WorldWideScience

Sample records for high energy interaction

  1. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  2. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  3. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  4. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  5. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  6. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  7. The interactions of high-energy, highly charged Xe ions with buckyballs

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1994-01-01

    Ionization and fragmentation have been measured for C 60 molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented

  8. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  9. Estimation of nuclear destruction in high energy nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.

    1995-01-01

    It is assumed that: 1) a projectile particle invokes into target nucleus a cascade of quark-gluon exchanges; 2) the nucleons involved in the cascade are ejected from the nucleus which leads to the nuclear destruction. On these bases a simple model to estimate the nuclear destruction at the fast stage of the interaction is proposed. The allowed region of the model parameters is determined at the proton-emulsion high-energy interaction data analysis: an analysis of gold interactions with nuclei at an energy of 600 MeV/nucleon fixes the parameter values. The distributions on the energy in zero degree calorimeter (T ZDC ) in the interactions of Si+Al, Cu, Pb (14 GeV/nucleon) and Au+Au (10 GeV/nucleon) calculated in the framework of the model and in the cascade-evaporation model (CEM) are presented. The proposed model describes the nuclear destruction at intermediate and high energies better than CEM does. The estimation of the average values of impact parameter and the number of intra-nuclear collisions for Au+Au interactions in the events with different T ZDC is given. 34 refs., 11 figs

  10. What can we learn from high-energy hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Tow, D.M.

    1979-12-01

    High-energy hadron-nucleus (hA) collisions provide the exciting possibility of giving information about the spacetime development of hadron-hadron interactions and therefore differentiating various multiparticle production models. Some of the major developments in this field during the past decade, both experimentally and theoretically are reviewed. Several general features of the data are pointed out, and several classes of models are discussed. A recently proposed simple spacetime model for high-energy hA collisions is elaborated. Comments are made on the extension to nucleus-nucleus interactions and the future outlook

  11. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  12. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  13. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  14. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  15. Multiplicity distributions in high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.V.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.

    1976-01-01

    Results from the Fermilab 15-ft bubble chamber on the charged-particle multiplicity distributions produced in high-energy charged-current neutrino-proton interactions are presented. Comparisons are made to γp, ep, μp, and inclusive pp scattering. The mean hadronic multiplicity appears to depend only on the mass of the excited hadronic state, independent of the mode of excitation. A fit to the neutrino data gives = (1.09+-0.38) +(1.09+-0.03)lnW 2

  16. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  17. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  18. Search for Quarks in High-Energy Neutrino Interactions

    CERN Document Server

    2002-01-01

    This experiment is a search for quarks produced in high energy neutrino interactions. Neutrino interactions take place in a 23-ton lead target and are recognized by one or more particles crossing the counter hodoscopes S1 and S2, together with the absence of an incident particle signal in the initial veto counter V^0.\\\\ \\\\ The lead is viewed by an avalanche chamber to measure the specific ionization of the charged secondaries produced in the @n-interaction with high accuracy even in jet-like events, and by a series of two pairs of scintillation counter hodoscopes (ST1, ST2). The latter provide time-of-flight measurements and dE/dx measurements for a fast analysis in low and medium multiplicity provide a trigger for the chamber. \\\\ \\\\ In order to reduce the background in the set-up, very low momentum particles (mainly due to cascading processes in the target) are separated out by a @= 1 T.m magnet placed behind the target. \\\\ \\\\ A system of wire chambers W1, W2, which register both the position and the time at...

  19. Revision of the high energy hadronic interaction models PHOJET/DPMJET-III

    CERN Document Server

    Fedynitch, A

    2015-01-01

    The high-energy hadronic interaction model DPMJET-III is responsible for simulating nuclear interactions in the particle simulation package FLUKA. On the level of individual nucleon interactions it employs PHOJET, which provides sophisticated forward physics and diffraction models. This paper summarizes some of the recent developments, in particular regarding minimum-bias physics at the LHC, which apply to DPMJET-III and PHOJET at the same time.

  20. Comments on the interaction between theory and experiment in high energy physics

    International Nuclear Information System (INIS)

    Derrick, M.

    1990-01-01

    This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples

  1. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  2. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Directory of Open Access Journals (Sweden)

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  3. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  4. Shocks from high-energy nuclear-interacting particles in the mountain Chakaltajya

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, K [Tokyo Univ. (Japan)

    1975-06-01

    Experimental investigations of extensive air showers at the height of 5200 m above the sea level have been performed. The behaviour of high energy nuclear active particles in the cores of the showers has been studied using the nuclear knock-on method. The cross section of the proton inelastic interaction with the air is shown to increase with energy in the energy range of 3-9 TeV.

  5. Possible explanation of the interaction cross-section growth at high energies

    International Nuclear Information System (INIS)

    Belyakov, V.A.; Strel'tsov, V.N.

    1992-01-01

    On the basis of the relativized Yukawa potential it is shown that the mowing hadron transverse size grows with increasing its energy ∼(lnγ) 0.8 (γ is the Lorentz factor). The opinion is expressed that the known growth of the interaction cross section at high energies is due to the indicated reason. 9 refs.; 1 tab

  6. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  7. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  8. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  9. JACEE results on very high energy interactions

    International Nuclear Information System (INIS)

    Wilczynski, H.

    1996-01-01

    Direct observations of cosmic ray interactions in emulsion chambers of the JACEE experiment at energies above 1 TeV/nucleon are presented. An analysis of two decay of short lived particles produced in cosmic ray interactions is described. The known decay modes of bottom and charged particles do not account satisfactorily for the observations. This could possibly indicate a new decay channel of a heavy particle. The JACEE results support the hypothesis of existence of a long-flying component in cosmic ray showers. An interaction event was observed which may be the first direct observation of (mini)anticentauro interaction. (author)

  10. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Fazilova, Z.F.; Ismatov, E.I.; Kurmanbai, M.S.; Ajniyazova, G.T.; Tskhay, K.V.; Medeuova, A.B.

    2004-01-01

    Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied. (author)

  11. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Fazylov, M.I.; Yuldashev, B.S.; Azhniyazova, G.T.; Ismatov, E.I.; Sartbay, T.; Kurmanbay, M.S.; Tskhay, K.V.

    2004-01-01

    Full text: Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied

  12. MC generator HARDPING 2.0: hadron production in lepton-nuclei interactions at high energies

    International Nuclear Information System (INIS)

    Berdnikov, Ya.A.; Ivanov, A.E.; Kim, V.T.; Murzin, V.A.

    2011-01-01

    Hadron production in lepton-nucleus interactions at high-energies is considered in framework of developing Monte Carlo (MC) generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons are implemented into the HARPING. Available data from HERMES on hadron production in lepton-nucleus collisions are described by the current version of the HARDPING generator in a reasonable agreement.

  13. Correlations in hadron-hadron interactions at high energy

    International Nuclear Information System (INIS)

    Nguyen Huu Khanh

    1978-01-01

    Some main features of the experimental results on the correlations in hadron-hadron interactions at high energy are considered. Particular attention is paid to the long-range correlation, short-range correlation and Bose-Einstein effect. Long-range correlations are confirmed by the variation of the number of charged particles produced in the final state depending on energy, violation of Koba-Nielsen- Olesen scaling and the analysis of correlation betWeen the numbers of charged particles emitted in the forward and backward hemispheres. Short-range correlations are discussed from the point of view of ISR pp, 195 GeV/c pN and 32 GeV/c k + p experiments. Bose-Einstein effects are studied up to now only between pions. Pions are not produced directly but from the decay of heavier objects. Some experimental results seem to support the evidence for dynamical long-range correlations. Most of the data are compatible with the independent cluster model

  14. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  15. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  16. “Exploring High Energy Interactions with CMS at the LHC”

    Energy Technology Data Exchange (ETDEWEB)

    Sulak, Lawrence R. [; Boston Univ., MA (United States)

    2016-08-01

    This High Energy Physics research project achieved its goal of exploring high-energy interactions with 7, 8 and 13 TeV data accumulated by CMS at the Energy Frontier. For the original hadron calorimeter (HCAL) and for its upgrade during Long Shutdown 1 (LS1), the PI helped propose and implement the upgrading the phototubes, new electronics, and fast timing of the hadronic forward (HF) and hadronic outer (HO) calorimeters of CMS, projects which he had forcefully advocated since the inception of CMS. The PI and his colleagues Prof. J. Rohlf and chief electronics engineer E. Hazen, his post-docs A. Heister and S. Girgis, and his graduate students (P. Lawson and D. Arcaro) contributed software tools used in perfecting of μTCA and Advanced Mezzanine Card (AMC13) electronics, the PC board that provides clock, timing and DAQ service for HCAL (and now many other subdetectors and central systems in the upgraded CMS detector). This Task reaped the benefits of these hardware contributions 1) to hermiticity for missing energy searches, and 2) to forward tagging jets for Vector Boson Fusion processes by analyzing and publishing early data, including that for the Higgs discovery and for exotic and supersymmetric searches.

  17. Scaling of chaotic multiplicity: A new observation in high-energy interactions

    International Nuclear Information System (INIS)

    Ghosh, D.; Ghosh, P.; Roy, J.

    1990-01-01

    We analyze high-energy-interaction data to study the dependence of chaotic multiplicity on the pseudorapidity window and propose a new scaling function bar Ψ(bar z)=left-angle n 1 right-angle/left-angle n right-angle max where left-angle n 1 right-angle is the chaotic multiplicity and bar z=left-angle n right-angle/left-angle n right-angle max is the reduced multiplicity, following the quantum-optical concept of particle production. It has been observed that the proposed ''chaotic multiplicity scaling'' is obeyed by pp, p bar p, and AA collisions at different available energies

  18. Energy, target, projectile and multiplicity dependences of intermittency behaviour in high energy O(Si,S) induced interactions

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavski, M.M.; Gerassimov, S.G.; Kharlamov, S.P.; Larionova, V.G.; Maslennikova, N.V.; Orlova, G.I.; Peresadko, N.G.; Salmanova, N.A.; Tretyakova, M.I.; Ameeva, Z.U.; Andreeva, N.P.; Anzon, Z.V.; Bubnov, V.I.; Chasnikov, I.Y.; Eligbaeva, G.Z.; Eremenko, G.Z.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Skakhova, C.I.; Bhalla, K.B.; Kumar, V.; Lal, P.; Lokanathan, S.; Mookerjee, S.; Raniwala, R.; Raniwala, S.; Burnett, T.H.; Grote, J.; Koss, T.; Lord, J.; Skelding, D.; Strausz, S.C.; Wilkes, R.J.; Cai, X.; Huang, H.; Liu, L.S.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Zhou, J.C.; Chernova, L.P.; Gadzhieva, S.I.; Gulamov, K.G.; Kadyrov, F.G.; Lukicheva, N.S.; Navotny, V.S.; Svechnikova, L.N.; Friedlander, E.M.; Heckman, H.H.; Lindstrom, P.J.; Garpman, S.; Jakobsson, B.; Otterlund, I.; Persson, S.; Soederstroem, K.; Stenlund, E.; Judek, B.; Nasyrov, S.H.; Petrov, N.V.; Xu, G.F.; Zheng, P.Y.

    1991-01-01

    Fluctuations of charged particles in high energy oxygen, silicon and sulphur induced interactions are investigated with the method of scaled factorial moments. It is found that for decreasing bin size down to δη∝0.1 the EMU01 data exhibits intermittent behaviour. The intermittency indexes are found to decrease with increasing incident energy and multiplicity and to increase with increasing target mass. It seems also to increase as the projectile mass increases. (orig.)

  19. Heavy quark production in photon-Pomeron interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M. M. [Instituto Federal de Ciencia, Educacao e Tecnologia Farroupilha, Campus Sao Borja, Rua Otaviano Castilho Mendes, 355, CEP 97670-000, Sao Borja, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica - IFM, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, RS (Brazil)

    2013-03-25

    The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

  20. Nuclear interactions of super high energy cosmic-rays observed by mountain emulsion chambers

    International Nuclear Information System (INIS)

    1981-01-01

    Here is presented a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. The observation covers gamma-quanta, hadrons and their clusters (called ''families''). Following topics are covered concerning on characteristics of nuclear interactions in energy region of 10 14 - 10 16 eV: 1) rapid dissipation seen in atmospheric diffusion of high energy cosmic-rays, 2) multiplicity and p sub(t) increase in produced pimesons in the fragmentation region, 3) existence of large p sub(t) jets, 4) extremely-hadron-rich family of Centauro type, 5) exotic phenomena at extremely high energy region beyond 10 16 eV. (author)

  1. What can we learn from high-energy, soft (pp) interactions

    International Nuclear Information System (INIS)

    Basile, M.; Bonvicini, G.; Cara Romeo, G.; Cifarelli, L.; Contin, A.; Curatolo, M.; D'Ali, G.; Esposito, B.

    1983-01-01

    This chapter reports on a series of similarities between multiparticle hadronic systems produced in (pp) interactions and in (e + e - ) annihilation. Explains that in order to establish these similarities, the basic principle is to evaluate, for each (pp) interaction, the correct energy available for particle production. Examines the comparison of the multiparticle hadronic systems produced in (pp) interactions and (e + e - ) annihilation in terms of: 1) the inclusive, single-particle, fractional momentum distribution of the produced particles; 2) the inclusive, single particle, transverse momentum distribution of the particles produced; 3) the average charged particle multiplicity; 4) the ratio of ''charged'' to ''total'' energy of the multiparticle hadronic systems produced; and 5) the planarity of the multiparticle hadronic systems produced. Concludes that hadronic production in (e + e - ) annihilation takes place in such a way that no hadron has a privileged energy sharing. Points out that in order to understand the way in which the multiparticle hadronic systems are produced in strong, electromagnetic, and weak interactions, all p /SUB T/ physics needs to be investigated. Presents discussion featuring Zichichi, Herten, Karliner and others

  2. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  3. Virtual photon interactions in high energy QCD

    International Nuclear Information System (INIS)

    Gieseke, S.

    2001-07-01

    We study the interactions of virtual photons in the high energy limit of quantum chromodynamics (QCD). The subject is discussed in terms of two closely linked applications: the calculation of the total cross section for γ * γ * -scattering and the description of DIS in the colour dipole model. We calculate virtual corrections in α s to the process γ * q → (qq)q and the tree level process γ * q → (qqg)q in the high energy limit. From this calculation we obtain one-loop corrections to the effective γ * -reggeon-qq-vertex in the helicity basis of the virtual photon and the qq-pair. The loop integrals for the virtual corrections have been performed and expressed in dimensional regularization in terms of logarithms and dilogarithms. We have convoluted the virtual one-loop matrix elements with tree level matrix elements and expressed the integrals over the phase space of the qq-pair explicitly in terms of a set of standard integrals. The real corrections have been calculated and, in case of the longitudinal polarization, expressed in factorized form. From these calculations, the impact factor of virtual photons will be determined, allowing for a first prediction of the total cross section for γ * γ * -scattering in the next-to-leading-log s approximation. The calculations in this thesis extend the photon wave function picture in the colour dipole model to next-to-leading order. For this purpose, the real corrections with a qqg final state are analyzed in transverse configuration space and interpreted as a first higher Fock component of the photon wave function. In addition, the matrix elements that have been calculated in this thesis are needed for the calculation of jet cross sections. (orig.)

  4. Experimental Studies of Elementary Particle Interactions at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller Univ., New York, NY (United States)

    2013-07-30

    This is the final report of a program of research on "Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate

  5. High-energy neutron yields in interactions of carbon ions with 114Sn and 124Sn nuclei

    International Nuclear Information System (INIS)

    Blinov, M.B.; Gavrilov, B.P.; Kovalenko, S.S.; Kozulin, Eh.M.; Mozhaev, A.N.; Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.

    1984-01-01

    The measurements of the yields of neutrons (energy more than 5 MeV) emitted in the interactions of carbon-12 ions (9 MeV/nucl.) with nuclei of two tin isotopes are conducted. The results obtained prove the effect of nucleon composition of a nucleus on the process of formation of high-energy neutrons. To clarify the concrete interaction mechanism it is necessary to perform systematic research for a number of isotopes differing in the relation of the number of neutrons and protons and binding energies of the last neutron

  6. Gas-liquid transition in the model of particles interacting at high energy

    International Nuclear Information System (INIS)

    Bondarenko, S.; Komoshvili, K.

    2013-01-01

    An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, the Boltzmann equation is solved for a self-consistent field (Vlasov's equation) in the linear approximation for the case of a gas under external pressure and the corresponding change of the Knudsen number of the system is calculated. (orig.)

  7. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.; Levin, E.

    2015-01-01

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  8. Semihard interactions in nuclear collisions based on a unified approach to high energy scattering

    International Nuclear Information System (INIS)

    Drescher, H.J.; Hladik, M.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1998-01-01

    Our ultimate goal is the construction of a model for interactions of two nuclei in the energy range between several tens of GeV up to several TeV per nucleon in the centre-of-mass system. Such nuclear collisions are very complex, being composed of many components, and therefore some strategy is needed to construct a reliable model. The central point of our approach is the hypothesis, that the behavior of high energy interactions is universal (universality hypothesis). A model for nuclear interactions in a modular fashion is proposed. The individual modules, based on the universality hypothesis, are identified as building blocks for more elementary interactions (like e + e - , lepton-proton), and can therefore be studied in a much simpler context. With these building blocks under control, a quite reliable model is developed for nucleus-nucleus scattering, providing in particular very useful tests for the complicated numerical procedures using Monte Carlo techniques. (author)

  9. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  10. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    AUTHOR|(CDS)2210072; Mirarchi, Daniele; Redaelli, Stefano

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Experiments are being carried out to study in detail this phenomenon. The UA9 collaboration is using high energy protons and heavy ions beams from the SPS accelerator at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystal planes. The goal of the thesis is indeed to analyze the data and develop an improved simulation routine to better describe the data’s subtleties, in particular the transition between the volume reflection and amorphous modes of beam interaction with the crystal.

  11. Multibaryon interactions at relativistic energies

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1978-01-01

    The studies of interactions of high energy particles and nuclei with nuclei are summarised. One-particle distributions are mainly considered. A special attention is paid to the cumulative effect - the particle production in the region of limiting fragmentation of nuclei which is forbidden for one-nucleon collisions. A large amount of experimental information on multi-nucleon interactions has been obtained during the last two years: the range of an approximate validity of the limiting fragmentation of nuclei has been clarified; the universal energy dependence of cross sections in the cumulative region have been elucidated; data on angular distributions and polarization of the cumulative particles have been obtained; strong A-dependences have been observed in the cumulative effect; production of particles with large perpendicular momentum has been established on nuclei along with some dependences of the cumulative particle production on the quantum numbers in the production of hadron jets. The study of different manifestations of quark plasmons (fluctuons) in nuclei and multibaryon resonances predicted by quark models is an important and extensively developed trend of high energy physics. The possibility of studying the space-time picture of development of the strong interaction process by means of hadron-nucleus interaction and the particle formation length concept needs further theoretical and experimental grounds

  12. The calculation of nucleus-nucleus interaction cross sections at high energy in the Glauber approach

    International Nuclear Information System (INIS)

    Gal'perin, A.G.; Uzhinskij, V.V.

    1994-01-01

    Total, inelastic and elastic cross sections of nucleus-nucleus (AA)-interactions at high energy (HE) are calculated on the base of Glauber approach. The calculation scheme is realized as a set of routines. The statistical average method is used in calculations. Program runs in an interactive regime. User is prompted about charge and mass numbers of nuclei and NN-interaction characters at the energy he is interested in: total cross section, the slope parameter of differential cross section of elastic scattering and ratio of real part to imaginary part of elastic scattering amplitude at zero momentum transfer. These data can be extracted from proper compilations. Results of calculations are displayed and are written on user defined output file. The program runs on PC. 21 refs., 1 tab

  13. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2015-11-15

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  14. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  15. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  16. Monte Carlo studies of high-transverse-energy hadronic interactions

    International Nuclear Information System (INIS)

    Corcoran, M.D.

    1985-01-01

    A four-jet Monte Carlo calculation has been used to simulate hadron-hadron interactions which deposit high transverse energy into a large-solid-angle calorimeter and limited solid-angle regions of the calorimeter. The calculation uses first-order QCD cross sections to generate two scattered jets and also produces beam and target jets. Field-Feynman fragmentation has been used in the hadronization. The sensitivity of the results to a few features of the Monte Carlo program has been studied. The results are found to be very sensitive to the method used to ensure overall energy conservation after the fragmentation of the four jets is complete. Results are also sensitive to the minimum momentum transfer in the QCD subprocesses and to the distribution of p/sub T/ to the jet axis and the multiplicities in the fragmentation. With reasonable choices of these features of the Monte Carlo program, good agreement with data at Fermilab/CERN SPS energies is obtained, comparable to the agreement achieved with more sophisticated parton-shower models. With other choices, however, the calculation gives qualitatively different results which are in strong disagreement with the data. These results have important implications for extracting physics conclusions from Monte Carlo calculations. It is not possible to test the validity of a particular model or distinguish between different models unless the Monte Carlo results are unambiguous and different models exhibit clearly different behavior

  17. Monte Carlo event generator MCMHA for high energy hadron-nucleus collisions and intranuclear cascade interactions

    International Nuclear Information System (INIS)

    Iga, Y.; Hamatsu, R.; Yamazaki, S.

    1988-01-01

    The Monte Carlo event generator for high energy hadron-nucleus (h-A) collisions has been developed which is based on the multi-chain model. The concept of formation zone and the cascade interactions of secondary particles are properly taken into account in this Monte Carlo code. Comparing the results of this code with experimental data, the importance of intranuclear cascade interactions becomes very clear. (orig.)

  18. The Lund Monte Carlo programme for high energy interactions between hadrons and nuclei

    International Nuclear Information System (INIS)

    Nilsson-Almqvist, B.; Stenlund, E.

    1985-07-01

    In high energy hadron-nucleus and hadron-hadron collisions low Psub(T) is the dominating feature, not explained by QCD and related to quark confinement. Nevertheless QCD inspired formulations have been used to explain low Psub(T) interactions. Experimentally observed features like cascades are still not fully explained and we do not know when and in what way the hadronization take place. We present a Monte Carlo programme for ultra relativistic nucleus-nucleus interactions where we let the projectile nucleon rescatter inside the target nucleus, get excited and then fragment according to the Lund fragmentation scheme for particle production. (Author)

  19. Reggeon, Pomeron and Glueball, Odderon-Hadron-Hadron Interaction at High Energies--From Regge Theory to Quantum Chromodynamics

    Institute of Scientific and Technical Information of China (English)

    XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing

    2008-01-01

    Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim

  20. Ultra high energy interaction models for Monte Carlo calculations: what model is the best fit

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark DE 19716 (United States)

    2006-01-15

    We briefly outline two methods for extension of hadronic interaction models to extremely high energy. Then we compare the main characteristics of representative computer codes that implement the different models and give examples of air shower parameters predicted by those codes.

  1. Investigation of physical structures and interactions at high energy

    International Nuclear Information System (INIS)

    Anderson, E.W.

    1991-01-01

    Contract AC02-85ER40193 supports the investigation of fundamental structures and interactions at high energy by the Iowa State University Alpha HEP Group. Three major activities constitute the present focus of our research. Experiment E-735, performed at the Fermilab Tevatron Collider, is a search for a deconfined quark-gluon plasma phase of hadronic matter predicted to occur when temperatures of 240 MeV are achieved. The primary data were obtained in 1988--1989, from these data the collaboration is analyzing the charged particle multiplicity and transverse momentum distributions of the produced secondaries. These measurements are regarded on theoretical grounds to be sensitive indicators of the formation of a high-temperature plasma. The TPC detector, installed in the PEP ring at SLAC, has accumulated about 60,000 hadronic events at 29 GeV center-of-mass energy. Several thousand events have high-precision vertex chamber measurements. Physics analysis of charmed quark events, in addition to a measurement of the QCD strong coupling, are in progress. Our identification and reconstruction of D o , D*, and D s , charmed mesons will be useful for subsequent B meson studies in the TPC detector. The SSC liquid argon major subsystem tests at BNL and studies of gauge boson identification and reconstruction for large SSC detectors are in progress. Several crucial problems related to calorimeter geometries, coil geometries, and discrimination methods in full SSC events have been solved, and work is in progress on a one million event test of WW scattering capability up to 2 TeV. Our participation in the subsystem proposal involves construction of the module, data-taking at the AGS, and data analysis

  2. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  3. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  4. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  5. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  6. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  7. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  8. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  9. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  10. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  11. Progress report 1986. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  12. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  13. Production of high energy density in anti N-nucleus interactions

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1986-01-01

    The results of an investigation of anti p- (and to a lesser extent) anti d- nucleus interactions are reported. The technique involves following the classical production and propagation of mesons (π,K + , K 0 , K - , K 0 , K*, eta, ω, phi) and baryons (N,Λ,Σ) in nuclei after antiparticle annihilation. It is found that small regions of the nucleus can be raised to sufficiently high energy densities that some predictions of a quark-gluon phase transition can be tested with the use of energetic antiprotons (5-10 GeV/c). the strangeness signal is examined and compared with the amount of strangeness produced in a recent experiment with 4 GeV/c incident antiprotons. A general expression is given for the total amount of strangeness produced which is invariant under intranuclear strangeness exchange reactions. 7 refs., 6 figs., 3 tabs

  14. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  15. e+e- interactions at very high energy: searching beyond the standard model

    International Nuclear Information System (INIS)

    Dorfan, J.

    1983-04-01

    These lectures discuss e + e - interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/Λ SU(2) Λ U(1). The highest e + e - collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e + e - collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model

  16. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  17. Interacting dark energy and the expansion of the universe

    CERN Document Server

    Silbergleit, Alexander S

    2017-01-01

    This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.

  18. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  19. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  20. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

    2012-07-01

    Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

  1. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M.; Brambrink, E.; Vogt, K.; Bagnoud, V.

    2011-01-01

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  2. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  3. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  4. Modular calorimeter system for use in high energy physics

    International Nuclear Information System (INIS)

    Yost, B.T.; Corcoran, M.D.; Cormell, L.

    1978-10-01

    A modular hadron calorimeter was designed and built for the study of high energy particle interactions which produce particles of high transverse momentum. The energy resolution of this system and the triggering method for selecting the interactions of interest are described

  5. Study of high-energy neutrino neutral-current interactions

    International Nuclear Information System (INIS)

    Aderholz, M.; Aggarwal, M.M.; Akbari, H.; Allport, P.P.; Badyal, S.K.; Ballagh, H.C.; Barth, M.; Baton, J.P.; Bingham, H.H.; Brucker, E.B.; Burnstein, R.A.; Campbell, J.R.; Cence, R.J.; Chatterjee, T.K.; Clayton, E.F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand; De Wolf, E.A.; Faulkner, P.J.W.; Foeth, H.; Fretter, W.B.; Gupta, V.K.; Hanlon, J.; Harigel, G.; Harris, F.A.; Jabiol, M.A.; Jacques, P.; Jain, V.; Jones, G.T.; Jones, M.D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J.M.; Koller, E.L.; Krawiec, R.J.; Lauko, M.; Lys, J.E.; Marage, P.; Milburn, R.H.; Miller, D.B.; Mittra, I.S.; Mobayyen, M.M.; Moreels, J.; Morrison, D.R.O.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M.W.; Peterson, V.Z.; Plano, R.; Rao, N.K.; Rubin, H.A.; Sacton, J.; Sambyal, S.S.; Schmitz, N.; Schneps, J.; Singh, J.B.; Smart, W.; Stamer, P.; Varvell, K.E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G.P.

    1992-01-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288±0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(bar ν) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and bar ν events. A value of 0.274±0.038 is obtained for the dominant ν component assuming bar ν NC/CC=0.39±0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323±0.025 and the K 0 production rates are 0.375±0.064 per CC and 0.322±0.073 per NC event. The corresponding Λ rates are 0.161±0.030 per CC and 0.113±0.030 per NC event. The K 0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events

  6. Study of high-energy neutrino neutral-current interactions

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E. A.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1992-04-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288+/-0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(ν¯) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and ν¯ events. A value of 0.274+/-0.038 is obtained for the dominant ν component assuming ν¯ NC/CC=0.39+/-0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323+/-0.025 and the K0 production rates are 0.375+/-0.064 per CC and 0.322+/-0.073 per NC event. The corresponding Λ rates are 0.161+/-0.030 per CC and 0.113+/-0.030 per NC event. The K0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events.

  7. Meson production in two-photon interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Campus Universitario UFPel, CP 354, 96010-900, Capao do Leao-RS (Brazil)

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  8. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  9. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  10. Theory and phenomenology of strong and weak interaction high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Carruthers, P.; Thews, R.L.

    1988-01-01

    This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories

  11. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    Forcher, Francesco; Redaelli, Stefano; Zanetti, Marco; CERN. Geneva. ATS Department

    2018-01-01

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Several studies are on-going at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystalline planes. The goal of this note is to analyze the data collected on extracted beam from the SPS and develop an improved model to simulate the data’s subtleties, in particular the transition between the volume reflection and amorphous interactions of the beam with crystals.

  12. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  13. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  14. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  15. Pi-nucleon phenomenology at high energies

    International Nuclear Information System (INIS)

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  16. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  17. Structure of the neutral current coupling in high energy neutrino--nucleon interactions

    International Nuclear Information System (INIS)

    Merritt, F.S.

    1977-01-01

    The primary objective of this experiment was to determine the Lorentz structure of the neutral current coupling--that is, to determine what combination of V-A and V+A (or possibly S, P, and T) components make up the neutral coupling. The experiment used the Fermilab narrow band neutrino beam to provide separated neutrino and antineutrino fluxes, each consisting of two energy bands at approximately equal to 55 and approximately equal to 150 GeV. Deep inelastic inclusive neutrino-nucleon interactions of the form ν(anti ν) + N = μ - (μ + ) + hadrons (CC event) ν(anti ν) + N = ν(anti ν) + hadrons (NC event) were observed in an instrumented steel target-calorimeter, which measured the total energy of the hadrons produced in each event. The neutral current coupling was determined by comparing the hadron energy distributions of neutrino and antineutrino neutral current events. An analysis of the charged-current data was carried out in order to determine the background of charged-current events with unobserved muons, and to provide a normalization for the neutral current data. Various parameterizations of the CC interaction were tested, and their effects on the neutral current analysis were studied in detail. The neutral current analysis indicates that, if only vector and axial-vector components exist, then the neutral current coupling lies between V and V-A. A pure scalar coupling is excluded. The data were compared to the Weinberg--Salam theory (extended to semileptonic interactions), and are in very good agreement with its predictions. Comparison of these data to the low energy Gargamelle data indicates consistency with a scaling hypothesis

  18. An intranuclear cascade calculation of high-energy heavy-ion interactions

    International Nuclear Information System (INIS)

    Yariv, Y.; Fraenkel, Z.

    1979-01-01

    The intranuclear cascade model of Chen is extended to high-energy reactions between two heavy ions. The results of the calculations are compared with experimental results for the inclusive proton and pion cross sections, two-particle correlations, particle multiplicity distributions and spallation cross section distributions from light ( 12 C+ 12 C) to heavy( 40 Ar + 238 U) projectile-target systems in the laboratory bombarding energy range E/A=250-1000 MeV. The comparison shows that the model is fairly successful in reproducing the various aspects of high-energy reactions between heavy ions. It is also shown that the assumption that high particle multiplicities are indicative of ''central'' (small impact parameter) collisions are well founded for heavy projectile-target systems. (B.G.)

  19. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  20. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  1. A study of the interactions of high energy electron-neutrinos

    International Nuclear Information System (INIS)

    Nieuwenhuis, C.H.M.

    1986-01-01

    This thesis describes an analysis of electron-neutrino and anti-neutrino interactions with nuclei. The data were collected with the calorimeter of the Amsterdam-CERN-Hamburg-Moscow-Rome (CHARM) group in a beam dump exposure to 400 GeV/c protons from the CERN SPS in 1982. The predictions of the Standard Model for the quantities measured in this experiment are given. The results of the analysis of events without a primary muon in the final state are given in the form of an experimental y-distribution. The measured quantities are compared with the predictions of the theory and the measurements of other experiments. Presented are the cross-section ratio of neutral current and charged current electron-neutrino induced events, the prompt CC ν(anti ν) e interaction rate, the prompt (ν e +anti ν e )/(ν μ +anti ν μ ) flux ratio, the energy dependence of the prompt electron-neutrino flux and a measurement of the DantiD cross-section times semileptonic branching ratio based on prompt electron-neutrino interactions. (Auth.)

  2. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  3. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  4. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  5. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  6. Quantification of the validity of simulations based on Geant4 and FLUKA for photo-nuclear interactions in the high energy range

    Science.gov (United States)

    Quintieri, Lina; Pia, Maria Grazia; Augelli, Mauro; Saracco, Paolo; Capogni, Marco; Guarnieri, Guido

    2017-09-01

    Photo-nuclear interactions are relevant in many research fields of both fundamental and applied physics and, for this reason, accurate Monte Carlo simulations of photo-nuclear interactions can provide a valuable and indispensable support in a wide range of applications (i.e from the optimisation of photo-neutron source target to the dosimetric estimation in high energy accelerator, etc). Unfortunately, few experimental photo-nuclear data are available above 100 MeV, so that, in the high energy range (from hundreds of MeV up to GeV scale), the code predictions are based on physical models. The aim of this work is to compare the predictions of relevant observables involving photon-nuclear interaction modelling, obtained with GEANT4 and FLUKA, to experimental data (if available), in order to assess the code estimation reliability, over a wide energy range. In particular, the comparison of the estimated photo-neutron yields and energy spectra with the experimental results of the n@BTF experiment (carried out at the Beam Test Facility of DaΦne collider, in Frascati, Italy) is here reported and discussed. Moreover, the preliminary results of the comparison of the cross sections used in the codes with the"evaluated' data recommended by the IAEA are also presented for some selected cases (W, Pb, Zn).

  7. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  8. Multiplicities in high energy interactions

    International Nuclear Information System (INIS)

    Derrick, M.

    1984-01-01

    Charged particle multiplicities in hadronic collision have been measured for all energies up to √s = 540 GeV in the center of mass. Similar measurements in e + e - annihilation cover the much smaller range - up to √s = 40 GeV. Data are also available from deep inelastic neutrino scattering up to √s approx. 10 GeV. The experiments measure the mean charged multiplicity , the rapidity density at y = O, and the distributions in prong number. The mean number of photons associated with the events can be used to measure the π 0 and eta 0 multiplicities. Some information is also available on the charged pion, kaon, and nucleon fractions as well as the K 0 and Λ 0 rates and for the higher energy data, the identically equal fraction. We review this data and consider the implications of extrapolations to SSC energies. 13 references

  9. Study of the experimental data of multifragmentation of gold and krypton nuclei on interactions with photoemulsion nuclei at high energies

    International Nuclear Information System (INIS)

    Saleh, Z.A.; Abdel-Hafez, A.

    2002-01-01

    Results from EMU-01/12 collaboration for the experimental data on multifragmentation of gold residual nuclei created in the interactions with photoemulsion nuclei at the energy of 10.7 GeV/nucleon are presented together with the experimental data on multifragmentation of krypton created on the interactions with photoemulsion nuclei at energy of 0.9 GeV/nucleon. The data are analyzed in the frame of the statistical model of multifragmentation. It is obvious that there are two regimes for nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with masses close to each other created at different reactions are fragmented practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. These results give an indication that projectiles other than Gold and Krypton may give the same characterization on interaction with emulsion nuclei at high energies

  10. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  11. High-energy tail distributions and resonant wave particle interaction

    Science.gov (United States)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  12. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  13. High energy e/sup +/e/sup -/ interaction and quantum chromodynamics. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, D; Aubert, J J; Bassetto, A; Boucrot, J; Fontannaz, M; Fournier, D; Furmanski, W; Le Bellac, M

    1983-01-01

    e+e- interactions at PETRA-PEP energies (12 to 36 GeV) provide clear tests for QCD. First, results concerning annihilation total cross-section and inclusive spectra, in particular scaling violation, are considered. Next, energy-energy correlations, which provide an interesting test of QCD in the leading logarithm approximation, are reviewed. The third part deals with 3-jet events interpreted as evidence for hard gluon bremsstrahlung, and with various problems occuring in the determination of ..cap alpha..sub(s). e+e- annihilation on top of narrow resonances (..gamma..), and deep inelastic electron-photon scattering, which allow important tests of the theory, are briefly considered in the last part.

  14. Hadron-nucleus interactions at high energy

    International Nuclear Information System (INIS)

    Gomez, R.; Dauwe, L.; Haggerty, H.

    1986-05-01

    Properties of energetic secondaries produced at large angles using 800 GeV incident protons are presented. H 2 , Be, C, Al, Cu and Pb targets were used for the study. The yields for producing such secondaries vary as A/sup α/ where A is the atomic mass number of the target and α attains values as large as 1.6. There is evidence that jet-like events have α values approaching unity, indicating a hard scattering mechanism may be occurring. Events with large values of target-fragmentation energy have, on average, large values of energy in the central region and small values of forward-going energy. Energy flows and number of secondaries are independent of the target when events with similar amounts of energy in the central region are studied

  15. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  16. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  17. Experimental study of interactions of highly charged ions with atoms at keV energies: Progress report for period May 15, 1985-February 15, 1987

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1987-01-01

    Interest in interactions of low energy highly charged ions with electrons, atoms or ions is due to their importance to controlled thermonuclear fusion research and the interesting nature of the fundamental processes involved. Studies of such interactions have long been hampered by a lack of suitable ions sources. A superconducting solenoid, cryogenic Electron Beam Ion Source, CEBIS, has been constructed at Cornell University to produce low energy very highly charged ions. At present, using a pulsed 0.5A,8.5 keV electron beam, the source is capable of producing highly charged ions of C,N,O, including bare nuclei, and ions of Ar up to charge state 11 + in 1 millisecond of confinement time. The source is being used in experiments to investigate charge transfer and accompanying processes in low energy, highly charged ion-atom collisions

  18. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  19. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  20. Elastic energy of the flux lines in the matter. The interaction energy

    International Nuclear Information System (INIS)

    Dolocan, Voicu

    1999-01-01

    A theoretical treatment of the interaction between the bodies, by using the elastic coupling through the flux lines, is presented. We show that the elastic coupling through the flux lines gives an interaction energy between two superconductor or magnetic pieces, which is inversely proportional to the distance between the two bodies. We extend this concept to the gravitational and electrical interaction. For the electrical interaction one obtains that the statics interaction energy is inversely proportional to the distance between the charges, as in the Coulomb's law, while the oscillatory interaction is inversely proportional to the third power of the distance between the charged particles. This means that at shorter distance an attraction between the two charged particles of the same sign, may appear if the oscillatory energy of interaction is larger than the statics energy of interaction. In addition, the oscillatory interaction appears only as a virtual process. We apply these results to the deuteron and to the electron pairs in superconductors. Also, for the gravitation one obtains that the interaction energy is inversely proportional to the distance between the centers of the two bodies as in Newton's law. (author)

  1. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  2. Interaction region design driven by energy deposition

    Science.gov (United States)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  3. e/sup +/e/sup -/ interactions at very high energy: searching beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Dorfan, J.

    1983-04-01

    These lectures discuss e/sup +/e/sup -/ interactions at very high energies with a particular emphasis on searching the standard model which we take to be SU(3)/sub color/..lambda.. SU(2) ..lambda.. U(1). The highest e/sup +/e/sup -/ collision energy exploited to date is at PETRA where data have been taken at 38 GeV. We will consider energies above this to be the very high energy frontier. The lectures will begin with a review of the collision energies which will be available in the upgraded machines of today and the machines planned for tomorrow. Without going into great detail, we will define the essential elements of the standard model. We will remind ourselves that some of these essential elements have not yet been verified and that part of the task of searching beyond the standard model will involve experiments aimed at this verification. For if we find the standard model lacking, then clearly we are forced to find an alternative. So we will investigate how the higher energy e/sup +/e/sup -/ collisions can be used to search for the top quark, the neutral Higgs scalar, provide true verification of the non-Abelian nature of QCD, etc. Having done this we will look at tests of models involving simple extensions of the standard model. Models considered are those without a top quark, those with charged Higgs scalars, with multiple and/or composite vector bosons, with additional generations and possible alternative explanations for the PETRA three jet events which don't require gluon bremsstrahlung. From the simple extensions of the standard model we will move to more radical alternatives, alternatives which have arisen from the unhappiness with the gauge hierarchy problem of the standard model. Technicolor, Supersymmetry and composite models will be discussed. In the final section we will summarize what the future holds in terms of the search beyond the standard model.

  4. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  5. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  6. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  7. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  8. Strongly Interacting Matter at Very High Energy Density

    International Nuclear Information System (INIS)

    McLerran, L.

    2011-01-01

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  9. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  10. Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Goyal, D.P.; Yugindro Singh, K.; Singh, S.

    1986-01-01

    The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)

  11. High Textbook Reading Rates When Using an Interactive Textbook for a Material and Energy Balances Course

    Science.gov (United States)

    Liberatore, Matthew

    2017-01-01

    Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and Energy Balances zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…

  12. Interaction region design driven by energy deposition

    Directory of Open Access Journals (Sweden)

    Roman Martin

    2017-08-01

    Full Text Available The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  13. π0, rho0 ω0 production in high energy neutrino and antineutrino interactions

    International Nuclear Information System (INIS)

    Velasco, J.

    1980-09-01

    The work presented in this thesis is concerned with the hadronic shower in the neutrino and antineutrino interactions of the high energy charged-current type. The π 0 particles issued from this hadronic shower are analysed and the rho 0 and ω 0 production rate are determined in view to try to understand the quark fragmentation process, that is to say the QCD theory relative to the quark confinement problem. The experimental device is described in the chapter II. Chapter III is dealing with the analysis of the exposures obtained with this device, together with the incident neutrino energy determination methods and a general description of the final data characteristics. The π 0 production is studied from the decay γ observed in the bubble chamber. The existing different methods are analyzed and compared with the used one. The π 0 properties are studied in detail. In chapter 5, the rho 0 and ω 0 resonance production rate is calculated, using the previous chapter results. Finally, chapter 6 summarizes the thesis conclusions [fr

  14. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  15. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1991-07-01

    Nuclear collision data are interpreted theoretically. The nuclear equation of state is investigated with particular emphasis on momentum-dependent mean field effects. Subnucleonic degrees of freedom are invoked at high energies and densities, and a short length-scales. A nontopological soliton model for baryons is studied in which effective meson fields are generated from extended quark-antiquark pairs. The major objective of this nuclear theory project is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  16. Total cross sections of hadron interactions at high energies in low constituents number model

    International Nuclear Information System (INIS)

    Abramovskij, V.A.; Radchenko, N.V.

    2009-01-01

    We consider QCD hadrons interaction model in which gluons density is low in initial state wave function in rapidity space and real hadrons are produced from color strings decay. In this model behavior of total cross sections of pp, pp bar, π ± p, K ± p, γp, and γγ interactions is well described. The value of proton-proton total cross section at LHC energy is predicted

  17. Study of events with a high transverse momentum particle at proton-proton interactions with 63 GeV c.m. energy

    International Nuclear Information System (INIS)

    Panter, M.

    1982-01-01

    In proton-proton interactions at a c.m. energy of 63 GeV events with an identified high transverse momentum particle were studied. The inclusive invariant cross section for the production of charged pions was measured in the transverse momentum range from 3 to 13 GeV/c. (orig.) [de

  18. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  19. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  20. Energy-dependent point interactions in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2005-01-01

    We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed

  1. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  2. Insights into the fold organization of TIM barrel from interaction energy based structure networks.

    Science.gov (United States)

    Vijayabaskar, M S; Vishveshwara, Saraswathi

    2012-01-01

    There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.

  3. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  4. Monotonous braking of high energy hadrons in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  5. New interaction paths in the energy landscape: the role of local energy initiatives

    OpenAIRE

    de Boer, Jessica; Zuidema, Christian; Gugerell, Katharina

    2018-01-01

    Energy transition is an encompassing process which not only involves the energy system but also the landscape in which the energy system is embedded. Renewable energy is triggering new interactions with local landscapes in physical, socio-economic and institutional senses. We capture these interactions using the energy landscape concept, which expresses the interdependence of the energy system with the landscape. We aim to understand whether and how local energy initiatives facilitate this in...

  6. Device interactions in reducing the cost of tidal stream energy

    International Nuclear Information System (INIS)

    Vazquez, A.; Iglesias, G.

    2015-01-01

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h −1 , occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  7. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  8. Energy analysis of crack-damage interaction

    Science.gov (United States)

    Chudnovsky, A.; Wu, Shaofu

    1989-01-01

    The energy release rates associated with a main crack propagating into a surrounding damage zone, and a damage zone translation relative to the main crack, as well as an energy of interaction between the two are analyzed. The displacement and stress fields for the crack-damage interaction problem are reconstructed employing a semi-empirical stress analysis and experimental evaluation of the average craze density in the crazed zone.

  9. Studying Wind Energy/Bird Interactions: A Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

    1999-12-01

    This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

  10. Fragmentation into strange particles in high energy νp, νn, anti νp and anti νn interactions

    International Nuclear Information System (INIS)

    Allasia, D.; Cirio, R.; Gamba, D.; Ramello, L.; Riccati, L.; Romero, A.; Rustichelli, S.; Angelini, C.; Baldini, A.; Bertanza, L.; Casali, R.; Fantechi, R.; Flaminio, V.; Pazzi, R.; Bloch, M.; Bolognese, T.; Borg, A.; Faccini-Turluer, M.L.; Lippi, I.; Louedec, C.; Vignaud, D.; Capiluppi, P.; Derkaoui, J.; Giacomelli, G.; Mandrioli, G.; Margiotta, A.; Rossi, A.M.; Serra-Lugaresi, P.; Frodesen, A.G.; Jongejans, B.; Tenner, A.G.; Apeldoorn, G. van; Dam, P. van; Visser, C.; Wigmans, R.

    1985-01-01

    The fragmentation of the hardronic system into Λ, Σ(1385), K 0 and Ksup(*)(892) in deep-inelastic charged-current interactions of high energy neutrinos and antineutrinos with proton and neutron is analyzed. The results obtained for the production of these particles from the various initial states are compared with each other and with the predictions of the Lund fragmentation model. This comparison shows that a spectator diquark does not fragment as a whole in a fraction of the interactions. The role of the sea quarks in the baryon formation process is underlined. Strange vector and pseudoscalar mesons are likely to be produced at similar rates. (orig.)

  11. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  12. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  13. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  14. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  15. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  16. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Zhao, Xiaoli; He, Yongxiu

    2013-01-01

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  17. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  18. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  19. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  20. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  1. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  2. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  3. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  4. Multiplicity distribution and multiplicity moment of black and grey particles in high energy nucleus–nucleus interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Datta, Utpal; Bhattacharyya, S.

    2011-01-01

    In this paper we have studied the multiplicity distribution of black and grey particles emitted from 16 O–AgBr interactions at 2.1 AGeV and 60 AGeV. We have also calculated the multiplicity moment up to the fifth order for both the interactions and for both kinds of emitted particles. The variation of multiplicity moment with the order number has been investigated. It is seen that in the case of black particles multiplicity moment up to fourth order remains almost constant as energy increases from 2.1 AGeV to 60 AGeV. Fifth order multiplicity moment increases insignificantly with energy. However in the case of grey particles no such constancy of multiplicity moment with energy of the projectile beam is obtained. Later we have extended our study on the basis of Regge–Mueller approach to find the existence of second order correlation during the emission of black as well as the grey particles. The second Mueller moment is found to be positive and it increases as energy increases in the case of black particles. On the contrary in the case of grey particles the second Mueller moment decreases with energy. It can be concluded that as energy increases correlation among the black particles increases. On the other hand with the increase of energy correlation among the grey particles is found to diminish. (author)

  5. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  6. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  7. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)

  8. A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts

    Science.gov (United States)

    Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.

    1995-01-01

    A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.

  9. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  10. Diffuse fluxes of cosmic high-energy neutrinos

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic γ-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought

  11. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1994-01-01

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts

  12. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  13. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  14. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    Science.gov (United States)

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  15. Dark energy interacting with two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)], E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile)], E-mail: fcampos@ufro.cl

    2008-05-29

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.

  16. Finite element calculation of the interaction energy of shape memory alloy

    International Nuclear Information System (INIS)

    Yang, Seung Yong

    2004-01-01

    Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for

  17. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  18. Interacting ghost dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-01-01

    We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.

  19. Experimental studies of elementary particle interactions at high energies. Technical progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Work being done with respect to the CERN S anti ppS Collider experiment UA-6, which seeks to measure direct photon production, neutral pion and neutral eta inclusive cross sections from proton-antiproton interactions, is reported. Also reported is data analysis for alpha-alpha and p-p collisions performed at ISR. Work is being performed on the small angle silicon detector system of CDF. An experiment is described to determine the electron neutrino mass with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint

  20. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  1. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  2. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  3. The energy-economy-environment interaction and the rebound-effect

    NARCIS (Netherlands)

    Musters, A.P.A.

    1995-01-01

    This study examines the Energy-Economy-Environment (3-E) interaction ingeneral and the rebound-effect in particular. The rebound-effect can be defined as that part of the initially expected energy savings, resulting from energy efficiency improvements, that is lost because of the 3-E interaction. To

  4. Phenomenon of energy concentration in high-energy family events of cosmic rays

    CERN Document Server

    Wang He; Dai Zhi Qiang; Xue Liang; Feng Cun Feng; Zhang Xue Yao; Li Jin; Zhang Nai Jian; He Mao; Wang Cheng Rui; Ren Jing Ru; Lu Sui Ling

    2002-01-01

    The phenomenon of energy concentration in high-energy family events of cosmic rays is studied by comparing the results of family events of total visible energies 100-400 TeV observed in the Kanbala emulsion chamber experiment with the Monte Carlo simulation data. The simulation is made by the program CORSIKA in which QGSJET is applied as the hadronic interaction model, and the chemical composition of primary cosmic rays is obtained from the rigidity-cut model and the extrapolation of new results of direct measurements. This shows that the whole distribution tendency of the rate of energy concentration of simulated family events is basically consistent with that of the experiment

  5. Radiation interactions in high-pressure gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V 0 < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur

  6. Radiation interactions in high-pressure gases

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V{sub 0} < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur.

  7. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  8. Investigation of migrant-polymer interaction in pharmaceutical packaging material using the linear interaction energy algorithm.

    Science.gov (United States)

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2014-10-01

    The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  10. An Interactive and Comprehensive Working Environment for High-Energy Physics Software with Python and Jupyter Notebooks

    Science.gov (United States)

    Braun, N.; Hauth, T.; Pulvermacher, C.; Ritter, M.

    2017-10-01

    Today’s analyses for high-energy physics (HEP) experiments involve processing a large amount of data with highly specialized algorithms. The contemporary workflow from recorded data to final results is based on the execution of small scripts - often written in Python or ROOT macros which call complex compiled algorithms in the background - to perform fitting procedures and generate plots. During recent years interactive programming environments, such as Jupyter, became popular. Jupyter allows to develop Python-based applications, so-called notebooks, which bundle code, documentation and results, e.g. plots. Advantages over classical script-based approaches is the feature to recompute only parts of the analysis code, which allows for fast and iterative development, and a web-based user frontend, which can be hosted centrally and only requires a browser on the user side. In our novel approach, Python and Jupyter are tightly integrated into the Belle II Analysis Software Framework (basf2), currently being developed for the Belle II experiment in Japan. This allows to develop code in Jupyter notebooks for every aspect of the event simulation, reconstruction and analysis chain. These interactive notebooks can be hosted as a centralized web service via jupyterhub with docker and used by all scientists of the Belle II Collaboration. Because of its generality and encapsulation, the setup can easily be scaled to large installations.

  11. Theory and phenomenology of strong and weak interaction high energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews research done on theoretical high energy physics. Areas of discussion are: chiral symmetry; quantum chromodynamics; quark-gluon plasma; particle decay of kaons; photonuclear reactions from cosmic ray showers; symmetry breaking and other related topics

  12. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  13. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  14. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    Energy Technology Data Exchange (ETDEWEB)

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Yamamoto, Ryohei [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Imamura, Akira [Hiroshima Kokusai Gakuin University, 6-20-1 Nakano, Aki-ku, Hiroshima 739-0321 (Japan); Aoki, Yuriko, E-mail: aoki.yuriko.397@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  15. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  16. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  17. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  18. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  19. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  20. Dynamics of interacting dark energy

    International Nuclear Information System (INIS)

    Caldera-Cabral, Gabriela; Maartens, Roy; Urena-Lopez, L. Arturo

    2009-01-01

    Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent, and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

  1. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  2. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  3. [Study of high energy nucleus-nucleus interactions with a Magnetic-Interferometric-Emulsion-Chamber

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki.

    1990-01-01

    The Nuclear Physics group at the University of Alabama in Huntsville (UAH) has been analyzing 200 GeV/n S + Pb collision events with a Magnetic-Interactive-Emulsion-Chamber (MAGIC). The objectives of the research are to learn the nature of nuclear matter at high density of particles and to develop an all-particle tracking system for very high particle densities. To advance the study further, the detector capability has been improved so as to allow the best utilization of all-particle measurements. A design study for Pb + Pb interactions at 160 GeV/n was made for planned experiments in 1993

  4. High energy radiation effects on the human body

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1977-01-01

    High-energy radiation injuries and their risks were recognized, information on low-energy radiation injuries was also arranged, and with these backgrounds, countermeasures against prevention of radiation injuries were considered. Redintegration of DNA and mutation by radiation were described, and relationship between radiation injuries and dose was considered. Interaction of high-energy radiation and substances in the living body and injuries by the interaction were also considered. Expression method of risk was considered, and a concept of protection dose was suggested. Protection dose is dose equivalent which is worthy of value at the point where the ratio to permissible dose distributed among each part of the body is at its maximum in the distribution of dose equivalent formed within the body when standard human body is placed at a certain radiation field for a certain time. Significance and countermeasures of health examination which is under an abligation to make radiation workers receive health check were thought, and problems were proposed on compensation when radiation injuries should appear actually. (Tsunoda, M.)

  5. 2012 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP 2012

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, flavour physics, physics beyond the Standard Model, neutrino physics, and cosmology.

  6. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  7. Low-energy hadronic interactions beyond the current algebra approach

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Troitskaya, N.I.; Nagy, M.

    1993-06-01

    The new low-energy AP 3 -interaction, which is produced by convergent box-constituent-quark-loop diagrams, is obtained within chiral perturbation theory at the quark level (CHPT) q with linear realization of chiral U(3) x U(3) symmetry. Its contributions to processes of low-energy interactions of low-lying mesons are investigated. The new interaction goes beyond the framework of the low-energy current algebra approach and of the effective chiral Lagrangians with linear realization of chiral symmetry, constructed at the hadronic level. (author). 17 refs, 3 figs

  8. High-energy neutrino background: Limitations on models of deuterium production

    International Nuclear Information System (INIS)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in the Earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z> or approx. =300). Improved neutrino experiments may be able to push these limits back to recombination

  9. On the existence of a new constrained instanton and high-energy electroweak interactions

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-06-01

    The authors construct, in the SU(2) Yang-Mills-Higgs theory of the electroweak interactions, a non-contractible loop of 4-dimensional configurations. Numerical results for the action over the loop show the existence of a new constrained instanton I* with action ∼ 16π 2 /g 2 and zero topological charge. They also discuss the spectral flow of the Dirac operator along the loop and I* is expected to have fermion-zero modes. As a possible application the total B+L violating cross-section is considered, evaluated semiclassically from the imaginary part of the forward elastic scattering amplitude. The numerical results for I* indicate a threshold-like behaviour for non-perturbative effects at a parton center-of-mass energy close to the sphaleron energy E S ∼10 TeV. (author). 31 refs.; 9 figs

  10. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  11. New interaction paths in the energy landscape: the role of local energy initiatives

    NARCIS (Netherlands)

    de Boer, Jessica; Zuidema, Christian; Gugerell, Katharina

    2018-01-01

    Energy transition is an encompassing process which not only involves the energy system but also the landscape in which the energy system is embedded. Renewable energy is triggering new interactions with local landscapes in physical, socio-economic and institutional senses. We capture these

  12. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  13. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  14. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  15. Interacting holographic dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.

  16. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  17. Structure of small-scale standing azimuthal Alfven waves interacting with high-energy particles in the magnetosphere

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    1998-01-01

    The effect of bounce-drift instability on the structure of small-scale azimuthal Alfven waves in the magnetosphere is studied with allowance for the curvature of the geomagnetic field lines. The pressure of the background plasma is assumed to be zero. As early as 1993, Leonovich and Mazur showed that Alfven waves with m>>1, being standing waves along magnetic field lines, propagate, at the same time, across the magnetic surfaces. As these waves propagate through the magnetosphere, they interact with a group of high-energy particles and, thereby, are amplified with a growth rate dependent on the radial coordinate, i.e., a coordinate perpendicular to the magnetic sheaths. Near the Alfven resonance surface, the growth rate approaches zero, and the waves are damped completely due to the energy dissipation in the ionosphere. As the growth rate increases, the maximum of the wave amplitude is displaced to the Alfven resonance region and the most amplified waves are those whose magnetic field vectors oscillate in the azimuthal direction. Among the waves excited in a plasma resonator that is formed near the plasmapause, the most amplified are those with radial polarization

  18. GPU-Powered Modelling of Nonlinear Effects due to Head-On Beam-Beam Interactions in High-Energy Hadron Colliders.

    CERN Document Server

    Furuseth, Sondre

    2017-01-01

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. This report discusses results from an implementation of the weak-strong model, studying the effects of head-on beam-beam interactions. The assumptions has been shown to be valid for configurations where the growth and losses of the beam are small. The tracking has been done using an original code which applies graphic cards to reduce the computation time. The bunches in the beams have been modelled cylindrically symmetrical, based on a Gaussian distribution in three dimensions. This choice fits well with bunches...

  19. Report of the 1985 High Energy Physics Advisory Panel Study of the US High Energy Physics Program, 1985-1995

    International Nuclear Information System (INIS)

    1985-09-01

    The present study was motivated by the desire to examine the US High Energy Physics Program in depth, to reassess the Superconducting Super Collider (SSC) goal in light of recent scientific and technical developments, and to understand how this project would affect and interact with the US high energy program in the period before it becomes operational. It is recommended that the SSC research and development be given highest priority in the US High Energy Physics Program so that the project can proceed to an early construction start and rapid completion. A limited number of programs are identified as ''forefront programs'' - those which enter a new experimental regime in such a way as to have clear promise for new fundamental discoveries - and it is recommended that these proceed with priority. Research opportunities available during the next ten years are explored, including proton-antiproton colliders, electron-proton collider, electron-positron colliders, fixed-target experiments, and non-accelerator experiments

  20. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)

  1. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  2. CGC/saturation approach for soft interactions at high energy: Inclusive production

    International Nuclear Information System (INIS)

    Gotsman, E.; Levin, E.; Maor, U.

    2015-01-01

    In this letter we demonstrate that our dipole model is successful in describing inclusive production within the same framework as diffractive physics. We believe that this achievement stems from the fact that our approach incorporates the positive features of the Reggeon approach and CGC/saturation effective theory, for high energy QCD

  3. CGC/saturation approach for soft interactions at high energy: Inclusive production

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E., E-mail: gotsman@post.tau.ac.il [Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv, 69978 (Israel); Levin, E., E-mail: leving@post.tau.ac.il [Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv, 69978 (Israel); Departemento de Física, Universidad Técnica Federico Santa María, and Centro Científico-Tecnológico de Valparaíso, Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Maor, U., E-mail: maor@post.tau.ac.il [Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2015-06-30

    In this letter we demonstrate that our dipole model is successful in describing inclusive production within the same framework as diffractive physics. We believe that this achievement stems from the fact that our approach incorporates the positive features of the Reggeon approach and CGC/saturation effective theory, for high energy QCD.

  4. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    International Nuclear Information System (INIS)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-01-01

    The importance of the long-range Lifshitz-van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters' circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. copyright 1998 The American Physical Society

  5. Self-energies and the interactions of particles with surfaces

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  6. 2013 European School of High-Energy Physics

    CERN Document Server

    Perez, G; ESHEP 2013

    2015-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the the- oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, quantum chromodynamics, Higgs physics, physics beyond the Standard Model, flavour physics, and practical statistics for particle physicists.

  7. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  8. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  9. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  10. Neutrino--proton interactions at Fermilab energies: Experimental arrangement, analysis procedures, and qualitative features of the data

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.; DiBianca, F.A.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Truxton, R.

    1976-01-01

    The Fermilab 15-ft bubble chamber filled with hydrogen was exposed to a broad-momentum-band horn-focused neutrino beam produced by 300-GeV interacting protons. The selection procedure to choose a charged-current neutrino event sample is discussed. Fewer than three percent of the events are due to neutral hadron interactions. We present and experimentally test a method that can be used to identify the muon, estimate the incident neutrino energy, and eliminate most neutral-current interactions from the charged-current sample. Above 10 GeV the method produces an approximately 86% pure sample of charged-current events with an error in energy estimation of the order of 8% over a broad region of the data. In addition we establish experimentally several important properties of high-energy charged-current neutrino interactions. The hadrons are produced in a jet, the individual particles having sharply limited momenta perpendicular to the hadronic axis. The jet structure is maintained with constant properties to very high values of Q 2 and hadronic mass. The fraction of energy going into invisible particles is moderate, consistent with that expected. The average number of neutral pions rises linearly with the average number of charged particles

  11. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  12. High energy hadron-nucleus collision

    International Nuclear Information System (INIS)

    Takagi, Fujio

    1983-02-01

    This is a lecture note concerning high energy hadron-nucleus collision. The lecture gives the inelastic total cross section and the Glanber approximate multiple scattering formula at first. The mechanism of nuclear spallation is described in a cylindrical image. The multiplicity, the one particle distribution and the time-space structure of particle production are discussed. Various models are presented. The attenuation of forward particles and the structure of hadrons are discussed for each model. The atomic number (A) dependence of the production of large transverse momentum particles and jet, and the A dependence of charged multiplicity are presented. The backward production of particles and many body correlation are discussed. Lepton pair production and the initial interaction of constituents, collective interaction, multi quark state and phase transition are described. (Kato, T.)

  13. High energy physics above 10 TeV: a review of recent cosmic ray results

    International Nuclear Information System (INIS)

    Yodh, G.B.

    In cosmic rays the very high energy events and their interpretation are reviewed in a critical fashion so as to bring into focus the interesting aspects related to the behavior of high energy interactions

  14. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  15. Multinucleon interactions in collisions with nuclei at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-11-01

    The parton picture of multiple hA and AA scattering at high energies is developed. It is shown that it leads to the standard Glauber amplitude provided the number of partons in a hadron is distributed according to Poisson's law. Within this picture collisions of more than a pair of nucleons are considered. For AA scattering a two-dimensional effective quantum field theory is constructed which allows to conveniently calculate contributions to the amplitude with a given number of loops. The AGK rules for AA scattering are established. Inclusive cross-sections for particle production in hA and AA collisions are studied both in the non-cumulative and cumulative kinematical regions. (author). 13 refs, 9 figs

  16. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  17. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  18. Azimuthal asymmetry of slow particles in high energy nuclear interaction

    International Nuclear Information System (INIS)

    Sarkar, Subir; Goswami, T.D.

    2002-01-01

    An asymmetry in the angular distribution of slow particles in the azimuthal plane has been observed during high energy nuclear disintegration of photo emulsion nuclei exposed to 1.8 GeV/c k - and 20 GeV/c protons. The mechanism of disintegration is not in accordance with the cascade-evaporation model, which is based on isotropic emission of slow particles. Deviation from isotropy indicates that some of the slow particles might be emitted well before the thermal equilibrium is reached in the disintegrating system. (author)

  19. Setting up a Bioluminescence Resonance Energy Transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Cyril eCouturier

    2012-09-01

    Full Text Available Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed interactome. Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET technique was primarily developed to allow the dynamic monitoring of protein-protein interactions in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of protein-protein interactions and here is described why and how to set up and optimize a High Throughput Screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence substrate concentration, number of cells and medium composition used on the Z’ factor, and expected interferences for colored or fluorescent compounds.

  20. Experimental studies of elementary particle interactions at high energies

    International Nuclear Information System (INIS)

    Goulianos, K.

    1992-01-01

    In the past year, our research program encompassed four major areas: the UA-6 experiment at CERN, the CDF (Collider Detector at Fermilab) experiment at Fermilab, the SDC (Solenoidal Detector Collaboration) experiment of the SSC (Superconducting Super Collider), and an R ampersand D project for the development of High Pressure Gas Calorimetry for high luminosity colliders. The UA-6 experiment studies direct-γ and J/ψ production in pp and bar pp interactions at √s = 22.5 GeV. In the CDF experiment we have concentrated in the plug calorimeter upgrade program, which involves replacing the plug and forward calorimetry with a more compact calorimeter based on scintillator tiles being readout with wave-length shifting (WLS) fibers. In the SDC experiment, we have taken primary responsibility for the Preshower/Shower-Maximum detectors. We wrote the original shower-maximum proposal for the SDC and have contributed to detector simulations, scintillator/WLS-fiber light yield measurements, building prototype preshower and shower-maximum detectors and measuring their performance in a test beam, and developing novel photosensitive devices to read out the fibers. The High Pressure Gas Calorimeter project has been very successful. A prototype parallel plate iron based electromagnetic calorimeter was designed, constructed and tested in an electron beam at Fermilab. The results were very encouraging. We are presently working on a new design, which would be more suitable for the construction of economical, large scale calorimeters, such as those needed for the forward region of SDC and FAD

  1. High-energy chemical processes: Laser irradiation of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Liu, A.D.; Loffredo, D.M.

    1994-01-01

    Recent studies of the high-energy photochemical degradation of polycyclic aromatic hydrocarbons (PAHs) in solution have furthered our fundamental understanding of the way in which radiation interacts with matter. A new comprehensive mechanism that unifies many of the seemingly contradictory observations in radiation and photochemistry has been proposed on basis of evidence gathered using specialized techniques such as transient optical spectroscopy and transient dc conductivity. The PAH molecules were activated by two-photon ionization, and behavior of the transient ions were monitored as a function of photon energy. It was found that a greater percentage of ions retain sufficient energy to decompose when higher energy light was used. When these cations decompose they leave a trail of products that establish a ''high-energy'' decomposition pathway that involves proton transfer from the ion, a mechanism hitherto not considered in photoionization processes

  2. A more general interacting model of holographic dark energy

    International Nuclear Information System (INIS)

    Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.

  3. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1993-01-01

    Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au

  4. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    Science.gov (United States)

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  5. Strong-coupling interaction in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ray, D.K.

    1991-01-01

    Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone

  6. Workshop on Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies

    CERN Document Server

    Alessandro, B; Bergman, D; Bongi, M; Bunyatyan, A; Cazon, L; d'Enterria, D; de Mitri, I; Doll, P; Engel, R; Eggert, K; Garzelli, M; Gerhardt, L; Gieseke, S; Godbole, R; Grosse-Oetringhaus, J F; Gustafson, G; Hebbeker, T; Kheyn, L; Kiryluk, J; Lipari, P; Ostapchenko, S; Pierog, T; Piskounova, O; Ranft, J; Rezaeian, A; Rostovtsev, A; Sakurai, N; Sapeta, S; Schleich, S; Schulz, H; Sjostrand, T; Sonnenschein, L; Sutton, M; Ulrich, R; Werner, K; Zapp, K; CRLHC10; CRLHC 10

    2011-01-01

    The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments -- mostly from the LHC but also from the Tevatron, RHIC and HERA -- were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  7. The free-energy cost of interaction between DNA loops.

    Science.gov (United States)

    Huang, Lifang; Liu, Peijiang; Yuan, Zhanjiang; Zhou, Tianshou; Yu, Jianshe

    2017-10-03

    From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.

  8. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  9. Effective interactions for self-energy. I. Theory

    International Nuclear Information System (INIS)

    Ng, T.K.; Singwi, K.S.

    1986-01-01

    A systematic way of deriving effective interactions for self-energy calculations in Fermi-liquid systems is presented. The self-energy expression contains effects of density and spin fluctuations and also multiple scattering between particles. Results for arbitrarily polarized one-component Fermi-liquid systems and unpolarized two-component systems are explicitly given

  10. Evolution of holographic dark energy with interaction term Q∝ Hρde ...

    Indian Academy of Sciences (India)

    A flat FLRW Universe with dark matter and dark energy, which are interacting witheach other, is considered. The dark energy is represented by the holographic dark energy model and the interaction term is taken as proportional to the dark energy density. We have studied the cosmological evolution and analysed the ...

  11. Ferrocene Orientation Determined Intramolecular Interactions Using Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-11-01

    Full Text Available Two very different quantum mechanically based energy decomposition analyses (EDA schemes are employed to study the dominant energy differences between the eclipsed and staggered ferrocene conformers. One is the extended transition state (ETS based on the Amsterdam Density Functional (ADF package and the other is natural EDA (NEDA based in the General Atomic and Molecular Electronic Structure System (GAMESS package. It reveals that in addition to the model (theory and basis set, the fragmentation channels more significantly affect the interaction energy terms (ΔE between the conformers. It is discovered that such an interaction energy can be absorbed into the pre-partitioned fragment channels so that to affect the interaction energies in a particular conformer of Fc. To avoid this, the present study employs a complete fragment channel—the fragments of ferrocene are individual neutral atoms. It therefore discovers that the major difference between the ferrocene conformers is due to the quantum mechanical Pauli repulsive energy and orbital attractive energy, leading to the eclipsed ferrocene the energy preferred structure. The NEDA scheme further indicates that the sum of attractive (negative polarization (POL and charge transfer (CL energies prefers the eclipsed ferrocene. The repulsive (positive deformation (DEF energy, which is dominated by the cyclopentadienyle (Cp rings, prefers the staggered ferrocene. Again, the cancellation results in a small energy residue in favour of the eclipsed ferrocene, in agreement with the ETS scheme. Further Natural Bond Orbital (NBO analysis indicates that all NBO energies, total Lewis (no Fe and lone pair (LP deletion all prefer the eclipsed Fc conformer. The most significant energy preferring the eclipsed ferrocene without cancellation is the interactions between the donor lone pairs (LP of the Fe atom and the acceptor antibond (BD* NBOs of all C–C and C–H bonds in the ligand, LP(Fe-BD*(C–C & C

  12. Study of high-energy nucleus-nucleus interactions with the enlarged NA10 dimuon spectrometer

    CERN Multimedia

    Dimuon production is studied in $^{16}$0 - $^{238}$U and $^{32}$S - $^{238}$U collisions at the maximum possible luminosity of $\\sim10^{7}$ interactions per pulse using the NA10 spectrometer to which beam counters, an active segmented target and an electromagnetic calorimeter have been added. Thermal dimuons are expected to be emitted from a quark-gluon plasma at a detectable rate in the 1-3 GeV/c$^{2}$ transverse mass range, and to differ from ordinary dimuons by their $P_{T}$ and rapidity distribution. Particular emphasis is put on the $J/\\psi$ meson whose $\\mu\\mu$ decays are studied in detail. It is expected to be suppressed when a quark-gluon plasma is formed (Debye screening of the colour field). The correlations of the dimuon variables with charged multiplicity and neutral energy flow distributions are studied event by event. The energy density is estimated from the measured transverse neutral energy. Also $p$ - $^{228}$U collisions are studied in the same apparatus with the purpose of establishing a da...

  13. Do high-energy neutrinos travel faster than photons in a discrete space-time?

    Energy Technology Data Exchange (ETDEWEB)

    Xue Shesheng, E-mail: xue@icra.it [ICRANeT, Piazzale della Repubblica, 10-65122, Pescara, Physics Department, University of Rome ' ' La Sapienza' ' , Rome (Italy)

    2011-12-06

    The recent OPERA measurement of high-energy neutrino velocity, once independently verified, implies new physics in the neutrino sector. We revisit the theoretical inconsistency of the fundamental high-energy cutoff attributing to quantum gravity with the parity-violating gauge symmetry of local quantum field theory describing neutrinos. This inconsistency suggests high-dimension operators of neutrino interactions. Based on these studies, we try to view the OPERA result, high-energy neutrino oscillations and indicate to observe the restoration of parity conservation by measuring the asymmetry of high-energy neutrinos colliding with left- and right-handed polarized electrons.

  14. Modified holographic Ricci dark energy coupled to interacting dark matter and a non-interacting baryonic component

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Luis P.; Richarte, Martin G. [Universidad de Buenos Aires, IFIBA, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2013-01-15

    We examine a Friedmann-Robertson-Walker universe filled with interacting dark matter, modified holographic Ricci dark energy (MHRDE), and a decoupled baryonic component. The estimations of the cosmic parameters with Hubble data lead to an age of the universe of 13.17 Gyr and show that the MHRDE is free from the cosmic-age problem at low redshift (0{<=}z{<=}2) in contrast to holographic Ricci dark energy (HRDE) case. We constrain the parameters with the Union2 data set and contrast with the Hubble data. We also study the behavior of dark energy at early times by taking into account the severe bounds found at recombination era and/or at big bang nucleosynthesis. The inclusion of a non-interacting baryonic matter forces that the amount of dark energy at z{sub t} {proportional_to} O(1) changes abruptly implying that {Omega} {sub x} (z {approx_equal}1100)=0.03, so the bounds reported by the forecast of Planck and CMBPol experiments are more favored for the MHRDE model than in the case of HRDE cutoff. For the former model, we also find that at high redshift the fraction of dark energy varies from 0.006 to 0.002, then the amount of {Omega} {sub x} at the big bang nucleosynthesis era does not disturb the observed helium abundance in the universe provided that the bound {Omega} {sub x} (z {approx_equal}10 {sup 10}) <0.21 is hold. (orig.)

  15. Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space

  16. Pion nucleon interaction at low energy

    International Nuclear Information System (INIS)

    Banerjee, M.K.

    1979-03-01

    A theory of the πN interaction at low energy is described. An analogy is made with an unusual approach to potential scattering theory. Phase shifts, cross sections, and scattering amplitudes and lengths are calculated. 28 references

  17. Effective low-energy Hamiltonians for interacting nanostructures

    Science.gov (United States)

    Kinza, Michael; Ortloff, Jutta; Honerkamp, Carsten

    2010-10-01

    We present a functional renormalization group (fRG) treatment of trigonal graphene nanodisks and composites thereof, modeled by finite-size Hubbard-like Hamiltonians with honeycomb lattice structure. At half filling, the noninteracting spectrum of these structures contains a certain number of half-filled states at the Fermi level. For the case of trigonal nanodisks, including interactions between these degenerate states was argued to lead to a large ground state spin with potential spintronics applications [M. Ezawa, Eur. Phys. J. B 67, 543 (2009)10.1140/epjb/e2009-00041-7]. Here we perform a systematic fRG flow where the excited single-particle states are integrated out with a decreasing energy cutoff, yielding a renormalized low-energy Hamiltonian for the zero-energy states that includes effects of the excited levels. The numerical implementation corroborates the results obtained with a simpler Hartree-Fock treatment of the interaction effects within the zero-energy states only. In particular, for trigonal nanodisks the degeneracy of the one-particle-states with zero energy turns out to be protected against influences of the higher levels. As an explanation, we give a general argument that within this fRG scheme the zero-energy degeneracy remains unsplit under quite general conditions and for any size of the trigonal nanodisk. We also discuss a second class of nanostructures, bow-tie-shaped systems, where the zero-energy states are not protected.

  18. Ultra-High Energy Cosmic Rays and Neutrinos

    International Nuclear Information System (INIS)

    Nagataki, Shigehiro

    2011-01-01

    In this paper, simulation of propagation of UHE-protons from nearby galaxies is presented. We found good parameter sets to explain the arrival distribution of UHECRs reported by AGASA and energy spectrum reported by HiRes. Using a good parameter set, we demonstrated how the distribution of arrival direction of UHECRs will be as a function of event numbers. We showed clearly that 1000-10000 events are necessary to see the clear source distribution. We also showed that effects of interactions and trapping of UHE-Nuclei in a galaxy cluster are very important. Especially, when a UHECR source is a bursting source such as GRB/AGN flare, heavy UHE-Nuclei are trapped for a long time in the galaxy cluster, which changes the spectrum and chemical composition of UHECRs coming from the galaxy cluster. We also showed that such effects can be also important when there have been sources of UHE-Nuclei in Milky Way. Since light nuclei escape from Milky Way in a short timescale, the chemical composition of UHECRs observed at the Earth can be heavy at high-energy range. Finally, we showed how much high-energy neutrinos are produced in GRBs. Since GRB neutrinos do not suffer from magnetic field bending, detection of high-energy neutrinos are very important to identify sources of UHECRs. Especially, for the case of GRBs, high-energy neutrinos arrive at the earth with gamma-rays simultaneously, which is very strong feature to identify the sources of UHECRs.

  19. Use of specific features of electron and positron interactions with monocrystals for the control of high-energy particle beam parameters

    International Nuclear Information System (INIS)

    Bochek, G.L.; Vit'ko, V.I.; Grishaev, I.A.; Kovalenko, G.D.; Kulibaba, V.I.; Morokhovskij, V.L.; Shramenko, B.I.

    1977-01-01

    To study possibilities of using the effect of high energy positron and electron interactions with crystals in practice at the 2 GeV Kharkov lineac the effect of a light particle charge sign on the processes of bremsstrahlung, elastic scattering and revealing ''blocking effect'' in elastic scatterina has been investigated experimentally of 1 GeV electron (positron) beam is directed to a silicon crystal of 185 μkm thickness. Dependence of total bremsstrahlung flow on the angle between the beam direction and crystal axis has shown, that positron bremsstrahlung is minimum (positrons are channelling, but electron bremsstrahlung is maximum, when crystallographic axis direction coincides with particle direction. The process of positron annihilation in flight has been investigated in 300 μkm thick silicon monocrystal. Bremsstrahlung intensity for channeling positrons drops 4.4 times, and intensity of annihilation radiation - 1.6 times as compared to the case, when channeling regime is absent. Experimental data point out the possibility of using monocrystals for control of the parameters of high-energy particle control beams

  20. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  1. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  2. SPARC experiments at the high-energy storage ring

    International Nuclear Information System (INIS)

    Stöhlker, Thomas; Litvinov, Yuri A; Bagnoud, Vincent; Dimopoulou, Christina; Dolinskii, Alexei; Geppert, Christopher; Hagmann, Siegbert; Katayama, Takeshi; Kühl, Thomas; Nörtershäuser, Wilfried; Steck, Markus; Bechstedt, Ulf; Maier, Rudolf; Prasuhn, Dieter; Stockhorst, Hans; Schuch, Reinhold

    2013-01-01

    The physics program of the SPARC collaboration at the Facility for Antiproton and Ion Research (FAIR) focuses on the study of collision phenomena in strong and even extreme electromagnetic fields and on the fundamental interactions between electrons and heavy nuclei up to bare uranium. Here we give a short overview on the challenging physics opportunities of the high-energy storage ring at FAIR for future experiments with heavy-ion beams at relativistic energies with particular emphasis on the basic beam properties to be expected. (paper)

  3. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  4. Interacting holographic dark energy with logarithmic correction

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy

  5. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  6. Cosmic-ray ultra high-energy multijet family event

    International Nuclear Information System (INIS)

    Zou Bao-tang; Wang Cheng-rui; Ren Jing-ru

    1987-01-01

    A cosmic-ray ultra-high-energy multijet family event with visible energy of about 1500 TeV and five large cores is reported. This event was found in the 1980-1981 exposure of the Mt. Kambala (5500 M a.s.l.) emulsion-chamber experiment. The family characteristics are analyzed and compared with other cosmic ray events in the same energy range. The production and fragmentation characteristics of the five jets are studied and compared with the experimental results of accelerators and emulsion chamber C-jets as well as with QCD predictions above the TeV range. Some features on hadronic interactions in the TeV range are discussed

  7. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    Science.gov (United States)

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  8. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  9. CGC/saturation approach for high energy soft interactions: 'soft' Pomeron structure and v{sub n} in hadron and nucleus collisions from Bose-Einstein correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2016-11-15

    In the framework of our model of soft interactions at high energy based on the CGC/saturation approach, we show that Bose-Einstein correlations of identical gluons lead to large values of v{sub n}. We demonstrate how three dimensional scales of high energy interactions, hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of v{sub n}. Our calculation shows that the structure of the 'dressed' Pomeron leads to values of v{sub n} which are close to experimental values for proton-proton scattering, 20 % smaller than the observed values for proton-lead collisions and close to lead-lead collisions for 0-10 % centrality. Bearing this result in mind, we conclude that it is premature to consider that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma. (orig.)

  10. Higgs boson production by very high energy neutrinos

    International Nuclear Information System (INIS)

    Mikaelian, K.O.; Oakes, R.J.

    1978-11-01

    Higgs bosons may be produced by bremsstrahlung off a virtual W/sup +-/ or a Z 0 exchanged in a charged or neutral current neutrino interaction. The production cross sections are calculated, and it is pointed out that they cannot grow quadratically with E/sub nu/ as had been suggested earlier, and it is argued that at best they can increase like the square of ln s/M 2 /sub W,Z/ at very high energies. Using a simple approximation for the propagator effect, numerical results in the high energy regime 1 TeV less than or equal to E/sub nu/ less than or equal to 1000 TeV appropriate for DUMAND. 9 references

  11. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  12. Pollution prevention and energy conservation: Understanding the interactions

    International Nuclear Information System (INIS)

    Purcell, A.H.

    1992-01-01

    The traditional view holds that pollution prevention is good for energy conservation and vice versa. Analysis of pollution prevention and energy conservation activities indicates, however, that interactions and synergies between environmental and energy factors can mean that pollution prevention can be energy intensive and, conversely, that energy conservation can lead to increased pollution. Full cost accounting, taking into account all media, must be performed before precise pollution prevention-energy conservation interrelationships can be characterized and quantified. Use of a pollution prevention-energy conservation matrix can further this understanding

  13. Interactive Cosegmentation Using Global and Local Energy Optimization

    OpenAIRE

    Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan

    2015-01-01

    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...

  14. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  15. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  16. Energy cascading by triple-bubble interactions via time-delayed control

    International Nuclear Information System (INIS)

    Lin, Yen-Liang; Chang, Chia-Ming; Tseng, Fan-Gang; Yang, I-Da; Chieng, Ching-Chang

    2012-01-01

    The triple-bubble interaction controlled by a precise time-delayed technique was investigated in detail with respect to different ignition times, heater spaces and sequential firing modes to promote efficient energy cascading and concentration. The target bubble, which was generated under a specific delay time with two auxiliary bubbles, can have a volume that is two or almost three times larger than that of a single bubble. This result overcomes the limitation of energy usage on an explosive microbubble under a constant heat flux. As the heater space decreases, stronger bubble–bubble interactions were obtained due to the hydrodynamic effect and the intensive pressure wave emission, resulting in highly enhancing and depressing bubble dynamics. Other interesting phenomena, such as bubble shifting, mushroom-shape bubble, rod-shape bubble and bubble extension among heaters, were also recorded by a high-speed phase-averaged stroboscopic technique, displaying special non-spherical bubble dynamics. Artificial manipulation of bubble behavior was further conducted in a two-level sequential firing process. Using various volumetric combinations, the adjustable multi-level fluid transportation can be realized by a digital time-delayed control. The above-mentioned information can be applied to not only the design and operation of inkjet printheads but also cavitation research and fluid pumping in microdevices. (paper)

  17. Introduction to high energy cosmic ray physics

    International Nuclear Information System (INIS)

    Battistoni, G.; Grillo, A.F.

    1995-01-01

    After a few general qualitative considerations about the characteristics of primary cosmic rays arriving at the top of atmosphere, the fundamental concepts on their propagation and acceleration are discussed. The experimental situation, both from direct and indirect experiments, is presented, followed by a discussion on some concepts on hadronic interactions at high energy which are applied in a simplified and analytical model to the production of secondary particles in atmosphere

  18. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  19. Interacting holographic dark energy with logarithmic correction

    OpenAIRE

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of s...

  20. Neutral strange particle production in high energy charged current neutrino deuterium interactions

    International Nuclear Information System (INIS)

    Son, D.

    1982-01-01

    In an exposure of the Fermilab 15-foot deuterium filled bubble chamber to a single horn focused wide band neutrino beam with energies between 10 and 250 GeV, 311 K/sub s/, 219 lambda and 7 Anti lambda are observed. These correspond to K 0 anti(K 0 ), lambda(Σ 0 ) and anti lambda production rates per charged current interaction of 0.170 +/- 0.010, 0.060 +/- 0.004, and 0.002 +/- 0.001, respectively, in 18.9 +/- 0.09% V 0 events of total charged current events. The inclusive lambda rate in nun interactions is significantly higher than that in nup interactions. The multiplicity of K 0 increases (or decreases) with increasing E/sub nu/, W, and Q 2 (or x/sub BETA), while that of lambda shows no significant variations. From a detailed study of lambda, lambda K 0 ], lambda K/sup */ +0 systems, the production rate of lambda from the charm quark decay is found to be (2.1 +/- 1.0)% of the total charged current, which leads to a small cross section for charmed baryon quasielastic production -40 cm 2 (90% CL) and a small semileptonic branching ratio of lambda/sub c/ + decay, B(lambda/sub c/ + → e + lambda x + , K 0 p, lambda π + π + π - , and antiK 0 pπ + π - decay modes of lambda/sub c/ + are studied and found consistent with our previous results. The gross probability that an (ss) pair is produced in lambda S = 0 neutrino reactions is estimated to be 0.19 +/- 0.06, which agrees well with that in hadronic experiments. The inclusive x/sub F/ and p/sub T 2 / distributions and their average values are very similar to those in hadronic experiments, which suggest that the majority of neutral strange particles are produced in neutrino reactions via the associated production mechanism

  1. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  2. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  3. Coarse-grained versus atomistic simulations : realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, Ali; Pool, René; van Dijk, Erik; Bijlard, Jochem; Abeln, Sanne; Heringa, Jaap; Feenstra, K Anton

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  4. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, A.; Pool, R.; van Dijk, E.; Bijlard, J.; Abeln, S.; Heringa, J.; Feenstra, K.A.

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  5. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  6. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Candanedo, José A.; Geier, Sonja

    2010-01-01

    of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load......“Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  7. A cosmic ray super high energy multijet family event

    International Nuclear Information System (INIS)

    Zou Baotang; Wang Chengrui; Ren Jingru

    1986-01-01

    A cosmic ray super high energy family event with visible energy of about 1500 TeV and five big cores is reported. This event was found in the 1980-1981 exposure of Mt. Kambala (5500 M a.s.l.) emulsion chamber experiment. The family characteristics are analyzed and compared with the other cosmic ray events in the same energy range. The production and fragmentation characteristics of the five jets are studied and compared with the experimntal results of accelerators and C-jets as well as with QCD predictions up to TeV. Some features on hadronic interactions at TeV range are discussed

  8. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  9. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  10. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  11. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  12. Effect of crack-microcracks interaction on energy release rates

    Science.gov (United States)

    Chudnovsky, A.; Wu, Shaofu

    1990-01-01

    The energy release rates associated with the main crack advancing into its surrounding damage zone, and the damage zone translation relative to the main crack, as well as the energy of interaction between the crack and the damage zone are analyzed. The displacement and stress fields for this crack-damage interaction problem are reconstructed by employing a semi-empirical stress analysis which involves experimental evaluation of the average microcrack density in the damage zone.

  13. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    Science.gov (United States)

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interacting vacuum energy in the dark sector

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L. P. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428 (Argentina); Carneiro, S. [Instituto de Física, Uníversídade Federal da Bahia, 40210-340, Salvador, BA (Brazil)

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  15. Interactive Joint Transfer of Energy and Information

    DEFF Research Database (Denmark)

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo

    2013-01-01

    In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical...... key design insights. Index Terms— Two-way channel, interactive communication, energy transfer, energy harvesting....... resources, such as radio waves, particles and qubits, can conceivably reuse, at least part, of the received resources. This paper aims at illustrating some of the new challenges that arise in the design of communication networks in which the signals exchanged by the nodes carry both information and energy...

  16. A review of currently available high performance interactive graphics systems

    International Nuclear Information System (INIS)

    Clark, S.A.; Harvey, J.

    1981-12-01

    A survey of several interactive graphics systems is given, all but one of which being based on calligraphic technology, which are being considered for a new High Energy Physics graphics facility at RAL. A brief outline of the system architectures is given, the detailed features being summarised in an appendix, and their relative merits are discussed. (U.K.)

  17. Interaction of electromagnetic energy with biological material - relation to food processing

    NARCIS (Netherlands)

    Ponne, C.T.; Bartels, P.V.

    1995-01-01

    For food scientists and technologists, the interaction of electromagnetic energy with enzymes, microorganisms and other food compounds is important in optimizing process efficiency and/or product quality. To be able to implement research findings on interaction of electromagnetic energy with matter;

  18. Confinement properties of high energy density plasmas in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Twichell, J.C.

    1984-08-01

    The confinement of particles and energy is critically dependent on the plasma-wall interaction. Results of a study detailing this interaction are presented. High power ICRF heated and gun afterglow plasmas were studied to detail the mechanisms determining particle and energy confinement. An extensive zero-D simulation code is used to assist in interpreting the experimental data. Physically reasonable models for plasma surface interactions, time dependent coronal treatment of impurities and multiple region treatment of neutrals are used in modeling the plasma. Extensive diagnostic data are used to verify the model. Non-heated plasmas decay from 28 to 3 eV allowing clear identification of wall impact energy thresholds for desorption and particle reflection. The charge state distribution of impurities verifies the reflux to plasma diffusion rate ratio. Close agreement between the simulation and experimental data is found

  19. Hadronic photon-photon interactions at high energies

    International Nuclear Information System (INIS)

    Engel, R.; Siegen Univ.; Ranft, J.

    1996-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model contains contributions from direct, resolved soft and resolved hard interactions. All free parameters of the model are determined in fits to hadron-hadron and photon-hadron cross section data. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. (author)

  20. Diquark fragmentation functions in hadron-nucleon interactions at 19 GeV/c and other energies

    International Nuclear Information System (INIS)

    Bakken, V.; Breivik, F.O.; Jacobsen, T.

    New data on pion production in pn-interactions at 19 GeV/c are used, together with earlier data on pion production in pn (π + n) at other energies, to determine the diquark fragmentation functions Dsup(π) +- sub(dd)(=Dsup(π) +- sub(uu)) and Dsup(π)sub(ud) in the neutron and proton fragmentation regions. Typical high energy data on pion production in pp-interactions are also considered. The unfavoured fragmentation function Dsup(π) + sub(dd)(x) is found to be much smaller than the favoured fragmentati ion function Dsup(π) - sub(dd)(x) and to have a steeper x-dependence. The diquark fragmentation functions agree very well with those from v(v - )- proton interactions as expected from quark parton models

  1. Analysis of interactions among the barriers to energy saving in China

    International Nuclear Information System (INIS)

    Wang Guohong; Wang Yunxia; Zhao Tao

    2008-01-01

    Since China became the second largest energy consumer and carbon dioxide emitter, the problem of energy consumption and environmental pollution has drawn the world's attention. Meanwhile, Chinese government has put high emphasis on the problem. One project of energy saving initiated by Chinese government has been put into practice. However, many difficulties need to be dealt with to meet the expected aim of social development. The objective of this article is to investigate the interactions among the major barriers which prevent the practice of energy saving in China. Obviously, a clear definition of relationships among the barriers to energy saving helps top leaders make relevant decisions to solve the problem of economic sustainability, energy security and environment pollution in the future. To date, studies specifying energy-saving barriers have often focused on analyzing these barriers separately. As a result, a holistic view in understanding the barriers to energy-saving project is lacking. Interpretive structural modeling (ISM) is utilized to summarize the critical barriers hindering the project of energy saving in China and to explain the interrelationships among them. Suggestions for energy-saving practice and future research are provided

  2. Long-range Coulomb interactions in low energy (e,2e) data

    International Nuclear Information System (INIS)

    Waterhouse, D.

    2000-01-01

    Full text: Proper treatment of long-range Coulomb interactions has confounded atomic collision theory since Schrodinger first presented a quantum-mechanical model for atomic interactions. The long-range Coulomb interactions are difficult to include in models in a way that treats the interaction sufficiently well but at the same time ensures the calculation remains tractable. An innovative application of an existing multi-parameter (e,2e) data acquisition system will be described. To clarify the effects of long-range Coulomb interactions, we will report the correlations and interactions that occur at low energy, observed by studying the energy sharing between outgoing electrons in the electron-impact ionisation of krypton

  3. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  4. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, April 16, 1994--August 1, 1994

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1994-01-01

    The objective of this program is the experimental study of interactions of low energy, highly charged ions with other atomic species. The Cornell superconducting solenoid, cryogenic electron beam ion source CEBIS designed and built in our laboratory is the major piece of apparatus used in these investigations. This progress report describes the work accomplished during the period April 16, 1994 and August 1, 1994. This includes both finished experiments and preparatory work for planned future experiments using the source. During this time, we have completed measurements of the angular distributions and energy gains in Ar q+ (11≤q≤14) on Ar collisions at 72 qeV laboratory energy. In particular, energy gain spectra at different laboratory scattering angles were obtained for Ar( q-1 ) + projectiles, i.e. projectiles whose final charge state had decreased by one unit. The experimental technique used, and the method of analysis are described elsewhere. The raw spectra are similar to those observed for Ar 8+ and Ar l0+ on Ar at comparable energies, as well as those described in the last progress report for Ar l2+ on Ar

  5. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  6. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  7. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    Science.gov (United States)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  8. Interactions Between Energy Drink Consumption and Sleep Problems: Associations with Alcohol Use Among Young Adolescents.

    Science.gov (United States)

    Marmorstein, Naomi R

    2017-09-01

    Background: Energy drink consumption and sleep problems are both associated with alcohol use among adolescents. In addition, caffeine consumption (including energy drinks) is associated with sleep problems. However, information about how these three constructs may interact is limited. The goal of this study was to examine potential interactions between energy drink consumption and sleep problems in the concurrent prediction of alcohol use among young adolescents. Coffee and soda consumption were also examined for comparison. Methods: Participants from the Camden Youth Development Study were included ( n  = 127; mean age = 13.1; 68% Hispanic, 29% African American) and questionnaire measures of frequency of caffeinated beverage consumption (energy drinks, coffee, and soda), sleep (initial insomnia, sleep disturbances, daytime fatigue, and sleep duration), and alcohol consumption were used. Regression analyses were conducted to examine interactions between caffeinated beverage consumption and sleep in the concurrent prediction of alcohol use. Results: Energy drink consumption interacted with initial insomnia and daytime fatigue to concurrently predict particularly frequent alcohol use among those with either of these sleep-related problems and energy drink consumption. The pattern of results for coffee consumption was similar for insomnia but reached only a trend level of significance. Results of analyses examining soda consumption were nonsignificant. Conclusions: Young adolescents who both consume energy drinks and experience initial insomnia and/or daytime fatigue are at particularly high risk for alcohol use. Coffee consumption appears to be associated with similar patterns. Longitudinal research is needed to explain the developmental pathways by which these associations emerge, as well as mediators and moderators of these associations.

  9. Casimir energy of a BEC: from moderate interactions to the ideal gas

    International Nuclear Information System (INIS)

    Schiefele, J; Henkel, C

    2009-01-01

    Considering the Casimir effect due to phononic excitations of a weakly interacting dilute Bose-Einstein condensate (BEC), we derive a renormalized expression for the zero-temperature Casimir energy E C of a BEC confined to a parallel plate geometry with periodic boundary conditions. Our expression is formally equivalent to the free energy of a bosonic field at finite temperature, with a nontrivial density of modes that we compute analytically. As a function of the interaction strength, E C smoothly describes the transition from the weakly interacting Bogoliubov regime to the non-interacting ideal BEC. For the weakly interacting case, E C reduces to leading order to the Casimir energy due to zero-point fluctuations of massless phonon modes. In the limit of an ideal Bose gas, our result correctly describes the Casimir energy going to zero

  10. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    Science.gov (United States)

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  11. Indiana University high-energy physics group. Technical progress report, December 1, 1982-October 31, 1983

    International Nuclear Information System (INIS)

    Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Heinz, R.M.; Martin, H.J.; Ogren, H.O.

    1983-01-01

    The Indiana University High-Energy Physics Group has been actively involved in a variety of research programs during the current contract period. These programs are associated with major experiments conducted by our group at SLAC, Fermilab, Brookhaven and CERN. The physics areas under investigation include studies of psi meson production in hadron interactions (CERN WA-11), a study of low-p/sub t/ and high-p/sub t/ collisions utilizing the Multiparticle Spectrometer at Fermilab (E110/557/672), a glueball search (Brookhaven E771), and a high resolution study of e + e - interactions at high energy at SLAC (PEP HRS experiment). The status of the various efforts are discussed

  12. Search for Ultra High-Energy Neutrinos with AMANDA-II

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-01-01

    A search for diffuse neutrinos with energies in excess of 10 5 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10 7 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E 2 Φ 90%CL -7 GeV cm -2 s -1 sr -1 valid over the energy range of 2 x 10 5 GeV to 10 9 GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level

  13. Interaction mechanism for energy transfer from Ce to Tb ions in silica

    International Nuclear Information System (INIS)

    Seed Ahmed, H.A.A.; Chae, W.S.; Ntwaeaborwa, O.M.; Kroon, R.E.

    2016-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials. In this study, numerical simulations based on theoretical models of non-radiative energy transfer are compared to experimental results for Ce, Tb co-doped silica. Energy transfer from the donor (Ce) to the acceptor (Tb) resulted in a decrease in the Ce luminescence intensity and lifetime. The decrease in intensity corresponded best with the energy transfer models based on the exchange interaction and the dipole-dipole interaction. The critical transfer distance obtained from the fitting using both these models is around 2 nm. Since the exchange interaction requires a distance shorter than 1 nm to occur, the mechanism most likely to account for the energy transfer is concluded to be the dipole–dipole interaction. This is supported by an analysis of the lifetime data.

  14. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  15. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  16. The production of photons with large transverse momentum in proton-proton interaction at high energy in the center of mass, at the ISR of CERN

    International Nuclear Information System (INIS)

    Riedinger, Michel.

    1977-01-01

    The production of photons with large transverse momentun emitted in pp interactions at high energy, at the ISR of CERN, is studied. The inclusive distributions of photons were measured in the interval 0.7 2 sigma sub(γ)/dpdΩ=Aexp(Bpsub(t)+Cpsub(t) 2 ). The π 0 cross sections were deduced from these photon cross sections. At psub(t)( 2 at 3GeV /c), than the approximately exp(-6psub(t)) decrease, as well as an increase with the energy √s. A fit of the π 0 cross-sections, compatible with a power-law behaviour is given [fr

  17. Results from the AMANDA high-energy neutrino detector

    International Nuclear Information System (INIS)

    Biron, A.

    2001-01-01

    This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For E μ > 10 TeV, the detector exceeds 10,000 m 2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favourably to existing limits for sources in the Southern sky. We also present the current status of the searches for high-energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the Earth

  18. Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements

    International Nuclear Information System (INIS)

    Rio, Pablo del

    2010-01-01

    CO 2 emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the 'certificate' debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions.

  19. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  20. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  1. Probability distributions in conservative energy exchange models of multiple interacting agents

    International Nuclear Information System (INIS)

    Scafetta, Nicola; West, Bruce J

    2007-01-01

    Herein we study energy exchange models of multiple interacting agents that conserve energy in each interaction. The models differ regarding the rules that regulate the energy exchange and boundary effects. We find a variety of stochastic behaviours that manifest energy equilibrium probability distributions of different types and interaction rules that yield not only the exponential distributions such as the familiar Maxwell-Boltzmann-Gibbs distribution of an elastically colliding ideal particle gas, but also uniform distributions, truncated exponential distributions, Gaussian distributions, Gamma distributions, inverse power law distributions, mixed exponential and inverse power law distributions, and evolving distributions. This wide variety of distributions should be of value in determining the underlying mechanisms generating the statistical properties of complex phenomena including those to be found in complex chemical reactions

  2. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  3. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  5. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    CERN Document Server

    Bilki, B.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N.K.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Carloganu, C.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E.J.; van Doren, B.; Wilson, G.W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëne, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.

    2015-09-11

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 600,000 selected negatively changed pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. Although a reasonable overall description of the data is observed, there are significant quantitative discrepancies in the longitudinal and transverse distributions of reconstructed energy.

  6. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  7. Energy economy in the actomyosin interaction: lessons from simple models.

    Science.gov (United States)

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  8. On the role of high multipolarity interactions in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Sushkov, A.V.

    1989-01-01

    The influence of interactions with the multipolarity λ=5,6,7 and 9 is studied on the mixing of two-quasineutron and two-quasineutron states with large K in doubly even deformed nuclei. The mixing of the two-quasineutron and two-quasiproton states with the same values of K π , caused by a high multipolarity interaction, is shown to be large in the case of proximity of their energies. Qualitatively correct description of experimental data on the mixing of two-quasineutron and two-quasiproton configurations in 178,176 Hf, 174 Yb, 168 Er and 158 Gd is obtained. 20 refs.; 1 tab

  9. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  10. Search for new physics in final states with a high energy electron and large missing transverse energy

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00345099

    The most successful and comprehensive theory describing the microcosm is the Standard Model of particle physics (SM). It comprises all known elementary particles and describes in high precision the basic processes of three of the four fundamental interactions. But still, not all experimental observations and theoretical challenges are covered. Many models exist that take the SM as a good approximation of natural phenomena in already discovered energy regions, but extend it in various ways. The Large Hadron Collider (LHC) provides the opportunity to look into these high energy regions using proton-proton collisions at significantly higher center-of-mass energies than previous experiments. This dissertation searches for physics beyond the SM especially in final states with one highly energetic electron (respectively positron) and large missing transverse energy. With the data set recorded in 2012 by the ATLAS detector, a large multi-purpose detector making use of the LHC, the spectrum of the related combined ...

  11. Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Pablo del, E-mail: pablo.delrio@cchs.csic.e [Instituto de Politicas y Bienes Publicos, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-09-15

    CO{sub 2} emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the 'certificate' debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions.

  12. Analysing the interactions between renewable energy promotion and energy efficiency support schemes. The impact of different instruments and design elements

    Energy Technology Data Exchange (ETDEWEB)

    Del Rio, Pablo [Instituto de Politicas y Bienes Publicos, Consejo Superior de Investigaciones Cientificas (CSIC), C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-09-15

    CO{sub 2} emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the certificate debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions. (author)

  13. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems

    DEFF Research Database (Denmark)

    Zong, Yi; Böning, Georg Martin; Santos, Rui Mirra

    2016-01-01

    ) strategy for energy management in smart buildings, which can act as active users interacting with smart energy systems. The challenges encountered during the implementation of EMPC for active demand side management are investigated in detail in this paper. A pilot testing study shows energy savings......When there is a high penetration of renewables in the energy system, it requires proactive control of large numbers of distributed demand response resources to maintain the system’s reliability and improve its operational economics. This paper presents the Economic Model Predictive Control (EMPC...

  14. Energy security and climate policy. Assessing interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-28

    World energy demand is surging. Oil, coal and natural gas still meet most global energy needs, creating serious implications for the environment. One result is that CO2 emissions, the principal cause of global warming, are rising. This new study underlines the close link between efforts to ensure energy security and those to mitigate climate change. Decisions on one side affect the other. To optimise the efficiency of their energy policy, OECD countries must consider energy security and climate change mitigation priorities jointly. The book presents a framework to assess interactions between energy security and climate change policies, combining qualitative and quantitative analyses. The quantitative analysis is based on the development of energy security indicators, tracking the evolution of policy concerns linked to energy resource concentration. The 'indicators' are applied to a reference scenario and CO2 policy cases for five case-study countries: The Czech Republic, France, Italy, the Netherlands, and the United Kingdom. Simultaneously resolving energy security and environmental concerns is a key challenge for policy makers today. This study helps chart the course.

  15. Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions

    CERN Multimedia

    Karavicheva, T; Atayan, M; Bordalo, P; Constans, N P; Gulkanyan, H; Kluberg, L

    2002-01-01

    %NA50 %title\\\\ \\\\The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon c.m. energies of $ \\sqrt{s} $ = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as $0.1$ $1 GeV/c$, and stands maximal luminosity (5~10$^{7}$~Pb ions and 10$^7$ interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the $\\phi$, J/$\\psi$ and $\\psi^\\prime$ vector mesons and thermal dimuons, and reference signals, namely the (unseparated) $\\rho$ and $\\omega$ mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of {\\it charmonium suppression} and {\\it strangeness enhancement}.\\\\ \\\\The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5~m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation ...

  16. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  17. High-energy-physics studies. Progress report, Part I. Experimental program

    International Nuclear Information System (INIS)

    1982-01-01

    The experimental high energy physics program at Ohio State University for 1982 is described. The following topics are discussed: a search for neutrino oscillations at LAMPF; measuring charm and beauty decays via hadronic production in a hybrid emulsion spectrometer; prompt neutrino production experiment; search for long-lived particles from neutrino interactions in a tagged emulsion spectrometer; electron-positron interactions at CESR-CLEO; a search for exotic forms of stable matter; and development of computer systems for data processing and for development of detectors

  18. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

  19. Elimination of Power Divergences in Consistent Model for Spinless and High-Spin Particle Interactions

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2007-01-01

    The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle

  20. Balance Function in High-Energy Collisions

    International Nuclear Information System (INIS)

    Tawfik, A.; Shalaby, Asmaa G.

    2015-01-01

    Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties

  1. Similarity of multi-fragmentation of residual nucleus created in nucleus-nucleus interactions at high energies

    International Nuclear Information System (INIS)

    Abdel-Hafiez, A.; Chernyavski, M.M.; Orlova, G.I.; Gulamov, K.G.; Navotny, V.SH.; Uzhinskii, V.V.

    2000-01-01

    Experimental data on multi-fragmentation of residual krypton nuclei created in the interactions of the krypton nuclei with photoemulsion nuclei ut energy of 0.9 GeV per nucleon are presented in a comparison with the analogous data on fragmentation of gold residual nuclei at the energy of 10.7 GeV/nucleon. It is shown for the first time that there are two regimes of nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with closed masses created at different reactions are fragmenting practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. The evidence of existence of a radial flow of the spectator fragment at the decay of residual krypton nuclei is found

  2. Dynamics of very low energy photoelectrons interacting with image charge of Cs/Cu(111) surface

    International Nuclear Information System (INIS)

    Hayashi, K.; Arafune, R.; Ueda, S.; Uehara, Y.; Ushioda, S.

    2005-01-01

    We have measured the very low energy photoelectron spectra of Cs-covered Cu(111) surfaces, and determined the mechanism for the appearance of a spike structure due to the interaction of emitted electron with its image charge. At high Cs coverage of 0.10 and 0.14 monolayers (ML), the spike structure appeared at the vacuum level. No such structure was found at low coverage of 0.06 ML. The vacuum level at high coverage lies in the energy gap at the Γ point in the surface Brillouin zone of the Cu(111) surface, while it lies outside the energy gap at low coverage. These results confirm the validity of our proposed mechanism that the spike structure appears when the vacuum level lies in the energy gap

  3. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  4. Testing Special Relativity at High Energies with Astrophysical Sources

    Science.gov (United States)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  5. HEPWEB - WEB-portal for Monte Carlo simulations in high-energy physics

    International Nuclear Information System (INIS)

    Aleksandrov, E.I.; Kotov, V.M.; Uzhinsky, V.V.; Zrelov, P.V.

    2011-01-01

    A WEB-portal HepWeb allows users to perform the most popular calculations in high-energy physics - calculations of hadron-hadron, hadron-nucleus, and nucleus-nucleus interaction cross sections as well as calculations of secondary-particle characteristics in the interactions using Monte Carlo event generators. The list of the generators includes Dubna version of the intranuclear cascade model (CASCADE), FRITIOF model, ultrarelativistic quantum molecular dynamics model (UrQMD), HIJING model, and AMPT model. Setting up the colliding particles/nucleus properties (collision energy, mass numbers and charges of nuclei, impact parameters of interactions, and number of generated events) is realized by a WEB-interface. A query is processed by a server, and results are presented to the user as a WEB-page. Short descriptions of the installed generators, the WEB-interface implementation and the server operation are given

  6. HEPWEB - WEB-portal for Monte Carlo simulations in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, E I; Kotov, V M; Uzhinsky, V V; Zrelov, P V

    2011-07-01

    A WEB-portal HepWeb allows users to perform the most popular calculations in high-energy physics - calculations of hadron-hadron, hadron-nucleus, and nucleus-nucleus interaction cross sections as well as calculations of secondary-particle characteristics in the interactions using Monte Carlo event generators. The list of the generators includes Dubna version of the intranuclear cascade model (CASCADE), FRITIOF model, ultrarelativistic quantum molecular dynamics model (UrQMD), HIJING model, and AMPT model. Setting up the colliding particles/nucleus properties (collision energy, mass numbers and charges of nuclei, impact parameters of interactions, and number of generated events) is realized by a WEB-interface. A query is processed by a server, and results are presented to the user as a WEB-page. Short descriptions of the installed generators, the WEB-interface implementation and the server operation are given.

  7. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  8. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  9. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Science.gov (United States)

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (pmetabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  10. Binding energies of hypernuclei and hypernuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Argonne National Lab., IL (United States)]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Physics; Murali, S.; Usmani, Q.N. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  11. Binding energies of hypernuclei and hypernuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Univ. of Illinois, Chicago, IL; Murali, S.; Usmani, Q.N.

    1996-01-01

    In part 1 the effect of nuclear core dynamics on the binding energies of Λ hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the Λ single-particle energy in terms of basic Λ-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body ΛNN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei

  12. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  13. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  14. Photoproduction of colored pseudo-Goldstone bosons at very high energy

    International Nuclear Information System (INIS)

    Grifols, J.A.; Mendez, A.

    1982-01-01

    We estimate the photoproduction cross section of the color-octet pseudo-Goldstone bosons P 0 8 and P 3 8 in e-p collisions at very high energy. The calculated rates are within detectability limits, especially for the P 3 8 state which, besides, cannot be produced in hadron-hardon interactions

  15. Origin of the High-energy Neutrino Flux at IceCube

    Science.gov (United States)

    Carceller, J. M.; Illana, J. I.; Masip, M.; Meloni, D.

    2018-01-01

    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a {E}-2.1 neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.

  16. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Dept. of Phys. and Astron., Univ. of Bonn (Germany); Dept. of Phys. and Astr., Univ. of Alabama, Tuscaloosa, AL (United States); Dept. of Phys., Univ. of Alabama at Huntsville, AL (United States); Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Becker, Julia K. [Institution foer Fysik, Goeteborgs Univ. (Sweden); Dept. of Phys., Univ. Dortmund, Dortmund (Germany); Caramete, Laurentiu [MPI for Radioastronomy, Bonn (Germany); Institute for Space Studies, Bucharest (Romania); Curutiu, Alex [MPI for Radioastronomy, Bonn (Germany); Engel, Ralph [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Falcke, Heino [Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen (Netherlands); ASTRON, Dwingeloo (Netherlands); Gergely, Laszlo A. [Dept. Appl. Sci., London South Bank University (United Kingdom); Dept. of Theoret. and Exp. Phys., Univ. of Szeged, Szeged (Hungary); Isar, P. Gina [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Institute for Space Studies, Bucharest (Romania); Maris, Ioana C. [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Meli, Athina [Physik. Inst. Univ. Erlangen-Nuernberg (Germany); Kampert, Karl-Heinz [Phys. Dept., Univ. Wuppertal (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States); Tascau, Oana [Phys. Dept., Univ. Wuppertal (Germany); Zier, Christian [MPI for Radioastronomy, Bonn (Germany); Raman Res. Inst., Bangalore (India)

    2009-05-15

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  17. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    International Nuclear Information System (INIS)

    Biermann, Peter L.; Becker, Julia K.; Caramete, Laurentiu; Curutiu, Alex; Engel, Ralph; Falcke, Heino; Gergely, Laszlo A.; Isar, P. Gina; Maris, Ioana C.; Meli, Athina; Kampert, Karl-Heinz; Stanev, Todor; Tascau, Oana; Zier, Christian

    2009-01-01

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  18. Nuclear interactions of high energy heavy ions and applications in astrophysics. Final technical report

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1998-01-01

    Projectile fragmentation experiments have been conducted at the LBL Bevalac accelerator, utilizing both the B40 and the HISS facilities, to produce a dataset of 36 beam/energy combinations covering projectiles from 4 He to 58 Ni and various energies from 170--2100 MeV/nucleon. While some runs were subject to beam instabilities, magnet problems or low statistics, there remains a large dataset which is still being analyzed. The results will be used to investigate the physics of the intermediate energy fragmentation process and will find application in the astrophysics of cosmic ray propagation in the galaxy. An overview of the science goals and rationale is followed by presentation of the experimental techniques and apparatus that has been employed. Data analysis, including both detector subsystem and accelerator calibration, is discussed with emphasis on the unique features of the dataset and the analysis problems being addressed. Results from the experiments are presented throughout to illustrate the status of the analysis, e.g., momentum distribution widths. Total, Elemental and Isotopic cross sections from various beam/energy combinations are presented, including the first data on 32 S fragmentation and the complete isotopic fragmentation cross sections for 28 Si interacting in both Carbon and Hydrogen targets. The new results are compared to any existing data and to formulae used to predict unmeasured cross sections. The size and complexity of the dataset and the required detail of the analysis precluded finishing the full analysis under the subject grant. Plans for additional analysis are presented, and these will be carried out in coming years as time and resources permit

  19. Endpoint behavior of high-energy scattering cross sections

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2010-01-01

    In high-energy processes near the endpoint, there emerge new contributions associated with spectator interactions. Away from the endpoint region, these new contributions are suppressed compared to the leading contribution, but the leading contribution becomes suppressed as we approach the endpoint and the new contributions become comparable. We present how the new contributions scale as we reach the endpoint and show that they are comparable to the suppressed leading contributions in deep inelastic scattering by employing a power-counting analysis. The hadronic tensor in deep inelastic scattering is shown to factorize including the spectator interactions, and it can be expressed in terms of the light cone distribution amplitudes of initial hadrons. We also consider the contribution of the spectator contributions in Drell-Yan processes. Here the spectator interactions are suppressed compared to double parton annihilation according to the power counting.

  20. Large-scale instability in interacting dark energy and dark matter fluids

    International Nuclear Information System (INIS)

    Väliviita, Jussi; Majerotto, Elisabetta; Maartens, Roy

    2008-01-01

    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyse the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime

  1. Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes

    Science.gov (United States)

    Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang

    2018-02-01

    The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.

  2. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  3. Effects of Genotype by Environment Interactions on Milk Yield, Energy Balance, and Protein Balance

    NARCIS (Netherlands)

    Beerda, B.; Ouweltjes, W.; Sebek, L.B.J.; Windig, J.J.; Veerkamp, R.F.

    2007-01-01

    Increases in genetic merit for milk yield are associated with increases in mobilization of body reserves. This study assessed the effects of genotype by environment (GxE) interactions on milk yield and energy and protein balances. Heifers (n = 100) with high or low genetic merit for milk yield were

  4. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    Directory of Open Access Journals (Sweden)

    Li-Chun Huang

    2018-02-01

    Full Text Available This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban areas. The production systems use less labor, pesticide, water, and nutrition. However, food production of plant factories has many challenges including higher energy demand, energy costs, and installation costs of artificially controlled technologies. In the research, stochastic optimization model and linear complementarity models are formulated to conduct optimal and equilibrium food–energy analysis of plant factory production. A case study of plant factories in the Taiwanese market is presented.

  5. Dietary lactalbumin and lactoferrin interact with inulin to modulate energy balance in obese rats.

    Science.gov (United States)

    Singh, Arashdeep; Zapata, Rizaldy C; Pezeshki, Adel; Chelikani, Prasanth K

    2017-06-01

    To determine whether diets enriched with the whey protein components lactalbumin and lactoferrin interact additively with inulin to improve energy balance by decreasing food intake and body weight (BW). In four experiments, diet-induced obese rats were randomized to diets containing either lactalbumin or lactoferrin at low (20% kcal) or high (40% kcal) doses, and inulin at low (7.5% w/w) or high (15% w/w) doses, alone or in combination. Energy intake (EI), energy expenditure (EE), respiratory quotient (RQ), BW, body composition, plasma insulin, and leptin concentrations were measured. Lactalbumin and inulin at low doses were ineffective, whereas high doses additively decreased EI and RQ. Low doses of lactoferrin and inulin additively decreased EI, BW, fat and lean mass, and RQ. High doses of lactoferrin and inulin additively decreased EI, supra-additively decreased BW, fat, and lean mass, and also decreased RQ and plasma leptin concentrations. High doses of lactalbumin and inulin additively decreased EI. Importantly, lactoferrin and inulin at both low and high dose combinations, additively or supra-additively, decreased EI, BW, and adiposity. © 2017 The Obesity Society.

  6. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers

    Science.gov (United States)

    Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.

    2013-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.

  8. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  9. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 117, č. 19 (2016), 1-9, č. článku 192001. ISSN 0031-9007 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * testing hadronic Interactions * ultrahigh energies * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 8.462, year: 2016

  10. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  11. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  12. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  13. Hard processes and fragmentation in a unified model for interactions at ultra-relativistic energies; Les processus durs et la fragmentation dans un modele unifie pour les interactions aux energies ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J

    1999-06-11

    In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.

  14. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  15. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    Science.gov (United States)

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions

  16. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  17. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  18. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  19. Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems

    OpenAIRE

    Li-Chun Huang; Yu-Hui Chen; Ya-Hui Chen; Chi-Fang Wang; Ming-Che Hu

    2018-01-01

    This research aims to analyze the food–energy interactive nexus of sustainable urban plant factory systems. Plant factory systems grow agricultural products within artificially controlled growing environment and multi-layer vertical growing systems. The system controls the supply of light, temperature, humidity, nutrition, water, and carbon dioxide for growing plants. Plant factories are able to produce consistent and high-quality agricultural products within less production space for urban a...

  20. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  1. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  2. Interactions of Policies for Renewable Energy and Climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  3. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  4. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  5. Black hole emission process in the high energy limit

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B [Observatoire de Paris, Section de Meudon, 92 (France). Groupe d' Astrophysique Relativiste; Gibbons, G W; Lin, D N.C.; Perry, M J [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics; Cambridge Univ. (UK). Inst. of Astronomy)

    1976-11-01

    The ultimate outcome of the Hawking process of particle emission by small black holes is discussed in terms of the various conceivable theories of the behaviour of matter in the ultra-high temperature limit. It is shown that if high temperature matter is described by a relatively hard equation of state with an adiabatic index GAMMA greater than 6/5 then interactions between particles can probably be ignored so that the rate of creation will continue to be describable by Hawking's method. On the other hand for softer equations of state (including those of the ultra soft Hagedorn type) the created matter will almost certainly be highly opaque and a hydrodynamic model of the emission process will be more appropriate. Actual astronomical detection of the final emission products might in principle have provided valuable information about the correct theory of ultra high energy physics but it is shown that in practice the black hole death rate is so low that observational distinction of the resulting high energy decay products from the background would require high resolution detectors.

  6. High energy exotic interactions observed by Chacaltaya emulsion chamber

    International Nuclear Information System (INIS)

    Chinellato, J.A.; Dobrigkeit, C.; Bellandi Filho, J.

    1984-01-01

    Exotic events like Centauros, Chirons and Geminions which appears in cosmic ray interactions of the Brazil-Japan Collaboration at Chacaltaya are presented. Genetic hypothesis on how these kind of events are produced are discussed. (L.C.) [pt

  7. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  8. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  9. Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations, its robustness, and applications.

    Science.gov (United States)

    Fačkovec, Boris; Vondrášek, Jiří

    2012-10-25

    Although a contact is an essential measurement for the topology as well as strength of non-covalent interactions in biomolecules and their complexes, there is no general agreement in the definition of this feature. Most of the definitions work with simple geometric criteria which do not fully reflect the energy content or ability of the biomolecular building blocks to arrange their environment. We offer a reasonable solution to this problem by distinguishing between "productive" and "non-productive" contacts based on their interaction energy strength and properties. We have proposed a method which converts the protein topology into a contact map that represents interactions with statistically significant high interaction energies. We do not prove that these contacts are exclusively stabilizing, but they represent a gateway to thermodynamically important rather than geometry-based contacts. The process is based on protein fragmentation and calculation of interaction energies using the OPLS force field and relies on pairwise additivity of amino acid interactions. Our approach integrates the treatment of different types of interactions, avoiding the problems resulting from different contributions to the overall stability and the different effect of the environment. The first applications on a set of homologous proteins have shown the usefulness of this classification for a sound estimate of protein stability.

  10. Low-energy antikaon nucleon and nucleus interaction studies

    Science.gov (United States)

    Marton, Johann; Leannis Collaboration

    2011-04-01

    The antikaon (K-) interaction on nucleons and nuclei at low energy is neither simple nor well understood. Kaonic hydrogen is a very interesting case where the strong interaction of K- with the proton leads to an energy shift and a broadening of the 1s ground state. These two observables can be precisely studied with x-ray spectroscopy. The behavior at threshold is influenced strongly by the elusive Lambda(1405) resonance. In Europe the DAFNE electron-positron collider at Laboratori Nazionali di Frascati (LNF) provides an unique source of monoenergetic kaons emitted in the Phi meson decay. Recently the experiment SIDDHARTA on kaonic hydrogen and helium isotopes was successfully performed at LNF. A European network LEANNIS with an outreach to J-PARC in Japan was set up which is promoting the research on the antikaon interactions with nucleons and nuclei. This talk will give an overview of LEANNIS research tasks, the present status and an outlook to future perspectives. Financial support by the EU project HadronPhysics2 is gratefully acknowledged.

  11. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  12. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein-Ligand Interactions.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2017-04-11

    First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.

  13. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    Energy Technology Data Exchange (ETDEWEB)

    An, Rui [School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn [Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009 (China)

    2017-10-01

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to use the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.

  14. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  15. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  16. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  17. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  18. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  19. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  20. Integral high energy nuclon-nucleus cross sections for mathematical experiments with electronuclear facilities

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Gudowski, W.; Polanski, A.

    1999-01-01

    A parametrization of the integral cross sections σ nonel , σ tl , σ tot for the elastic nonelastic and total proton- and neutron-nucleus interactions is considered at medium and high energies. On the basis of this parametrization a code is created for the interpolational calculations of the integral cross sections for arbitrary target nuclei at proton energies E=1 MeV - 1 TeV and neutron energies E=12.5 MeV - 1 TeV

  1. Interaction between energies, global warming and greenhouse effect; L'interaction entre energies, rechauffement climatique et effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Collomb, B. [Societe Lafarge (France)

    2007-07-01

    This article presents the complex energy efficiency concern of a high energy consuming industry (with the example of the cement industry) with respect to the actual European energy and environmental policies. The author stresses on the competitiveness problems generated by high energy prices, pollution taxes and emissions trading systems, and on the existing disparities in this domain among European countries and between European and non-European countries. (J.S.)

  2. Summary of super high energy events and exotic phenomena in cosmic rays

    International Nuclear Information System (INIS)

    Miyake, S.

    1979-01-01

    In this report, the features of superhigh energy events and exotic phenomena are presented. The examples obtained with emulsion chambers show clear trend of change in the hadron interaction characteristics with energy. The scaling law is violated in the very high energy region above 10 15 eV. In the energy region from 10 to 100 TeV, there is mild violation of scaling. The cosmic ray data on the diffusion of high energy particles in the atmosphere was used to study the mild violation of scaling. It is not easy to discuss the violation in the energy region higher than 10 15 eV, because such event can be obtained very rarely. The only method is the observation of extensive air showers. The relation of average transverse momenta to primary cosmic ray energy was compared with some accelerator data. The cosmic ray data tend to show smaller momentum values. The energy spectrum of cosmic ray muons can be measured by the underground observation, the observation of muon-production burst with emulsion chambers, or the observation of horizontal air showers. Analysis of this spectrum shows that there is an upper limit for the direct production of muons at primary energy of several times of 10 14 eV. Other support for the change of interaction character at 10 14 eV is seen. Possible examples of heavy lepton events were found in the deep underground observation. In deep underground observation, anomalous showers with energy content larger than several hundred GeV were observed. Comment on the long tail nuclear cascade is presented. Some experiments for future are introduced. (Kato, T.)

  3. Signature of the interaction between dark energy and dark matter in observations

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Abramo, L. Raul; Souza, Jose C. C. de

    2010-01-01

    We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.

  4. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)

    2006-11-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.

  5. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    International Nuclear Information System (INIS)

    Bhaduri, R K; Dijk, W van; Srivastava, M K

    2006-01-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system

  6. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    International Nuclear Information System (INIS)

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe

  7. Introduction to high-energy physics and the Stanford Linear Accelerator Center (SLAC)

    Energy Technology Data Exchange (ETDEWEB)

    Clearwater, S.

    1983-03-01

    The type of research done at SLAC is called High Energy Physics, or Particle Physics. This is basic research in the study of fundamental particles and their interactions. Basic research is research for the sake of learning something. Any practical application cannot be predicted, the understanding is the end in itself. Interactions are how particles behave toward one another, for example some particles attract one another while others repel and still others ignore each other. Interactions of elementary particles are studied to reveal the underlying structure of the universe.

  8. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  9. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs).

  10. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  11. Explosive vaporization induced by high-power CO2-laser target interactions

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    1976-01-01

    The interactions of high-power laser pulses with targets such as metals or dielectric materials causes a series of optical, thermal, and mechanical processes. Thereby, heating, melting, and vaporization can take place in a short time. At power densities of about 10 7 to several 10 8 W/cm 2 this can even be produced explosively. As compared to continuous ablation, this type of interaction can remove greater masses from the bulk of material. The investigations are performed by using an electron-beam preionized CO 2 -laser acting on different target materials. The energy of the laser pulses is about 30 J, the pulse-half-widths of the long-tail pulses 4 to 6 μs. Optical measurements yield some information on threshold values for these processes, for the formation and expansion of plasmas, and for the ejection of material in form of greater particles. High speed photographic techniques include a rotating mirror- and an image converter camera. Starting from shock-wave theory, gas dynamic equations (in unidimensional approximation) allow for a quantitative determination of the specific internal energies and pressures in the case of optical detonation. (orig.) [de

  12. Interactions in the energy supply system. Mechanisms - interactions - examples. An analysis

    International Nuclear Information System (INIS)

    Ausfelder, Florian; Wagemann, Kurt; Drake, Frank-Detlef; Paschke, Marian; Schueth, Ferdi; Themann, Michael; Wagner, Hermann-Josef

    2015-01-01

    In embarking on the energy turnaround Germany has taken upon itself one of the greatest self-chosen challenges of the future, namely to transform the energy supply system from being predominantly dependent on fossil fuels to relying almost entirely on renewable energy resources. The driving goal behind this project, which has wide public acceptance, is to ensure that our energy supply remains sustainable, safe and affordable. This transformation process by a successful industrial nation is being followed abroad with great interest. The present document does not undertake a political assessment of the energy turnaround or its goals. It rather focuses on an analysis of effects brought about by individual measures on the system as a whole. This systemic view opens up a new perspective on the ''engine room'' of the energy turnaround. It allows one to inquire whether a given measure actually fulfils the expectations that have been placed in it for the system as a whole - expectations that are often born from too narrow a perspective - or whether it is having unexpected, undesirable effects. These can impact on the effectiveness of a specific measure in realising the goals of the energy turnaround. The authors believe that having as precise knowledge as possible of these systemic interactions is a fundamental prerequisite to managing the energy turnaround in such a way that its goals are achieved as effectively and efficiently as possible.

  13. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Science.gov (United States)

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  14. Interaction of two walkers: wave-mediated energy and force.

    Science.gov (United States)

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  15. Investigating the exclusive protoproduction of dileptons at high energies

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2008-01-01

    Using the high energy color dipole approach, we study the exclusive photoproduction of lepton pairs γN→γ*(→l + l - )N (with N=p, A). We use simple models for the elementary dipole-hadron scattering amplitude that captures main features of the dependence on atomic number A, on energy and on momentum transfer t. This investigation is complementary to conventional partonic description of timelike Compton scattering, which considers quark handbag diagrams at leading order in α s and simple models of the relevant generalized parton distributions. These calculations are input in electromagnetic interactions in pp and AA collisions to measured at the LHC.

  16. Interactive energy consumption visualization

    CSIR Research Space (South Africa)

    Lunga, D

    2014-11-01

    Full Text Available in an office building environment. The main goal is to highlight high consumptions patterns, estimate costs and savings, and recommend energy saving strategies. In its useful nature, the dashboard can provide valuable information for further programs tied...

  17. Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    Vaseghi, B.; Rezaei, G.; Malian, M.

    2011-01-01

    We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.

  18. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    correspond to the interactions of secondary panicles created by primary radiation are close to the sensitive volume of the equipment. The comparison of both methods was performed in the field on board aircraft and in high energy reference fields. it was found that the microdosimetric distributions observed agreed at least qualitatively, a quantitative agreement of integral dosimetric values was found as well. The measurements in proton beams were performed in several points along the Bragg curve. Actually, we were able to observe the influence of primary beam contamination due to the filtration as well as due to the secondary particle created during the penetration of beams in the phantome. The relevance of such data for the radiotherapy application of high energy protons is evident. It was proved that both method can give relevant and useful information on the microdosimetric distributions in complex beams and fields of high energy panicles. The further development of this approach is in progress in our laboratories. (author)

  19. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  20. Experimental and theoretical high energy physics. Progress report 1 Oct 1979 to 30 Sep 1980

    International Nuclear Information System (INIS)

    Research performed in theoretical high energy physics includes: nonabelian Stokes theorem; connection between asymptotic behavior and bound states in QCD; classical solutions for gauge fields interacting with Higgs mesons; neutrino oscillations; relativistic wave equation and mass spectrum of gluonium; dynamical structures of the pion; convergence of reflectionless approximations to confining potentials; degeneracy in one-dimensional quantum mechanics; review of heavy quarks and new particles; semiclassical results on normalization of bound state wave functions; proton lifetime; quark magnetic moments and E1 radiative transitions in charmonium; lectures on quark models; inverse scattering and the upsilon family; and magnetic moments of quarks in baryons and mesons. In experimental high energy physics, the emphasis has been on strong interactions but also includes several crucial tests of the currently most important theories of elementary particle interactions. Experiments described include: electromagnetic couplings of vector mesons; direct photon production at large transverse momentum; hyperon experiments; spin effects in strong interactions; a dense detector for proton decay; and exclusive processes at large transverse momenta

  1. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  2. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    Science.gov (United States)

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  3. Quasiparticle Energy in a Strongly Interacting Homogeneous Bose-Einstein Condensate.

    Science.gov (United States)

    Lopes, Raphael; Eigen, Christoph; Barker, Adam; Viebahn, Konrad G H; Robert-de-Saint-Vincent, Martin; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P

    2017-05-26

    Using two-photon Bragg spectroscopy, we study the energy of particlelike excitations in a strongly interacting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov theory. In particular, at large scattering length a the shift of the excitation resonance from the free-particle energy changes sign from positive to negative. For an excitation with wave number q, this sign change occurs at a≈4/(πq), in agreement with the Feynman energy relation and the static structure factor expressed in terms of the two-body contact. For a≳3/q we also see a breakdown of this theory, and better agreement with calculations based on the Wilson operator product expansion. Neither theory explains our observations across all interaction regimes, inviting further theoretical efforts.

  4. Interacting dark energy models as an approach for solving Cosmic Coincidence Problem

    Science.gov (United States)

    Shojaei, Hamed

    Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related

  5. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  6. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  7. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  8. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  9. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  10. Numerical evaluation of high energy particle effects in magnetohydrodynamics

    International Nuclear Information System (INIS)

    White, R.B.; Wu, Y.

    1994-03-01

    The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system

  11. Measurement of the dechanneling length for high-energy negative pions

    International Nuclear Information System (INIS)

    Scandale, W.; Losito, R.; Bagli, E.; Bandiera, L.; Dalpiaz, P.; Fiorini, M.; Guidi, V.; Mazzolari, A.; Vincenzi, D.; Della Mea, G.; Vallazza, E.; Afonin, A.G.; Chesnokov, Yu.A.; Maisheev, V.A.; Yazynin, I.A.; Kovalenko, A.D.; Taratin, A.M.; Denisov, A.S.; Gavrikov, Yu.A.; Ivanov, Yu.M.

    2013-01-01

    We studied the dechanneling length of 150 GeV/cπ − interacting with a short bent silicon crystal. Dechanneling length measures the rate and the strength of incoherent interactions of channeled particles in a crystal. The mechanism of dechanneling of negatively charged particles has been elucidated through simulation and experiment. It was found that the dechanneling length for negative particles is comparable to the nuclear dechanneling length for positive charges. Indeed, dechanneling of negative particles occurs as a result of incoherent interactions with the nuclei because the trajectories of such particles always intersect atomic planes, explaining the lower channeling efficiency for such particles. Obtained results can be useful for the design of crystals for manipulating high-energy negative particle beams through channeling

  12. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    Science.gov (United States)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  13. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  14. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  15. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  16. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    Science.gov (United States)

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  17. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  18. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  19. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  20. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  1. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  2. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  3. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  4. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  5. Quantum-size effects in the energy loss of charged particles interacting with a confined two-dimensional electron gas

    International Nuclear Information System (INIS)

    Borisov, A. G.; Juaristi, J. I.; Muino, R. Diez; Sanchez-Portal, D.; Echenique, P. M.

    2006-01-01

    Time-dependent density-functional theory is used to calculate quantum-size effects in the energy loss of antiprotons interacting with a confined two-dimensional electron gas. The antiprotons follow a trajectory normal to jellium circular clusters of variable size, crossing every cluster at its geometrical center. Analysis of the characteristic time scales that define the process is made. For high-enough velocities, the interaction time between the projectile and the target electrons is shorter than the time needed for the density excitation to travel along the cluster. The finite-size object then behaves as an infinite system, and no quantum-size effects appear in the energy loss. For small velocities, the discretization of levels in the cluster plays a role and the energy loss does depend on the system size. A comparison to results obtained using linear theory of screening is made, and the relative contributions of electron-hole pair and plasmon excitations to the total energy loss are analyzed. This comparison also allows us to show the importance of a nonlinear treatment of the screening in the interaction process

  6. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  7. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  8. Acoustic detection of ultra-high energy cascades in ice

    International Nuclear Information System (INIS)

    Boeser, S.

    2006-01-01

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km 3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km 3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  9. Beam-target interaction for high-dose, multi-pulse radiography

    International Nuclear Information System (INIS)

    DeVolder, B.G.; Kwan, T.J.T.; Snell, C.M.; Kares, R.J.; McLenithan, K.D.

    1996-01-01

    The conversion of an intense relativistic electron beam into x-rays for radiographic imaging is achieved through the bremsstrahlung process of electrons in a tantalum or tungsten target of some optimal thickness. A high-dose radiographic source with small spot size is needed to achieve desirable resolution for thick objects. Consequently, an extremely high brightness electron beam is used and a significant amount of electron beam energy can be deposited in a small area of the target. The authors describe a computational methodology used to model the beam-target interaction and the evolution of the resultant plasma. Several codes, including particle-in-cell (PIC), Monte Carlo transport, and magnetohydrodynamic (MHD) codes, contribute to simulate different parts of the problem in a linked fashion. Issues addressed by the calculations include: the effects of the time dependence of the energy profile deposited in the target; the influence of the external magnetic field on plasma expansion; the influence of the expanding plasma on the guide magnetic field; radiation effects; and multi-dimensional effects

  10. Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data

    Energy Technology Data Exchange (ETDEWEB)

    Costa, André A.; Abdalla, E. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970, São Paulo, SP (Brazil); Xu, Xiao-Dong [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Wang, Bin, E-mail: alencar@if.usp.br, E-mail: xiaodong.xu@uct.ac.za, E-mail: wang_b@sjtu.edu.cn, E-mail: eabdalla@usp.br [Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2017-01-01

    We investigate phenomenological interactions between dark matter and dark energy and constrain these models by employing the most recent cosmological data including the cosmic microwave background radiation anisotropies from Planck 2015, Type Ia supernovae, baryon acoustic oscillations, the Hubble constant and redshift-space distortions. We find that the interaction in the dark sector parameterized as an energy transfer from dark matter to dark energy is strongly suppressed by the whole updated cosmological data. On the other hand, an interaction between dark sectors with the energy flow from dark energy to dark matter is proved in better agreement with the available cosmological observations. This coupling between dark sectors is needed to alleviate the coincidence problem.

  11. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  12. Search for new physics in final states with a high energy electron and large missing transverse energy

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Natascha

    2017-01-13

    The most successful and comprehensive theory describing the microcosm is the Standard Model of particle physics (SM). It comprises all known elementary particles and describes in high precision the basic processes of three of the four fundamental interactions. But still, not all experimental observations and theoretical challenges are covered. Many models exist that take the SM as a good approximation of natural phenomena in already discovered energy regions, but extend it in various ways. The Large Hadron Collider (LHC) provides the opportunity to look into these high energy regions using proton-proton collisions at significantly higher center-of-mass energies than previous experiments. This dissertation searches for physics beyond the SM especially in final states with one highly energetic electron (respectively positron) and large missing transverse energy. With the data set recorded in 2012 by the ATLAS detector, a large multi-purpose detector making use of the LHC, the spectrum of the related combined transverse mass can be measured up to the TeV scale. To find any evidence to the existence of new physics beyond the SM, it was searched for significant deviations between the observed data and the expectations due to SM processes. Unfortunately, no significant excess could be observed and exclusion limits in the context of three different new physics scenarios are provided. Besides a so-called Sequential Standard Model (SSM) predicting additional vector gauge bosons, also the possible existence of (charged) chiral bosons is analyzed. Also inferences about dark matter candidates called ''weakly interacting massive particles (WIMP)'' are drawn. With the aid of a Bayesian ansatz, the observed (expected) exclusion limit on the boson pole mass is set to 3.13 TeV(3.13 TeV) for a SSM W' boson and to 3.08 TeV(3.08 TeV) for charged chiral W{sup *} bosons (at 95% C.L.).

  13. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    International Nuclear Information System (INIS)

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  14. Maintenance of energy expenditure on high-protein vs. high-carbohydrate diets at a constant body weight may prevent a positive energy balance.

    Science.gov (United States)

    Martens, E A; Gonnissen, H K; Gatta-Cherifi, B; Janssens, P L; Westerterp-Plantenga, M S

    2015-10-01

    Relatively high-protein diets are effective for body weight loss, and subsequent weight maintenance, yet it remains to be shown whether these diets would prevent a positive energy balance. Therefore, high-protein diet studies at a constant body weight are necessary. The objective was to determine fullness, energy expenditure, and macronutrient balances on a high-protein low-carbohydrate (HPLC) diet compared with a high-carbohydrate low-protein (HCLP) diet at a constant body weight, and to assess whether effects are transient or sustained after 12 weeks. A randomized parallel study was performed in 14 men and 18 women [mean ± SD age: 24 ± 5 y; BMI (in kg/m(2)): 22.8 ± 2.0] on diets containing 30/35/35 (HPLC) or 5/60/35 (HCLP) % of energy from protein/carbohydrate/fat. Significant interactions between dietary intervention and time on total energy expenditure (TEE) (P = 0.013), sleeping metabolic rate (SMR) (P = 0.040), and diet-induced thermogenesis (DIT) (P = 0.027) appeared from baseline to wk 12. TEE was maintained in the HPLC diet group, while it significantly decreased throughout the intervention period in the HCLP diet group (wk 1: P = 0.002; wk 12: P = 0.001). Energy balance was maintained in the HPLC diet group, and became positive in the HCLP diet group at wk 12 (P = 0.008). Protein balance varied directly according to the amount of protein in the diet, and diverged significantly between the diets (P = 0.001). Fullness ratings were significantly higher in the HPLC vs. the HCLP diet group at wk 1 (P = 0.034), but not at wk 12. Maintenance of energy expenditure on HPLC vs. HCLP diets at a constant body weight may prevent development of a positive energy balance, despite transiently higher fullness. The study was registered on clinicaltrials.gov with Identifier: NCT01551238. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  16. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  17. High energy physics progress report, April 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.

    1976-01-01

    During the contract year progress was attained in the goals of studying the interactions among the elementary particles at high energies. Experiments E-407, E-395, E-418, and E-415 were carried out at the Argonne ZGS. The year was largely devoted to the preparation and execution of experiments, along with the publication of papers

  18. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  19. Energy dependence of ulrathin LiF-dosemeters for high energy electrons and high energy X-radiation

    International Nuclear Information System (INIS)

    Kupfer, T.

    1977-02-01

    The energy dependence of ultrathin LiF-dosemeters for high energy electrons (5-40 MeV) and high energy X-radiation (6 MV, 42 MV) is experimentally determined. The experimental values are compared to values calculted earlier by other authors. The influence of the thickness of the dosemeters have been considered by comparison of experimental values for 0.03 mm thick dosemeters and theoretical values for 0.13 mm and 0.38 mm thick ones. Also different commersially available dosemeters have been compared by experiments. It is difficult to draw any other conclutions about the energy dependence than that the variation of the relative responce is within +- 3 percent (2S). However the results seems to be sulficient for clinical applications

  20. Cosmology and Gravitation: the grand scheme for High-Energy Physics

    CERN Document Server

    Binétruy, P.

    2014-12-10

    These lectures describe how the Standard Model of cosmology ( Λ CDM) has developped, based on observational facts but also on ideas formed in the context of the theory of fundamental interactions, both gravitational and non-gravitational, the latter being described by the Standard Model of high energy physics. It focuses on the latest developments, in particular the precise knowledge of the early Universe provided by the observation of the Cosmic Microwave Background and the discovery of the present acceleration of the expansion of the Universe. While insisting on the successes of the Standard Model of cosmology, we will stress that it rests on three pillars which involve many open questions: the theory of inflation, the nature of dark matter and of dark energy. We will devote one chapter to each of these issues, describing in particular how this impacts our views on the theory of fundamental interactions. More technical parts are given in italics. They may be skipped altogether.

  1. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  2. High energy accelerator and colliding beam user group. Progress report 1978/1979

    International Nuclear Information System (INIS)

    Snow, G.

    1979-12-01

    The High Energy Physics Group at the U. of Maryland engaged in a substantial number of different types of particle physics experiments. The largest and most important experiment is that on e + e - interactions. Three experiments were carried out to search for exotic particles or interactions: a heavy neutral lepton, muonium to antimuonium transitions, axions produced by an intense electron beam. No evidence for any of these phenomena was obtained, and the corresponding limitations on relevant parameters were deduced. 10 figures

  3. Interactions of White Certificates for energy efficiency and other energy and climate policy instruments

    International Nuclear Information System (INIS)

    Oikonomou, V.

    2010-01-01

    The EU and its member states are developing their own policies targeting at energy supply, energy demand and environmental goals that are indirectly linked to energy use. As these policies are implemented in an already policy crowded environment, interactions of these instruments take place, which can be complementary competitive or self exclusive. As a starting point, we test White Certificates for energy efficiency improvement in the end-use sectors. Our main research questions are: (1) to provide a general explanatory framework for analyzing energy and climate policy interactions by employing suitable methods, and (2) to evaluate these methods and draw conclusions for policy makers when introducing White Certificates with other policy instruments stressing the critical condition that affect their performance. A core lesson is that when evaluating ex-ante instruments, a variety of economic and technological methods must be applied. Based on these methods, several endogenous and exogenous conditions affect the performance of White Certificates schemes with other policy instruments. Due to the innovative character of White Certificates and the uncertainty of hidden costs embedded into it, ex-ante evaluations should focus not only on the effectiveness and efficiency of the scheme, but on several other criteria which express the political acceptability and socioeconomic effects. We argue finally that White Certificates can make effective use of market forces and can assist in overcoming market barriers towards energy efficiency, and we expect that under certain preconditions, it can be integrated with other policy instruments and allows to achieve cost effectively multiple environmental objectives.

  4. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    Science.gov (United States)

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  5. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  6. Radiation-hard silicon photonics for high energy physics and beyond

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Silicon photonics (SiPh) is currently being investigated as a promising technology for future radiation hard optical links. The possibility of integrating SiPh devices with electronics and/or silicon particle sensors as well as an expected very high resistance against radiation damage make this technology particularly interesting for potential use close to the interaction points in future in high energy physics experiments and other radiation-sensitive applications. The presentation will summarize the outcomes of the research on radiation hard SiPh conducted within the ICE-DIP projected.

  7. Program for Plasma-Based Concepts for Future High Energy Accelerators

    International Nuclear Information System (INIS)

    Katsouleas, Thomas C.; Muggli, Patric

    2003-01-01

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  8. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  9. High-energy hadron dynamics based on a stochastic-field multieikonal theory

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1977-01-01

    Multieikonal theory, using a stochastic-field representation for collective long-range rapidity correlations, is developed and applied to the calculation of Regge-pole parameters, high-transverse-momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multieikonal method, the pole spectrum is modified in three ways: promotion and renormalization of leading trajectories (suggesting an effective Pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub T/ inclusive cross sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined

  10. Extreme enhancement of blocking temperature by strong magnetic dipoles interaction of α-Fe nanoparticle-based high-density agglomerate

    International Nuclear Information System (INIS)

    Kura, H; Takahashi, M; Ogawa, T

    2011-01-01

    High-volume fraction α-Fe nanoparticle (NP) agglomerates were prepared using chemically synthesized NPs. In the agglomerate, NPs are separated by surfactant and NP superlattice with a hexagonal close-packed structure is locally realized. Volume fractions of NPs at 20% and 42% were obtained in agglomerates consisting of 2.9 nm and 8.2 nm diameter NPs, respectively. The high saturation magnetization of α-Fe NPs and high volume fraction of NPs in the agglomerate provide strong magnetic dipole-dipole interaction. The interaction energy of the agglomerate became much larger than the anisotropic energy of individual NPs. As a result, the blocking temperature of the 8.2 nm NP agglomerate was significantly enhanced from 52.2 K to around 500 K. (fast track communication)

  11. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    International Nuclear Information System (INIS)

    Goethe, Martin; Rubi, J. Miguel; Fita, Ignacio

    2016-01-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  12. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  13. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  14. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  15. Urban climate and energy demand interaction in Northern Eurasia

    Science.gov (United States)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  16. Electron-phonon interaction and its manifestation in high-temperature superconductors

    International Nuclear Information System (INIS)

    Maksimov, E.G.

    1995-01-01

    Different types of band structure approaches for a description of electrons in systems with strong correlations are discussed. It is shown that all methods considered give different electron energy dispersions and Fermi surfaces. The good agreement between measured Fermi surfaces and those calculated by LDA shows that the spatial dispersion of the correlation interaction is not so important in HTSC systems. The same conclusion can be obtained from the optical and photoemission spectra. It is shown that the most important contribution beyond a band structure approach is given by an energy dependence of the electron self-energy. The most likely interaction responsible for this energy dependence is the electron-phonon one. Evidences about this fact are given

  17. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  18. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  19. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation

    Science.gov (United States)

    Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco

    2018-05-01

    We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

  20. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  1. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Directory of Open Access Journals (Sweden)

    Daniel M V Santos

    Full Text Available Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001 for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  2. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    Science.gov (United States)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in

  3. Regional Analysis of Energy, Water, Land and Climate Interactions

    Science.gov (United States)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Sodium fast reactors energy conversion systems. Na-CO2 interaction. Comparison with Na-water interaction of conventional water Rankine cycle

    International Nuclear Information System (INIS)

    Latge, Christian; Simon, Nicole

    2006-01-01

    The Sodium Fast Reactor is a very promising candidate for the development of Fast Neutron Reactors. It is well known owing to its wide development since the 1950's, throughout all countries involved in the development of nuclear power plants. The development of Sodium-cooled fast neutron reactors is possible due to its very attractive sodium, nuclear, physical and even some of its chemical properties. Nevertheless, the operational feedback has shown that the concept has several drawbacks: difficulties for In-Service Inspection and Repair operations due to the sodium opacity and possible detrimental effects of its reactivity with air and water when the heat conversion is performed with a conventional Rankine cycle. Moreover, the various design projects have shown some difficulties in enhancing its competitiveness with regards to existing NPPs without any new innovative options, i.e. the possibility of suppressing the intermediate circuits and/or the development of an optimized energy conversion system. The Supercritical CO 2 Brayton Cycle option for the energy conversion has been widely suggested because of its high thermodynamic efficiency (over 40%), its potential compactness of the Balance Of Plant equipment due to the small-sized turbo machinery system, and for its applicability to both Direct or Indirect Cycle (Na, PbBi, He) assuming the hypothesis that the Supercritical CO 2 -Na interaction has less serious potential consequences than sodium-water consequences in the conventional Rankine cycle. Within the framework of the SMFR (Small Modular Fast Reactor) project, developed jointly by Argonne National Laboratory (ANL-USA), the 'Commissariat a l'Energie Atomique' (CEA) and Japan Atomic Energy Agency (JAEA, formerly Japan Nuclear Cycle development), this option has been selected and investigated. This paper deals with the study of the interaction between Na and CO 2 , based on a literature review: the result of this study will allow the definition of R and D

  5. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  6. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  7. Complex of programs for calculating radiation fields outside plane protecting shields, bombarded by high-energy nucleons

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Man'ko, B.V.; Serov, A.Ya.; Sychev, B.S.

    1979-01-01

    A complex of programs for modelling various radiation situations at high energy proton accelerators is considered. The programs are divided into there main groups according to their purposes. The first group includes programs for preparing constants describing the processes of different particle interaction with a substanc The second group of programs calculates the complete function of particle distribution arising in shields under irradiation by high energy nucleons. Concrete radiation situations arising at high energy proton accelerators are calculated by means of the programs of the third group. A list of programs as well as their short characteristic are given

  8. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  9. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  10. High-energy gravitational scattering and the general relativistic two-body problem

    Science.gov (United States)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  11. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  12. The interaction of low-energy electrons with fructose molecules

    Science.gov (United States)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  13. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  14. Hydrogen-antihydrogen interactions at low energies

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Zeman, V.

    1999-01-01

    The main cause of loss of trapped AH is due to collisions with H 2 and He. As a first step towards treating these reactions we are studying the interaction of AH with H. We have carried out variational calculations to determine an upper bound to the smallest internuclear distance at which the light particles are still bound to the nuclei. We are currently in the process of taking into account the motion of the nuclei. This will enable us to calculate cross-sections for low energy H-AH scattering

  15. Neural network model for proton-proton collision at high energy

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.; El-Metwally, K.A.

    2003-01-01

    Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  16. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué , D.; Carrillo, J. A.; Laurent, T.; Raoul, G.

    2013-01-01

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué, D.

    2013-05-22

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  18. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    Science.gov (United States)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  19. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    Science.gov (United States)

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  20. Multiplicity fluctuations of identified hadrons in p+p interactions at SPS energies

    CERN Document Server

    Maćkowiak-Pawłowska, Maja

    2014-01-01

    Study of energy and system size fluctuations of identified hadrons is one of the key goals of NA61/SHINE at the CERN SPS. Results may allow to discover the critical point (CP) of strongly interacting matter as well as to uncover properties of the onset of deconfinement (OD). But fluctuations exhibit numerous other sources starting from most basic ones like volume effects and conservation laws. NA49 seems to observe fluctuations related to CP in collisions of medium size nuclei at top SPS energy. However, this result will remain inconclusive until systematic data on energy and system size dependence will be available. Moreover, fluctuations in p+p as well as in Pb+Pb interactions should be better understood. In this contribution results on multiplicity fluctuations of identified hadrons in p+p interactions at the CERN SPS energies will be presented. The NA61 data will be compared with the corresponding results from central Pb+Pb collisions of NA49 in the common acceptance region of both experiments. Moreover, ...