococcus clades. A phylogenetic analysis using six different genetic markers places the clades close to known lineages adapted to high-light environments. The two uncharacterized clades consistently cooccur and dominate the surface waters of high-temperature, macronutrient-replete, and low-iron regions of the Eastern Equatorial Pacific upwelling and the tropical Indian Ocean. They are genetically distinct from each other and other high-light Prochlorococcus isolates and likely define a previously unrecognized ecotype. Our detailed genomic analysis indicates that these clades comprise organisms that are adapted to iron-depleted environments by reducing their iron quota through the loss of several iron-containing proteins that likely function as electron sinks in the photosynthetic pathway in other Prochlorococcus clades from high-light environments. The presence and inferred physiology of these clades may explain why Prochlorococcus populations from iron-depleted regions do not respond to iron fertilization experiments and further expand our understanding of how phytoplankton adapt to variations in nutrient availability in the ocean.

  10. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage

    DEFF Research Database (Denmark)

    Huang, Wei; Sun, Hongyu; Shangguan, Huihui

    2018-01-01

    Three-dimensional (3D) carbon-wrapped iron sulfide interlocked graphene (Fe7S8@C-G) composites for high-performance sodium-ion storage are designed and produced through electrostatic interactions and subsequent sulfurization. The iron-based metal–organic frameworks (MOFs, MIL-88-Fe) interact with...

  11. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  12. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  13. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  14. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  15. Iron-biofortified rice improves the iron stores of nonanemic Filipino women.

    Science.gov (United States)

    Haas, Jere D; Beard, John L; Murray-Kolb, Laura E; del Mundo, Angelita M; Felix, Angelina; Gregorio, Glenn B

    2005-12-01

    Iron deficiency is endemic in much of the world, and food system-based approaches to eradication may be viable with new plant breeding approaches to increase the micronutrient content in staple crops. It is thought that conventional plant breeding approaches provide varieties of rice that have 400-500% higher iron contents than varieties commonly consumed in much of Asia. The efficacy of consuming high-iron rice was tested during a 9-mo feeding trial with a double-blind dietary intervention in 192 religious sisters living in 10 convents around metro Manila, the Philippines. Subjects were randomly assigned to consume either high-iron rice (3.21 mg/kg Fe) or a local variety of control rice (0.57 mg/kg Fe), and daily food consumption was monitored. The high-iron rice contributed 1.79 mg Fe/d to the diet in contrast to 0.37 mg Fe/d from the control rice. The 17% difference in total dietary iron consumption compared with controls (10.16 +/- 1.06 vs. 8.44 +/- 1.82 mg/d) resulted in a modest increase in serum ferritin (P = 0.10) and total body iron (P = 0.06) and no increase in hemoglobin (P = 0.59). However, the response was greater in nonanemic subjects for ferritin (P = 0.02) and body iron (P = 0.05), representing a 20% increase after controlling for baseline values and daily rice consumption. The greatest improvements in iron status were seen in those nonanemic women who had the lowest baseline iron status and in those who consumed the most iron from rice. Consumption of biofortified rice, without any other changes in diet, is efficacious in improving iron stores of women with iron-poor diets in the developing world.

  16. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  17. Studies on high iron content in water resources of Moradabad district (UP, India

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2017-04-01

    The overload of iron may cause severe health problems such as liver cancer, diabetes, cirrhosis of liver, diseases related to heart and central nervous system, infertility etc. The presence of high concentration of iron leads to adverse changes in colour, odour and taste of water and it also stains clothes and utensils. However, the local health authority's records are not available.

  18. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  19. A precise measurement of 180 GeV muon energy losses in iron

    CERN Document Server

    Amaral, P; Anderson, K; Artikov, A; Benetta, R; Berglund, S R; Biscarat, C; Blanch, O; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bromberg, C; Bravo, S; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Carvalho, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Chadelas, R; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Cologna, S; Constantinescu, S; Costanzo, D; Cowan, Brian; Crouau, M; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delfino, M C; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Downing, R; Engström, M; Errede, D; Errede, S; Fassi, F; Fenyuk, A; Ferrer, A; Flaminio, Vincenzo; Flix, J; Garabik, R; Gil, I; Gildemeister, O; Glagoley, V; Gómez, A; González de la Hoz, S; Grabskii, V; Grenier, P; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Hébrard, C; Higón, E; Holik, P; Holmgren, S O; Hruska, I; Huston, J; Jon-And, K; Kakurin, S; Karyukhin, A N; Khubua, J I; Kopikov, S V; Krivkova, P; Kukhtin, V V; Kulchitskii, Yu A; Kuzmin, M V; Lami, S; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; López-Amengual, J M; Maio, A; Malyukov, S N; Marroquin, F; Mataix, L; Mazzoni, E; Merritt, F S; Miller, R; Minashvili, I A; Miralles, L; Montarou, G; Némécek, S; Nessi, Marzio; Onofre, A; Ostankov, A P; Pacheco, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Pilcher, J E; Pinhão, J; Price, L; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Roda, C; Roldán, J; Romance, J B; Romanov, V; Rosnet, P; Ruiz, H; Rusakovitch, N A; Sanchis, E; Sanders, H; Santoni, C; Santo, J; Says, L P; Seixas, J M; Selldén, B; Semenov, A A; Shcelchkov, A; Shochet, M J; Silva, J; Simaitis, V J; Sissakian, A N; Solodkov, A A; Solovyanov, O; Sosebee, M; Soustruznik, K; Spanó, F; Stanek, R; Starchenko, E A; Stavina, O P; Suk, M; Sykora, I; Tang, F; Tas, P; Thaler, J J; Thome-Filho, Z D; Tokar, S; Topilin, N D; Valklar, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; White, A; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A

    2001-01-01

    The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron tile calorimeter at the CERN SPS. The differential probability dP/d nu per radiation length of a fractional energy loss nu = Delta E/sub mu //E /sub mu / has been measured in the range 0.025energy losses due to bremsstrahlung, production of electron-positron pairs, and energetic knock-on electrons. The iron elastic form factor correction Delta /sub Fe//sup el/=1.63+or-0.17/sub stat/+or-023/sub syst$/ -/sub 0.14 //sup +0.20//sub theor/ to muon bremsstrahlung in the region of no screening of the nucleus by atomic electrons has been measured for the first time, and is compared with different theoretical predictions. (31 refs).

  20. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  1. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  2. Higher iron bioavailability of a human-like collagen iron complex.

    Science.gov (United States)

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  3. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  4. A sustainability assessment system for Chinese iron and steel firms

    DEFF Research Database (Denmark)

    Long, Yunguang; Pan, Jieyi; Farooq, Sami

    2016-01-01

    from financial and sustainability reports of four leading Chinese iron and steel firms. The proposed sustainable assessment system is envisaged to help Chinese iron and steel firms to objectively investigate their sustainability performance, provide clear and effective information to decision makers......The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable....... A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese iron and steel firms, is not available. In this paper such a system is proposed and evaluated using data...

  5. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Energy Technology Data Exchange (ETDEWEB)

    Smolkova, Ilona S. [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G. Masaryk Sq. 275, 762 72 Zlin (Czech Republic); Kazantseva, Natalia E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Schneeweiss, Oldrich; Pizurova, Nadezda [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2015-01-15

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g{sup −1} to 48 emu g{sup −1}) but does not affect the heating ability of nanoparticles. A 2–7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g{sup −1}. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy. - Highlights: • Mixed phase iron oxide magnetic nanoparticles were obtained by coprecipitation. • A part of nanoparticles was annealed at 300 °C to achieve the single-phase γ-Fe{sub 2}O{sub 3}. • Nanoparticles revealed ferromagnetic-like behavior due to interparticle interactions. • Nanoparticles glycerol

  6. ENERGY SOURCES AND CARBON EMISSIONS IN THE IRON AND STEEL INDUSTRY SECTOR IN SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    Tapan Sarker

    2013-01-01

    Full Text Available This paper examines CO2 emissions from electricity and fuel consumption of different energy sources consumed in the Iron and Steel Industry sector (non-ferrous included, also known as basic metal in five South Asian countries including Bangladesh, India, Nepal, Sri Lanka and Pakistan. The study finds that about 30% of the total energy in the manufacturing industry is used in this sector, which is about 11% of total industrial input, contributing approximately 13% to the Manufacturing Value Added (MVA. Electricity, on the other hand, shares almost 60% of total energy consumption in the five countries in South Asia, followed by natural gas, coal, kerosene and diesel. The study also finds that CO2 emissions vary across sectors in countries in which the study was conducted. For instance, while in Bangladesh CO2 emissions are primarily caused by electricity generation, in India the majority of CO2 emissions are originated from coal. On the contrary, CO2 emissions in Nepal are mostly generated through other fuels such as Charcoal, Diesel and Kerosene. This study provides some policy recommendations, which could help reduce CO2 emissions in the Iron and Steel Industry sector in the South Asian region.

  7. Assessment of iron deficiency in pregnant women by determining iron status

    International Nuclear Information System (INIS)

    Raza, N.; Munazza, B.; Ayub, M.; Sarwar, I

    2011-01-01

    Background: Pregnant women constitute a high risk group for iron deficiency. Maternal iron deficiency and particularly iron deficiency anaemia may be associated with detrimental effects on maternal and infant function and particularly with a higher risk of preterm delivery and delivery of low birth weight neonates. Objective of this study was to assess and compare the iron status of normal healthy non-pregnant women with that of pregnant women of Hazara Division. Methods: This study was conducted at Faculty of Health Sciences, Hazara University, and Ayub Medical College, Abbottabad from first March to /31 August 2006. Altogether 120 women, 90 pregnant at various stages of pregnancy and 30 non-pregnant women as control group were included in this study by convenience sampling. Their iron status was assessed by determination of haemoglobin (Hb), Serum ferritin, Serum-iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), and Percentage saturation of transferrin. Data generated on these variables were subjected to ANOVA and correlation analysis. Results: The salient finding of this study is a significant decrease in Hb, Serum ferritin, Serum iron, percentage saturation of transferrin and a significant increase in values of TIBC and a pronounced increase in UIBC in second and third trimester compared to first trimester in iron deficient pregnant women. The mean values of Hb, SF, and Fe/TIBC% were significantly lower in the cases than in the control and significantly higher values of TIBC and UIBC were observed in the cases compared to controls. Significant correlations were observed for TIBC, UIBC and Fe/TIBC% against serum iron in different trimesters of pregnancy. Conclusion: A high percentage of the pregnant women are iron deficient due to factors such as high parity, poor dietary habits and socioeconomic status. (author)

  8. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  9. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  10. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  11. High-energy x-ray CT and its application for digital engineering

    International Nuclear Information System (INIS)

    Kamimura, H.; Sadaoka, N.

    2005-01-01

    A high-energy x-ray computed tomography system and x-ray CT data handling software have been developed for digital engineering; internal dimension measurement, density analysis, actual and designed shape comparison, STL file generation, and support for reverse engineering and rapid prototyping. The system is designed to collect accurate images in short scanning time (10 s per section) using a MeV-energy electron linear accelerator and highly sensitive semiconductor detectors in order to scan large objects made of aluminum and/or iron. An excellent environment in digital engineering is provided by the software products; 'StereoCooker' for 3D bitmap CAD (rendering, feature extraction, dimensional measurement, and shape comparison, etc.), 'FeatureMaker' for translating bitmap CT data to CAD data including feature information, and 'Wingware' for realizing an Windows PC cluster system 'WINGluster' to apply CT data analysis. (author)

  12. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Kang, B.S. [West Virginia Univ., Morgantown, WV (United States)

    1998-07-27

    Iron aluminides have excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperatures with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides has been undertaken. The modeling and the experimental work connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component has been on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}Al and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}Al. These calculations include lattice relaxation effects which are quite large for one of the two types of iron sites. This has significant implications for vacancy clustering effects with consequences for hydrogen diffusion. Indeed, the ab-initio-based estimate of the divacancy binding energy indicates a likely tendency toward such clustering for iron vacancies on the sites with large lattice relaxation. The experimental work has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior.

  13. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    International Nuclear Information System (INIS)

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  14. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  15. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes.

    Directory of Open Access Journals (Sweden)

    Neritza Campo Beltrán

    Full Text Available Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.

  16. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  17. Solidification structure and abrasion resistance of high chromium white irons

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Laird, G.

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  18. A sustainability assessment system for Chinese iron and steel firms

    OpenAIRE

    Long, Yunguang; Pan, Jieyi; Farooq, Sami; Boer, Harry

    2016-01-01

    The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable. A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese...

  19. Analysis of thermal expansivity of iron (Fe) metal at ultra high ...

    Indian Academy of Sciences (India)

    structure are unlikely to be successful for predicting the high temperature properties of transition metals due to the complicated many-body nature of the interactions. Wasserman et al [3] have recently studied the thermal properties of iron at high pressures and temperatures within the framework of shell model [7,8], which is ...

  20. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  1. Energy and environmental profile of the U.S. iron and steel industry

    International Nuclear Information System (INIS)

    Margolis, N.; Sousa, L.

    1997-01-01

    The iron and steel industry, which accounts for between two and three percent of all energy consumed in this country, is also striving to improve its energy efficiency. The amount of energy required to produce a ton of steel has decreased by more than 40% since 1975. This reduction has been accomplished in part through adoption of more energy-efficient and productive processing steps. However, the capital to invest in new technologies is increasingly limited, especially as the costs of environmental control continue to rise. Other than foreign competition, the biggest challenge facing the industry today is compliance with environmental regulations. The Clean Air Act and the Resource Conservation and Recovery Act have had significant impacts on the industry. Since 1970, the industry has invested approximately $6 billion in pollution control systems. The industry spent approximately $230 million in both 1993 and 1994 on capital expenditures for pollution abatement. In a typical year, 15% of the industry's capital investments go to environmental projects. The industry faces even more challenges in the future as new, more stringent regulations are enacted. Topics covered here are: market trends and statistics; energy and materials consumption; and an environmental overview

  2. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    Science.gov (United States)

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  3. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    Science.gov (United States)

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today.

  4. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  5. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  6. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  7. Synthesis of endohedral iron-fullerenes by ion implantation

    International Nuclear Information System (INIS)

    Minezaki, H.; Ishihara, S.; Uchida, T.; Muramatsu, M.; Kitagawa, A.; Rácz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.

    2014-01-01

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe + ion beam was irradiated to C 60 thin film by using a deceleration system. Fe + -irradiated C 60 thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe + beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe + -irradiated C 60 thin film by high performance liquid chromatography

  8. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, E.F., E-mail: ericafa@las.inpe.br [Instituto Tecnologico de Aeronautica (ITA), Praca Marechal Eduardo Gomes, 50, CEP 12.228-900, Sao Jose dos Campos, SP (Brazil); Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Resende, V.G. de; Mengui, U.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Cunha, J.B.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, CEP 91.501-970, Porto Alegre, RS (Brazil); Corat, E.J.; Massi, M. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N{sub 2} or VC). Thermogravimetric analysis, Moessbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  9. Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Poulsen, Finn Willy; Mørup, Steen

    1999-01-01

    % alpha-Fe2O3. The unit-cell volume of the cubic ZrO2 phase decreases with increasing iron content. During heating hte cubic-to-tetragonal transition occurs at approximately 827 degrees C and the tetragonal-to-monoclinic transition seems to be absent at temperatures below 950 degrees C. During cooling...... the tetragonal-to-monoclinic transition occurs at 900-1100 degrees C....

  10. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.

    Science.gov (United States)

    Akerman, N H; Price, R E; Pichler, T; Amend, J P

    2011-09-01

    The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies. © 2011 Blackwell Publishing Ltd.

  11. Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry

    International Nuclear Information System (INIS)

    Sheinbaum, Claudia; Ozawa, Leticia; Castillo, Daniel

    2010-01-01

    Using international comparisons and Log mean Divisia index, this paper analyzes energy and CO 2 emission trends of Mexico's iron and steel industry during the period 1970-2006, examining CO 2 emissions related to energy use and production process. The decomposition analysis is based on the structure/efficiency analysis for international comparisons, considering industrial structure and the best available technology. Results show that for the period 1970-2006, activity drove up primary energy use by 227% instead of the actual 133%, while structure and efficiency effects drove it down by 5% and by 90% respectively. The important improvement in Mexican iron and steel primary energy efficiency reduced the gap between best international practice and actual primary energy consumption from 103% in 1970 to only 15% in 2006. CO 2 emissions from fuel consumption and production process increased by 134%, and in addition to structure and efficiency, fuel share effect also drove down emissions by 4.2% in the entire period.

  12. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    Science.gov (United States)

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Avik; Kilianová, Martina; Yang, Bing; Tyo, Eric C.; Seifert, Soenke; Prucek, Robert; Panáček, Aleš; Suchomel, Petr; Tomanec, Ondřej; Gosztola, David J.; Milde, David; Wang, Hsien-Hau; Kvítek, Libor; Zbořil, Radek; Vajda, Stefan

    2018-06-01

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the starting nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.

  14. A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    Science.gov (United States)

    Perez, T. M.; Finkelstein, G. J.; Solomatova, N. V.; Jackson, J. M.

    2017-12-01

    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4*H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and suggested to occur near the surface of Venus [1,2]. It is not clear if these sulfates are a result of reactions occurring at depth driven by changes in the behavior of iron in the sulfate. To date, only a few high-pressure studies have been conducted on hydrated iron sulfates using Mössbauer spectroscopy. Our study represents a first step towards understanding of the electronic environment of iron in a monohydrated sulfate at pressure. Using a hydrostatic helium pressure-transmitting medium, the pressure dependence of iron's site-specific behavior in a synthetic szomolnokite powdered sample was explored up to about 100 GPa with time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source of Argonne National Laboratory. At 1 bar, the Mössbauer spectrum is well described by three Fe2+-like sites, consistent with conventional Mössbauer spectra reported in Dyar et al. [3]. At pressures up to 20 GPa, changes in the hyperfine parameters are most likely due to a structural phase transition. Above this pressure, a fourth site is required to explain the time-spectra. Changes in the electronic configuration of iron, such as those due to a phase transition and/or a spin crossover, will affect the material's compressibility and transport properties. We will compare our high-pressure trends with those of other iron-bearing phases and discuss the relative influence on the dynamics of terrestrial planetary interiors. 1. Bishop et al. (2014) What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Min. 99(8-9), 1580

  15. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Si [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Yang, Shaogui, E-mail: yangdlut@126.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Sun, Cheng, E-mail: envidean@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Gu, Ji-Dong [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2012-07-01

    This study focused on the enhanced debromination of decabromodiphenyl ether (BDE-209) and 2,2 Prime ,4,4 Prime -tetrabromodiphenyl ether (BDE-47) by Fe-Ag nano-particles under microwave radiation (Fe-Ag/MW). Fe-Ag bimetallic nano-particles were synthesized by reductive deposition of Ag on nano-iron and characterized with a number of techniques, including BET, XRD, TEM and XPS. Approximately 97% of BDE-209 or 78% of BDE-47 were rapidly transformed to its degradation products within 8 min in the Fe-Ag/MW system. The dehalogenation efficiency of polybrominated diphenyl ethers (PBDEs) was enhanced apparently by microwave radiation. Moreover, the microwave thermal energy played a significant role in accelerating the degradation reactions. Compared with nano-iron alone, the deposition of Ag also increased the rates of degradation. GC-MS and LC-MS/MS analyses of PBDEs' degradation products reveals that the possible degradation pathway proceeds through stepwise debromination from [n]-bromo- to [n-1]-bromo-DE, with bromine being substituted by hydrogen sequentially. Di- to nona-brominated congeners were formed during BDE-209 reduction, while diphenyl ether to tri-BDEs were observed during BDE-47 degradation. These results suggest that PBDEs can be debrominated rapidly by the innovative processes that may be environmentally friendly in applications. - Highlights: Black-Right-Pointing-Pointer The Fe-Ag nanoparticles with a core-shell structure were successfully prepared. Black-Right-Pointing-Pointer A highly efficient technology for debromination of PBDEs by Fe-Ag/MW was investigated. Black-Right-Pointing-Pointer The effect of bromine's number on the stability against reduction of PBDEs was explored. Black-Right-Pointing-Pointer The role of MW energy and Ag in the reactivity of the Fe-Ag/MW system was demonstrated. Black-Right-Pointing-Pointer The possible degradation pathways of BDE-209 and BDE-47 were proposed.

  16. Natural resources sustainability: iron ore mining

    International Nuclear Information System (INIS)

    De La Torre de Palacios, Luis

    2011-01-01

    In the present article, a new tool to determine environmental sustainability, the energy impact index (EII) was developed to classify different iron mine projects according to two main parameters including energy consumption and CO 2 emissions. The EII considers the characteristics of the mineral (such as the quality, size, hardness, iron ore grade, reducibility, mineral/waste rate, and type of deposit), mining processes (type of exploitation, ore processing, available technology), and transportation (distance to cover).

  17. The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2014-01-01

    The primary energy intensity of Kazakhstan is among the highest in the world. The aim of this paper is to explore, in a quantitative way, the reasons for this condition, and to highlight the opportunities for improvement. To do so, we have developed a detailed ‘bottom-up’ model of the Kazakh energy sector. With this model, we have calculated the potential energy savings on both the demand and supply sides, and for all the economy sectors. This potential is defined as the difference between the current energy consumption in each sector/activity and the energy consumption if best available technologies or energy efficiency standards prevailing in developed countries were adopted in Kazakhstan. We conclude that the main causes of the energy inefficiency in Kazakhstan are: the excessive energy demand of buildings (especially for space heating) in the household and service sector, the inefficiency of the industry sector, particularly in the iron and steel and non-ferrous metals subsectors, the obsolescence of the heating and power generation assets, and the inefficient management of associated gas (flaring and re-injection in oil wells). With current energy efficiency standards prevailing in developed countries, the primary energy consumption in Kazakhstan in 2010 would be reduced by 48.6%, from 75.4 to 38.7 Mtoe. - Highlights: • A detailed ‘bottom-up’ model of the Kazakh energy sector has been developed. • The reasons of the high primary energy intensity of Kazakhstan are determined. • Household and industrial sectors of Kazakhstan are highly inefficient. • Associated gas management shows the highest potential for energy saving. • Primary energy consumption would be reduced by 48.6% with the proposed measures

  18. Safety implications of high-field MRI: actuation of endogenous magnetic iron oxides in the human body.

    Directory of Open Access Journals (Sweden)

    Jon Dobson

    Full Text Available Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body.Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles.Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation.

  19. Compacted graphite iron: Cast iron makes a comeback

    Science.gov (United States)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  20. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  1. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  3. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  4. Reduction experiment of iron scale by adding waste plastics.

    Science.gov (United States)

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2009-01-01

    The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.

  5. High Neonatal Blood Iron Content Is Associated with the Risk of Childhood Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Julie Nyholm Kyvsgaard

    2017-11-01

    Full Text Available (1 Background: Iron requirement increases during pregnancy and iron supplementation is therefore recommended in many countries. However, excessive iron intake may lead to destruction of pancreatic β-cells. Therefore, we aim to test if higher neonatal iron content in blood is associated with the risk of developing type 1 diabetes mellitus (T1D in childhood; (2 Methods: A case-control study was conducted, including 199 children diagnosed with T1D before the age of 16 years from 1991 to 2005 and 199 controls matched on date of birth. Information on confounders was available in 181 cases and 154 controls. Iron was measured on a neonatal single dried blood spot sample and was analyzed by laser ablation inductively coupled plasma mass spectrometry. Multivariate logistic regression was used to evaluate if iron content in whole blood was associated with the risk of T1D; (3 Results: A doubling of iron content increased the odds of developing T1D more than two-fold (odds ratio (95% CI, 2.55 (1.04; 6.24. Iron content increased with maternal age (p = 0.04 and girls had higher content than boys (p = 0.01; (4 Conclusions: Higher neonatal iron content associates to an increased risk of developing T1D before the age of 16 years. Iron supplementation during early childhood needs further investigation, including the causes of high iron in neonates.

  6. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

    Directory of Open Access Journals (Sweden)

    Javier Encinar del Dedo

    2015-03-01

    Full Text Available Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.

  7. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  8. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  9. Photoionization Modeling and the K Lines of Iron

    Science.gov (United States)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  10. Synthesis of endohedral iron-fullerenes by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  11. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    Science.gov (United States)

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  12. Effect of Titanium Inoculation on Tribological Properties of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Siekaniec D.

    2017-12-01

    Full Text Available The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

  13. Methods for efficient usage of energy and materials in high temperature metallurgical processes; Methoden zur Energie- und Stoffeffizienz in der metallurgischen Hochtemperaturtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Reinhard; Stuermer, Thomas [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Energieverfahrenstechnik

    2012-07-15

    Metallurgy belongs to the most energy intensive industries where the chain of processes, from materials production to materials recycling, proceeds typically at high temperatures. The higher the process temperature, the more valuable is energy recovery. In parallel with the current trends of improving energy efficiencies, one observes an increase of energy conversion costs in conversion processes of both fossil fuels and renewable energy sources. The paper is concerned with methods of improving energy efficiencies, as well as, with establishing their maximum values determined by the thermodynamics of the metallurgical processes considered. In a number of processes, for example in the blast furnace process of pig iron production, these thermodynamic limits have been reached. Then, if the prices of raw materials and/or energy (electricity produced either from fossil fuels or from renewables) are on the rise, the industry does not have any other option but increasing the final product prices which obviously affect competitiveness. (orig.)

  14. Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation.

    Science.gov (United States)

    Corcé, Vincent; Morin, Emmanuelle; Guihéneuf, Solène; Renault, Eric; Renaud, Stéphanie; Cannie, Isabelle; Tripier, Raphaël; Lima, Luís M P; Julienne, Karine; Gouin, Sébastien G; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2012-09-19

    Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.

  15. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    Science.gov (United States)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  16. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Black-hole galactic nuclei: a high-energy perspective

    CERN Document Server

    Boldt, E; Loewenstein, M

    2002-01-01

    The gravitational radiation signals to be anticipated from events involving black-hole galactic nuclei depend on the spin of the underlying object. To obtain evidence about the spin of Seyfert AGN black holes, we can rely on future ultra-high resolution spectral/spatial x-ray studies of iron K line fluorescence from the innermost regions of accreting matter. Normal galaxies present more of a challenge. To account for the highest energy cosmic rays, we propose that ultra-relativistic particle acceleration can occur near the event horizons of spun-up supermassive black-holes at the non-active nuclei of giant elliptical galaxies. This conjecture about the black hole spin associated with such nuclei is subject to verification via the characteristic TeV curvature radiation expected to be detected with upcoming gamma-ray observatories.

  18. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  19. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films

    International Nuclear Information System (INIS)

    Zhai, Guangmei; Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    In this work, the optical and electronic properties of iron pyrite FeS 2 nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS 2 nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS 2 nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS 2 nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS 2 nanocrystals with different ligands were obtained by current density–voltage measurements.

  20. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  1. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  2. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  3. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    Science.gov (United States)

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  4. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  5. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  6. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  7. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space

    CERN Document Server

    Mitaroff, Angela

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cut in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam, made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborat...

  8. Iron requirements of infants and toddlers

    DEFF Research Database (Denmark)

    Domellöf, Magnus; Braegger, Christian; Campoy, Cristina

    2014-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide and young children are a special risk group since their rapid growth leads to high iron requirements. Risk factors associated with a higher prevalence of iron deficiency anemia (IDA) include low birth weight, high cow's milk.......There is no evidence that iron supplementation of pregnant women improves iron status in their offspring in a European setting. Delayed cord clamping reduces the risk of iron deficiency. There is insufficient evidence to support general iron supplementation of healthy, European infants and toddlers of normal birth...... intake, low intake of iron-rich complementary foods, low socioeconomic status and immigrant status.The aim of this position paper is to review the field and provide recommendations regarding iron requirements in infants and toddlers, including those of moderately or marginally low birth weight...

  9. Transmutation in the electrolysis of light water - excess energy and iron production in a gold electrode

    International Nuclear Information System (INIS)

    Ohmori, Tadayoshi; Mizuno, Tadahiko; Nodasaka, Yoshinobu; Enyo, Michio; Minagawa, Hideki

    1997-01-01

    The identification of some reaction products possibly produced during the generation of excess energy is attempted. Electrolysis is performed for 7 days with a constant current intensity of 1 A. The electrolytes used are Na 2 SO 4 , K 2 SO 4 , K 2 CO 3 , and KOH. After the electrolysis, the elements in the electrode near the surface are analyzed by Auger electron spectroscopy and electron probe microanalysis. In every case, a notable amount of iron atoms in the range of 1.0 x 10 16 to 1.8 x 10 17 atom/cm 2 (true area) are detected together with the generation of a certain amount of excess energy evolution. The isotopic abundance of iron atoms, which are 6.5, 77.5, and 14.5% for 54 Fe, 56 Fe, and 57 Fe, respectively, and are obviously different from the natural isotopic abundance, are measured at the top surface of a gold electrode by secondary ion mass spectrometry. The content of 57 Fe tends to increase up to 25% in the more inner layers of the electrode. 8 refs., 11 figs., 3 tabs

  10. Effects of structure and defect on fatigue limit in high strength ductile irons

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits(σ ω ) and the maximum defect size(√area max ) was expressed as σ ω n · √area max =C 2 . Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... common type of anemia that occurs if you do not have enough iron in your body. People ... make it hard to find the energy to do normal activities. Headache Irregular heartbeat. This is a ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... clinical trials to improve health, and where to find more information. Causes Your body needs iron to ... common symptom. This can make it hard to find the energy to do normal activities. Headache Irregular ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to find the energy to do normal activities. Headache Irregular heartbeat. This is a sign of more ... to receive IV iron. You may experience vomiting, headache, or other side effects right after the IV ...

  14. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  15. Dual energy x-ray absorptiometry (DEXA) in the assessment of liver iron in patients with beta thalassaemia major

    International Nuclear Information System (INIS)

    Chatterton, B.E.; Thomas, C.M.; Schultz, C.G.

    2000-01-01

    Full text: Beta thalassaemia major is a condition in which anaemia from abnormal haemoglobin production causes bone marrow expansion and frequently reduced bone mineral density. These patients have a chronic requirement for transfusion which results in tissue iron overload which may cause organ damage. Increased X-ray attenuation in the liver was noted in patients undergoing whole body DEXA for the assessment of bone density and it was assumed that this was related to liver iron stores. The aim of this study was to determine if useful information about liver iron could be obtained from these studies. Method: Using a Lunar DPXL, whole body scanning was performed in 16 patients (eight male) age 19-32 with Beta Thalassaemia. As well as calculating indices of total body composition, regions of interest were placed over the visualised liver. The 'bone mineral content' (BMC),g and bone mineral density (BMD),g/cm 2 were calculated over the liver regions, with the assumption that the calculation related to mineral in the region of interest. The results were compared with the serum ferritin as an indirect measure of body iron stores. Results showed a highly significant correlation (r=0.85) between 'BMD' in the liver region and ferritin. Conclusion: Despite the known difficulties with equating iron stores and ferritin, and possible confounders on liver density, such as fibrosis, the high correlation suggests that DEXA may have a place in the assessment of iron deposition, and be more cost effective than other technologies such as MRI and CT. Prospective studies with invasive measurements of liver iron will be needed to determine this. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation.

    Science.gov (United States)

    Dewey, Kathryn G; Oaks, Brietta M

    2017-12-01

    Both iron deficiency (ID) and excess can lead to impaired health status. There is substantial evidence of a U-shaped curve between the risk of adverse birth outcomes and maternal hemoglobin concentrations during pregnancy; however, it is unclear whether those relations are attributable to conditions of low and high iron status or to other mechanisms. We summarized current evidence from human studies regarding the association between birth outcomes and maternal hemoglobin concentrations or iron status. We also reviewed effects of iron supplementation on birth outcomes among women at low risk of ID and the potential mechanisms for adverse effects of high iron status during pregnancy. Overall, we confirmed a U-shaped curve for the risk of adverse birth outcomes with maternal hemoglobin concentrations, but the relations differ by trimester. For low hemoglobin concentrations, the link with adverse outcomes is more evident when hemoglobin concentrations are measured in early pregnancy. These relations generally became weaker or nonexistent when hemoglobin concentrations are measured in the second or third trimesters. Associations between high hemoglobin concentration and adverse birth outcomes are evident in all 3 trimesters but evidence is mixed. There is less evidence for the associations between maternal iron status and adverse birth outcomes. Most studies used serum ferritin (SF) concentrations as the indicator of iron status, which makes the interpretation of results challenging because SF concentrations increase in response to inflammation or infection. The effect of iron supplementation during pregnancy may depend on initial iron status. There are several mechanisms through which high iron status during pregnancy may have adverse effects on birth outcomes, including oxidative stress, increased blood viscosity, and impaired systemic response to inflammation and infection. Research is needed to understand the biological processes that underlie the U-shaped curves

  17. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  18. Solubility limit and precipitation kinetics of iron-phosphide in ferritic iron

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1992-01-01

    The solubility limit of iron-phosphide in ferritic iron was examined with electrical resistivity measurements by using the relationship between resistivity and the amount of dissolved phosphorous. The temperature dependence of the solubility obtained was in good agreement with previous results. The kinetics of precipitation of the phosphide from a supersaturated Fe-3.75 at.% P alloy was also investigated with changes of the resistivity by isochronal and isothermal annealing. The activation energy for the precipitation process of the phosphide was about 2.6 eV. Diffusivities of phosphorus were estimated from the annealing behaviour and the morphology of the precipitates, which were comparable to those obtained with the tracer method previously. This suggests that the precipitation process of phosphide is rate controlled by diffusion of phosphorus in ferritic iron-phosphorus alloys. (orig.) [de

  19. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  20. Effects of Radiation and a High Iron Load on Bone Mineral Density

    Science.gov (United States)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  1. High energy permanent magnets - Solutions to high performance devices

    International Nuclear Information System (INIS)

    Ma, B.M.; Willman, C.J.

    1986-01-01

    Neodymium iron boron magnets are a special class of magnets providing the highest level of performance with the least amount of material. Crucible Research Center produced the highest energy product magnet of 45 MGOe - a world record. Commercialization of this development has already taken place. Crucible Magnetics Division, located in Elizabethtown, Kentucky, is currently manufacturing and marketing six different grades of NdFeB magnets. Permanent magnets find application in motors, speakers, electron beam focusing devices for military and Star Wars. The new NdFeB magnets are of considerable interest for a wide range of applications

  2. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  3. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  4. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Recent Results on Ultra-High Energy Cosmic Rays from the Telescope Array

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    TA's recent results on Ultra-High Energy Cosmic Rays (UHECRs) are reported. The energy spectrum based on 20k events above 10^18.2 eV demonstrates a clear dip at 10^18.7 eV and a cutoff at 10^19.7 eV , the shape and the energies of which are well described by the GZK process: energy loss of extra-galactic protons by the interaction with the CMB and IR background. The primary composition obtained from the shower maximum analysis using the hybrid technique is consistent with 100% proton or light nuclei, and inconsistent with 100% iron up to 10^19.3 eV. Above the GZK cutoff energy, a large flux enhancement of medium size (radius=20deg) is observed in the direction of Ursa-Major. The chance probability of this hotspot appearing from the isotropic flux is 4.0sigma. The center of the hotspot is 19 deg off from the Super-Galactic Plane, and no obvious candidate of UHECRs is known in this direction.

  6. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration is an economical way to treat anoxic groundwaters and involves aeration followed by particulate and soluble substrate removal via deep bed filtration. The anoxic source groundwater can contain several potential electron donors (CH4, Fe2+, Mn2+, NH4+ and assimilable organic...... of iron oxidizing bacterial in the highly oxic environments found in typical rapid sand filters. The neutrophilic FeOB were enriched by the Fe2+/O2 opposing gradient technique and quantified by MPN methodology. Diversity fingerprints of the enrichment cultures were obtained with a 16S rRNA targeted DGGE...

  7. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  8. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Molecular dynamics study of helium bubble stability during high-energy displacement cascades in alpha-iron

    International Nuclear Information System (INIS)

    Pu, Jin; Yang, Li; Zu, Xiaotao; Gao, Fei

    2007-01-01

    The interactions of high-energy displacement cascades with helium bubbles in a-Fe are investigated using molecular dynamics simulations. Initial bubbles with the volumes of 212 and 636 (angstrom)3 are considered, and the helium-to-vacancy (He/V) ratio in the bubbles varies from 0.5 to 3. Primary knock-on atom (PKA) energy, Ep, is up to 40 keV. The results show that the change of nm-sized He bubbles due to displacement cascade does not depend much on the bubble size, but rather on the He/V ratio and the recoil energy. For the initial He/V ratio less than 1, the size of the bubbles decreases with increasing PKA energy, but the He/V ratio increases. However, for the initial He/V ratio of 3, the size of the bubbles increases, and the He/V ratio decreases with PKA energy. For the initial He/V ratio of 1, the ratio of the small bubble decreases slightly, but the ratio of the large bubble remains unchanged for lower PKA energy, and increases slightly for higher PKA energy. The reasons for these observed phenomena have been explained

  10. Diffusion of iron in β-iron telluride (Fe1.12Te) by Moessbauer spectroscopy and tracer method

    International Nuclear Information System (INIS)

    Magara, Masaaki; Tsuji, Toshihide; Naito, Keiji

    1993-01-01

    The diffusion coefficient of iron in a β-iron telluride (Fe 1.12 Te) polycrystalline sample was measured by Moessbauer diffusional line broadening method which relates to the collapse of coherence in gamma-ray photon by the atomic jump at local sites. The diffusion coefficient of iron along the c-axis in nearly single crystal of β-iron telluride was also measured by tracer technique which shows the results of an atom transport in long distance. The activation energies for the diffusion of iron in Fe 1.12 Te obtained by the Moessbauer spectroscopy and the tracer method were 91.5±5.4 and 106±23 kJ/mol, respectively. The diffusion coefficients of iron in β-iron telluride obtained by Moessbauer line broadening are in fair agreement with the values averaged from that along c-axis obtained by tracer method and that along a- and b-axes obtained from reaction rate constant between iron and tellurium by the previous study of the present authors. (orig.)

  11. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  12. Efficiency of steel-concrete compositions in a side shielding of high-energy proton accelerators

    International Nuclear Information System (INIS)

    Getmanov, V.B.; Kryuchkov, V.P.; Lebedev, V.N.

    1983-01-01

    Aiming at the study of efficiency of application of heavy concretes with the density up to 6.3 g/cm -3 with iron-ore aggregate and steel scrap with shot the calculational study on high-energy radiation attenuation in the accelerator side shield has been carried out. The calculation is made for five concretes with the density 2.38; 3.66; 4.68; 5.34; 6.30 g x cm -3 and for pure iron. The real chemical composition of each concrete, including hydrogen, is taken into account. The real spectrum of hadron generated in the materiai of evacuated ionguide wall under the effect of the 70 GeV proton beam incident on the wall at a narrow angle THETA -3 ensuring the same ratio of the dose or hadron fluence with the energy > 20 MeV attenuation is accepted as a relative shield efficiency of the material. It is shown, that for steel-concrete compositions with the density > 5.6 gxcm -3 the relative shield efficiency decreases sharply. It is also shown, that aplication of concretes with the density 3.6-3.7 gxcm -3 is expedient and economically profitable

  13. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Science.gov (United States)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  14. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  15. THE EFFECT OF IRON ION TO THE REMOVAL OF NICKEL ION FROM ELECTROPLATING WASTEWATER USING DOUBLE CHAMBER ELECTRODEPOSITION CELL (DCEC REACTOR

    Directory of Open Access Journals (Sweden)

    Djaenudin Djaenudin

    2017-05-01

    Full Text Available Modern society demands industrial technology advances to produce products that have high durability and long utilization lives. Materials made from ferrous metal become a solution to meet these industry needs. Ferrous metal is corrosive and it requires more care to support the performance. Electroplating or metal coating applied to iron or nickel solves this problem. In the production process, the usage of nickel is only 30%-40% and the remaining 60-70% is wasted through effluent. Nickel is a toxic heavy metal that can cause cancer. The purpose of this study is to evaluate the effect of iron concentration on nickel metal removal in electroplating wastewater using an insulated electrolytic reactor double chamber electrodeposition cell (DCEC. The result of this study shows that any ratio variation of iron concentration to nickel gives varying impacts on nickel removal efficiency, electric current efficiency, and specific energy. On the fourth variation, the iron ratio of 1.29% removed 83.1% nickel (the highest removal efficiency at the cost of 20.687 kWh / kg specific energy. The number is extremely high for energy needs. On the other hand, the variation of iron ratio of 1.73% consumpting only 15.067 kWh / kg, the lowest specific energy needs, resulted in the lowest removal efficiency of 63.6%.

  16. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status.

    Science.gov (United States)

    Petry, Nicolai; Egli, Ines; Gahutu, Jean B; Tugirimana, Pierrot L; Boy, Erick; Hurrell, Richard

    2014-11-01

    The common bean is a staple crop in many African and Latin American countries and is the focus of biofortification initiatives. Bean iron concentration has been doubled by selective plant breeding, but the additional iron is reported to be of low bioavailability, most likely due to high phytic acid (PA) concentrations. The present study evaluated the impact of PA on iron bioavailability from iron-biofortified beans. Iron absorption, based on erythrocyte incorporation of stable iron isotopes, was measured in 22 Rwandese women who consumed multiple, composite bean meals with potatoes or rice in a crossover design. Iron absorption from meals containing biofortified beans (8.8 mg Fe, 1320 mg PA/100 g) and control beans (5.4 mg Fe, 980 mg PA/100 g) was measured with beans containing either their native PA concentration or with beans that were ∼50% dephytinized or >95% dephytinized. The iron concentration of the cooked composite meals with biofortified beans was 54% higher than in the same meals with control beans. With native PA concentrations, fractional iron absorption from the control bean meals was 9.2%, 30% higher than that from the biofortified bean meals (P bean meals (406 μg) was 19% higher (P bean meals. With ∼50% and >95% dephytinization, the quantity of iron absorbed from the biofortified bean meals increased to 599 and 746 μg, respectively, which was 37% (P bean meals. PA strongly decreases iron bioavailability from iron-biofortified beans, and a high PA concentration is an important impediment to the optimal effectiveness of bean iron biofortification. Plant breeders should focus on lowering the PA concentration of high-iron beans. This trial was registered at clinicaltrials.gov as NCT01521273. © 2014 American Society for Nutrition.

  17. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  18. Modeling drying of iron ore pellets

    OpenAIRE

    Ljung, Anna-Lena

    2010-01-01

    Iron ore pellets are a highly refined product supplied to the steel making industry for use in blast furnaces or direct reduction processes. The use of pellets offers many advantages such as customer adopted products, transportability and mechanical strength yet the production is time and energy consuming. Being such, there is a natural driving force to enhance the pelletization in order to optimize production and improve quality. The aim with this thesis is to develop numerical models with w...

  19. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  20. Shielding experiments with high-energy heavy ions for spaceflight applications

    International Nuclear Information System (INIS)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J; Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L; Christl, M; Kuznetsov, E

    2008-01-01

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon -1 56 Fe beam, and also reported results using a single polyethylene (CH 2 ) target in a variety of beam ions and energies up to 1 GeV nucleon -1 . An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon -1 . Following up on that work, we report new results using beams of 12 C, 28 Si and 56 Fe, each at three energies, 3, 5 and 10 GeV nucleon -1 , on carbon, polyethylene, aluminium and iron targets

  1. Shielding experiments with high-energy heavy ions for spaceflight applications

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L [Physics Department, University of Houston, Houston, TX (United States); Christl, M [NASA Marshall Spaceflight Center, Huntsville, AL (United States); Kuznetsov, E [Physics Department, University of Alabama, Huntsville, AL (United States)], E-mail: cjzeitlin@lbl.gov

    2008-07-15

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon{sup -1} {sup 56}Fe beam, and also reported results using a single polyethylene (CH{sub 2}) target in a variety of beam ions and energies up to 1 GeV nucleon{sup -1}. An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon{sup -1}. Following up on that work, we report new results using beams of {sup 12}C, {sup 28}Si and {sup 56}Fe, each at three energies, 3, 5 and 10 GeV nucleon{sup -1}, on carbon, polyethylene, aluminium and iron targets.

  2. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS{sub 2} nanocrystals and solid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Guangmei, E-mail: zhaiguangmei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China)

    2016-07-25

    In this work, the optical and electronic properties of iron pyrite FeS{sub 2} nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS{sub 2} nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS{sub 2} nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS{sub 2} nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS{sub 2} nanocrystals with different ligands were obtained by current density–voltage measurements.

  3. Expression and Characterisation of Recombinant Rhodocyclus tenuis High Potential Iron-Sulphur Protein

    DEFF Research Database (Denmark)

    Caspersen, Michael Bjerg; Bennet, K.; Christensen, Hans Erik Mølager

    2000-01-01

    The high potential iron-sulfur protein (HiPIP) from Rhodocyclus tenuis strain 2761 has been overproduced in Escherichia coli from its structural gene, purified to apparent homogeneity, and then characterized by an array of methods. UV-visible spectra of the reduced and oxidized recombinant protein...

  4. Treatment of highly polluted groundwater by novel iron removal process.

    Science.gov (United States)

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  5. High-precision determination of the isotopic composition of dissolved iron in iron depleted seawater by double spike multicollector-ICPMS.

    Science.gov (United States)

    Lacan, Francois; Radic, Amandine; Labatut, Marie; Jeandel, Catherine; Poitrasson, Franck; Sarthou, Geraldine; Pradoux, Catherine; Chmeleff, Jerome; Freydier, Remi

    2010-09-01

    This work demonstrates the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for an iron concentration range, 0.05-1 nmol L(-1), allowing measurements in most oceanic waters, including Fe depleted waters of high nutrient low chlorophyll areas. It presents a detailed description of our previously published protocol, with significant improvements on detection limit and blank contribution. Iron is preconcentrated using a nitriloacetic acid superflow resin and purified using an AG 1-x4 anion exchange resin. The isotopic ratios are measured with a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) Neptune, coupled with a desolvator (Aridus II or Apex-Q), using a (57)Fe-(58)Fe double spike mass bias correction. A Monte Carlo test shows that optimum precision is obtained for a double spike composed of approximately 50% (57)Fe and 50% (58)Fe and a sample to double spike quantity ratio of approximately 1. Total procedural yield is 91 +/- 25% (2SD, n = 55) for sample sizes from 20 to 2 L. The procedural blank ranges from 1.4 to 1.1 ng, for sample sizes ranging from 20 to 2 L, respectively, which, converted into Fe concentrations, corresponds to blank contributions of 0.001 and 0.010 nmol L(-1), respectively. Measurement precision determined from replicate measurements of seawater samples and standard solutions is 0.08 per thousand (delta(56)Fe, 2SD). The precision is sufficient to clearly detect and quantify isotopic variations in the oceans, which so far have been observed to span 2.5 per thousand and thus opens new perspectives to elucidate the oceanic iron cycle.

  6. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  7. Heat capacity of iron, aluminum, and chromium vanadates at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cheshnitskii, S.M.; Fotiev, A.A.; Ignashin, V.P.; Kesler, Y.A.

    1985-09-01

    The thermodynamic characteristics of compounds participating in the processing of vanadium-containing raw materials have not been sufficiently investigated. In this paper the authors report on measurements of the heat capacities of the compounds FeVO/sub 4/, CrVO/sub 4/, AIVO/sub 4/, Fe/sub 2/V/sub 4/O/sub 13/ and FeCr(VO/sub 4/)/sub 2/ at high temperatures. The obtained experimental data on the high-temperature heat capacity of iron, aluminum, and chromium vanadates makes it possible to calculate the thermodynamic functions of these compounds at high temperatures.

  8. Reversible formation of high-valent-iron-oxo-porphyrin intermediate in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase.

    NARCIS (Netherlands)

    Haandel, van M.J.H.; Primus, J.L.; Teunis, C.; Boersma, M.G.; Osman, A.M.; Veeger, C.; Rietjens, I.M.C.M.

    1998-01-01

    Many heme-containing biocatalysts exert their catalytic action through the initial formation of so-called high-valent-iron-oxo porphyrin intermediates. For horseradish peroxidase the initial intermediate formed has been identified as a high-valent-iron-oxo porphyrin π-radical cation, called compound

  9. Iron deficiency anemia in sports and preventive dietetic and nutrition interventions

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2013-12-01

    Full Text Available Iron deficiency anemia in athletes is a very common condition that leads to reduced physical performance. Athletes are susceptible of falling iron deposits, mainly by an increase in its use, by its loss, or by insufficient intake. The present review aims to establish the basis of current knowledge environment: sports-athletes who have increased risk of anemia, etiology of iron deficiency anemia in the sporting group, providing dietary and nutritional guidelines for its prevention. The databases searched were Pubmed, Scirus and Scielo, as well as the official pages of prestigious organizations, recovering items by keywords: “iron-deficiency anemia”, “sports”, “athletic performance”, “iron intake “or Spanish counterparts. Iron deficiency anemia affects mainly endurance athletes (especially women and marathon and the members of team sports with high impact (volleyball and handball. Usually secondary anemias from hemolysis and oxidative stress resulting from the practice of sport, but it cases have also been documented by increased iron losses associated with exercise. Dietary and nutritional practices to prevent iron deficiency anemia in athletes should aim to ensure: carbohydrate intake between 60-65% of total energy daily minimum intake of 1.4 g of protein per day and a consumption of 20-40 mg iron daily, separating the intake of the main absorption inhibitors (phytate, tanetos and calcium. You need assessed by analytical iron status of the athlete every 2-3 months.

  10. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    Science.gov (United States)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  11. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  12. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  13. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  14. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2016-06-01

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R -matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe16 + ), with a wave function expansion of 99 Fe xviii (Fe17 + ) LS core states from n ≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z -pinch fusion device at solar interior conditions.

  15. Methodological differences behind energy statistics for steel production – Implications when monitoring energy efficiency

    International Nuclear Information System (INIS)

    Morfeldt, Johannes; Silveira, Semida

    2014-01-01

    Energy efficiency indicators used for evaluating industrial activities at the national level are often based on statistics reported in international databases. In the case of the Swedish iron and steel sector, energy consumption statistics published by Odyssee, Eurostat, the IEA (International Energy Agency), and the United Nations differ, resulting in diverging energy efficiency indicators. For certain years, the specific energy consumption for steel is twice as high if based on Odyssee statistics instead of statistics from the IEA. The analysis revealed that the assumptions behind the allocation of coal and coke used in blast furnaces as energy consumption or energy transformation are the major cause for these differences. Furthermore, the differences are also related to errors in the statistical data resulting from two different surveys that support the data. The allocation of coal and coke has implications when promoting resource as well as energy efficiency at the systems level. Eurostat's definition of energy consumption is more robust compared to the definitions proposed by other organisations. Nevertheless, additional data and improved energy efficiency indicators are needed to fully monitor the iron and steel sector's energy system and promote improvements towards a greener economy at large. - Highlights: • Energy statistics for the iron and steel sector diverge in international databases. • Varying methods have implications when monitoring energy and resource efficiency. • Allocation of blast furnaces as transformation activities is behind the differences. • Different statistical surveys and human error also contribute to diverging results

  16. Characteristics of background radiation behind one-dimensional radiation shielding of high-energy particle beams; Kharakteristiki fonovogo izlucheniya za odnomernymi radiatsionnymi zashchitami puchkov vysokoehnergeticheskikh chastits

    Energy Technology Data Exchange (ETDEWEB)

    Gorbatkov, D V; Kryuchkov, V P

    1994-12-31

    The calculational investigations of component, spatial and energy distributions of background radiation behind radiation shielding of high-energy hadron beams were carried out. The relations between different ingredients of radiation have been obtained. The numerous data of spatial and energy distribution of protons, neutrons, pions and photons in homogeneous and heterogeneous shielding from concrete and iron, presented in the paper, can be used as a reference data. 23 refs., 50 figs.

  17. International convention on clean, green and sustainable technologies in iron and steel making

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The presentations (overheads/viewgraphs) discussed energy efficiency and conservation in iron and steel making, air pollution control, carbon trading, reclamation of iron ore mines, utilisation of low grade coal and iron ore, Corex and Finex processes, HIsmelt, sinter technology, energy recovery, reduction gas from coal, coal gasification and syngas based DRI, and resettlement of people.

  18. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  19. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  20. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  1. Damage induced by swift heavy ions in a pure metallic target: iron. Experimental results and numerical simulation

    International Nuclear Information System (INIS)

    Legrand, P.

    1993-01-01

    The damage induced when a high energy deposition occurs in the electronic system of a pure metal (Ag, Co, Fe, Ni, Pd, Pt, Ti, W, Zr) has been investigated using two methods: low temperature swift heavy ion (O, Ar, Kr, Xe, Pb, u) irradiations and computer simulations by molecular dynamics. Irradiations reveal that up to now, it is only in iron, titanium, cobalt and zirconium targets that high levels of energy deposition in electronic excitations lead to a new mechanism of defect creation in addition to the effects of elastic collisions. This mechanism might be the Coulomb explosion: the incident ion creates in its wake a cylinder of highly ionized matter; Coulomb repulsions of short duration in metallic targets could then set a great number of neighbouring atoms into motion and lead to permanent atomic displacements. Using molecular dynamics, we confirm that atomic displacements can indeed occur when neighbouring perturbated atoms receive even a very small amount of kinetic energy (≤ 1 eV). This happens only if the repulsive movements are collective and coherent. Defect creation and annealing of preexisting defects which occur in iron at different energy deposition levels are successfully simulated. An original empirical N-body potential, allowing a realistic description of the bulk properties of the body centered cubic iron, is used. (author). refs., figs., tabs

  2. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  3. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  4. Heart failure in patients with kidney disease and iron deficiency; the role of iron therapy.

    Science.gov (United States)

    Cases Amenós, Aleix; Ojeda López, Raquel; Portolés Pérez, José María

    Chronic kidney disease and anaemia are common in heart failure (HF) and are associated with a worse prognosis in these patients. Iron deficiency is also common in patients with HF and increases the risk of morbidity and mortality, regardless of the presence or absence of anaemia. While the treatment of anaemia with erythropoiesis-stimulating agents in patients with HF have failed to show a benefit in terms of morbidity and mortality, treatment with IV iron in patients with HF and reduced ejection fraction and iron deficiency is associated with clinical improvement. In a posthoc analysis of a clinical trial, iron therapy improved kidney function in patients with HF and iron deficiency. In fact, the European Society of Cardiology's recent clinical guidelines on HF suggest that in symptomatic patients with reduced ejection fraction and iron deficiency, treatment with IV ferric carboxymaltose should be considered to improve symptoms, the ability to exercise and quality of life. Iron plays a key role in oxygen storage (myoglobin) and in energy metabolism, and there are pathophysiological bases that explain the beneficial effect of IV iron therapy in patients with HF. All these aspects are reviewed in this article. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  7. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    Science.gov (United States)

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  8. Iron monoxide photodissociation

    Science.gov (United States)

    Chestakov, D. A.; Parker, D. H.; Baklanov, A. V.

    2005-02-01

    The photodissociation of Fe56O was studied by means of the velocity map imaging technique. A molecular beam of iron atoms and iron monoxide molecules was created using an electrical discharge with an iron electrode in a supersonic expansion of molecular oxygen. The ground state iron atom Fe(D45) and FeO concentrations in the molecular beam have been estimated. The dissociation energy of the FeO XΔ5 ground electronic state was found to be D00(FeO )=4.18±0.01eV. The effective absorption cross section of FeO at 252.39nm (vac), leading to the Fe(D45)+O(P3) dissociation channel, is ˜1.2×10-18cm2. A (1+1) resonantly enhanced multiphoton ionization spectrum of Fe56O in the region 39550-39580 cm-1 with rotational structure has been observed, but not assigned. Angular distributions of Fe(D45) and Fe(D35) products for the channel FeO →Fe(D4,35)+O(P3) have been measured at several points in the 210-260nm laser light wavelength region. The anisotropy parameter varies strongly with wavelength for both channels.

  9. Thermal migration of iron implanted in aluminium at high doses

    International Nuclear Information System (INIS)

    Asundi, V.K.; Joshi, M.C.; Deb, S.K.; Soud, D.K.; Kulkarni, V.N.; Sundararaman, M.

    1978-01-01

    The anneal behaviour of the Fe-Al metastable system produced by implantation of Fe + ions at 30 keV has been reported. The implant concentrations between 18-42 at percent have been chosen, in order to exceed the normal solid solubility of Fe in Al by about three orders of magnitude. Isothermal annealing has been done under vacuum (55 x 10 -6 Torr) at 400deg C and 570 deg C. The iron depth profiles have been determined, by Rutherford backscattering of 2 MeV He + ions. It has been found that 1) as annealing proceeds, all specimens show rapid enhanced diffusion initially (upto about 30 m), followed by a much slower diffusion as iron ions migrate inwards (2) at implant concentrations 23 at percent, double peaks appear in iron depth profiles, followed by rapid migration of diffused iron towards surface and (3) at still higher anneal times, the out-diffused iron moves inward again. This kind of out-diffusion behaviour in a metallic system has not been reported earlier in the literature. Also, the presence of Fe 4 Al 13 has been identified as terminal phase, using x-ray diffraction techniques. (K.B.)

  10. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [WTP Engineering Division, United States Department of Energy, Office of River Protection, Post Office Box 450, Richland, Washington 99352 (United States)

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  11. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams-13000

    International Nuclear Information System (INIS)

    Kruger, Albert A.

    2013-01-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur

  12. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

    Science.gov (United States)

    Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  13. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  14. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    International Nuclear Information System (INIS)

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K.

    2016-01-01

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a "5"9Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained peatlands with

  15. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Krachler, Regina, E-mail: regina.krachler@univie.ac.at [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Krachler, Rudolf F.; Wallner, Gabriele [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Steier, Peter [Isotope Research and Nuclear Physics, University of Vienna, Währingerstraße 17, 1090 Vienna (Austria); El Abiead, Yasin; Wiesinger, Hubert [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); University of Johannesburg, Department of Zoology, P. O. Box 524, Auckland Park 2006 (South Africa); Keppler, Bernhard K. [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria)

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a {sup 59}Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained

  16. High Prevalence but Insufficient Treatment of Iron-Deficiency Anemia in Patients with Inflammatory Bowel Disease: Results of a Population-Based Cohort

    Science.gov (United States)

    Ott, Claudia; Liebold, Anne; Takses, Angela; Strauch, Ulrike G.; Obermeier, Florian

    2012-01-01

    Background. Iron-deficiency anemia is described to be a common problem in patients with inflammatory bowel disease (IBD), which is frequently associated with a reduced quality of life. Therefore, the aim of this study is to assess the prevalence of iron deficiency anemia in a population-based cohort at time of first diagnosis and during the early course of the disease. Methods. As far as available, lab values of patients registered in the population-based “Oberpfalz cohort” were screened. In anemic patients, we further investigated all laboratory results to differentiate between iron deficiency and other reasons for anemia. All patients with any kind of anemia were interviewed separately according to symptoms of iron-deficiency anemia and administration of iron. Results. In total, we evaluated hemoglobin values of 279 patients (183 Crohn's disease, 90 ulcerative colitis, and 6 indeterminate colitis). Lab data which allowed further differentiation of the type of anemia were available in 70% of anemic patients, in 34.4% values of iron, ferritin and transferrin saturation had been measured. At time of first diagnosis, an iron-deficiency anemia was diagnosed in 26 of 68 patients with anemia (38.2%, 20 CD, 4 UC, and 2 IC patients), but only 9 patients (34.6%) received subsequent iron therapy. After one year, 27 patients were identified to have an iron-deficiency anemia (19 CD, 8 UC), 20 of them were treated with iron (71.4%). Of 9 patients with proven iron-deficiency anemia at time of first diagnosis and subsequent administration of iron, 5 (55.5%) had iron-deficiency anemia despite permanent treatment after one year. In total, 38 patients (54.3%) did not receive any iron substitution at all despite of proven iron-deficiency anemia, and only 13 patients of 74 patients were treated with intravenous iron (17.6%). Conclusion. We found a high prevalence of iron-deficiency anemia at different points during the early course of disease in this population-based cohort of

  17. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    Science.gov (United States)

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.

  18. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  19. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  20. Instant Noodles and Iron Nutrition

    International Nuclear Information System (INIS)

    Tuntawiroon, Malulee; Sritongkul, Nopamon; Sookpeng Witoo

    2003-06-01

    Instant noodles represent the biggest category of instant foods in the supermarket. This study was undertaken to determine dietary availability for iron from their varieties without and with an addition of pork and/or vitamin C rich-vegetables by in vitro radiometric ( 59 Fe) method. The results showed that 8 to 13 percent of iron in the noodles was available for absorption of which contributed to 0.79 mg absorbed iron per day. This amount was too low to meet certain requirements for children, adolescents and menstruating women. With added pork or vegetables, iron availability increased by 2 to 3 times, and by 4 times with added pork and collard or cabbage (p<0.001). The amounts as high as 1.5 to 3.4 mg absorbed iron per day can meet the FAO/WHO requirements for most of the high-risk groups

  1. Electron exchange between neutral and ionized impurity iron centers in vitreous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A. V. [Herzen State Pedagogical University of Russia (Russian Federation); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Egorova, A. Yu. [St.-Petersburg Mining University (Russian Federation); Kiselev, V. S.; Seregin, P. P., E-mail: ppseregin@mail.ru [Herzen State Pedagogical University of Russia (Russian Federation)

    2017-04-15

    Impurity iron atoms in vitreous arsenic-selenide As{sub 2}Se{sub 3} films modified by iron form one-electron donor centers with an ionization energy of 0.24 (3) eV (the energy is counted from the conduction-band bottom). The Fermi level is shifted with an increase in the iron concentration from the mid-gap to the donorlevel position of iron due to the filling of one-electron states of the acceptor type lying below the Fermi level. At an iron concentration of ≥3 at %, the electron-exchange process is observed between neutral and ionized iron centers resulting in a change both in the electron density and in the tensor of the electric-field gradient at iron-atom nuclei with increasing temperature above 350 K.

  2. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  3. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  4. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  5. Adsorptive Iron Removal from Groundwater

    OpenAIRE

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some of the aesthetic and operational problems associated with iron in water supplies. Iron removal from groundwater is, therefore, a major concern for water supply companies using groundwater sources....

  6. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    metallographic photos.Except for focusing on the effect of high carbon phases in cast iron, in this book, special attention is also paid to the effect of austenite on solidification, graphite morphology, and quality of cast iron; at the same time, the study on the solidification behaviours in the region around eutectic cells and its effects on mechanical properties of cast iron, are also emphasized.

  7. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    CdS nanoparticles prepared in reverse micellar system was incorporated into ... The molar ratio of various constituents of the hydrothermal gel was ... other synthesis techniques for the preparation of iron oxide nanocomposites using.

  8. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  9. Iron deficiency anaemia in pregnancy: The role of parenteral iron.

    Science.gov (United States)

    Esen, Umo I

    2017-01-01

    Maternal and perinatal morbidity and mortality remain major challenges in the delivery of safe maternity care worldwide. Anaemia in pregnancy is an important contributor to this dismal picture, especially where blood transfusion services are poorly developed. An early diagnosis and treatment of iron deficiency anaemia in pregnancy using the new generation dextran-free parenteral iron preparations can save lives and reduce morbidity in selected pregnancies. It is time to cast aside the fears associated with the use of the old parenteral iron preparations which were associated a high incidence of anaphylaxis, and embrace the use of new parenteral iron products which have better side effect profiles and can deliver total dose infusions without the need for test dosing. In selected women, the benefits of this treatment far outweigh any disadvantages.

  10. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  11. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  12. Galactic cosmic ray iron composition

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  13. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.

    Science.gov (United States)

    Ang, Wei An; Gupta, Nutan; Prasanth, Raghavan; Madhavi, Srinivasan

    2012-12-01

    Mesoporous iron oxalate (FeC(2)O(4)) with two distinct morphologies, i.e., cocoon and rod, has been synthesized via a simple, scalable chimie douce precipitation method. The solvent plays a key role in determining the morphology and microstructure of iron oxalate, which are studied by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Crystallographic characterization of the materials has been carried out by X-ray diffraction and confirmed phase-pure FeC(2)O(4)·2H(2)O formation. The critical dehydration process of FeC(2)O(4)·2H(2)O resulted in anhydrous FeC(2)O(4), and its thermal properties are studied by thermogravimetric analysis. The electrochemical properties of anhydrous FeC(2)O(4) in Li/FeC(2)O(4) cells are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. The studies showed that the initial discharge capacities of anhydrous FeC(2)O(4) cocoons and rods are 1288 and 1326 mA h g(-1), respectively, at 1C rate. Anhydrous FeC(2)O(4) cocoons exhibited stable capacity even at high C rates (11C). The electrochemical performance of anhydrous FeC(2)O(4) is found to be greatly influenced by the number of accessible reaction sites, morphology, and size effects.

  14. Formation of microstructure and properties on hot working and heat treatment of high strength modular cast iron

    International Nuclear Information System (INIS)

    Trajno, A.I.; Yusupov, V.S.; Kugushin, A.A.

    1999-01-01

    The possibility of plastic deformation of high strength modular cast iron (HSNCI) is under study. The microstructure and mechanical properties of hot worked and heat treated cast iron are investigated for the composition, %: Fe - 2.9 C - 2.4 Si - 0.7 Ni - 0.05 Mg - 0.04 Ce. It is stated that HSNCI can withstand various types of hot working without fracturing. Graphite inclusions lose their modular shape irreversibly during plastic deformation. Subsequent heat treatment affects the metal matrix only. The heating in oxidizing environment is noted to result in cast iron surface decarbonization [ru

  15. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  16. Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China's iron and steel industry: A case study

    International Nuclear Information System (INIS)

    Chen, Lingen; Yang, Bo; Shen, Xun; Xie, Zhihui; Sun, Fengrui

    2015-01-01

    Analyses and optimizations of material flows and energy flows in iron and steel industry in the world are introduced in this paper. It is found that the recovery and utilization of residual energy and heat (RUREH) plays an important role for energy saving and CO 2 emission reduction no matter what method is used. Although the energy cascade utilization principle is carried out, the efficiency of RUREH in China's iron and steel industry (CISI) is only about 30%–50%, while the international advanced level is higher than 90%, such as USA, Japan, Sweden, etc. An important reason for the low efficiency of RUREH in CISI is that someone ignores the thermodynamic optimization opportunities for the energy recovery or utilization equipment, such as electricity production via waste heat boiler, sintering ore sensible heat recovery, heat transfer through heat exchangers, etc. A case study of hot blast stove flue gas sensible heat recovery and utilization is presented to illustrate the viewpoint above. The results show that before the heat conductance distribution optimization, the system can realize energy saving 76.2 kgce/h, profit 68.9 yuan/h, and CO 2 emission reduction 187.2 kg/h. While after the heat conductance distribution optimization, the system can realize energy saving 88.8 kgce/h, profit 92.5 yuan/h, and CO 2 emission reduction 218.2 kg/h, which are, respectively, improved by 16.5%, 34.2% and 16.5% than those before optimization. Thermodynamic optimization from the single equipment to the whole system of RUREH is a vital part in the future energy conservation work in CISI. - Highlights: • Material flows and energy flows in iron and steel industry are introduced. • Recovery and utilization of residual energy and heat plays an important role. • A case study of hot blast stove flue gas sensible heat recovery is presented. • Thermodynamic optimization for the system is performed. • Energy saving, profit, and CO 2 emission reduction improvements

  17. The effect on haemoglobin of the use of iron cooking pots in rural Malawian households in an area with high malaria prevalence: a randomized trial.

    Science.gov (United States)

    Geerligs, Paul Prinsen; Brabin, Bernard; Mkumbwa, Albert; Broadhead, Robin; Cuevas, Luis E

    2003-04-01

    Innovative low-cost sustainable strategies are required to reduce the high prevalence of iron-deficiency anaemia in developing countries. We undertook a community-based randomized controlled intervention trial to assess the effects of cooking in iron or aluminium cooking pots in Malawian households in an area with high malaria prevalence. Analysis was by intention to treat and consistency of use. The primary outcomes were change in haemoglobin and iron status. The study population comprised 164 participants eating from aluminium cooking pots and 158 from iron cooking pots. The mean haemoglobin change was significantly increased after 6 weeks in adults who consistently ate from an iron cooking pot (+3.6 g/l compared to -3.2 g/l, mean difference between groups 6.8 g/l, 95% CI +0.86, +12.74). In children, no significant haemoglobin change was observed in consistent pot users, although they showed a significant reduction in iron deficiency (iron 8.6 ZP/g and aluminium 10.8 ZP/g, mean difference 2.2 ZP/g, 95% CI +1.08, +3.32). Rural Malawian adults in a high malaria transmission area who consistently consume food prepared in iron cooking pots show a significant rise in haemoglobin after 6 weeks use. Children showed a reduction in iron deficiency, but no significant improvement in haemoglobin, possibly because of their high malaria parasite prevalence. Using iron cooking pots in developing countries could provide an innovative way to prevent iron deficiency and anaemia in malarious areas where regular iron supplementation is problematic.

  18. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  19. Computer simulation of cascade damage in iron: PKA mass effects

    International Nuclear Information System (INIS)

    Calder, A.; Bacon, D.J.; Barashev, A.; Osetsky, Y.

    2007-01-01

    Full text of publication follows: Results are presented from an extensive series of computer simulations of the damage created by displacement cascades in alpha-iron. The objective has been to determine for the first time the effect of the mass of the primary knock-on atom (PKA) on defect number, defect clustering and cluster morphology. Cascades with PKA energy in the range 5 to 20 keV have been simulated by molecular dynamics for temperature up to 600 K using an interatomic potential for iron for which the energy difference between the dumbbell interstitial and the crowdion is close to the value from ab initio calculation (Ackland et al., J. Phys.: Condens. Matter 2004). At least 30 cascades have been simulated for each condition in order to generate reasonable statistics. The influence of PKA species on damage has been investigated in two ways. In one, the PKA atom was treated as an Fe atom as far as its interaction with other atoms was concerned, but its atomic weight (in amu) was either 12 (C), 56 (Fe) or 209 (Bi). Pairs of Bi PKAs have also been used to mimic heavy molecular ion irradiation. In the other approach, the short-range pair part of the interatomic potential was changed from Fe-Fe to that for Bi-Fe, either with or without a change of PKA mass, in order to study the influence of high-energy collisions on the cascade outcome. It is found that PKA mass is more influential than the interatomic potential between the PKA and Fe atoms. At low cascade energy (5-10 keV), increasing PKA mass leads to a decrease in number of interstitials and vacancies. At high energy (20 keV), the main effect of increasing mass is to increase the probability of creation of interstitial and vacancy clusters in the form of 1/2 and dislocation loops. The simulation results are consistent with experimental TEM observations of damage in irradiated iron. (authors)

  20. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  1. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  2. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  3. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  4. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  5. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    Directory of Open Access Journals (Sweden)

    Nick D. Pokorzynski

    2017-09-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.

  6. Instant Noodles and Iron Nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tuntawiroon, Malulee; Sritongkul, Nopamon; Witoo, Sookpeng [Section of Nuclear Medicine, Department of radiology, Faculty of Medicine Siriraj Hospital (Thailand)

    2003-06-01

    Instant noodles represent the biggest category of instant foods in the supermarket. This study was undertaken to determine dietary availability for iron from their varieties without and with an addition of pork and/or vitamin C rich-vegetables by in vitro radiometric ({sup 59}Fe) method. The results showed that 8 to 13 percent of iron in the noodles was available for absorption of which contributed to 0.79 mg absorbed iron per day. This amount was too low to meet certain requirements for children, adolescents and menstruating women. With added pork or vegetables, iron availability increased by 2 to 3 times, and by 4 times with added pork and collard or cabbage (p<0.001). The amounts as high as 1.5 to 3.4 mg absorbed iron per day can meet the FAO/WHO requirements for most of the high-risk groups.

  7. IAEA/WHO programme on iron nutrition

    International Nuclear Information System (INIS)

    Dudley, R.A.

    1973-01-01

    For many years, both the World Health Organization and the International Atomic Energy Agency have sponsored research related to the subject of iron deficiency in humans. About four years ago their collective efforts were brought into focus in a co-ordinated research programme on iron nutrition. This may not yet be the 'large co-operative effort' which Dr. Moore envisioned, but it has the same objectives. Through modest financial assistance, the central supply of certain essential materials, and the effective exchange of information among collaborating scientists, the programme attempts to understand the state of iron nutrition in several societies and to identify means by which it can be improved. For two reasons, the emphasis of this co-ordinated programme is on iron nutrition in the developing countries. First, nutrition in general and iron nutrition in particular are more often marginal in these countries than in the developed countries, and second, the developing countries have fewer resources of their own to devote to this problem

  8. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  9. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  10. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    International Nuclear Information System (INIS)

    Bahrami, Behnam; Khodadadi, Abasali; Mortazavi, Yadollah; Esmaieli, Mohamad

    2011-01-01

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I G /I D Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  11. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Behnam, E-mail: bahrami@email.sc.edu [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Esmaieli, Mohamad [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-09-15

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I{sub G}/I{sub D} Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  12. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    Science.gov (United States)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  13. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    Science.gov (United States)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  14. Combustion and agglomeration of aluminized high-energy compositions

    International Nuclear Information System (INIS)

    Korotkikh, A G; Slyusarskiy, K V; Arkhipov, V A; Glotov, O G

    2015-01-01

    The results of combustion study for high-energy compositions (HECs) based on ammonium perchlorate (AP), butadiene rubber and ultrafine powder (UFP) aluminum Alex, and agglomeration of metal particles on the burning surface and composition of condensed combustion products (CCPs) are presented. It was found that partial replacement 2 wt. % of Alex by iron UFP in HEC increases the burning rate 1.3—1.4 times at the range of nitrogen pressure 2.0-7.5 MPa and reduces the mean diameter of CCPs particles d 43 from 37.4 μm to 33.5 μm at pressure ∼ 4 MPa. Upon partial replacement 2 wt. % of Alex by boron UFP in HEC the recoil force of gasification products outflow from burning surface is increased by 9 % and the burning rate of HEC does not change in the above pressure range, while the mean diameter of CCPs particles is reduced to 32.6 μm at p ∼ 4 MPa. (paper)

  15. Neutron spectrometry measurements in iron

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.; Carter, M.

    1988-01-01

    A compact structure was prepared for use in making measurements of neutron penetration in iron which could serve as reference data and as a check for computer codes. About 30 iron plates were put together giving a useful overall length of 130 cm. At various depths along the central axis of the iron block, measurements were made with liquid scintillator spectrometers and proton recoil proportional counters. The energy band explored was between 14 KeV and 10 MeV. Here we report the original spectra of the impulses and the neutron spectra found by the NE213 code based on the differential method and by unfolding with the SPEC4 code for liquid scintillation counters and proton recoil spectrometers, respectively. 12 figs., 60 tabs., 6 refs

  16. Long term energy and materials strategies for reduction of industrial CO2 emissions. A case study for the iron and steel industry

    International Nuclear Information System (INIS)

    Gielen, D.J.

    1997-01-01

    Greenhouse gas emissions emerged in the last decade as a key environmental problem on the political agenda. The most important greenhouse gas is carbon dioxide (CO 2 ). This gas results from the combustion of fossil fuels (natural gas, oil and coal). As a consequence, greenhouse gas emission reduction is closely related to energy policies. Even a stabilization of the atmospheric CO 2 concentrations at a level of 750 ppm (parts per million), more than twice the current level, implies a reduction of global emissions by 50% in the next century. The world population will simultaneously double and the capita energy consumption will increase. As a consequence, the Western industrialized countries will have to reduce their per capita emissions by more than a factor four. Such a policy goal will significantly affect the future industrial production structure. Approximately 4% of the global CO 2 emissions can be attributed to the production of iron and steel. This sector is the most important industrial source of CO 2 . The case study for the iron and steel industry will be discussed in this paper in order to illustrate the impact of significant CO 2 emission mitigation on the industry. The goal is to show the consequences of CO 2 policies for R and D planning and investment decisions. The notion that the iron and steel industry will be affected by CO 2 policies is not new; a number of studies have addressed this issue before. These studies have compared steel production technologies and emission reduction options within the iron and steel production sector. In this paper, the emission reduction in the iron and steel industry is analyzed within the framework of the changing (inter-)national energy and materials system configuration. This includes all production, conversion and consumption processes. The impact of CO 2 policies on the optimal choice of steel production technologies and on the competitiveness of steel compared to other materials will be discussed. This paper

  17. Interaction genotype by season and its influence on the identification of beans with high content of zinc and iron

    Directory of Open Access Journals (Sweden)

    Camila Andrade Silva

    2012-01-01

    Full Text Available The mineral contents in common bean seeds are influenced, in addition to genetic variation, by environmental crop conditions, especially by the soil type and chemical composition and by the genotype x environment interaction. This study was carried out to verify if the zinc and iron contents are affected by the crop growing period. Ten lines with high iron and zinc contents and ten with low contents were assessed in three seasons: "wet season" of 2009/2010 (sowing in November; "dry season" of 2010 (sowing in February and "winter season" of 2010 (sowing in July, in Lavras, Minas Gerais State, Brazil. The experimental design used was randomized blocks with three replications and plots consisting of two rows of two meters, with a spacing of 0.50 m. The seeds harvested were assessed in regard to iron and zinc mineral contents. The greatest contents were observed in the winter season and the smallest ones in the dry season, with sowing in February. It was observed that in the mean of the three harvests, the lines classified as having high iron and zinc content exhibited an iron quantity 11.0% and a zinc quantity 6.8% above those of low content. The lines by seasons interaction occurs. However, its interference in identification of the groups with high and low content of the two nutrients is not great.

  18. Synthesis of pure iron magnetic nanoparticles in large quantity

    International Nuclear Information System (INIS)

    Tiwary, C S; Kashyap, S; Chattopadhyay, K; Biswas, K

    2013-01-01

    Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications. (paper)

  19. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-15

    The goal of this project was to remove iron from drinking water using a new electrocoagulation (EC) cell. In this research, a flow column has been employed in the designing of a new electrocoagulation reactor (FCER) to achieve the planned target. Where, the water being treated flows through the perforated disc electrodes, thereby effectively mixing and aerating the water being treated. As a result, the stirring and aerating devices that until now have been widely used in the electrocoagulation reactors are unnecessary. The obtained results indicated that FCER reduced the iron concentration from 20 to 0.3 mg/L within 20 min of electrolysis at initial pH of 6, inter-electrode distance (ID) of 5 mm, current density (CD) of 1.5 mA/cm 2 , and minimum operating cost of 0.22 US $/m 3 . Additionally, it was found that FCER produces H 2 gas enough to generate energy of 10.14 kW/m 3 . Statistically, it was found that the relationship between iron removal and operating parameters could be modelled with R 2 of 0.86, and the influence of operating parameters on iron removal followed the order: C 0 >t>CD>pH. Finally, the SEM (scanning electron microscopy) images showed a large number of irregularities on the surface of anode due to the generation of aluminium hydroxides. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Electroerosion formation and technology of cast iron coatings on aluminum alloys

    Directory of Open Access Journals (Sweden)

    Smolentsev Vladislav P.

    2017-01-01

    Full Text Available At present in the course of designing basic production parts and industrial equipment designers pay more and more attention to aluminum alloys having a number of properties compared favorably with other materials. In particular, technological aluminum tool electrodes without coating in the presence of products of processing with alkali in the composition of operation environment are being destroyed at the expense of intensified material dissolution. It is shown in the paper that the method offered by the authors and covered by the patents on cast iron coating of products made of aluminum alloys, allows obtaining on a product surface the layers with high adhesion durability ensuring a high protection against destruction in the friction units including operation in hostile environment. Thereupon, aluminum, as compared with iron-based alloys used at manufacturing technological equipment for electrical methods of processing, has a high electrical and thermal conduction, its application will allow achieving considerable energy-saving in the course of parts production. A procedure for the design of a technological process of qualitative cast iron coatings upon aluminum tool electrodes and parts of basic production used in different branches of mechanical engineering is developed.

  1. The ground states of iron(III) porphines: Role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2011-01-01

    on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... favors low-spin by 3–53kJ/mol (TPSSh) or 4–15kJ/mol (B3LYP) due to the attractive r−6 term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional......-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results....

  2. High Energy Galactic Cosmic Rays Observed by RUNJOB Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, Makoto [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2006-03-21

    Galactic cosmic rays (GCRs) from proton to iron with the energy of 10{sup 13} - 10{sup 15} eV were observed by RUssia-Nippon JOint Balloon (RUNJOB) experiments. Each energy spectrum of the primary nuclear components except for helium is in agreement with the results obtained by other observations in the same energy region as the RUNJOB observation within statistical errors, while the intensity of the helium component is nearly half that obtained by the JACEE and the SOKOL observations. The spectrum slopes seem to be almost parallel or become gradually harder as mass becomes heavier. The power indices of the spectra are nearly -2.75 in the energy range of 20-500 TeV/nucleous. These our results support the acceleration mechanism and the propagation process in Galaxy of GCRs depend on its rigidity.

  3. Females Are Protected From Iron?Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress

    OpenAIRE

    Das, Subhash K.; Patel, Vaibhav B.; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y.

    2017-01-01

    Background Sex?related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron?overload cardiomyopathy is poorly understood. Methods and Results Male and female wild?type and hemojuvelin?null mice were injected and fed with a high?iron diet, respectively, to develop secondary iron overload and geneti...

  4. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  5. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  6. A spectral X-ray CT simulation study for quantitative determination of iron

    Science.gov (United States)

    Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin

    2018-06-01

    Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.

  7. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  8. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  9. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  10. The corrosion behavior of iron and aluminum under waste disposal conditions

    International Nuclear Information System (INIS)

    Fujisawa, R.; Cho, T.; Sugahara, K.; Takizawa, Y.; Hironaga, M.

    1997-01-01

    The generation of hydrogen gas from metallic waste in corrosive disposal environment is an important issue for the safety analysis of low-level radioactive waste disposal facilities in Japan. In particular iron and aluminum are the possibly important elements regarding the gas generation. However, the corrosion behavior of these metals has not been sufficiently investigated under the highly alkaline non-oxidizing disposal conditions yet. The authors studied the corrosion behavior of iron and aluminum under simulated disposal environments. The quantity of hydrogen gas generated from iron was measured in a closed cell under highly alkaline non-oxidizing conditions. The observed corrosion rate of iron in the initial period of immersion was 4 nm/year at 15 C, 20 nm/year at 30 C, and 200 nm/year at 45 C. The activation energy was found to be 100 kJ/mol from Arrhenius plotting of the above corrosion rates. The corrosion behavior of aluminum was studied under an environment simulating conditions in which aluminum was solidified with mortar. In the initial period aluminum corroded rapidly with a corrosion rate of 20 mm/year. However, the corrosion rate decreased with time, and after 1,000 hours the rate reached 0.001 to 0.01 mm/year. Thus the authors obtained data on hydrogen gas generation from iron and aluminum under the disposal environment relevant to the safety analysis of low-level radioactive disposal facilities in Japan

  11. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  12. The angular gamma flux in an iron slab shield

    International Nuclear Information System (INIS)

    Penkuhn, H.

    1975-08-01

    The angular distribution of the photon energy and dose rate flux in a plane iron shield is investigated assuming an isotropic volume source. Near the shield axis (cos phi approximately 1, with phi=angle between shield axis and gamma direction) the angular spectrum is strongly space-dependent. For large phi, space-independent fits are given. Source energies from 0.662 to 6 MeV and penetrations from 6 to 60 cm are treated and the results are compared with a similar investigation on normal concrete. The differences iron-concrete are appreciable only for the lowest source energy

  13. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  14. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  15. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  16. Iron aluminide composites

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1999-01-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB 2 , and ZrB 2 . In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin (<1 microm) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites

  17. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  18. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  19. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  20. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  1. Shock loading influence on mechanical behavior of high purity iron

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe

    2004-01-01

    This paper proposes the analysis of shock wave effects for high purity iron. The method developed is based on the characterization of the mechanical behavior of as received and shocked material. Shock effect is generated through plate impact tests performed in the range of 4 GPa to 39 GPa on a single stage light gas gun or a powder gun. Therefore, as-received and impacted materials are characterized. A formalism proposed by J.R.Klepaczko and based on physical relations has been adopted to describe stress strain curves

  2. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  3. Iron and Prochlorococcus

    Science.gov (United States)

    2009-06-01

    including: acid -cleaned filters, filters rinsed with un-amended trace-metal clean seawater, and filters rinsed with the oxalate solution followed by...greatly influenced by the sources of iron to the marine environment, which include riverine input, hydrothermal upwelling, and atmospheric...deposition (Jickells et al, 2005). While the amount of iron introduced to the oceans from riverine and hydrothermal sources is high, precipitation occurs

  4. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Csik, A.; Vad, K.

    2011-01-01

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C 60 , fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C 60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C 60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C 60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe 5+ and Fe + ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 10 18 ion/cm 3 and 10 22 ion/cm 3 ) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of

  5. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    2016-07-01

    Full Text Available Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n=5 with varying fat (control/high and iron (control/high/low contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin-H (FtH protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P<0.05. The high-fat diet altered brain iron contents and ferritin-H (FtH protein and mRNA expressions in a regional-specific manner: 1 high-fat diet significantly decreased the brain iron content in the striatum (P<0.05, but not other regions; and 2 thalamus has a more distinct change in FtH mRNA expression compared to other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P<0.05. Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay

  6. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size

  7. Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome.

    Science.gov (United States)

    Shenoy, Niraj; Vallumsetla, Nishanth; Rachmilewitz, Eliezer; Verma, Amit; Ginzburg, Yelena

    2014-08-07

    Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal bone marrow disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias, and potential for malignant transformation. Lower/intermediate-risk MDSs are associated with longer survival and high red blood cell (RBC) transfusion requirements resulting in secondary iron overload. Recent data suggest that markers of iron overload portend a relatively poor prognosis, and retrospective analysis demonstrates that iron chelation therapy is associated with prolonged survival in transfusion-dependent MDS patients. New data provide concrete evidence of iron's adverse effects on erythroid precursors in vitro and in vivo. Renewed interest in the iron field was heralded by the discovery of hepcidin, the main serum peptide hormone negative regulator of body iron. Evidence from β-thalassemia suggests that regulation of hepcidin by erythropoiesis dominates regulation by iron. Because iron overload develops in some MDS patients who do not require RBC transfusions, the suppressive effect of ineffective erythropoiesis on hepcidin may also play a role in iron overload. We anticipate that additional novel tools for measuring iron overload and a molecular-mechanism-driven description of MDS subtypes will provide a deeper understanding of how iron metabolism and erythropoiesis intersect in MDSs and improve clinical management of this patient population. © 2014 by The American Society of Hematology.

  8. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  9. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  10. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Wei, Hui [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Ma, Guojie [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Antunes, Mauricio S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Vogt, Stefan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Cox, Joseph [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Zhang, Xiao [Department of Horticulture, Purdue University, West Lafayette IN USA; Liu, Xiping [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Bu, Lintao [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Gleber, S. Charlotte [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Carpita, Nicholas C. [Department of Biological Sciences, Purdue University, West Lafayette IN USA; Department of Botany and Plant Pathology, Purdue University, West Lafayette IN USA; Makowski, Lee [Department of Bioengineering, Northeastern University, Boston MA USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston MA USA; Himmel, Michael E. [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Tucker, Melvin P. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; McCann, Maureen C. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Murphy, Angus S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Peer, Wendy A. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Department of Environmental Science and Technology, University of Maryland, College Park MD USA

    2016-04-07

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  11. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  12. Iron-borosilicate soft magnetic composites: The correlation between processing parameters and magnetic properties for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Gheiratmand, T., E-mail: t.gheiratmand@yahoo.com; Madaah Hosseini, H.R., E-mail: Madaah@sharif.edu; Seyed Reihani, S.M.

    2017-05-01

    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the compaction pressure was led to the decrease of electrical resistivity. By increasing the frequency both real and imaginary parts of permeability decreased. The use of higher content of borosilicate resulted in the lower decreasing slop of permeability. Best combination of density, permeability and electrical resistivity was obtained in the sample with 2 wt% of borosilicate. In addition, the densification of powders with fine particles was more difficult than coarse particles due to the inter particles friction and bridging effects. Furthermore, as the particles size increases the size of open porosities before sintering where the borosilicate could aggregate enhances. This could yields to the increase in the electrical resistivity. The high ratio of surface to the volume in the powders with fine particles results in the developing the demagnetizing fields and subsequently, decreasing the permeability. The highest relative density (99.99% of theoretical density) with best distribution of borosilicate was achieved in the composites produced by spark plasma sintering (SPS). The relaxation frequency, obtained from imaginary part of permeability, was found as 340 Hz in the composites made by SPS. - Highlights: • Iron-borosilicate SMC was produced for high temperature and frequency

  13. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  14. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters.

    Science.gov (United States)

    Krachler, Regina; Krachler, Rudolf F; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a (59)Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16-24, 2014), the creeks that run through modified peatlands delivered 11-15μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350-470μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Method for preparing high cure temperature rare earth iron compound magnetic material

    Science.gov (United States)

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  16. The effect of nutrition knowledge and dietary iron intake on iron status in young women.

    Science.gov (United States)

    Leonard, Alecia J; Chalmers, Kerry A; Collins, Clare E; Patterson, Amanda J

    2014-10-01

    Previous research on the relationships between general nutrition knowledge and dietary intake, and dietary iron intake and iron status has produced inconsistent results. Currently, no study has focused on knowledge of dietary iron and its effect on dietary iron intake. This study aimed to determine whether nutrition knowledge of iron is related to dietary iron intake in young women, and subsequently whether greater knowledge and intake translates into better iron status. A cross-sectional assessment of nutrition knowledge of iron, dietary iron intake and iron status was conducted in women aged 18-35 years living in Newcastle, NSW, Australia. Iron status was assessed by serum ferritin, haemoglobin, soluble transferrin receptor and alpha-1-glycoprotein. One hundred and seven women (27.8 ± 4.7 years) completed the nutrition knowledge questionnaire and FFQ. Of these, 74 (70%) also had biomarkers of iron status measured. Mean iron intake was 11.2 ± 3.8 mg/day. There was no association between nutrition knowledge score and whether the women met the RDI for iron (F (1, 102) = .40, P = .53). A positive correlation was shown between nutrition knowledge score and iron intake (mg/day) (r = 0.25, P = .01). Serum ferritin was positively associated with the frequency of flesh food intake (r = .27 P = .02). Vegetarians (including partial vegetarians) had significantly lower serum ferritin levels than non-vegetarians (F (1, 71) = 7.44, P = .01). Significant positive correlations found between higher flesh food intake and biomarkers of iron status suggest that educating non-vegetarians about the benefits of increased flesh food consumption and vegetarians about dietary iron enhancers and inhibitors may have potential for addressing the high rates of iron deficiency among young women. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. An Evaluation of Neutron Energy Spectrum Effects in Iron Based on Molecular Dynamics Displacement Cascade Simulations

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Stoller, R.E.

    1998-01-01

    The results of molecular dynamics (MD) displacement cascade simulations in bcc iron have been used to obtain effective cross sections for two measures of primary damage production: (1) the number of surviving point defects expressed as a fraction of the displacements calculated using the standard secondary displacement model of Norgett, Robinson, and Torrens (NRT), and (2) the fraction of the surviving interstitials contained in clusters that formed during the cascade event. Primary knockon atom spectra for iron obtained from the SPECTER code have been used to weight these MD-based damage production cross sections in order to obtain spectrally-averaged values for several locations in commercial fission reactors and materials test reactors. An evaluation of these results indicates that neutron energy spectrum differences between the various enviromnents do not lead to significant differences between the average primary damage formation parameters. In particular, the defect production cross sections obtained for PWR and BWR neutron spectra were not significantly different. The variation of the defect production cross sections as a function of depth into the reactor pressure vessel wall is used as a sample application of the cross sections. A slight difference between the attenuation behavior of the PWR and BWR was noted; this difference could be explained by a subtle difference in the energy dependence of the neutron spectra. Overall, the simulations support the continued use of dpa as a damage correlation parameter

  18. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    Science.gov (United States)

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  19. Obesity as an Emerging Risk Factor for Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Elmar Aigner

    2014-09-01

    Full Text Available Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS or nonalcoholic fatty liver disease (NAFLD. This constellation has been named the “dysmetabolic iron overload syndrome (DIOS”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.

  20. Development on the National Ignition Facility of a High Energy Density Opacity Platform

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dodd, Evan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cardenas, Tana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Thomas Nick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sherrill, Manolo Edgar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Bernhard Heinz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Douglas, Melissa Rae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liedahl, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, B. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iglesias, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martin, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahmed, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emig, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zika, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opachich, Y. P. [Nevada National Security Site (NNSS), NV (United States); King, J. A. [Nevada National Security Site (NNSS), NV (United States); Ross, P. W. [Nevada National Security Site (NNSS), NV (United States); Huffman, E. J. [Nevada National Security Site (NNSS), NV (United States); Knight, R. A. [Nevada National Security Site (NNSS), NV (United States); Koch, J. A. [Nevada National Security Site (NNSS), NV (United States); Pond, T. D. [Nevada National Security Site (NNSS), NV (United States); Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Zhang, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Garcia, E. M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bailey, J. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, G. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, S. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-02

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results, but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.

  1. Atomic-scale simulation study of some bulk and interfacial properties of iron aluminium ordered alloys

    International Nuclear Information System (INIS)

    Besson, Remy

    1997-01-01

    A semi-empirical potential was designed for B 2 and DO 3 iron aluminides and used to study point defects and grain boundaries in these compounds. At low temperature, departure from B 2 stoichiometry is accommodated with antisite defects; when T increases, iron vacancies appear and defects have a trend to form clusters, the structure of which is very sensitive to this departure. Our calculations, relying on T = 0 K formation energies, predict the nature of major defects, but lead to underestimated quantitative results, which may point out the essential role of atomic vibrations. In the stoichiometric B 2 compound, the diffusion of both species is induced by four-jump cycles involving iron vacancies. Although the agreement between our calculated activation energies and other experiments is good, the calculated diffusion coefficients are below the experimental ones. Here again, this discrepancy may be put down to the overlooking of phonon contributions. The second application concerns the atomic structures of the [001] (310) symmetric tilt grain boundary in the B 2 and DO 3 compounds. At low temperature, in the stoichiometric B 2 compound, we obtain an iron-rich single stable structure (pseudo-symmetric), whose structure is strongly influenced by the bulk composition (with intergranular segregation of the major element). In the stoichiometric DO 3 compound, many energetically equivalent structures exist, all being systematically aluminium-rich. The study of the B 2 grain boundary structure at high temperature shows a phase transition favouring a symmetric structure. Its high excess energy at low temperature emphasizes the influence of atomic vibrations in the interfacial properties of B 2 Fe-Al compounds. (author) [fr

  2. Dielectronic recombination of carbon, oxygen and iron in low-density and high-temperature plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Kasai, Satoshi; Tazima, Teruhiko

    1977-03-01

    The coefficient of dielectronic recombination, which is one of the important atomic processes in tokamak plasmas, is evaluated by a semiclassical method neglecting the effects of the density and the radiation fields. Those of carbon, oxygen and iron, which play important roles in such as plasma resistivity and energy losses, are calculated numerically in the range of the electron temperature of 10 eV - 10 keV. Compared with the results obtained from Burgess equation, which is most useful for the ions with effective nuclear charge z 25 such as molybdenum. (auth.)

  3. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  4. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  5. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  6. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  7. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  8. Estimation of uncertainties of displacement cross-sections for iron and tungsten at neutron irradiation energies above 0.1 MeV

    International Nuclear Information System (INIS)

    Konobeyev, A.Yu.; Fischer, U.; Simakov, S.P.

    2016-01-01

    The goal of this work is the evaluation of uncertainties of calculated atomic displacement cross sections for iron and tungsten irradiated with neutrons. Uncertainties were analysed for neutron incident energies above 0.1 MeV, which make the main contribution to the value of radiation damage rate for different types of nuclear or fusion reactors and neutron sources

  9. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. Enhancement the Armor Shielding Properties of CF/epoxy Composite by Addition Nanoparticles of Magnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Fouda Hany

    2017-01-01

    Full Text Available In the present investigation, we prepared two types of CF composites. The first prepared composite sample was CF/epoxy resin composite and the second was CF/epoxy resin / with a different weight ratio of magnetic iron oxide. Magnetic iron oxide was prepared by co-precipitation method, with particle sizes measured in range 25:35 nm. The resistance to penetration of high kinetic energy projectile of the prepared composite sample was measured and It was found that addition of 5% nano-particles of magnetic iron oxide to composite material sample decrease the residual velocity of projectile penetrating it by 9%.i.e increasing resistance of the sample to penetration of high kinetic energy projectile.it was found that the Resistance to penetration of sheet of composite material sampleC4 of weight=40.32kg to projectile 7.62×39 mm AP at distance 15m equivalent to resistance of steel sheet of weight =54.6 kg at distance 200m.Resistance to penetration of sheet of composite material sampleC4 to projectile 7.62×39 mm AP at distance 10m equivalent to the resistance of high-quality steel sheet(steel4340 of weight=47.85 kg at distance 25m.

  11. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    Directory of Open Access Journals (Sweden)

    Desirrê Morais Dias

    2015-11-01

    Full Text Available Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7: Pontal bean (PB; rice + Pontal bean (R + BP; Pontal bean + sweet potato (PB + SP; Pontal bean + pumpkin (PB + P; Pontal bean + rice + sweet potato (PB + R + P; Pontal bean + rice + sweet potato (PB + R + SP; positive control (Ferrous Sulfate. The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE, gene expression of divalente metal transporter 1 (DMT-1, duodenal citocromo B (DcytB, ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC. The test groups, except the PB, showed higher HRE (p < 0.05 than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05 in the groups fed with high content carotenoid crops (sweet potato or pumpkin. The PB group presented lower (p < 0.05 TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity.

  12. High-fluence implantation of iron into polyimide

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Hnatowicz, Vladimír; Peřina, Vratislav; Popok, V. N.; Khaibullin, R. I.; Bazarov, V. V.; Odzhaev, V. B.

    158/159, - (2002), s. 395-398 ISSN 0257-8972 R&D Projects: GA ČR GA203/99/1626; GA ČR GA102/01/1324 Keywords : polyimide * ion implantation * iron * Rutherford backscattering spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2002

  13. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    Science.gov (United States)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  14. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  15. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    metallographic photos.Except for focusing on the effect of high carbon phases in cast iron, in this book, special attention is also paid to the effect of austenite on solidification, graphite morphology, and quality of cast iron; at the same time, the study on the solidification behaviours in the region around eutectic cells and its effects on mechanical properties of cast iron, are also emphasized.

  16. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    metallographic photos.Except for focusing on the effect of high carbon phases in cast iron, in this book, special attention is also paid to the effect of austenite on solidification, graphite morphology, and quality of cast iron; at the same time, the study on the solidification behaviours in the region around eutectic cells and its effects on mechanical properties of cast iron, are also emphasized.

  17. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    metallographic photos.Except for focusing on the effect of high carbon phases in cast iron, in this book, special attention is also paid to the effect of austenite on solidification, graphite morphology, and quality of cast iron; at the same time, the study on the solidification behaviours in the region around eutectic cells and its effects on mechanical properties of cast iron, are also emphasized.

  18. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    Science.gov (United States)

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  19. Trend overtime of total haemoglobin, iron metabolism and trace minerals in veal calves fed high amounts of two different solid feeds

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Stefani

    2010-01-01

    Full Text Available Fifty Polish Friesian veal calves were administrated high amounts of two different solid feeds (maize grain and a mix diet containing 10% of straw and 8% of soy in addition to the traditional milk replacer diet. Compared to the mix diet, maize grain had a lower content of iron, copper and zinc and a minor fibre level. Effects of the two diets on calves’ blood haemoglobin, iron, iron metabolism parameters, copper and zinc concentrations were studied. Haemoglobin concentration resulted higher at the end of the fattening for calves fed the mix diet, as expected. Values remained, however, within ranges that allowed acceptable carcass paleness. Haematic iron, unsaturated iron binding capacity (UIBC and total iron binding capacity (TIBC levels were not significantly different between the two solid feeds. Lower copper and zinc blood concentrations resulted for calves fed the mix diet were likely due to the feed fibre interfering with the bioavailability of the two minerals, according to what happens for iron.

  20. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  1. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  2. Effect of Microwave Heating on the Dielectric Properties and Components of Iron-Fortified Milk

    Directory of Open Access Journals (Sweden)

    Xiao-shu Tang

    2017-01-01

    Full Text Available With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.

  3. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  4. Effect of dietary iron source and iron status on iron bioavailability tests in the rat

    International Nuclear Information System (INIS)

    Zhang, D.; Hendricks, D.G.; Mahoney, A.W.

    1986-01-01

    Weanling male rats were made anemic in 7 days by feeding a low iron diet and bleeding. Healthy rats were fed the low iron diet supplemented with ferrous sulfate (29 ppm Fe). Each group was subdivided and fed for 10 days on test diets containing about 29 ppm iron that were formulated with meat:spinach mixtures or meat:soy mixtures to provided 100:0, 75:25, 50:50, 25:75, or 0:100% of the dietary iron from these sources or from a ferrous sulfate diet. After 3 days on the diets all rats were dosed orally with 2 or 5 micro curries of 59 Fe after a 18 hour fast and refeeding for 1.5 hours. Iron status influenced liver iron, carcass iron, liver radio activity and percent of radioactive dose retained. Diet influenced fecal iron and apparent absorption of iron. In iron bioavailability studies assessment methodology and iron status of the test subject greatly influences the estimates of the value of dietary sources of iron

  5. Prevalence of high blood pressure, heart disease, thalassemia, sickle-cell anemia, and iron-deficiency anemia among the UAE adolescent population.

    Science.gov (United States)

    Barakat-Haddad, Caroline

    2013-01-01

    This study examined the prevalence of high blood pressure, heart disease, and medical diagnoses in relation to blood disorders, among 6,329 adolescent students (age 15 to 18 years) who reside in the United Arab Emirates (UAE). Findings indicated that the overall prevalence of high blood pressure and heart disease was 1.8% and 1.3%, respectively. Overall, the prevalence for thalassemia, sickle-cell anemia, and iron-deficiency anemia was 0.9%, 1.6%, and 5%, respectively. Bivariate analysis revealed statistically significant differences in the prevalence of high blood pressure among the local and expatriate adolescent population in the Emirate of Sharjah. Similarly, statistically significant differences in the prevalence of iron-deficiency anemia were observed among the local and expatriate population in Abu Dhabi city, the western region of Abu Dhabi, and Al-Ain. Multivariate analysis revealed the following significant predictors of high blood pressure: residing in proximity to industry, nonconventional substance abuse, and age when smoking or exposure to smoking began. Ethnicity was a significant predictor of heart disease, thalassemia, sickle-cell anemia, and iron-deficiency anemia. In addition, predictors of thalassemia included gender (female) and participating in physical activity. Participants diagnosed with sickle-cell anemia and iron-deficiency anemia were more likely to experience different physical activities.

  6. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    Science.gov (United States)

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  8. Measurement of (n,/alpha/) cross sections of chromium, iron, and nickel in the 5- to 10-MeV neutron energy range

    International Nuclear Information System (INIS)

    Paulsen, A.; Liskien, H.; Arnotte, F.; Widera, R.

    1981-01-01

    A measuring program has been carried out at the Van de Graaff accelerator facility of the Central Bureau for Nuclear Measurements for the determination of (n,/alpha/) cross sections on the main constituents of fast reactor structural materials, namely the elements chromium, iron, and nickel. Results obtained in the energy range from 5 to 10 Mev are presented in terms of laboratory angle-differential cross sections, relative Legendre polynomial coefficients of angular distributions, angle-integrated cross sections, and average alpha energies. 13 refs

  9. Hybrid crystals of cuprates and iron-based superconductors

    Science.gov (United States)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  10. Use of radioisotopes in studying iron metabolism in humans in Sri Lanka

    International Nuclear Information System (INIS)

    Liyanage, C.E.; Thabrew, M.I.

    1994-01-01

    Anaemia due to iron deficiency is the commonest haematological problem found in Sri Lankan pregnant women and pre-school children. The reported prevalence rates amongst pregnant and lactating women ranged from 60-80%. The present study revealed that 3% of pregnant women had satisfactory iron stores and 57% had virtually no iron stores. Routine iron supplementation is justified not only to correct the anaemia but also to build up the maternal iron stores. In a longitudinal study of 100 pregnant women a very high prevalence was observed in spite of the fact that the population studied was on iron supplementation. A very poor compliance on iron therapy was seen. The incidence of low birth weight observed was 32%, quite similar to that has been reported previously for Sri Lanka. Therefore, further longitudinal studies have been designed to find out the efficacy of the present supplementary programme. In Galle District 54.5% of the pre-school children were found clearly anaemic and another 20% had evidence of iron depletion. As the dietary intake of iron was marginal, the weaning foods that are in practice were tested for iron availability. Iron absorption/availability studies by in-vivo (extrinsic tag method) and in-vitro (using radioiron 59 Fe tracer) methods have shown a very poor (less than 5%) availability in many of the commonly used weaning foods. A statistically significant decrease in iron availability was seen with increase in amount of polyphenols mainly in some of the preparations made with green leaves. Addition of ascorbic acid rich food items showed an increase in iron availability (by 2-6 times). Dietary zinc intake of 46 children (2-5 yrs) was found 2-4 mg/1000 kcal, relating to total energy intake. Mean plasma zinc concentration of these children was 13.8±0.8 μmol/L. Therefore further studies on the improvement of zinc and iron availability in weaning foods have been designed to be done in future. (author). 3 refs, 1 fig

  11. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  12. 75 FR 66083 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13723-000] Iron Mask Hydro..., Iron Mask Hydro, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Iron Mask Pumped Storage Project to be...

  13. 75 FR 53963 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13723-000] Iron Mask Hydro... Intervene, and Competing Applications August 27, 2010. On May 6, 2010, Iron Mask Hydro, LLC filed an... study the feasibility of the Iron Mask Pumped Storage Project to be located near the U.S. Bureau of...

  14. Direct Biohydrometallurgical Extraction of Iron from Ore. Final Technical Report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  15. Direct Biohydrometallurgical Extraction of Iron from Ore. Final technical report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  16. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  17. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  18. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    . Opposing to reported suggestions, such a large increase in iron fraction can not sufficiently be explained by a simple cation exchange between Fe(II) and the layer charge compensating cations. XRD diffraction of the green bentonite in comparison to the raw bentonite material exposed a new broad peak corresponding to a 7.2 A - 7.4 A phase. This new phase is not swellable with ethylene glycol. The major mineral of the bentonite is still smectite which swells upon treatment with ethylene glycol. The results are consistent with either an intercalated tri-octahedral iron hydroxide or an intercalated single layered double hydroxide phase such as Fe( II-III )(OH) 2 (analogue to fougerite, a green rust mineral), respectively. A possible model explaining the formation is discussed based on the initial cation exchange of interlayer cations with Fe(II) and subsequent growth and formation of an tri-octahedral iron hydroxide sheet. The consumed ratio of iron to hydroxide matches the ratio produced by anaerobic corrosion. The model is similar to the initial reaction pathway proposed for the smectite to chlorite alteration via a solid state transformation. Therefore it is possible to assume that the Fe-smectite represents an intermediate to the formation of a Fe-chlorite, which was identified e.g. by Lantenois et al., at exposure experiments at elevated temperatures. However, in contrast to the proposed mechanism our model does not involve the energy demanding dissolution and subsequent recrystallization of silicate layers but follows the well known cation exchange and a subsequent crystallization. This could explain the high degree of alteration of smectite to Fe-smectite that can be deduced by the amount of incorporated iron. However, additional dissolution - precipitation processes, particularly induced by the high pH, can not be excluded. With respect to unaltered bentonite, the altered bentonite exhibits increased hydraulic conductivity and lower swelling pressures together with a

  19. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  20. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  1. Fungal Iron Biomineralization in Río Tinto

    Directory of Open Access Journals (Sweden)

    Monike Oggerin

    2016-04-01

    Full Text Available Although there are many studies on biomineralization processes, most of them focus on the role of prokaryotes. As fungi play an important role in different geological and biogeochemical processes, it was considered of interest to evaluate their role in a natural extreme acidic environment, Río Tinto, which has a high level of fungal diversity and a high concentration of metals. In this work we report, for the first time, the generation of iron oxyhydroxide minerals by the fungal community in a specific location of the Tinto basin. Using Transmission Electron Microscopy (TEM and High Angle Angular Dark Field coupled with Scanning Transmission Electron Microscopy (HAADF-STEM and Energy-Dispersive X-ray Spectroscopy (EDX, we observed fungal structures involved in the formation of iron oxyhydroxide minerals in mineralized sediment samples from the Río Tinto basin. Although Río Tinto waters are supersaturated in these minerals, they do not precipitate due to their slow precipitation kinetics. The presence of fungi, which simply provide charged surfaces for metal binding, favors the precipitation of Fe oxyhydroxides by overcoming these kinetic barriers. These results prove that the fungal community of Río Tinto participates very actively in the geochemical processes that take place there.

  2. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.

    Science.gov (United States)

    Henri, Pauline A; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2015-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity.

  3. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  4. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  5. Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI.

    Science.gov (United States)

    Chawla, S; Kister, I; Wuerfel, J; Brisset, J-C; Liu, S; Sinnecker, T; Dusek, P; Haacke, E M; Paul, F; Ge, Y

    2016-07-01

    Characterization of iron deposition associated with demyelinating lesions of multiple sclerosis and neuromyelitis optica has not been well studied. Our aim was to investigate the potential of ultra-high-field MR imaging to distinguish MS from neuromyelitis optica and to characterize tissue injury associated with iron pathology within lesions. Twenty-one patients with MS and 21 patients with neuromyelitis optica underwent 7T high-resolution 2D-gradient-echo-T2* and 3D-susceptibility-weighted imaging. An in-house-developed algorithm was used to reconstruct quantitative susceptibility mapping from SWI. Lesions were classified as "iron-laden" if they demonstrated hypointensity on gradient-echo-T2*-weighted images and/or SWI and hyperintensity on quantitative susceptibility mapping. Lesions were considered "non-iron-laden" if they were hyperintense on gradient-echo-T2* and isointense or hyperintense on quantitative susceptibility mapping. Of 21 patients with MS, 19 (90.5%) demonstrated at least 1 quantitative susceptibility mapping-hyperintense lesion, and 11/21 (52.4%) had iron-laden lesions. No quantitative susceptibility mapping-hyperintense or iron-laden lesions were observed in any patients with neuromyelitis optica. Iron-laden and non-iron-laden lesions could each be further characterized into 2 distinct patterns based on lesion signal and morphology on gradient-echo-T2*/SWI and quantitative susceptibility mapping. In MS, most lesions (n = 262, 75.9% of all lesions) were hyperintense on gradient-echo T2* and isointense on quantitative susceptibility mapping (pattern A), while a small minority (n = 26, 7.5% of all lesions) were hyperintense on both gradient-echo-T2* and quantitative susceptibility mapping (pattern B). Iron-laden lesions (n = 57, 16.5% of all lesions) were further classified as nodular (n = 22, 6.4%, pattern C) or ringlike (n = 35, 10.1%, pattern D). Ultra-high-field MR imaging may be useful in distinguishing MS from neuromyelitis optica. Different

  6. Measurement of the nucleon structure function using high energy muons

    International Nuclear Information System (INIS)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references

  7. Iron inhibits hydroxyapatite crystal growth in vitro.

    Science.gov (United States)

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  8. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  9. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  10. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  11. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  12. Computer-aided safety systems of industrial high energy objects

    International Nuclear Information System (INIS)

    Topolsky, N.G.; Gordeev, S.G.

    1995-01-01

    Modern objects of fuel and energy, chemical industries are characterized by high power consumption; by presence of large quantities of combustible and explosive substances used in technological processes; by advanced communications of submission systems of initial liquid and gasiform reagents, lubricants and coolants, the products of processing, and wastes of production; by advanced ventilation and pneumatic transport; and by complex control systems of energy, material and information flows. Such objects have advanced infrastructures, including a significant quantity of engineering buildings intended for storage, transportation, and processing of combustible liquids, gasiform fuels and materials, and firm materials. Examples of similar objects are nuclear and thermal power stations, chemical plants, machine-building factories, iron and steel industry enterprises, etc. Many tasks and functions characterizing the problem of fire safety of these objects can be accomplished only upon the development of special Computer-Aided Fire Safety Systems (CAFSS). The CAFSS for these objects are intended to reduce the hazard of disastrous accidents both causing fires and caused by them. The tasks of fire prevention and rescue work of large-scale industrial objects are analyzed within the bounds of the recommended conception. A functional structure of CAFSS with a list of the main subsystems forming a part of its composition has been proposed

  13. Hyperfine interactions of iron implanted into aluminium

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Drwiega, M.; Sawicki, J.; Stanek, J.

    1976-01-01

    Systematical investigations of the stable 57 Fe implanted into Al at energies of 10 to 70 keV and doses of 10 14 to 2.10 17 ions/cm 2 were performed by means of conversion electron Moessbauer spectroscopy at room and liquid nitrogen temperatures. The spectra measured were interpreted as originated by iron monomers (single line) and by iron associations, mostly dimers (dublet). The isomer shifts of both components differ considerably and are constant against iron concentration. The ratio of both components depends strongly on the iron concentration. The quadrupole splitting of the doublet rises with the concentration, the rise being reproduced by computer simulations of efg distributions in densely packed random charge defected lattices. The annealing processes were investigated. The spectra of the Fe-Al samples made by ion implantation and by a splat-cooling technique are well comparable. (author)

  14. A Neutron Elastic Scattering Study of Chromium, Iron and Nickel in the Energy Region 1.77 to 2.76 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T [AB Atomenergi, Nyko eping (Sweden); Salama, M [Reactor and Neutron Physics Dept., Atomic Energy Es tablishment, Cairo (Egypt)

    1970-07-01

    Elastic neutron scattering measurements have been performed on the natural elements chromium, iron and nickel. Angular distributions were recorded in the interval 20 to 160 deg at several energies in the region 1.77 to 2.76 MeV. The experimental data were analysed in terms of the optical model, applying a spherical nuclear potential.

  15. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  16. Iron behavior in the ozonation and filtration of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sallanko, J.; Lakso, E.; Ropelinen, J. [University of Oulu, Oulu (Finland)

    2006-08-15

    In Finnish groundwater, the main substances that require treatment are iron and manganese. In addition to this, groundwaters are soft and acidic. Iron removal is usually relatively effective by oxidizing dissolved iron into an insoluble form, either by aeration or chemical oxidation and removing the formed precipitate by sand filtration. Sometimes, if the untreated water contains high amounts of organic matter, problems may arise for iron removal. In Finland, it is quite common that groundwater contains high levels of both iron and natural organic matter, mainly as humic substances. The groundwater of the Kukkala intake plant in Liminka has been found to be problematic, due to its high level of natural organic matter. This research studied the removal of iron from this water by means of oxidation with ozone and filtration. While the oxidation of iron by ozone was rapid, the precipitate particles formed were small, and thus could not be removed by sand and anthracite filtration, and the iron residue in the treated water was more than 2 mg L{sup -1}. And while the filtration was able to remove iron well without the feed of ozone, the iron residue in the treated water was only 0.30 mg L{sup -1}. In this case, iron was led to the filter in a bivalent dissolved form. So, the result of iron removal was the best when the sand/anthracite filter functioned largely as an adsorption filter.

  17. Update of ENDF/B-V Mod 3 iron: neutron-producing reaction cross sections and energy-angle correlations

    International Nuclear Information System (INIS)

    Fu, C.Y.; Hetrick, D.M.

    1986-07-01

    An update of the ENDF/B-V Mod-3 evaluation for natural iron is described. The cross sections of (n,n') and (n,2n) reactions are revised. Energy-angle correlations in the secondary (n,n') neutrons are introduced in the ENDF/B-V formats. Anisotropic angular distributions are provided for the secondary neutrons in (n,2n), (n,np), and (n,nα) reactions. Revelant integral results, microscopic data, and nuclear model calculations that influence the revised results are summarized. 54 refs., 9 figs., 2 tabs

  18. Iron deficiency among blood donors

    DEFF Research Database (Denmark)

    Rigas, A S; Pedersen, O B; Magnussen, K

    2017-01-01

    Blood components collected from blood donors are an invaluable part of modern-day medicine. A healthy blood donor population is therefore of paramount importance. The results from the Danish Blood Donor Study (DBDS) indicate that gender, number of previous donations, time since last donation...... and menopausal status are the strongest predictors of iron deficiency. Only little information on the health effects of iron deficiency in blood donors exits. Possibly, after a standard full blood donation, a temporarily reduced physical performance for women is observed. However, iron deficiency among blood...... donors is not reflected in a reduced self-perceived mental and physical health. In general, the high proportion of iron-deficient donors can be alleviated either by extending the inter-donation intervals or by guided iron supplementation. The experience from Copenhagen, the Capital Region of Denmark...

  19. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  20. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs